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Abstract. Vegetation plays a critical role in the modulation of fluvial process and morphological evolution. However, 

adequately capturing the spatial and temporal variability and complexity of vegetation characteristics remains a challenge. 

Currently, most of the research seeking to address these issues takes place at either the individual plant scale or via larger scale 10 

bulk roughness classifications, with the former seeking to characterise vegetation-flow interactions and the latter identifying 

spatial variation in vegetation types. Herein, we devise a method which extracts functional vegetation traits using UAV laser 

scanning and multispectral imagery, and upscale these to reach scale guildfunctional group classifications. Simultaneous 

monitoring of morphological change is undertaken to identify eco-geomorphic links between different guildsfunctional groups 

and the geomorphic response of the system in the context of long-term decadal changes.. Identification of four guildsgroups 15 

from quantitative structural modelling based on analysis of terrestrial and UAV based laser scanning and and two further 

guildsgroups from image analysis was achieved. These and were upscaled to reach-scale guildgroup classifications with an 

overall accuracy of 80%%. Plant structure was then used to assess seasonal changes in excess vegetative drag and linksrelate 

these to magnitudes of geomorphic activity explored. We show that different vegetation guilds have a role in influencing 

morphological change through the stabilisation of banks, but that limits on this influence are evident in the prior long-term 20 

analysisacross the study site. This research reveals that remote sensing offers a solution to the difficulty of scaling traits-based 

approaches for eco-geomorphic research, and that future work should investigate how these methods may be applied to larger 

areas using airborne laser scanning and satellite imagery datasets. 

1. Introduction 

Fluvial eco-geomorphic interactions are co-dependent, complex, and variable across space and time, representing a continued 25 

area of interest within river research (Thoms and Parsons, 2002). The diversity of eco-geomorphology in river corridors can 

be attributed to surrounding land use, existing morphology, and flood regimes (Naiman et al., 1993), whilst this same diversity 

simultaneously influences the flow of water and sediment, ultimately affecting morphology (Diehl et al., 2017)(Diehl et al., 

2017a) and floodplain conveyance (Nepf and Vivoni, 2000). The role of vegetation within the river corridor is well established, 

benefiting the local ecology (Harvey and Gooseff, 2015; Sweeney et al., 2004) alongside playing a role in natural flood 30 
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management schemes and reconnecting channels and floodplains (Lane, 2017; Wilkinson et al., 2019), especially for small 

catchments where land cover is more influential for flooding (Blöschl et al., 2007). This is important when considered against 

a backdrop of a rapidly changing climate where flow extremes are more varied, flooding more likely (Unisdr and Cred, 

2015)(Unisdr and Cred, 2015), and riparian vegetation is likely to undergo shifts in composition (Rivaes et al., 2014; Palmer 

et al., 2009). Consequently, adequately measuring and monitoring vegetation with the fluvial domain is critical to 35 

understanding how these systems will respond to varying climatic and hydrologicalhydraulic conditions. 

 

The characterisation of riparian vegetation distribution over larger (>1 km) scales has typically relied upon the use of coarse 

classifications such as those identified in the Water Framework Directive (e.g. Gilvear et al., 2004), using techniques such 

areas aerial imagery and satellite remote sensing (see Tomsett and Leyland, 2019). Any characterisation must be scalable and 40 

geographically transferable to cover the vast range of different fluvial landscapes, whilst still accounting for the complexity 

presented within river corridors. Over-simplified, coarse classifications may altogether miss the vegetation complexity that 

exists, whilst conversely, highly detailed models tend to be necessarily localised and less transferable to alternate systems and 

scenarios.  

 45 

Traits-based classifications, developed and used within ecology, offer a scalable and transferable approach which can be 

applicable to the fluvial domain (Diehl et al., 2017). They(Diehl et al., 2017a), and have been shown to be useful for modelling 

topographic response to changing vegetation, sediment, and flow conditions (Diehl et al., 2018; Butterfield et al., 2020). 

However, challenges remain in broad application of this approach, with the characterisation of vegetation in the highly detailed 

manner required to extract traits metrics being challenging over larger (e.g. >1 km) scales.However, the application of traits-50 

based classifications over larger reaches has yet to be fully realised, due to the challenges in collecting appropriately high 

resolution data at these scales (e.g. >1 km). If such challenges can be overcome, it offers an opportunity for those analysing 

vegetation both within the river corridor and elsewhere in the landscape to obtain spatially explicit data on vegetation that was 

previously unattainable.  

 55 

To address these gaps, herein we examine the scales over which different traits can be collected from remote sensing methods 

and assess how well these traits can be used to establish eco-geomorphic relationships. We use a UK based temperate river as 

an exemplarexample site to demonstrate the effectiveness of novel remote sensing techniques for characterising vegetation. 

through time. We investigate the limits of trait detection and the scales at which they are most appropriately used to enhance 

eco-geomorphic understanding, enabling us to establish the applicability of these methods to a variety of river corridor 60 

environments. Below we introduce the concepts of plant functional traits and hydraulically relevant traits before establishing 

the aims of this research. 
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1.1. The Importance of Vegetation 

It is well understood that vegetation plays a key role within the river corridor and that how vegetation is modelledrepresented 

in models (e.g. constant and varying roughness values, rigid cylinders etc.) can affect the outcomes of hydrodynamic 65 

simulations. Channels with in-stream vegetation may experience roughness values an order of magnitude higher than non-

vegetated channels (De Doncker et al., 2009), capable of reducing velocities by up to 90% (Sand‐Jensen and Pedersen, 1999). 

However, foliage type and how vegetation is modelled affect the influence that the vegetation has on, with stem shape, the 

amount of foliage, and deformation at various flow stages, all influencing river flow (James et al., 2008). The challenges posed 

by quantifying in-stream vegetation means that it is often difficult to make estimations of in-stream roughness (O'hare et al., 70 

2011). Conversely, above water vegetation(O'Hare et al., 2011). Conversely, terrestrial vegetation that influences flow during 

periods of flooding is easier to measure and monitor depending on the scales of analysis. Banks are typically eroded via 

mechanisms of mass failuresfailure or entrainment (Hughes, 2016) and so, therefore any stabilising effects of vegetation 

mustwill influence these processes. Vegetation can reduce stream power, increase soil cohesion, and influence soil moisture 

levels, all of which can help to reducelimit bank erosion (Simon et al., 2000; Fox et al., 2007; Kang, 2012). Bank collapse is 75 

influenced by three dominant factors, the extra mass of the vegetation, the shear strength provided by root reinforcement, and 

changes to bank pore water pressure (Wiel and Darby, 2007), with above ground biomass therefore directly influencing the 

mechanical and hydraulic properties of the substrate (Gurnell, 2014). The above ground biomass also has a direct influence on 

river flow and sediment transport when submerged (Gurnell, 2014), acting as a sediment trap and stabilising bars (Hortobágyi 

et al., 2018; Sharpe and James, 2006), although this is stage dependent and depends on plant volume and structure.  80 

 

The below ground biomass is of equal importance, with root networks decreasing the erodibility of beds and banks by 

increasing the critical shear stress required for erosion to take place (Millar and Quick, 1998; Wiel and Darby, 2007). The 

presence of grass compared to bare sediment can increase the stability of soil by a factor is 1.97 (Julian and Torres, 2006) and 

that comparisons between trees and grass can lead to similar increases in stability again (Millar and Quick, 1998; Huang and 85 

Nanson, 1998). Furthermore, the below ground portion of vegetation is highly influential in vegetation removal during peak 

flow events (Caponi et al., 2020; Bankhead et al., 2017; Francalanci et al., 2020), a critical phase in the feedback loops between 

vegetation, flow, and morphology. Yet the difficulties in obtaining below ground data is well noted when compared to above 

ground data, and continues to remain a challenge for remote sensing studies.  

1.2. Plant Functional Traits  90 

Functional traits originate from ecological research, whereby criticism of using functional types led to a need for a more robust 

system of classification for ecological studies. Functional types represent vegetation based on its morphology and physiology, 

amongst other factors (Box, 1981; Box, 1996), but these attributes can exhibit greater variation within functional types as 

opposed to between them (Reich et al., 2007; Wright et al., 2005), as well as not varying between different types at all (Van 
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Bodegom et al., 2012). Assessment of plants based on their functional traits has been seen as a method to overcome the 95 

shortcomings of the classic typological approach (Quétier et al., 2007).  

 

Much like the attributes of a plant type, plant functional traits are morphological, physiological, or phenological attributes that 

are measurable at the individual plant level (Violle et al., 2007; Kattge et al., 2011; Savage et al., 2007). These measures can 

either be direct measures of a function such as photosynthesis or be a surrogate measure for a function such as leaf area. To be 100 

classed as ‘functional’ for ecology, traits must affect either plant growth, reproduction, or survival (Violle et al., 2007). Traits 

can either be effect or response based, depending on whether they have an influence on or are influenced by their wider 

environment (Violle et al., 2007). The benefit of traits-based methods is the applicability between different sites without 

needing species specific data (Mcgill et al., 2006). Therefore, the findings of community response to factors such as land use 

or climatic gradients (e.g. De Bello et al., 2006; Garnier et al., 2006) can be applied to a different location with similar trait 105 

composition. This is possible through the creation of guilds which describe plant groups with similar traits (Lytle et al., 2017) 

providing a scalable framework for eco-geomorphic research.  

Functional traits originate from ecological research, and are morphological, physiological, and phenological attributes that can 

be measured at the individual plant level (Violle et al., 2007; Kattge et al., 2011; Savage et al., 2007). These can either be 

direct measurements of a function, such as photosynthesis, or a surrogate measure for that function, such as leaf area, but to 110 

be classed as functional in ecology these must either affect plant growth, reproduction, or survival (Violle et al., 2007; Quétier 

et al., 2007). These measured traits can either be an effect or response trait, whereby they either have an influence on or are 

influenced by their surrounding environment respectively (Violle et al., 2007; Kattge et al., 2020).  

 

One of the benefits of collecting traits-based data, is the ability to group plants that display similar functional traits into 115 

functional groups (Blondel, 2003). Herein we specifically use the term ‘functional group’ (sensu Blondel, 2003) because we 

explore how aggregated ecosystem processes ultimately affect geomorphological response. This approach provides a scalable 

framework for eco-geomorphic research, increasing the applicability of research at one site to another without the requirement 

to contain the same species, rather only the need for those species to have similar traits (Mcgill et al., 2006). Therefore, the 

findings of a community response to factors such as land use change or climate change in one location can be applied to 120 

different locations with similar trait compositions (De Bello et al., 2006; Garnier et al., 2006). This is supported in findings by 

Tabacchi et al. (2019) into bio-geomorphological succession, whereby taxonomic approaches worked well but traits-based 

methods accounted for variation in local and regional conditions better, which is essential for scalability. 

 

Traits-based approaches are well suited for eco-geomorphic research due to the strong environmental gradients within fluvial 125 

systems (Naiman et al., 2005). Vegetation responds to hydrological variables, such as water availability and disturbance events 

(Hupp and Osterkamp, 1996)Vegetation responds to hydrological variables, such as water availability and disturbance events 

(Hupp and Osterkamp, 1996) whilst also influencing flow, sediment transport, and morphological stability (Gurnell, 2014), 
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meaning that the bi-directional nature of this relationship maps well onto a traits-based framework. O'hare et al. (2016)O'Hare 

et al. (2016) have assessed the traits of nearly 500 species that influence river processes, revealing evidence of a broad link 130 

between plant form, distribution, and stream power within the UK (O'hare et al., 2011)(O'Hare et al., 2011). Moreover, traits-

based approaches allow for a more comprehensive view on eco-geomorphic interactions than a purely taxonomic approach 

due to the environmental conditions having a larger influence on trait compositions than species compositions (Göthe et al., 

2017; Corenblit et al., 2015).  

 135 

To date, the majority ofmost traits-based research has focussed on ecological responses to hydrologicalenvironmental 

conditions. For example, greater inundation likelihood has been shown to increase the presence of plants with longer and 

younger leaves (Stromberg and Merritt, 2016; Mccoy-Sulentic et al., 2017) whilst also being less woody (Kyle and Leishman, 

2009; Stromberg and Merritt, 2016), with frequent inundation and higher stress environment necessitating greater flexibility.. 

Conversely, plants in lower stress environments tend to be taller with longer life cycles (Kyle and Leishman, 2009; Stromberg 140 

and Merritt, 2016; Mccoy-Sulentic et al., 2017). Factors such as nutrient loading (Baattrup-Pedersen et al., 2016; Lukacs et 

al., 2019), light conditions (Baattrup-Pedersen et al., 2015), carbon availability (Lukacs et al., 2019), and anthropogenic 

interference (Baattrup-Pedersen et al., 2002; O’briainO’Briain et al., 2017) are all key controllers of trait composition, with 

the environmental conditions better related to trait, rather than species, composition (Göthe et al., 2017). are all key controllers 

of trait composition. Furthermore, individual species have been shown to demonstrate differing traits depending on external 145 

stresses. Populus nigra trees were found to be smaller, have greater flexibility, and had a higher number of structural roots at 

a bar head when compared to a bar tail (Hortobágyi et al., 2017).(Hortobágyi et al., 2017). Further work demonstrated that the 

smaller speciestrees located at the bar head were incapable ofless effective at trapping sediment when compared to those at the 

bar tail (Hortobágyi et al., 2018), highlighting the importance of traits rather than taxonomic approaches. . This highlights that 

in certain examples, the morphological response to a vegetation may be harder to identify from taxonomic approaches alone, 150 

with traits-based data helping to unpick the processes that are occurring. 

 

Hydrological variability can also influence trait assemblages. For example, mean flood frequency across 15 sites was found 

not to be related to trait diversity, whereas the magnitude of a 20-year flood and the variability in flood frequency were both 

related (Lawson et al., 2015). Controlled field experiments with artificial flooding and drought showed a decrease in species 155 

richness in both scenarios, although trait diversity was more tolerant to drought conditions (Baattrup-Pedersen et al., 2018). 

Rivers with more variable flows tend to encourage pioneer species and those with prolonged drought seeing an increased 

abundance of water tolerant species (Aguiar et al., 2018). As a result, these responses mean successful river restoration projects 

should focus on the type of restoration more than the extent (Göthe et al., 2016). Taxonomic approaches can still perform 

equally well for fluvial studies, but traits-based approaches tend to account for local and regional conditions better (Tabacchi 160 

et al., 2019), which is necessary for scalability. 

 



 

6 

 

Research into effect traits and their geomorphic influence has received less attention as traits concepts have only recently 

started to be explored in hydrological research. However, as noted by Corenblit et al. (2015), the interactions between plant 

traits and fluvial systems are linked, with hydrological conditions affecting plant establishment and survival and plant 165 

morphological traits affecting morphology and subsequent establishment. There is evidence that changing traits can alter the 

morphological evolution of channels, with invasive species that have higher branching densities and less flexibility increasing 

aggradation through reductions in near bed velocities (Manners et al., 2015). Guild location impacts the morphological 

response, with analysis of bars showing different responses downstream and also laterally based on the traits of the dominant 

species in these directions (Hortobágyi et al., 2018). This is supported by Butterfield et al. (2020) who when examining changes 170 

in multi-annual elevation found that guilds at different locations, experiencing different hydraulic conditions, had differing 

impacts, but also that guilds could not explain all the variation in morphological response. It was found that differing canopy 

architectures that interacted with flow were likely to be the prominent driver of topographic response, supporting the research 

of Manners et al. (2015). However, trait diversity can impact morphological response as much as the individual traits, with 

combinations of guilds interacting to alter responses (Hortobágyi et al., 2018), from which spatially averaging to areas of 175 

dominant guilds may oversimplify the complexity of interactions. 

HydrologicallyResearch into effect traits and their geomorphic influence has received relatively less attention as traits concepts 

have only recently started to be explored in fluvial research. However, as noted by Corenblit et al. (2015), the interactions 

between plant traits and fluvial systems are linked, with hydraulic conditions affecting plant establishment and survival, and 

with plant traits affecting flow and subsequent morphology. Temporally, changes in the dominant traits can lead to changing 180 

morphology (Manners et al., 2015), whilst spatially the location of dominant traits has been shown to alter morphological 

response, with combinations of different functional groups adding to the complexity (Hortobágyi et al., 2018). However, 

functional groups alone cannot explain all the variation in topographic response, with different groups, in different locations, 

under different hydraulic conditions, exhibiting different topographic responses (Butterfield et al., 2020).  

 185 

1.3. Hydraulically Relevant Functional Traits 

Not all vegetation functional traits are equally relevant when considering direct relationships between vegetation, 

hydrologyriver flow, and morphology. Moreover, not all traits can be obtained from remote sensing techniques, a necessary 

requirement when upscaling to larger domains. Below we identify thebriefly summarise vegetation traits that are directly 

relevant to river systemsfluvial environments and which can potentiallyhave the potential to be captured via remote sensing 190 

techniques, thereby allowing the upscaling of any developed methods of characterisation. These are based off Table 2 in Diehl 

et al. (2017a) which highlights the morphological effect of vegetation traits on geomorphic form.  

 

Existing studies that have considered vegetation-flow interactions have focused on plant height and frontal area as key metrics 

which explain momentum exchanges in river flows. The height of the plant affects the amount of interaction (Nepf and Vivoni, 195 
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2000), with varying flow depth determining the proportion of the plant frontal area which is submerged. Frontal area is an 

often used proxy for the scale of obstruction and is a component of the drag formulation which can have a larger impact on 

flow conditions than the selection of a drag coefficient (Järvelä, 2004; Wilson et al., 2006). However, the limitations of 2D 

metrics to describe the complex nature of plants has been highlighted, with the use of 3D data and plant volume offered as 

improved methodsBoth plant height and frontal area are key traits which influence momentum exchange in river flows. The 200 

height of a plant will alter the extent of interaction it has with flow at various stages, whilst the frontal area of the submerged 

plant structure will impact the drag exerted on the water column (Nepf and Vivoni, 2000; Järvelä, 2004; Wilson et al., 2006). 

Using 2D frontal area to describe the complex structure of plants is not without limitations, and the possibility of using 3D 

data has offered improvements in this regard (Whittaker et al., 2013; Vasilopoulos, 2017). 

 205 

Under various flow conditions, the The frontal area of a plant may change due to flexing and reshaping, with studies showing 

that notwill vary under different hydraulic conditions, making flexibility an important trait when investigating morphological 

response. Not accounting for thisflexibility can limit the applicability of study results of drag models (Sand-Jensen, 2008; 

Whittaker et al., 2013). A higher leaf area increases the momentum absorbing area of plants with de-leafed vegetation not 

bending until a higher threshold velocity is reached (Wilson et al., 2003; Järvelä, 2002a). Drag has been calculated using leaf 210 

area, although not a 1:1 relationship it was shown to be suitable for estimating vegetative resistance (Jalonen et al., 2012). The 

contribution of foliage to resistance decreases with flow speed, Whittaker et al. (2013) noting a drop in the drag contribution 

of foliage from 75% to 20-50% at speeds under and over 0.5 ms-1 respectively. This is due to the reshaping of plant structure 

during higher flows leading to reductions in drag (Armanini et al., 2005), with the rate at which this reduction happens being 

plant dependent (Järvelä, 2002b; James et al., 2008; Boothroyd et al., 2017). The vertical distribution of plants also has a 215 

significant impact on flow, with different vertical distributions such as step changes or continuous variations, impacting flow 

differently and being more important than multi-plant arrangement, with differences in foliated and non-foliated vegetation 

deforming at different threshold velocities (Wilson et al., 2003; Järvelä, 2002a). Likewise, differences in woody and non-

woody stems for plants of similar shape will influence their flexibility, with woody stems requiring a higher flow rate for 

deformation to occur (O'Hare et al., 2016; Sand-Jensen, 2003). However, the ability to obtain vegetation stem flexure directly 220 

from remote sensing is currently not possible, yet leaf area from remote sensing does show potential and taxonomic approaches 

may better identify the ‘woodiness’ of a species. Likewise, the vertical distribution of vegetation is important in determining 

the interaction between foliage and flow stage (Lightbody and Nepf, 2006; Jalonen et al., 2012)., which can be obtained from 

remotely sensed data.  

 225 

The arrangement of plants is still important in determining bulk drag, with drag coefficient values for a single foliated stem 

not representative of stems occurring in bulk vegetation At patch scales, the density and configuration of plants can impact the 

resultant drag effects. Although this is an extension of the individual plant-based methods within ecological research, including 

density and configuration allows for the impact of multiple plants on drag to be accounted for. The non-equivalence between 



 

8 

 

the drag induced by individual plants and stems and those in bulk vegetation requires the inclusion of bulk factors into 230 

vegetation analysis (James et al., 2008). Higher plant densities within a channelof plants will lead to an increase in drag 

coefficients, however, with differences in the arrangement of vegetation withinand density of patches causing variation in the 

channel has a negligible impactresultant reduction in water velocities (Järvelä, 2002b; Kim and Stoesser, 2011; Sand-Jensen, 

2008). Sand-Jensen (2008) identified that there was a difference in downstream flow between evenly distributed plants and 

the same biomass distributed into high density clumps, with the former providing the larger increase in drag and impeding 235 

flow the most. Therefore, spatial variation in plant distribution may be more important than the density of the patches 

themselves. A higher stem density does result in more scour around stems and deposition to be further from the scour sites, 

however overall deposition does not increase with increased stem density (Follett and Nepf, 2012). 

 

Whilst both vegetation structure and distribution of individual plants directly impact flow, many other vegetation traits can 240 

impact sediment transport processes, for example through playing a role in altering the erodibility of periodically submerged 

banks or bar surfaces, or through increased resistance from root structures. Although vegetation height, frontal area, and leaf 

area are all key effect traits which can be measured directly, accounting for secondary impacts of vegetation related to below 

ground biomass for example, and how all traits vary spatially and temporally remains the challenge for advancing our 

understanding of eco-geomorphic interactions. 245 

1.4. Remote Sensing of River Corridor Vegetation 

. The resultant changes in flow patterns through patches of higher density vegetation can subsequently increase scour around 

individual stems (Follett and Nepf, 2012), highlighting the need to account for plant spacing when examining changes in 

morphology, which remote sensing is capable of achieving. At the reach scale, functional groups have an aggregated response 

in modulating scour or deposition, and resultant planform morphology. Vegetation dynamics have been described using traits-250 

based frameworks previously in fluvial systems (Diehl et al., 2017a; Diehl et al., 2018; Butterfield et al., 2020), with a wealth 

of studies showing the wider impact that vegetation has on planform morphology and erosion in flumes (Van Dijk et al., 2013; 

Coulthard, 2005; Bertoldi et al., 2015), modelling studies (Oorschot et al., 2016; Crosato and Saleh, 2011), and field based 

research (Bywater-Reyes et al., 2017; Diehl et al., 2017b).  

 255 

Whilst we have focused on hydraulically relevant traits that can be measured using remote sensing techniques, Diehl et al. 

(2017a), present others which cannot be easily obtained from the remote sensing techniques outlined below. Factors such as 

plant biomass, buoyancy, and root architecture are all outlined as having a role in affecting subsequent morphology (Sand-

Jensen, 2008; Abernethy and Rutherfurd, 2001; De Baets et al., 2007). This highlights the potential role of taxonomic 

approaches alongside the measurement of structural data to both capture the variability where possible and enhance this with 260 

wider datasets on traits that cannot be remotely sensed but are still relevant to morphology.  
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1.4. Trait Data Collection 

Although many of these traits are inherently measurable in the field, many of them are not obtainable from current remote 

sensing methods. Direct trait extraction for riparian vegetation from airborne (i.e. large scale) remote sensing has not yet been 265 

utilised to enhance eco-geomorphic studies. Currently, the collection of trait data relies on direct ground -based field surveys 

and lab analysis, or species arebeing identified in the field and traits takeninferred from databases (e.g.lookup tables; such as 

the TRY database (Kattge et al., 2020)).. Methods are often dependent on site access, species richness, and variation within 

the study area (Palmquist et al., 2019), utilising methods such as quadrat surveying or transect sampling. This technique is 

effective for establishing traits but is limited by the spatial extent of ground coverage. Some variables inevitably require the 270 

use of databases to avoid substantial disturbance, such as the estimation of root characteristics (e.g. Stromberg and Merritt, 

2016; Aguiar et al., 2018; Baattrup-Pedersen et al., 2018), although databases should be used with caution; for example, 

maximum plant height . However, it is not related to the plant submergence height at the time of a particular flow event, and 

great variation known that a single species can be seen in both effect and responsedisplay different traits for a singular 

speciesdepending on their position relative to the channel (Hortobágyi et al., 2017; Hortobágyi et al., 2018). Therefore, 275 

accounting for temporal and spatial variation in knowledge of a plant location, which can be obtained from remote sensing 

data, alongside using plant traits databases is important and highlights the need for temporally and spatially relevant data 

collection.for successfully utilising such traits-based analysis in the fluvial domain. Although efforts have been made to utilise 

remote sensing methods to infer traits in other fields (e.g. Anderson et al., 2018; Valbuena et al., 2020; Zhao et al., 2022), these 

typically relate only to vegetation height and volume.   280 

 

ForIn fluvial research, multispectral imagery can be used to determine species using, which can then be used to identify 

dominant traits, via supervised and unsupervised classifications with good accuracy (Butterfield et al., 2020). Outside of fluvial 

research there is an increasing awareness of the potential of remote sensing methods to help drive the scalability of functional 

traits as an analysis framework, especially in relation to physical traits such as plant height, leaf area index, phenology, and 285 

biomass (Abelleira Martínez et al., 2016; Aguirre-Gutiérrez et al., 2021), yet considerable limitations remain due to the 

uncertainty in relating spectral and physical properties to functional traits (Houborg et al., 2015). Upscaling localised high 

resolution data is possible however, for example from TLS (Terrestrial Laser Scanning) to large scale ALS (Airborne Laser 

Scanning) data (Manners et al. (2013)(Manners et al., 2013).  

 290 

Advances in UAV (Uncrewed Aerial Vehicle) remote sensing can create an important link between these twooffer a way of 

bridging the scales of data collectionfrom ground surveys to larger extents. UAV data collection allows high resolution imagery 

and active remote sensing methods such as laser scanning to be conducted on large reaches relatively easily (Tomsett and 

Leyland, 2019), increasing coverage and providing a middle ground for relating local to large scale data. Multispectral cameras 

have already helped to improve the classification of vegetation from UAVs (Al-Ali et al., 2020), and active UAV-LS (UAV 295 
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Laser Scanning) has also been shown to be comparable in estimating tree structures to TLS methods (Brede et al., 2019). Such 

methods therefore present an opportunity to not only classify vegetation by types and assign them to guildsfunctional groups, 

but also to define guildsthese very groups based on characteristics acquired from remote sensing directly, before upscaling 

thisthem to reach scale classifications. Moreover, a key advance in using UAV based methods for collecting vegetation data 

is the spatial resolution at which functional groups can be discretised and the temporal resolution which can be achieved by 300 

undertaking multiple repeat surveys. The potential to capture evolving 3D data through time (which we refer to as the 4th 

dimension herein) provides arguably the biggest advantage of using UAV based methods to collect data, avoiding the need to 

make assumptions about variability through phenological cycles by collecting this information directly.  

 

1.5. Aims  305 

The aim of this research is to develop a set of scalableuse UAV derived and terrestrial 3D datasets to extract relevant plant 

traits-based 3D vegetation metrics which can be used to assess the spatial and temporal (i.e. 4D) variation and importance of 

eco-geomorphic interactions on an exemplara UK river system. This is achieved using the following specific objectives:  

1. Undertake an assessment of the longer term (multi-decadal) eco-geomorphic evolution of the channel using satellite 

remote sensing, to compare planform evolution within vegetated and non-vegetated channel sections. 310 

2.1. Identify and select hydrologicallyhydraulically relevant traits which can be extracted from high resolution remote 

sensing data.  

3.2. Establish the presence of vegetation guildsfunctional groups (those with similar traits) for the river reach, based on 

using exploratory analysis and object orientated random forest classifications.machine learning.  

4.3. CompareEstablish links between the spatial extent of these guilds tovariation in functional groups and morphological 315 

change over the study across a two year period to establishidentify eco-geomorphic feedbacks.  that may be present. 

4. Utilise the structural data to identify how roughness across functional groups may change seasonally across summer 

and winter conditions throughout the study area, how interactions between water and vegetation vary across different 

flow depths, and the impact these both have on erosion and deposition.  

 320 

2. Study Site 

The exemplarstudy site is located on the upper course of the River Teme on the English-Welsh border in the UK (Figure 1A). 

The study area consists of two broader regions; thedistinct reaches; an upstream section consisting of open grassland with 

patches of heterogeneous vegetation, and thea downstream section which flows through denser vegetation and woodland. The 

River Teme is a highly mobile, gravel bed river within an alluvial floodplain which exhibits numerous avulsions., typical of 325 

many UK rivers. There is active lateral erosion of the channel, depositional gravel bar features, and woody debris dams across 



 

11 

 

the study site (Figure 1A1B). The reach has typically low flows (Figure 1B1C), with an average depth of 0.69 m (+/- 0.15 m) 

throughout the year with slightly higher average flow depths in the winter months (November – February, 0.79 m +/- 0.15 m). 

95% of river depth has been below 0.99 m and 99.9% of the flow depth has been below 1.48 m. The largest recorded river 

depth was 2.85 m on the 16th February 2020 during Strom Dennis. Figures are obtained from a gauge station 3 km downstream 330 

of the study site, starting from the earliest gauge record. 
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Figure 1 Study Site of the River Teme and the long term water level at the Knighton gauge station 3km downstream. A) Study Site 335 
Location on the River Teme, UK. InsetB) Plan view of the reach with inset images showshowing active bank erosion and a large 

debris dam caused by falling trees. The red dashed outline indicates the flood extent modelled in section 3.4. Orthoimagery collected 

February 2020 and background imagery provided by ESRI (2021). BC) River Gauge Levelgauge level at the Knighton monitoring 

station ~12 km downstream from study reach (data available from 2002 – present, operated by the UK Environment Agency).   

3. Methods 340 

3.1. Long Term (Decadal) Analysis 

To assess the longer-term context of eco-geomorphic interactions within the study reach, historical satellite imagery was 

analysed to identify channel mobility in relation to riparian vegetation. Channel mobility was assessed by digitising bank edges 

across multiple years. This method is well established and has been used previously to study the evolution of a large river 

confluence (Dixon et al., 2018) and for multi-decadal analysis of a single river (Yao et al., 2013; Gupta et al., 2013), to identify 345 

the drivers of morphological change. These have typically been restricted to coarse (e.g. 30 m ground resolution) satellite 

datasets, with planform change only detectable if it is greater in magnitude than the image resolution. This can result in mixed 



 

13 

 

pixels; where multiple land cover and vegetation types are misidentified into one category (Henshaw et al., 2013). Here we 

make use of high spatial resolution imagery from Google Earth (0.5 - 2 m, source dependent (Google Earth Pro, 2021)) and 

Pleiades (0.5 m) to identify historical changes in channel location and vegetation cover. Google Earth historical imagery for 350 

the years 2000, 2006, 2008, and 2009 and Pleiades data from 2013, 2015, 2016, 2018, and 2020 were used from which bank 

lines were digitised, resulting in 20 years of channel evolution. Banks under tree cover were identified where possible using a 

mix of spectral bands (Pleiades data only) to highlight channel position. To account for the images being taken at various time 

periods throughout the years and subsequently having different flow regimes, bank tops were digitised as opposed to water 

edges to reduce uncertainty resulting from variable flow stage. The exception to this was where no clear bank top was present, 355 

for example on the large bars, where evidence of usual high flows from colour changes and trash lines in the imagery were 

used to guide digitisation of bankfull channel width. 

 

All analysis of bank movement was performed in ArcGIS using the Digital Shoreline Analysis System (DSAS, (Himmelstoss 

et al., 2018)) with a 1.5 km long baseline created for both left and right banks based on the dominant river planform trend. 360 

Transects were cast every 5 m and manually edited where necessary in order to intersect the outermost bank, especially on 

tight meander bends. The Shoreline Change Envelope (SCE), the distance between the nearest and furthest bank from the 

baseline, is used to infer total channel mobility throughout the reach. 

 

To assess the impact of vegetation, the channel was classified into two classes: those containing structurally large vegetation 365 

and those that did not. Areas classed as containing structurally large vegetation could either include a small number of trees 

clumped around the channel, a linear section of vegetation on one bank, or larger areas of vegetation such as woodland. These 

regions were user defined based on all of the image sets available and were used to group transects within regions containing 

large vegetation and those that did not, for comparison of the SCE statistics. As vegetation may have an influence on both the 

local scale and broader reach scale morphology, the analysis was repeated for changes excluding the reoccupation of new or 370 

former channels (classed as avulsions). To achieve this, DSAS transects that spanned across two separate channels from 

different years were removed. Each individual channel was then reanalysed using separate baselines, consequently the impact 

on the results from channel switching can be isolated and removed.   

 

Statistical comparison was undertaken of the SCE values for sections containing large vegetation and sections that did not. 375 

These could be used to identify any differences in the SCE values and therefore inferred mobility of these sections, and the 

influence vegetation may have on planform evolution. To investigate the morphological process of avulsions, the development 

of new channels between satellite images was also tracked. New and developing channels which were visible in satellite 

imagery were digitised for each set of images. These were compared to UAV flood extent imagery from February 2020 

alongside historical LiDAR data from 2007 of the river corridor and qualitatively assessed in relation to how topography and 380 

flood events influence planform, and the processes by which channel switching occurs.  
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3.2.3.1. Field Collection of High Resolution 4D data 

HighA series of six high resolution UAV-LS (UAV Laser Scanning) and UAV-MS (UAV Multispectral Imagery)) surveys 

were collected over the entire reach throughshown in Figure 1 from February 2020 until June 2021, capturing all seasonality. 

To complement these flights, a Terrestrial Laser Scanning (TLS) surveys survey using a Leica P20 was undertaken of vegetated 385 

and bar sections were undertaken to gain a benchmark ultra-high-resolution dataset for comparison to the UAV-LS and for 

characterising small herbaceous vegetation. A , co-registered to an accuracy of +/- 0.007 m with georeferenced scan targets. 

UAV-RGB (Red, Green, Blue) survey wassurveys were also undertaken during overbank flow on the falling limb offrom 

Storm Dennis in February 2020, to identify the flood extent., and September 2020 for classification validation. Table 1 

summarises the survey dates, extents, and data collection methods, and point density for UAV-LS and GSD (Ground Sampling 390 

Distance) for UAV-MS. A detailed outline of the UAV based sensor set up, processing routine and accuracy assessment can 

be found in Tomsett and Leyland (2021). All data was processed in the WGS UTM Zone 30N coordinate system. 

 

Table 1 Data collection methods, extent and point density for each survey date. TLS point density is based on the resultant point 

cloud after registration. UAV-LS point density is determined after cleaning of the raw clouds has taken place. Ground Sampling 395 
Distance (GSD) is the resolution of the resultant orthomosaics. UAV-LS point density is taken once cleaning of the raw clouds has 

taken place. 

Date Survey Sensor Point Density/GSD 

06/02/2020 (Winter) Whole Reach 
UAV-LS 778 m-2 

UAV-MS 0.04 m GSD 

18/02/2020 (Winter) Whole Reach UAV-RGB 0.02 m GSD 

16/07/2020 (Summer) Subsection 

UAV-LS 810 m-2 

UAV-MS 0.04 m GSD 

TLS 16,000 m-2 

14/09/2020 (Autumn) Whole Reach 

UAV-LS 762 m-2 

UAV-MS 0.04 m GSD 

TLS 16,000 m-2 

14/09/2020 (Autumn) Whole Reach 
UAV-LS 762 m-2 

UAV-MSRGB 0.0402 m GSD 

14/04/2021 (Spring) Whole Reach 
UAV-LS 791 m-2 

UAV-MS 0.04 m GSD 

03/06/2021 (Summer) Whole Reach 
UAV-LS 804 m-2 

UAV-MS 0.04 m GSD 
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A detailed outline of the UAV based sensor set up, processing routine and accuracy assessment can be found in Tomsett and 

Leyland (2021), with a short overview of the system provided below. UAV-LS and UAV-MS were collected using a DJI 400 

Matrice 600 Pro multirotor aircraft, capable of flying for 20 minutes per flight. Two sets of batteries allow for the spatially 

complex 1 km reach of the River Teme to be captured with some redundancy. Multispectral imagery was obtained from a 

MicaSense RedEdge MX camera, collecting imagery with a ground resolution of ~0.035 m across five spectral bands, 

consisting of blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm), and near infra-red (842 nm) wavelengths 

(Micasense, 2021). The laser scanner is a Velodyne VLP-16 Puck Lite, firing 16 laser-detector pairs at approximately 300,000 405 

points per second, with a 360 horizontal and 30 vertical field of view. The sensor has a range of up to 100 m and a typical 

ranging accuracy of +/- 0.03 m (Velodyne Lidar, 2016). Both sensors use direct georeferencing from an Applanix APX-15, 

which utilises multi-frequency GNSS and MEMS (Micro Electro-Mechanical System) inertial motion unit to provide post 

processed positional and orientation accuracies up to 0.02 m and 0.025 respectively (Applanix, 2016). This removes the need 

for extensive GCP placement throughout the reach. Georeferenced point clouds from the laser scanner and Structure from 410 

Motion based point clouds and orthomosaics from the multispectral imagery were produced, both with vertical accuracy under 

0.1 m. UAV-RGB imagery was collected from a DJI Inspire 2 with a Zenmuse X4S camera, resulting in a ground resolution 

of 0.017 m from a flight height of 60 m. An on-board EMLID REACH M2 provides positioning accuracy of up to 0.015 m 

when post-processed (Emlid, 2021), with a connection to the on board camera to allow image captures to be timestamped to 

assist with the SfM processing. TLS data was captured in July 2020 using a Leica P20 Scanstation, collecting high resolution 415 

(0.0031 m point spacing at 10 m distance from scanner, resulting in a mean point density of 16,000 points per m2 within the 

area of interest) scans of two locations. The first, an area of channel containing large vegetation at the inlet of the study site 

(two convergent TLS scans), and the second, part of a large meander bend in the centre of the study area (four convergent TLS 

scans) where large vegetation was absent. Targets were used to register scans together, acquired using a Lecia TS06 total 

station, with a resultant scan registration accuracy of +/- 0.007 m. 420 

3.3.3.2. Vegetation Functional Trait Extraction 

The workflow developed to extract plant functional traits consisted of five steps: (1) Separation of individual plant point clouds 

that could be used for analysisfrom the UAV-LS and TLS data, (2) Analysis of these individual clouds to extract metrics 

related to their traits, (3) Separation of plants into guildsfunctional groups adapted from Diehl et al. (2017) based on similar 

traits, (4) Identification of guild properties extractable from temporalDiehl et al. (2017a), based on similar traits, (4) 425 

Identification of functional group properties from UAV-LS and UAV-MS datasets for reach scale classification inputs, and 

(5) Use of an object-based random forest classifier to determine the spatial discretisation of guildsthese functional groups. 

These steps are outlined in the following sections. 
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3.3.1.3.2.1. Point Cloud Segmentation 

A number of automatic methods exist to classify very dense point cloud scenes into different groups (e.g. Brodu and Lague, 430 

2012; Zhong et al., 2016). However, the majority of these are designed for very high-resolution TLS datasets and so here a 

semi-automated approach was employed. Smaller vegetation, whose structural composition cannot be fully resolved from 

UAV-LS data, were analysed from the summer TLS survey. Automatic classification of ground/non-ground points was 

performed using the progressive morphological filter in the LidR package (Roussel et al., 2020)(Roussel et al., 2020) before 

manually segmenting in CloudCompare (https://www.danielgm.net/cc/) to create individual plant models (Figure 2, Raw Point 435 

Cloud).  

 

For the herbaceous plants in the TLS data, leaves and flowering parts were manually removed from the clouds so as not to 

interfereinfluence with the quantitative structural modelling (QSM).; see 3.2.2). This was done based on field images and the 

structural appearance of the clouds to leave just the structural components. Although foliage is has been shown to be important, 440 

for the methods used herein theyit could not be accounted for fully resolved due to insufficient point densities. Any statistical 

outliers were then detected, removing and removed from the dataset, identifying points >2.5 standard deviations and above the 

mean separation distance between points within the segmented cloud. This process was repeated for plants in both TLS scan 

locations, resulting in a sample dataset consisting of 37 herbaceous plants. Plants were selected in the main TLS point cloud 

that represented complete vertical profiles to minimise the effect of shadowing from different scan angles. 445 

 

Tree segmentation also used a combination of manual and automatic classification, based on surveys undertaken in leaf-off 

conditions, exposing the full internal tree structure. 24 trees were selected from across the reach representing a range of 

structures and sizes from which complete models could be created. As above, initialInitial separation of ground and vegetation 

points was performed using a progressive morphological filter. Whilst automatic classification methods such as CANUPO 450 

exist (Brodu and Lague, 2012), the UAV-LS point densities necessitated the manual extraction of individual trees, prior to 

interactive filtering using a number of statistical measures. LocalTrees were then manually extracted prior to interactive 

filtering using a number of statistical measures; local volume density helped to separate points distinct from the main tree 

woody structure, whilst linearity metric filters (how aligned points are within a set radius) removeremoves points that are 

highly complex or not part of the main tree structure. The statistical outlier removal tool and a final manual check can then be 455 

used to remove any remaining erroneous points which are not part of the main tree structure. This resulted in a point cloud of 

predominantly large branches, with a clearer structural profile as can be seen in Figure 2 (Filtered Point Cloud). The thresholds 

for separating individual trees are size, structure, and point density dependent, hence the need for interactive selection. 

 

This Although this adds an element of user bias as to what is deemed a ‘main’ branch, but the lower density of UAV-LS scans 460 

makes this auser input necessary method before reconstructing vegetation models (Brede et al., 2019). Shrubs and grasses 

https://www.danielgm.net/cc/
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whose structure could not be fully resolved from the UAV-LS or TLS data were not analysed for traits extraction. Aside from 

requiring many TLS scans to capture the extensive and complex branching networks of these plants, in eco-geomorphic terms 

a traits-based rather than bulk roughness approach is likely to be limitedGrasses are typically too short to remotely sense with 

high degrees of confidence, and the complex and extensive nature of the branching network of shrubs would require several 465 

TLS scans per plant, with numerous plants needing to be surveyed to get a reliable trait description.  As a result, point clouds 

for shrub classes were only used for classification training, frontal area, and density calculations. 

3.3.2.3.2.2. Trait Metric Extraction  

For the reconstruction of vegetation stems into cylindrical models, the open source TreeQSM method was applied to the 

partitioned UAV-LS and TLS derived vegetation data (Brede et al., 2019).The hydraulically relevant traits collected were 470 

based on those noted within Diehl et al. (2017a) that could be measured using the remote sensing methods within this study. 

These were; plant height, number of branches, maximum branching order, stem diameter, plant volume, frontal area, and plant 

density. For the reconstruction of vegetation stems into cylindrical models, the open source TreeQSM method (Raumonen et 

al., 2013) was applied to the partitioned UAV-LS and TLS derived vegetation data. TreeQSM utilises ‘patches’ to determine 

connected points in the vegetation cloud, before growing the tree structure by joining patches together to form a complete 475 

model (Raumonen et al., 2013). These are created using user defined initial patch sizes to adjoin points, before refining the 

patch sizes using minimum and maximum sizeslimits to create a complete model. This allows the coarse branch structure of 

the tree to be identified (Figure 2, Segmented Point Cloud). Sections are then generalised as cylinders, both for computational 

efficiency and asbecause they provide a robust representation of trees (Raumonen et al., 2013). TheseThe cylinders canare 

then be used to describe the overall structure and properties of the individual plant (Figure 2, QSM Cylinder Model). A full 480 

method description can be found in Raumonen et al. (2013). QSM methods have been noted to overstate the volume of smaller 

branches and are sensitive to noise in the data alongside variable point density (Fang and Strimbu, 2019; Hackenberg et al., 

2015). However, QSM reconstructs tree structures in a manner which resolve many of the hydraulically relevant vegetation 

traits. 
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Figure 2 Vegetation trait extraction, from an individual raw point cloud to a cylindrical model and frontal area. The process is 

demonstrated for two extracted vegetation point clouds, a large tree within the study reach collected from UAV-LS data, and a small 

perennial on the central bar collected from TLS, note the difference in scales. The segmented point cloud is coloured by branching 

order from blue to green to red, with the cylinders coloured in the same manner. The 2D frontal areas are based on the filtered point 490 
clouds rather than the segmented point clouds or QSM cylinder models, and as such these steps are not required to compute the 

frontal area data.  

 

Patch diameters (which are used to determine adjacent points within the same tree) were chosen following a parameter 

sensitivity exercise, with the range of values initially based around those of Raumonen et al. (2013) and Brede et al. (2019) for 495 

TLS and UAV-LS approaches respectively. A visual assessment was performed to identify parameters that created models 

similar to the observed  vegetation structure in the point cloud structure, due to the lack of reference data. After testing for the 

optimum patch sizes for reconstruction, the TLS scans of herbaceous vegetation initial patch diameter was set at a size of 0.005 

m, with the second patch diameter minimum and maximum sizes of 0.002 and 0.01 m. The minimum cylinder radius was set 

to 0.005 m, prescribing the smallest detectable branch structure of the extracted herbaceous plants. For the UAV-LS derived 500 

tree data, the initial patch diameter was 0.2 m, with the second patch dimeter minimum and maximum sizes of 0.1 and 0.5 m. 

The minimum cylinder radius was 0.1 m, based on manual measurements of tree branches within the point cloud that were 

detectable. For each individual plant model the cylinder reconstruction and variable extraction was repeated ten times. As the 

modelling begins at a random location each time the start point can affect the results, and so multiple averaged simulations 
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providesprovide a more accuraterepresentative solution. The modelling produces a number of metrics, but for this study 505 

hydraulically relevant traits of plant height, number of branches, stem diameter at breast height, volume, and maximum 

branching order, were collected. For each metric of interest, the average value and standard deviation of these values are taken 

from the ten runs.  

 

The frontal areas of all segregated vegetation clouds were extracted alongside the construction of the cylinder models, based 510 

on the 2D methods described by Vasilopoulos (2017). For each discretised filtered plant point cloud, (Figure 2, Filtered Point 

Cloud), the data was flattened from 3D to 2D by collapsing the data along a single horizontal dimension on a regular grid 

(Figure 2, 2D Frontal Area). The grid resolution was set at half the width of the minimal detectable feature resolved by the 

QSM modelling; 0.0050025 m for the TLS derived herbaceous plants and UAV-LS 0.05 m for UAV-LS derived trees. Each 

plant was flattened along the X and Y axis respectively, with an average frontal area taken.  515 

3.3.3 Guild Identification of Functional Groups 

Based on the separated points clouds, each were assigned to a guild based loosely on hydrologically relevant traits outlined in 

O'hare et al. (2016) and Diehl et al. (2017). As outlined above, a decision was made to discretise grasses and shrubs using bulk 

roughness metrics due to their relative homogeneity and the need for ultra-high-resolution data. Short branching herbs and 

taller single stemmed herbs were identified, with discrepancies in flexibility, branching, and height, likely to influence 520 

hydrology differently. Woody vegetation was further split in to two guilds, those with high diameter at breast heights (DBH) 

that had low density of trunks and those with lower DBH that had a higher trunk density. The analysis was preformed separately 

for woody and herbaceous vegetation. As the aim was to identify characteristics that would separate out the guilds from 

remotely sensed data, there was little need to compare woody and herbaceous species directly as height would be a dominant 

component. 525 

 

In order toFor the separated individual plant point clouds, each were assigned to a functional group adapted from those outlined 

in O'Hare et al. (2016) and Diehl et al. (2017a). These groups were grasses, short branching herbs, tall single stemmed herbs, 

shrubs and bushes, low DBH trees, and high DBH trees. As discussed previously, shrubs and grasses were not identified using 

trait extraction. Short branching herbs and taller single stemmed herbs were separated due to the likely discrepancies in 530 

flexibility, branching architecture, and height, all of which interact differently with flow. Large woody vegetation was split 

into two functional groups, those with high diameter at breast height (DBH) that had low density of trunks, and those with 

lower DBH that had a higher trunk density, to account for the different interactions with overbank flow. 

 

To assess whether remotely sensed data could separate out plants into their guildsfunctional groups in a statistically robust 535 

way, a Principal Components Analysis (PCA) was undertaken to identify the variables which explained the most variation 

within theirthe derived trait metrics. The metrics used for the PCA analysis were those obtained from the QSM and frontal 
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area calculations outlined previously, which were normalised to remove the influence of different scales (Alaibakhsh et al., 

2017). The principal components identified were used to inform the classification of reach scale guildsfunctional groups, 

identifying those variables that most explained the variation between guilds.groups. The PCA was performed separately on 540 

the two herb groups and the two woody groups, as although height would be an obvious dominant variable between these two 

groups, it would not necessarily be one within the groups. All of the herbaceous point clouds from the TLS survey were used 

in the herbs group PCA, and all the high and low DBH trees from the UAV-LS data were included in the woody group PCA.  

 

3.2.4. Linking Traits toand Land Cover Metrics at the Reach Scale Metrics 545 

To scale the analysis from individual plants to the entire reach level, a method of linking plant scale traits to broader scale data 

is required. Convex hulls representing the spatial extent for each vegetation point cloud extracted and analysed above were 

used to define the regions from which UAV-LS and UAV-MS data were extracted. For small herbaceous vegetation, this was 

buffered by 0.25 m to account for any misalignment between TLS and UAV-LS clouds. For tree vegetation polygons this 

buffer was increased to 1 m to incorporate peripheral branches and leaves removed during point cloud filtering. Polygons11 550 

polygons for small branching trees and large shrubs and bushes were created based on field observationsnotes from various 

surveys and photographs from the summer surveys, their outlines in the UAV-LS point clouds, and UAV-MS imagery. A total 

ofSimilarly, 11 polygons were created for this combined guild category, with 11 madedefined for grasses. In addition to these 

vegetation functional groups, 8 polygons for water classes, and 5 for a combined gravel bars and bare earth. class were also 

created using the same technique to classify the remaining land cover. Within these polygons, multiple seasonal variables were 555 

extracted for scaling local guildfunctional group identification to reach scale classification. The structural characteristics of 

the point cloud were extracted through TopCAT (Brasington et al., 2012), obtaining the standard deviation, skewness, and 

kurtosis over a decimatedsampled grid at both 1 and 4 m resolutions, the latter to account for larger vegetation footprints. The 

4 m resolution decimated grid only considered points classified as vegetation in the initial ‘ground/other’ point clouds to 

remove ground points from further analysis. To extract a Canopy Height Model (CHM), a bare earth digital terrain model (1 560 

m resolution) was subtracted from a 0.25 m resolution digital surface model incorporating the vegetation points. The 

Normalised Difference Vegetation Index (NDVI) across the reach was calculated using the red band along with both the red-

edge and near infrared bands of the MicaSense orthomosaic images to produce two separate NDVI layers. As the red-edge can 

be used to separate out vegetation signatures, using a combination of both was expected to help differentiate plants with similar 

structural but different spectral properties. Analysis of structural and spectral data was performed for each of the four seasons 565 

(Schuster et al., 2012). Analysis of structural and spectral data was performed for each of the surveys to gain an insight in to 

how these properties vary temporally.  For each of the vegetation polygons, the attributes of each of these layers for each 

season were extracted using zonal statistics. The mean and standard deviation for each attribute for each seasonsurvey were 

then calculated across the different guildsfunctional groups for use in the classification model. 



 

22 

 

3.2.5. Reach Scale GuildFunctional Group and Land Cover Classification 570 

To scale from guildsgroups created from individual UAV-LS and TLS derived plants, to the entire reach, an object -based 

random forest classification was undertaken. Object -based approaches overcome some of the issues of variation and 

complexity in high resolution images (Myint et al., 2011), improving continuity in the results (Duro et al., 2012; Wang et al., 

2018).  The RGB bands from the multispectral camera and the CHM were combined to create a 4-layer image from which to 

classifyidentify distinct objects in summer imagery for 2020 and 2021. The Felzenszwalb Algorithm was applied which uses 575 

graph based image analysis to segment an image into its component parts based on the pixel properties (Felzenszwalb and 

Huttenlocher, 2004). This results in regions within the image being grouped base on them having similar properties according 

to the input layers, avoiding the salt and pepper effect found in traditional pixel by pixel classification approaches (Wang et 

al., 2018). 

 580 

 

Table 2 Description of guildsfunctional groups and land cover classes used for training the random forest classifier, showing the 

number of training objects from the image segmentation for 2020 imagery, and the training area size. 

 

In total, 644 training objects were identified using for the 2020 summer imagery, with the previously discretised vegetation 585 

convex hull regions, with hulls having multiple training objects present within each training sample (Table 2). A random forest 

classifier was then trained based on the layers that were deemed to distinguish between the different guildsusing this 2020 

data, having proved an effective machine learning technique (Adelabu and Dube, 2015; Chan and Paelinckx, 2008; Adam and 

Mutanga, 2009), with a water mask included to reduce errors associated with varying flow stage.. The layers that were deemed 

to distinguish between the different vegetation functional groups, gravel bars, and water in 3.2.4 being used as the input, and 590 

a water mask included to reduce errors associated with varying flow stage. As the distinguishing features of each functional 

group required the inclusion of both summer and winter data, an annual classification as opposed to a seasonal one, is 

undertaken. This helps to improve confidence in the classification where variation in reach scale metrics happen both between 

GuildFunctional group/Land cover No. of Training Objects Training Area Size (m2) 

Grasses 93 321 

Branching Herbs 15 25 

Single Stemmed Herbs 16 29 

Branching Shrubs 135 388 

Low DBH Trees 158 876 

High DBH Trees 62 238 

Gravel Bars and Bare Earth 122 641 

Water 41 157 
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groups and between seasons. An analysis of model accuracy vs number of forests showed a convergence of accuracy above 

100 forests and a reduction in band importance variability above 300 forests (Figure 3). Higher variation in band importance 595 

suggested that the number of trees was influencing the likelihood of an optimal solution. This random forest classification was 

then applied to the remaining objects within the reach for 2020, and also for all objects detected in the 2021 data.  

 

Figure 3. Random forest classifier out of bag accuracy and variations in band importance for functional group classification. A) Out 

of bag accuracy scores for different numbers of trees used within the random forest classification, showing a distinct levelling off in 600 
accuracy after ~100 trees are used. B) The standard deviation in individual band importance across 10 sample runs to identify at 

what number of trees band importance becomes consistent across all runs, in this instance around 300 trees.  

 

 

Due to the limited number of extracted samples being usedfrom the point clouds, there were not enough training samples to 605 

split into a training and test dataset. The multi-tree approach of random forests is constructed on a sample of the dataset and 

as such can be tested against itself to determine an out of bag accuracy score. It also successively adds and removes bands to 

determine the band importance in the classification (Adelabu and Dube, 2015). Alongside this self-assessment, for the final 

guildsfunctional group classes a total of 80 random points were generated across the study site with an equal number in each 

outputted guildgroup. These were manually classified using high resolution ortho-imagery from a UAV-RGB (0.02 m 610 

resolution) survey from September 2020, in field photographs, and study site knowledge. The output classification wascould 

not visiblebe seen when undertaking this accuracy assessment and the order of the control points shuffled to remove user bias. 
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The classified guildsfunctional groups map for 2020 was then used to extract the predicted guildsfunctional groups of these 

points before a confusion matrix was utilised to assess the accuracy of the classification.  

 615 

Figure 3 Random forest classifier out of bag accuracy and variations in band importance for guild classification. A) Out of bag 

accuracy scores for different numbers of trees used within the random forest classification, showing a distinct levelling off in 

accuracy after ~100 trees are used. B) The standard deviation in individual band importance across 10 sample runs to identify at 

what number of trees band importance becomes consistent across all runs, in this instance around 300 trees.  

 620 

3.3. Morphological Change 

The M3C2 algorithm (Lague et al., 2013) was employed to calculate morphological change, whereby the surface normals from 

a subsampled cloud of core points (here at 0.1 m resolution) are calculated, and change along the normal direction is identified 

with the calculation of a local confidence interval. This overcomes some of the limitations of traditional elevation model 

differencing which can’tcannot account for the direction of change., a problem that is pronounced for example on the vertical 625 

faces of river banks (Leyland et al., 2017). The benefits of using both SfM and UAV-LS data allows their respective drawbacks 

to be overcome through combining both datasets. SfM has been shown to perform poorly in vegetated reaches, whereas where 

UAV-LS maintains good ground point densities, whereasyet SfM provides good continuity and high point densities in 

unobstructed areas. Therefore, in order to obtain good surface normals for assessing change, both the twoUAV-LS and UAV-

SfM  clouds were merged for each survey date (see Tomsett and Leyland (2021) for error analysis) and their vegetation 630 
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removed through the use of the same progressive morphological filter used previously to produce. These resultant clouds which 

were then differenced from their preceding survey date using the M3C2 algorithm.  

 

3.4. Assessing Time Varying Eco-Geomorphic Interactions and Functional Group Hydraulic Roughness 

To identify the presence of possible eco-geomorphic feedbacks and establish whether there were differences in directions or 635 

magnitudes of morphological change between the different functional groups, the classified functional group maps were 

compared to the morphological change detection datasets. Each pixel of the vegetation maps had the corresponding 

morphological change values extracted, with the vegetation maps for year one being used for both the February- July 2021 

and July – September 2021 morphological change values, and the vegetation maps for year two being used for the September 

2021 – April 2022 and April – June 2022 morphological change values. The distribution of these datasets as well as the grouped 640 

total net change was then compared between each time interval to reveal the annual patterns of erosion and corresponding 

functional groups.  

 

To assess the potential seasonal influence of different functional groups on the conveyance of water through the reach a 

different approach was required because each of the full classification maps produced necessarily utilised data from both 645 

summer (leaf-on) and winter (leaf-off) conditions. To assess the changing nature of the functional groups through time, the 

point clouds used for extracting traits from the herbaceous and tree groups, along with ten individual shrub point clouds, were 

used to estimate the depth varying excess drag created for summer and winter vegetation states. The depth of flow used in the 

calculations was determined based off a large flood event that occurred in the winter of 2020/21 (see Figure 1), representing a 

maximum hypothetical flow depth from which to assess the interaction between vegetation and flow. The flood extent, flow 650 

velocities, and depth used to calculate drag was modelled using Delft3D (Deltares, 2021), set up using measured DEMs and  

SfM corrected bathymetry along with flow conditions constrained by the gauge data measured downstream of the reach. 

 

For each of the functional groups derived, the frontal areas at depths of up to 0.1, 0.5, 1, 2, and 4 m were extracted, with these 

elevation bands representing natural breaks in different vegetation vertical structures. Each of these depth dependent frontal 655 

areas were then used to determine the excess drag component (F) of a single plant according to, 

 

𝐹 =  
1

2
 𝐶𝐷 𝐴0 𝜌 𝑈2    [1] 

 

where CD is the coefficient of drag, A0 is the frontal area of the plant facing the flow, ρ is the fluid density, and U is the velocity 660 

of the fluid, estimated using Delft3D. The excess drag for an individual plant was then transformed into an excess drag per 

metre squared, being multiplied by the plant density. Plant density was calculated for each functional group by creating a raster 
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surface from extracted TLS and UAV-LS data of each relevant group (0.05 m resolution for herbaceous and 0.2 m for shrubs), 

using a local maximum filter to identify the top of individual plants, similar to the procedures used to delineate individual trees 

in dense canopies (Douss and Farah, 2022; Chen et al., 2020). The number of individual plants was calculated, and divided by 665 

the total patch area, to provide plant density. For trees, where the trunks could be reconstructed, the point cloud was inverted 

before running the local maximum model to identify the locations of tree trunks. A 0.2 m resolution raster surface was used 

for this and the number of trunks was counted to provide both sets of tree density data.  

 

Drag coefficients were estimated using a combination of plant morphology and values from the wider literature. They were 670 

also adjusted seasonally, ranging from 0.55 to 1 (see supplementary material), with foliated plants being subject to a greater 

reconfiguration process during high flows (Sand-Jensen, 2008; Whittaker et al., 2013). The original frontal areas of each plant 

were also extracted from defoliated plants, and as such a comparison in the literature of foliated to non-foliated frontal area 

was used to adjust the frontal areas accordingly at each depth interval (Wilson et al., 2003; Järvelä, 2002a). As a result, four 

spatial distributions of hypothetical excess drag were calculated across the domain for the summer and winters of 2020 and 675 

2021 (assuming the large flood inundation extent and flow) which could then be used to inform discussions of how the presence 

of different functional groups link to location on the floodplain and potential eco-geomorphic feedbacks. 

4. Results 

4.1. Decadal Scale Change 

Analysis of planform shift from the year 2000 through to 2020 has identified that the channel is highly mobile, experiencing 680 

rapid change in places as well as more gradual evolution in others. From the 586 bank transects cast, the average SCE (extent 

of bank movement) was 38 m whilst the median change was 25 m. The smallest change was 1 m whereas the largest was 120 

m. Comparison of sections with large vegetation present and absent suggests there is a greater average mobility in vegetation 

present sections (Table 3). This goes against the assumption that vegetation helps to reduce channel mobility. However, Figure 

4 suggests that the areas where the channel has remained predominantly stable through time have some vegetation influence. 685 

Of the four areas of significant change, only one appears to follow the traditional meander development model of lateral erosion 

leading to a cut off, with the three remaining sections showing likely avulsion or previous channel reoccupation. Analysis of 

channel mobility excluding these avulsions indicates that reaches with large vegetation present have lower rates of lateral 

mobility, and that there is evidence of large vegetation reducing rates of planform shift. 

 690 

Table 3 Transect statistics showing the difference between sections with large vegetation present and those where it is absent s, with 

and without channel reoccupations (avulsions). N refers to the number of transects within each category. 

 SCE statistics for each scenario 

 N Mean Median Std. Deviation Max. 
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Large Vegetation Present (Inc. 

Channel Reoccupation) 
220 48 24 41 121 

Large Vegetation Absent (Inc. 

Channel Reoccupation) 
348 35 27 27 101 

Large Vegetation Present (Exc. 

Channel Reoccupation) 
290 10 8 7 47 

Large Vegetation Absent (Exc. 

Channel Reoccupation) 
339 22 16 18 72 

 

Figure 4 (A) and (B) compares frequency of SCE values for sections with and without large vegetation being present, including 

and excluding avulsions. For reaches with large vegetation, removing the avulsions has a notable impact on the distribution, 695 

with many more transects falling within smaller SCE values. Although this shift is seen in the transects without large vegetation 

also, the change in distributions is less prominent and is supported by a smaller change in mean values, dropping from 35 m 

to 27 m for large vegetation absent reaches and from 48 m to 10 m for reaches with large vegetation present.  
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 700 

Figure 4 Results from the decadal DSAS analysis. A) DSAS results showing channel evolution from 2000 – 2020, with left- and right-

hand banks digitised for each year. Spatial variability in maximum planform shift is shown in blue. Background imagery provided 

by ESRI (2021). B) shows the range of SCE values from both the left- and right-hand banks combined, for sections classed as 

containing large vegetation and those that do not. C) shows the SCE values when the effects of avulsion are removed from the data, 

for both large vegetation present and absent sections also. 705 

 

This channel switching appears to involve reoccupation of former channels that have lower floodplain elevations during 

overbank flow events. The three erosion channels in Figure 5 show the stages of progression. Feature C demonstrates a 

completed channel neck cut off for a double meander bend. Both features A and B appear to be developing during flood events, 

with the orthomosaic insets showing the overbank flow captured during a flood event and the resulting channel position post 710 
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flood for feature B. This implies a consistent pattern in new channel development that occurs during successive overbank flow 

events.  

 

 

Figure 5 Historical analysis of avulsion development across the floodplain. The top panel shows two developing channels (A and B) 715 
across the floodplain and one channel neck cut off (C). The bottom left panel (Channel A) shows how this development is influencing 

successive planform shift, and the bottom right panels (Channel B) demonstrates how this is linked to overbank flow. 

 



 

30 

 

4.2. HydrologicallyHydraulically Relevant Trait Analysis 

4.2.1. Extraction and Analysis of Traits 720 

The QSM analysis appears to output visually sensible results and produce models appropriate for the vegetation being 

modelling (see Figure 2). Table 4 shows the standard deviation of a selection of QSM metrics as a percentage of the mean 

value. The repeat modelling was more consistent for larger vegetation, with lower relative standard deviations. However, for 

some metrics such as number of branches, herbaceous plants with few branches may be adversely affecting the results. For 

example, plants with 5 stems having errors of +/- 1 branch is a 20% difference, whereas for 20 stems this is only 5%. Overall, 725 

model repeatsmodelled (see Figure 2). The repeat modelling of the individual plants produced consistent trait results. The 

heights of herbaceous groups were consistent to within 4%, whilst tree groups were consistent to just over 1%. Repeat diameter 

calculations were within 16% (0.08 m) for tree groups and within 18% (0.002 m) for herbaceous groups, with higher 

discrepancies in the number of branches. For trees, the number of branches for each model repeat were within 9% of each 

other, equivalent to 12 branches, whereas for herbaceous functional groups this was 17%, which equates to under 1 branch. 730 

The complexity of the larger tree models makes this variation quite likely, especially when the resolution of branches 

approaches the resolution of the scan data, whereas for herbaceous groups the higher variation is a result of the low number of 

total branches, so an additional branch being identified has a larger impact on the results. Overall, model repeats of individual 

plants appear to have good agreement with one another, and provide a basis for separating out vegetation with similar hydraulic 

functional traits. 735 

 

Table 4 Standard deviations in trait values as a percentage of the mean values for herbaceous and tree guilds. Guilds aggregated to 

include all herbaceous and tree data. Expressed as a percentage of mean due to the varying scales of data between the two guilds. 

 

 740 

As no manual ecological field measurements were taken of plant structure, values extracted from the survey data were 

compared to those found in the wider literature and online databases. Within the tree functional groups, those with a low DBH 

had an average height of 18.2 m +/- 3.3 m, and a DBH of 0.39 m +/- 0.08 m. Field identification from photos taken on site 

identified a large number of these trees to be of the Poplar variety. Comparison with both the TRY databases (Kattge et al., 

2020) and observations in the literature comparing height and DBH for these species (e.g. Burgess et al., 2019; Engindeniz 745 

and Olgun, 2003; Zhang et al., 2020) showed good agreement. The range of heights within the TRY database incorporated 

those measured from the trait extraction methods and aligned well with the comparison of tree heights and DBH identified by 

both Burgess et al. (2019) and Engindeniz and Olgun (2003),with the latter studying Poplars from Turkey as opposed to the 

 Height Number of Branches DBH Volume MBO 

Herbaceous Guilds 3.87 16.77 17.83 12.18 17.52 

Tree Guilds 1.16 8.79 15.58 12.89 15.00 
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UK. Trees with a higher DBH were predominantly identified as a mix of Willow and Alder, with average heights of 14.9 m 

+/- 3.2 m with DBH values of 0.69 m +/- 0.11 m. This aligned well with the overall height ranges observed in the TRY database 750 

for Alder trees, and the only record with both height and DBH values for Alder showing a tree of 30 m having a DBH of 0.9 

m. Southall et al. (2003) found diameters of up to 0.45 m for plants 8-9 m in height, with the trees in this study being both 

taller and larger in diameter suggesting a difference in maturity. Conversely, both Colbert et al. (2002) and Jurekova et al. 

(2008) both found DBH values within the observed range of diameters in this study for trees of similar height. This suggests 

that although the original QSM methods were tested on Fir, Spruce, Beech, and Oak trees, the methods are suitable for use on 755 

a wider variety of trees and produce results in line with those expected for the species being observed.  

 

Field observations of the single stemmed herbaceous group identified a dominance of Marsh Thistle, with average heights of 

1.14 m +/- 0.17 m and an average stem diameter of 0.013 m +/- 0.002 m. Height values align well with those found in the TRY 

database, with the majority of recorded heights between 0.8 – 2 m (Kattge et al., 2020). Van Leeuwen (1983) measured stem 760 

circumferences of between 0.026-0.070 m, equating to diameters of between 0.008 and 0.022 m, yet very little other literature 

or values on stem circumference or diameter are available. Nevertheless, both the observations of Marsh Thistle height and 

stem diameters suggests that the modelling has effectively reconstructed the vegetation. Likewise, comparison between the 

average height values of the branching herbaceous group, predominantly identified as Hedge Mustard, and those values in the 

TRY database indicate good agreement, with reconstructed values from the field having heights of 0.46 m +/- 0.12 m and 765 

values in the TRY database averaging 0.49 m, albeit with a much higher variation of +/- 0.25 m. As with the single stemmed 

herbaceous group, there is very little data to compare obtained values of stem diameter with. It would be expected that the 

branching herbs would have a lower diameter based on field images, and this is the case with an average of 0.011 m +/- 0.003 

m. However, this is approaching the likely limit of detection of the TLS scans, whereby the stem diameter approaches the 

resolution of the scan data. Yet for both of the herbaceous functional groups, the methods deployed appear to have consistently 770 

modelled individual plants, and produced values in line with those in the wider literature. For both the herbaceous and tree 

groups, the extracted traits can be reliably used to examine which traits distinguish between different functional groups.   

 

Figure 64 shows the PCA plots of herbaceous vegetation metrics from the TLS scans (A) and woody vegetation metrics from 

the UAV-LS scans (B).. It is clear that some separation of points through dominant metrics is possible, with both plots 775 

exhibiting two principal components capable of separating the defined guilds. Panel Afunctional groups. Figure 4A shows the 

PCA plot for herbaceous vegetation. Height is identified as a clear component between each guildfunctional group, as well as 

volume. Although the number of branches was not a key component for separating guildsfunctional groups, branches per unit 

height explained some of the variability in the data. Taller plants may have a similar number of branches, and so accounting 

for plant height produces a density of branches independent of size to help explain plant structure. Of the four identified 780 

components, only the height is identifiable from the UAV-LS data for upscaling, however, point density and spectral properties 

may improve guildgroup separation. Panel BFigure 4B shows the PCA plot for woody vegetation. Height is less important in 
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distinguishing the two guildsfunctional groups than for herbaceous vegetation, yet trees under or over certain heights are likely 

to be one guildgroup or the other suggesting minimum and maximum threshold values. For separating guildsfunctional groups, 

the most important components appear to be DBH and vertical skew which was expected as this was the basis for initial 785 

guildfunctional group classes. DBH cannot always be easily extracted from UAV-LS data if it is incomplete, therefore as the 

vertical distribution acts in the same component direction, this can be used as a potential method for differentiating 

guilds.functional groups. There is however considerable overlap in both of these PCA plots for woody and herbaceous 

vegetation. There are dominant trends such as the DBH and plant height for separation, but there is considerable variation 

within the guildsfunctional groups for their QSM based metrics which may impact the final classification.  790 

 

 

Figure 64 PCA analysis of (A) herbaceous and (B) tree guildsfunctional groups to investigate differences in trait characteristics. 

Lines indicate direction of each variable that explains variation in the data. 

4.2.2. Linking PCA Clusters to Reach Scale UAV-LS Data 795 

Figure 75 shows the results of the seasonal analysis of different variables derived from UAV-LS and UAV-MS imagery for 

each of the guildfunctional group classes. There are clear variables which can separate different guildsfunctional groups with 

ease, for example the height of the canopy is a key indicator between woody, herbaceous, shrub, and grass guilds.functional 

groups. Separating out similar guildsfunctional groups does appear to be more nuanced. The High DBH and Low DBH woody 

guildsfunctional groups both have very similar values and seasonal patterns of changes in NDVI values as well as in their 800 

height. This is unsurprising as the PCA analysis showed, with height not being a dominant factor in explaining variation, with 

numerous samples showing crossover. Vertical skew did show guildgroup separation, with the samples used for QSM analysis 
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collected in leaf -off conditions. Figure 7 does suggest5 suggests that changes in winter skew are visible between the two 

guildstree functional groups, with a smaller amount of crossover as expected. Spring, summer, and autumn skewness is less 

informative, likely due to leaf -on conditions effectingaffecting full tree reconstruction, with higher variability in results 805 

between the sample areas.  

 

Separating out herbaceous guildsfunctional groups is also a challenge. ElevationCHM values for single stemmed herbs are 

more variable and cross over in tointo grasses and multi-branching herbs. However, the mean elevationCHM values are higher, 

in line with the PCA analysis, and may enable herbaceous guildgroup separation. Likewise, the average skew values help to 810 

differentiate between classes, but again the variability in the data suggests it is harder to separate by structural content alone. 

Conversely, spectral data shows great promise in differentiating between guilds.functional groups. Both the absolute values 

between herbaceous guildsfunctional groups show different as well as their seasonal patterns especially when utilising the red 

edge band for NDVI calculations.  
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Figure 75 Results of seasonal analysis (X-axis within subplots) of different reach scale metrics (Y-axis) from UAV-LS and UAV-MS 

data for each identified guildplant functional group. The point clouds at the top provide an example point cloud of vegetation in 

each guild classfunctional group, with canopy height ranges acquired from trait extraction for the four analysed guildsfunctional 820 
groups and from the reach scale analysis for the remaining grass and shrub guildsfunctional groups. Error bars indicate one 

standard deviation around the mean, CHM (Canopy Height Model) is given in metres, IR refers to Infra-Red and RE to Red-Edge 

bands in the NDVI calculations.    



 

36 

 

4.2.3. Creation of Seasonal Reach Scale GuildsFunctional Group Maps 

The resultant classification from guild classification can beannualised reach scale classifications based on functional groups 825 

and land cover is shown in Figure 8 with many areas being classified as expected.6. There appears to be an over classification 

of the branching shrubs class based on initial comparisons with ortho-imagery, wherebywhere the edges of larger vegetation 

and some predominantly grass regions appear to have been misclassified. This may be due to the large variation in structural 

and spectral characteristics of this guildgroup which were less well accounted for. Herbaceous guildsgroups were predicted in 

areas that were to be expected, in; including mobile areas of the channel were larger vegetation would find it more challenging 830 

to establish. The out- of- bag accuracy score when training the random forest classifier with 300 trees was 87.2%. Figure 9 

A7A shows the importance of each band in the classifier, with structural elements proving key in separating guildsfunctional 

groups, especially using summer standard deviation 

 

 835 

Figure 6 Resulting classification from reach scale analysis for the areas covered by both UAV-LS and UAV-MS data for year 1 and 

year 2 of the surveys. Note the over classification of shrubs and bushes, especially at the edge of larger wooded groups, and the 

changes in channel planform and functional groups through the central section of the reach. 
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of point elevationsheights. The near infra-red band and winter standard deviation are the next most important elements, with 840 

the remaining individual spectral bands providing a smaller contribution to the classification. The higher importance of the 

two NDVI layers implies that providing the classifier with analysed image data is more useful than individual bands alone. 

Likewise, the canopy models alone are less informative than the variation in elevationsplant height when detecting 

guildsfunctional groups, supporting the use of manipulated rather than simple metrics to help improve classification. 

 845 

The confusion matrix can be seen in Figure 9 B7B comparing the number of check points that are correctly and incorrectly 

predicted. The overall model accuracy is 80%, lower than the out-of-bag prediction. However, this is not surprising as training 

areas were delineated based on complete structural profiles for the QSM analysis and the total number of samples used for 

training was small relative to the possible variation across the reach. There was a general over classification of points aswithin 

the grass guildfunctional group, with only one grass control point incorrectly classed as branching herbs. Branching herbs 850 

which are more detectable from imagery and likely to return more laser scan points were classified reasonably well, only being 

misclassified as grass.   

 

Figure 8 Resulting classification from reach scale analysis for the areas covered by both UAV-LS and UAV-MS data. Note the over 

classification of shrubs and bushes, especially at the edge of larger wooded guilds. 855 
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Figure 9 

 

Figure 7 Individual band importance in the final classification (A) and confusion matrix (B) from the accuracy assessment. The band 

importance represents the contribution of an individual layer to the final classification. The confusion matrix demonstrates for which 860 
guildsfunctional groups the classification struggled, showing an over-classification of grasses and the poor detection of single stem 

herbs. The overall classification accuracy was 80%. 

Single branching herbs however were relatively poorly classified (50% accuracy), being misclassified as grass, branching 

herbs, and even water. However, their narrow structure and sparse spacing make them hard to identify from coarser imagery 
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and, as they return fewer laser scan points. This class also exhibited the greatest variation in values when using reach scale 865 

metrics to evaluate guildfunctional group samples. Shrubs were predominantly misclassified as branching herbs and grass,; 

this may be due to the object segmentation not always isolating complete plants or including surrounding ground points which 

may have affected the classification. Low DBH trees with a top skew were classified well by the model, most likely due to 

their larger heights and winter skew, whereas higher DBH trees were misclassified as both low DBH trees and grass. The 

former likely due to the difficulty in separating out these two guildsfunctional groups which have subtle differences in certain 870 

classification layers such as winter skew, and the latter from surrounding data being included in an object likely from 

shadowing continuing an object outside its true bounds. However, of all 20 tree check points, only one was incorrectly 

classified as a guildfunctional group with clearly different traits, a High DBH Tree as Grass (see Figure 97B). 

4.3. Morphological Change 

As is expected, the majority of morphological change occurs over winter months when there are high flows (Figure 108). 875 

Conversely, over periods of lower flow during the summer both the extent and magnitude of change is reduced. Throughout 

the first winter period erosion occurs on the outer bank edges with fairly consistent planform evolution throughout the reach. 

Deposition is evident throughout the entire reach, however erosion is considerably more dominant than deposition, with almost 

14,000just under 3000 m3
 of net erosion. The second winter appears to have more localised effects on morphology, with clear 

channel reshaping through the upper half of the study area. This has led to considerable Overall, despite having similar levels 880 

of deposition onacross both sides of winters (~2000 m3), the channelincrease in areas of previously active erosion as well as 

localised erosional hot spots (~23,000 m3 for the second year possibly due to an increased level of time at higher flows has led 

to a greater increase in net erosion (~5000 m3). Both histograms of change within the winter seasons show a dominance in 

erosion overall. This is in line with previous long-term analysis which shows this as an area of high mobility with previous 

channel reshaping occurring. Over both winters, morphological change in the tree dominated downstream reach has undergone 885 

similar levels of change with areas of erosion and deposition influenced by the presence of large vegetation. Both summer 

periods have a greater degree of stability, with erosion and deposition taking place but in lower magnitudes. This is consistent 

throughout the reach with no hotspot areas of either deposition or erosion, with deposition showing to be more dominant 

overall.or erosion and deposition influenced by the  

 890 
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Figure 108. Morphological change throughout the monitoring period, showing the spatial variation in erosion and deposition as well 

as the net change in sediment. Note that February 20 – July 2020 is a composite DEM of difference consisting of comparisons between 895 
February and July to the left of the dashed line and February to September to the right of it. In July, only half of the survey area 

was captured. The stability of the reach over summer (July to September) justifies attributing change to the February – July result. 

The histograms adjacent to each time period show the distribution of magnitude of change, and whether this tends to be favouring 

net erosion or depositionChange less than 0.1 m in elevation was not shown as this was deemed below the level of detection of the 

sensor (see Tomsett and Leyland (2021) for accuracy assessment details). The histograms adjacent to each time period show the 900 
distribution of magnitude of change, the volume of erosion and deposition over that time period, and states the net volume change 

across the corresponding time periods.   

 

4.4. presence of large vegetation.Eco-Geomorphic Interactions 

A key benefit of being able to identify the location of different functionl groups, is the ability to decompose the overall 905 

distribution of morphological change into each functional group for each time period (Figure 9). When assessing the 

distirbutions of erosion and deposition between groups across the four time periods, each functional group follows the overall 

pattern presented in the general morphological analysis, whereby there is a clear dominance of erosion over deposition signals 



 

42 

 

in winter, and a balanced or deposition dominant signal in the summer periods. Unsurprisingly, there is a domanance in both 

winters of erosion in locations that are classed as water due to multiple areas experiencing movements of channel location in 910 

this time. In this case the presence of planform change was the prominent form of morphological change, accounting for a 

large proportion of the net volume shift, with only grass and high DBH trees seeing large volumes of net erosion at over 100 

m3. In fact, when compared to the changes in the summer, most of the functional groups saw similar magnitudes of change 

across the two time periods. Compared to winter 2021 however, the net change in volume for areas classified as water was 

similar, with the remainder of change happening throughout the remaining functional groups and on exposed bars. During this 915 

time, there was net deposition on channel bars, however there are large quantities of both erosion and depositon in this group, 

in line with the highly active nature of such features. Whilst across all functional groups there is an increase in the net erosion 

compared with the first winter period, this is exagerated amongst grasses and shrubs, accounting for 32% of net erosion. For 

both cases, these are likely to be the result of channel reactivation during overbank flow removing large quantities of floodplain 

sediment. Throughout all of the time periods, no group exhibits a consisitent pattern of erosion or deposition, changing based 920 

on season and year, making it difficult to identify any direct eco-geomorphic interactions at these scales. However all groups 

appear to undergo a dominnant erosion signal in the winter followed by an acretion signal in the summer, suggesting that 

vegetation that can recover or survive winter flows and act to trap sediment and stabilise the channel and adjacent floodplain 

during spring and summer.  
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 925 

Figure 9. Histograms of morphological change for each classified functional group location throughout the reach for each of the 

time periods studied. Below each is the volume of erosion and deposition in m3, as well as the net volume change. The transparent 

elements of the histogram show the changed that occurred below the minimum level of detection, and was not included in the eroison, 

deposition, and net volume change information. Note the change in X axis values for the erosion and depositon bars for the water 

class so as not to subdue the other groups due to the dispraportionate amount of change over both winters here.  930 

 

Importantly, the above results show the spatial relationship between different functional groups and the geomorphic change 

that occurs at that location. Yet, the interaction each group has with flow is not accounted for, with different groups having a 

different proximity to the channel and areas of overbank flow. To assess the influence that each functional group is having on 

flow, the spatially varying drag calculated in section 3.4. was aggregated to identify how different functional groups interact 935 

with a simulated large flood across each time period. Table 3 documents the change in both the combined total area of each 
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functional group between each year, and the various excess drag exerted across the domain between summer and winter and 

between each year. Overall, it is clear that shrubs have the greatest influence on flow in terms of excess drag, due to their 

density and the uniformly structured vertical leaf profile. Low DBH trees also have relatively high excess drag across the 

reach, and when compared to the high DBH trees will exert a large influence on flow through the catchment. This is again 940 

most likely as a result of density and coverage, as the frontal area of the low DBH trees will be lower than those with a higher 

DBH. Yet the measured density of low DBH trees is an order of magnitude less and as such has less influence on overland 

flow. The excess drag created across the reach by single stemmed herbs is similar to that of high DBH trees, implying that 

proximity to the channel, vegetation coverage, depth of flow interaction, and seasonality, can all influence which functional 

groups play the biggest role across the domain. 945 

 

The largest changes in excess drag between summer and winter occur within the herbacous and shrub groups, with single 

stemmed herbs showing the largest increase. As the majority of interactions between trees and flow throughout the year is with 

trunks rather than leaves, these experience the smallest difference in excess drag. The increases in excess drag may provide an 

explanantion of the deposition occuring in the summer months; and despite the lower flow depths occuring in the summer the 950 

increased foliage will help to trap any sediment during higher flow events.  
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Table 3. A comparison of total excess drag calculations for the functional groups across the study site, comparing changes between 

seasons and years, as well as assessing changes in group extent between years. Changes in seasonal drag are between the summer 

and the winter within a year, whereas the changes in annual drag are an average of the changes between winter 2020 and 2021, and 

summer 2020 and 2021. No excess drag was calculated for grass, water and bars, and so only comparisons in spatial extent are 

examined for these groups.  975 

 

When comparing the annual changes, there are large shifts in both the excess drag components of individual groups and overall 

excess drag throughout the reach. Changes in excess drag can be attributed to total cover of each functional group, such as 

branching herbs where both area and drag increase by similar proportions, and the small decrease in High DBH trees is 

accompanied by a small increase in drag. Yet, for both low DBH trees and shurbs, the seperation between excess drag and 980 

coverage suggests that the distribution of each group is changing so that the interaction with flow is altered. The drop in both 

area and subsequent drag from single stemmed herbs at first seems to be related to the increase in area of chanel bars, suggesting 

a removal of such vegetation in situ. However, as Figure 10 shows, the change that is most prominent is from single stemmed 

herbs to water, whereby the channel has removed vegetation, and bars have formed in place of the old channel which are yet 

to be established with vegetation.  985 

 

 

 

  

2020  2022 

Area 

(m2) 

Excess Drag (N) Seasonal 

Change in 

Drag 

Area 

(m2) 

Annual 

Change in 

Area 

Drag (N) Annual 

Change in 

Drag Winter Summer Winter Summer 

Grass 49358 - - - 49671 1 % - - - 

Branching Herbs 2564 19 21 10 % 2784 9 % 22 24 12 % 

Single Stemmed 

Herbs 
3388 76 100 31 % 1680 -50 % 38 49 -49 % 

Shrubs 20240 511 614 20 % 18780 -7 % 439 527 -14 % 

High DBH Trees 8956 33 35 7 % 8744 -2 % 34 37 4 % 

Low DBH Trees 5960 135 144 6 % 5732 -4 % 120 127 -12 % 

Water 12360 - - - 11218 -9 % - - - 

Bars 4981 - - - 7872 58 % - - - 

Total 107807 775 914 18 % 106481 -1 % 652 765 -16 % 
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Figure 10. The three most common changes in functional groups and land cover across the study site, accounting for 45% of all 

change. Water to gravel bars was the most common change (28%), followed by single stemmed herbs to water (9%), and then gravel 

bars to water (8%).   990 

 Both summer periods have a greater degree of stability, with erosion and deposition taking place but in lower magnitudes. 

This is consistent throughout the reach with no hotspot areas of either deposition or erosion, with deposition showing to be 

more dominant overall. 

5. DISCUSSION 

5.1. Multi-Decadal Evolution 995 

The multi-decadal evolution for this reach is complex and analysis of the formation of new channels implies that flood events 

might be a key control on the switching from one channel to another and the reoccupation of former channels. It is not possible 

to isolate a single variable that may cause such switches to take place, such as particular flow thresholds, baseline conditions, 

vegetation, or soil characteristics. However, it does appear that areas influenced by large vegetation experience less localised 

bank evolution, with the vegetation constraining the channel to some degree. This does not appear to stop large switches in 1000 

channel position into or away from vegetated sections. This implies that vegetation is playing a role in the stabilisation of 

channels up to some, as yet unidentifiable, threshold. The reoccupation of former channels implies that vegetation plays a 

lesser role than topography in these conditions, suggesting that whilst vegetation can have controls on channel evolution, these 

eco-geomorphic feedbacks are locale and flow condition dependent. This supports the concept of vegetation acting as river 

system engineers and providing an influence on channel morphology (Gurnell, 2014) and that varying vegetation densities 1005 

may be impacting the resistance to morphological evolution (Bertoldi et al., 2011). Therefore, at a decadal scale, although 

vegetation may not be the sole control on planform evolution, it is shown to be an important factor in this reach of the River 

Teme. 
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5.2.5.1. Trait Extraction and GuildFunctional Group Formation 

Current measurements of plant functional traits are still predominantly ground based and therefore limited by on site access 

(Palmquist et al., 2019), requiring extensive sampling to extract enough data to create guildsfunctional groups relevant to a 

particular study (e.g. Diehl et al., 20172017a; Hortobágyi et al., 2017; Stromberg and Merritt, 2016). Remote sensing of these 1045 

traits is therefore a potentially noveluseful way to collect data across large areas, depending on the vegetation size and methods 

of data collection. Although no ground truth data relating to traits was collected in the field, the assessment of variability in 

model construction and comparison to wider records based on dominant species suggests that the final cylindrical models were 

of good fit for the point clouds collected.methods developed herein performed well at extracting physical attributes. This 

suggests thathighlights the usepotential of remote sensing to collect structural trait data has an important role to play infor eco-1050 

geomorphic research moving forward, especially once trade-offs in terms of time and spatial extent are accounted for. For 

example, data from field surveys are generally limited to that site, and although the findings can be applied to locations 

elsewhere, this requires knowledge of the vegetation present at a site. If metrics can be extracted from remotely sensed data 

and be used to classify functional groups and over land cover, this represents an improvement in the applicability of traits-

based research.  1055 

 

The use of pre-determined rather than site specific guildsfunctional groups was a method employed by Butterfield et al. (2020) 

on the basis of guildsthose outlined in Diehl et al. (2017).Diehl et al. (2017a). The sites used in both of these studies were 

similar, and the application to a temperate UK based site is challenging. because of the complexity and similarities of some 

plants. However, the comparatively smaller sample size used in this study, and the lack of a comprehensive guilds list of 1060 

functional groups for riparian vegetation, made using predetermined guilds described in Diehl et al. (2017) and O'hare et al. 

(2016)groups justified. The lack of suitable ultra-high-resolution data reduced in this case. When compared to previous studies, 

the reduction in the number of extracted herbaceous guilds to functional groups is due to the data resolution, whereby only 

two, on which most distinction categories could be observed. The variation inexplicitly detected. For woody vegetation created 

two guilds within this single previously outlined guild, as they were likely to species, the method allowed for separation of 1065 

two sub classes which have different impacts on flow, especially when used to determine excess drag. The methods used 

provided sensible separation of groups, each of which have a demonstrably different hydraulic effect traits. This basis appears 

to have proved effective with differences in structural characteristics which are likely to impact flow and subsequent 

morphology noted between the guilds during PCA analysis. Predominantly singleinfluence. Single stemmed herbs were taller, 

likely due to their improved structural standing, and although the number of branches was similar to the branching herbaceous 1070 

group, the number of branches per unit height was differentlower. A taller, stronger, and less branching herb is going to have 

a distinctly different impact than a shorter more flexible one (Nepf and Vivoni, 2000; Järvelä, 2004; Sand-Jensen, 2008). 

Being, and being able to differentiate successfully between these two groups highlights the success of the survey and trait 

extraction methods. developed herein. Likewise, the difference in flow conditions between low DBH trees, that are closely 
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packed, to less densely packed high DBH trees may show a resemblance to the influence found at smaller scales on plant 1075 

density (Järvelä, 2002b2002a; Kim and Stoesser, 2011)., with noticeable differences in estimated excess drag values. The 

relationship between DBH and vertical skew is not surprising; considering the higher plant spacing density, the competition 

for space is likely higher, resulting in more mass higher up the tree profile. As plants cannot yet be easily differentiated by 

measuring their DBH, using vertical skew givesprovides promising results for upscaling to larger areas whereby ALS surveys 

may be able to differentiate between woody guildsfunctional groups for better informed hydrological analysis., with similar 1080 

work being done using vertical distribution to classify forests already (Antonarakis et al., 2008; Michałowska and Rapiński, 

2021).  

 

However, UAV-LS has been shown to overestimate canopy reconstruction volume (Brede et al., 2019), which mirrors the over 

complexity demonstrated in Figure 2 (QSM Cylinder Model) with some awkwardly orientated cylinders. Extracting traits using 1085 

remote sensing is novel and can outcompeteUAV-LS has been shown to overestimate canopy reconstruction volume (Brede 

et al., 2019; Dalla Corte et al., 2022), which mirrors the over complexity demonstrated in the QSM Cylinder Model (Figure 2) 

with some awkwardly orientated cylinders. Extracting traits using remote sensing is novel and can improve on ground-based 

methods for coverage but is not yet likely to match the accuracy and interpretive ability of in-field measurements. Moreover, 

use of TLS is highly localised with a limit to the survey extent that can be capturedmanual in-field measurements undertaken 1090 

by an individual, as shown in estimations of forestry structure for height, DBH, and volume (Dalla Corte et al., 2022). 

Moreover, the use of TLS for analysing herbaceous functional groups is highly localised (Lague, 2020), meaning only a small 

number of samples can be analysed which may not reflect the full variation in vegetation morphology from differing 

hydrological and environmental conditions. The UAV-LS data, although covering more ground, does take significant levels 

of time to post-process and extract multiple individual vegetation models, although as the spatial extent of coverage increases, 1095 

the time gains improve as the same vegetation models can be used to classify increasingly larger sites. Algorithms which can 

extract traits and classify large areas are likely to improve with the increasing availability of very high-grade commercial 

UAV-LS surveying equipment in much the same way that SfM methods developed, beginning to rival the resolution and 

accuracy of ground-based TLS.. Despite covering a relatively large area of the river reach (Figure 1) the UAV-LS data collected 

for this study took a significant amount of time to post-process, although as the spatial extent of coverage increases the time 1100 

gains improve as the same vegetation models can be used to classify increasingly larger areas. Algorithms which can extract 

traits and classify large areas are likely to improve in much the same way that SfM methods developed, such as those presented 

by Burt et al. (2019) and Krisanski et al. (2021).  

 

Currently, UAV remote sensing methods can only obtain above ground structural traits, and although these make up a 1105 

significant component of hydrologicallyhydraulically relevant traits, they do eliminateignore the collectionimportance of traits 

such as root structure, strength, and plant flexibility. Both UAV-LS and TLS also struggle to capture the complex structures 

of shrubs, with TLS requiring too many scans to resolve the structure of enough samples and UAV-LS having too low point 
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density and canopy penetration for such complex branching. However, methods pioneered by Manners et al. (2013) may help 

to overcome this by relating vertical profiles from TLS and ALS data to enable upscaling to larger extents. relating vertical 

profiles from TLS and ALS data may help to overcome this by upscaling to larger extents. Similarly, more work is needed to 

overcome the difficulty in separating out species that appear similar structurally (and spectrally), such as woody saplings and 

herbaceous plants, but which may have very different hydraulic roughness measurements. At present, these two different 1145 

vegetation types could easily be misclassified, and with the likely different interactions with flow and subsequent morphology, 

not being able to account for these with remote sensing is currently a limiting factor. Efforts to further investigate this, possibly 

using proximity measures to other functional groups, or probabilistic rather than categorical classification methods, may help 

to overcome this issue.  

5.3.5.2. Reach Scale Guild mappingFunctional Group Mapping 1150 

The benefits of remote sensing of plant traits does not come from individual plant analysis but from upscaling to larger 

extents.across space and time. Using the same datasets provides continuity between both the individual analysis and reach 

wide guilds.functional groups. Finding common features of defined guildsfunctional groups is more computationally effective 

than analysing individual plants throughout the reach at present. Using structural characteristics of the point cloud alongside 

spectral properties across time allows the absolute and temporal patterns of each layer to enhance guildfunctional group 1155 

classification. It is clear that distinctiveinitial separation between guildfunctional group types can initially be made based on 

canopy height, with this providing the clearest initial separation.. The need for seasonal data is emphasised by the across 

functional groups, whereby herbaceous guilds, whereby height is a useful separator but has large variability, whereasgroups 

benefit from having winter and spring NDVI values are more effectiveto complement the difference in height, and tree groups 

require leaf-off vertical distribution to help with separation, supporting previous work emphasising the need for seasonal data 1160 

to improve eco-geomorphic research (Bertoldi et al., 2011; Nallaperuma and Asaeda, 2020; Bertoldi et al., 2011). Variations 

in NDVI were distinct between several guilds, both in absolute values and seasonal variation. Single. Overall, single stemmed 

herbs appear to be more seasonal, with lower winter values than multi stemmedbranching herbs, whereas the NDVI of shrubs 

NDVI experienceexperiences a dip in spring surveys as a consequence of flowering affecting spectral properties. When 

investigating differences in woody guilds, winter data collection is key, as in leaf off conditions the fullFor tree structure is 1165 

captured in more detail and so differences in skew which are related to DBH are better captured. Later functional groups, 

capturing data in the year, these variables become more overlapped between guilds withwinter has a greater variation. 

Therefore,penetration and as such the timing of data collection will likely impact classification results, with some 

guildsfunctional groups being better separated at different times of the year. For these methods to be applied elsewhere, it 

therefore follows that athe seasonal monitoring approach used herein and in other studies (Van Iersel et al., 2018; Souza and 1170 

Hooke, 2021) is likely required.  
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The use of random forest classification for this study site has been successful and builds onadds to the growing body of research 

forevidence supporting their use for application to high resolution classifications (Adelabu and Dube, 2015; Chan and 

Paelinckx, 2008; Adam and Mutanga, 2009). The misclassificationsmisclassification statistics from the random forest classifier 1175 

are in line with misclassifications experiencedthose reported by Butterfield et al. (2020) when using multispectral imagery 

alone, with most misclassifications happening in guilds adjacent and most similar to the true class. Woody guilds appear to be 

buffered by shrub guilds, potentially resulting from the image segmentation not delineating the vegetation edge successfully. 

These locations are likely to have lower relative heights and so be misclassified as shrubs, whereas a better image segmentation 

may avoid these issues. functional groups which are adjacent and most similar to the true class. This is unsurprising when 1180 

viewing the uncertainties in functional group properties (Figure 5), where there is evidence of overlap across multiple attributes 

for two different groups. Moreover, where there are transitions between functional groups with similar properties, or where 

the image segmentation has incorrectly defined ‘similar’ pixels, it is likely that misclassification may occur. Identifying ways 

to better segment regions of vegetation may help to improve the overall classification success. A related drawback is that the 

categorical output used in this method means that a segmented region must be allocated to one type of functional group and as 1185 

such cannot distinguish between the presence of multiple groups. This is especially the case for woody regions, which will 

have a mixture of understory vegetation which is not currently detected and characterised, and is another area which may need 

further developmental work to improve vegetation characterisation. 

 

The Despite the above limitations, the resulting classification accuracy (Figure 86 and Figure 9B7B) shows promise for linking 1190 

local scale trait modelling to larger guilds, functional group mapping. The overall distribution of classes throughout the reach 

is as expected, with good separation between broad guilds and promising initial results for separation between similar guilds. 

The presence of herbaceous species indominating the active meandering section is as expected, as these are more adaptable to 

changing and flood conditions, whilst larger woody species are seen in more stable sections of the river when compared to the 

historical change, as these species require more stable hydraulic conditions (Kyle and Leishman, 2009; Stromberg and Merritt, 1195 

2016; Aguiar et al., 2018). The classification herein advancestakes a different approach  to work by (Butterfield et al., 2020) 

who used imagery to classify species and subsequently assign guildsvegetation groups, whereas this the remote sensing method 

usesused here utilises the structural and spectral characteristics to designate the spatial distribution of guildsfunctional groups, 

removing the species identification component. This is important as the same species may display varying traits-based on their 

proximity to the channel (Hortobágyi et al., 2017)(Hortobágyi et al., 2017), and as such, using the physical characteristics of 1200 

plants can be seen as an advantage. The use of image segmentationSpecies identification still plays an important role, and has 

been used in this study to delineate similar areas also helps to reduce the saltboth assess the reconstruction of vegetation and 

pepper effectto inform the coefficient of high-resolutiondrag values used. However, as noted previously, obtaining secondary 

data classificationson a range of plant traits that are relevant to the area of study can be challenging, and so provides an effective 

method when looking at high resolution structural and spectral features of a reach.may limit the applicability of traits-based 1205 

methods in the wider scientific community,   
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5.4.5.3. Eco-Geomorphic Change 

Given the hydrology of the river, the majority of morphological change occurs over the winter months as expected. The 1240 

temporal resolution of the surveys is not capable of picking outdetecting whether this is the result of a single flow event or 

continuously high flows, however it is clear that significant geomorphological re-profiling can occur within a single winter. 

There appears to be more localised evolution in the second winter of surveying whereas the first winter appears to show a more 

continual response throughout the reach. The singular lower peak in water levels for the second winter as opposed to several 

higher peaks in the first (see Figure 11C) suggests that priming may be more important for large avulsions, whereby a 1245 

singularsingle flow event of lower magnitude can incite a greater resultant planform shift. The response in summer is much 

smaller both in terms of deposition and erosion, with little morphological change occurring unsurprisingly.. What change does 

occur may be from reductions in bank support (via confining water pressure) from high flows leaving banks exposed to collapse 

(Zhao et al., 2020). The largest areas of change appear to be within the reaches absent of large vegetation, with the stable 

patches aligning well with those identified in the decadal analysis..  1250 

 

It is difficult to identify any definitive links between the morphological change and vegetation presence, due to the limited 

time of study and the variations in vegetation extent and proximity to the channel. Yet, by aggregating the change across these 

various functional groups it was possible to see some of the effects of different groups, with areas such as grass consistently 

contributing to areas of erosion during the winter months, and tree functional groups undergoing just as much morphological 1255 

change as herbaceous functional groups despite their well-known stabilising effects (Gurnell, 2014; Hortobágyi et al., 2018). 

Importantly, it is clear that the use of temporal monitoring to identify patterns of change is a challenge due to the inherent 

variability between seasons, exemplified when looking at the excess drag provided by each functional group between years. 

Changes in the spatial distribution and extent of different functional groups can alter the overall hydraulic roughness across 

the floodplain, and in this case results in a drop in roughness from one season to the next. Moreover, being able to adjust these 1260 

for both summer and winter periods gives a greater insight in to the fluctuations in the influence of vegetation across a domain, 

and should continue to be accounted for when investigating the influence of vegetation on flow both in field studies and 

modelling (Song et al., 2017; De Doncker et al., 2009; Champion and Tanner, 2000; Cotton et al., 2006). 

 

Herein we linked the functional groups to morphological change and, in addition, estimated the excess drag across the domain 1265 

created by each functional group. Investigating the morphological change compared to depth dependent drag is challenging 

however, as it is spatially and temporally varying with different river stage. Yet, for the reference flood event used to predict 

flow depths, the morphological change experienced over that time period can be compared to each functional groups excess 

drag, and the impact this had on subsequent morphology assessed.  

 1270 
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Figure It is difficult to extract any definitive link between the types of morphological change occurring and the underlying 

vegetation. It is clear from the historical analysis that although vegetation plays a role in morphological evolution, it is not the 

sole driver of change. There are also a number of unique features in the reach which are hard to categorise or group, 

morphologically speaking, with different vegetation patterns, hydraulic conditions, and pre-existing morphology adding 

complexity. However, by grouping guilds based on their potential ability to influence vegetation, and categorising erosion and 1275 

deposition into bands of morphological change in either direction, it is possible to visualise the links between vegetation and 

morphological change. 

 

Figure 11 shows a bivariate classification of vegetation stability and morphological evolution. Grasses and herbaceous guilds 

are grouped along with bars as having the least morphological stability, followed by shrubs, and then woody guilds. 1280 

Morphological evolution was split into 0 to 1 m of change, 1 to 2 m of change, and greater than 2m of change, which were 

chosen to represent the majority of change values. It is clear that most of the reach is shown in the lighter colour tones indicating 

low magnitudes of morphological change. However, areas with higher morphological change begin to become more apparent 

for areas of little vegetative stability, for example on the outer meander banks in several places. Darker oranges and purples  

 1285 

Figure 11 Bivariate classification of eco-geomorphic process-form interactions, with examples highlighting the stabilising effect of 

vegetation. The bivariate colour scheme shows the impact of the likely increase in stability from vegetation (red to green) and the 

increasing magnitudes of geomorphic change (light to dark shades). This allows the presence and potential influence of vegetation 

to be mapped together. Vegetation stability was classed by grouping grasses and herbs, shrubs and bushes, and different woody tree 

guilds. Morphological change was split into 0-1 m, 1-2 m, and greater than 2 m of change, regardless of whether this was erosion or 1290 
deposition. Insets show patterns of erosion and deposition against the presence and absence of larger vegetation across various 

sections of the reach. 

are dominant in comparison to the areas of dark green. Although compared to the overall areas of each vegetation stability 

class you would expect fewer dark green regions, there is clear evidence of light green patches where dark green patches may 

be expected had the vegetations stabilising effect not been present. 1295 
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Some of these sections are highlighted in the panels of Figure 11 identifying regions where erosion may be expected but is not 

present. The left-hand panel shows a double meander bend, the first which has a heavily vegetated bank and the second which 

has little established vegetation. The total change in these two sections is dominated by erosion in the second meander bend 

which has a similar curvature to the first. The second bend does contain a knickpoint caused by overland flow which is not 1300 

present in the first bend, yet the bend exit also shows far less erosion. Therefore, it is suggested that this dense patch of 

vegetation is having some stabilising effect, with soil cohesion increased, and flow velocities reduced. The central panel is just 

downstream and is constricted in planform by established vegetation, which despite substantial reworking across the survey 

period has remained relatively stable and exhibits deposition close to the vegetation on the left-hand bank. Subsequently, not 

only is the vegetation acting to stabilise banks, but likely slow the flow to encourage deposition in this area. Finally, the right-1305 

hand panel at the entrance to the region dominated by woody guilds is characterised by a large cut bank several metres in 

height that is progressively eroding, with the bulk of this erosion occurring just before entry into this woody guild dominated 

section. The vegetation on the outer bank is likely to play a stabilising role on the bank, until undercutting and removal of 

these trees occurs. There is evidence of such undercutting in action (Figure 12), suggesting that vegetation provides additional 

stability only as far as a given threshold, as was suggested in relation to the long-term decadal analysis.11 illustrates the 1310 

changing excess drag provided by each functional group at different reference flow depths, and the equivalent morphological 

change experienced at these locations for the winter of 2021/22. All functional groups exhibit an increase in erosion with 

greater flow depths, implying that any variation in erosion patterns seen across the range of flow depths may be in part due to 

the function of the vegetation. For both herbaceous functional groups, the influence of the plant form on flow increases up 

until their maximum heights, and for both of these groups the level of erosion reduces up until below this maximum height, 1315 

until above this height levels of erosion increase. Clearly, at greater flow depths the shear stress on the bed will increase (e.g. 

Biron et al., 2004; Phillips, 2015) and as such induce greater levels of erosion. Nevertheless, as this trend is not linear in nature 

with increasing depth, it suggests that herbaceous functional groups are having an impact on flow and subsequent 

morphological change within the reach over this time period. The remaining three functional groups all see consistently 

increasing levels of excess drag across flow depths as the plant heights exceed the maximum depth. Shrub frontal area increases 1320 

more quickly with flow depth as the branching network becomes more complex with a greater presence of foliage. The 

difference in excess drag experienced by the low and high DBH groups is predominantly the result of differences in plant 

density. Shrubs show the most consistent morphological stability, most likely due to their ability to reduce flow speeds, and 

the root structures of larger vegetation providing greater soil cohesion. Both sets of tree groups follow a similar pattern, 

appearing to accelerate erosion at low flow depths, before showing a stabilising effect at greater depth, some of which may be 1325 

in part due to the poor ability to classify understory vegetation, missing some of the variability in these areas.  
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Figure 11. A comparison of how for each separate functional group, the excess drag (coloured lines, no dots) and morphological 

response (black line, dotted), changes with flow depth. The diagram at the top helps to illustrate how for different groups, different 1330 
flow depths result in different proportions of the plant interacting with flow.   

This begins to raise questions around the coupled nature of flow and vegetation, and at what point does one begin to dominate 

in dictating geomorphic evolution. The exploratory analysis undertaken here begins to disentangle this by using structural data 

across the domain to determine the vegetation influence at flow depths seen in the field, whilst also assessing real changes in 

morphology. Although the drag calculations are averaged for the entire functional group, and the morphological signal used is 1335 

an average, this provides a new avenue of research which could relate an individual plants influence on various flood stages 

and the subsequent morphological response of the channel.  



 

55 

 

6. Remote Sensing of Plant Functional Traits: What Next? 

One of the key benefits of using remote sensing is the ability to quickly capture datasets over scales not possible with ground-

based surveying. It is clear from the analysis herein that although the collection of data is fairly straightforward, the subsequent 

post processing time has to be taken into account. Yet once when considering routine application of a traits-based approach. 

Once data has been processed, and the seasonality of the data acquired through spectral and structural characteristics, the 1375 

success of the classification suggests that guilds can be classified for other sites that contain similar guilds, such as most 

temperate UK rivers which display these prominent guild types (O'hare et al., 2016), in much the same way as other research 

has used previous guild classes for similar environmental conditionsfunctional groups can be classified for other sites that 

contain similar vegetation in much the same way as other research has used previous classes for similar environmental 

conditions before (e.g. Butterfield et al., 2020). It also allows guild analysis forfor functional groups to be mapped in regions 1380 

that are more remote and less accessible to more traditional surveys.survey techniques. This improves the applicability and 

usability of traitstrait based methods when compared to more traditional taxonomic vegetation discretisation approaches. 

 

Combining vegetation structural and spectral data provides the opportunity to upscale to datasets collected via other platforms, 

with high resolution satellite imagery and ALS datasets offering the potential to improve the impact of such classification 1385 

methods. This also allows the direct measurement of trait variability rather than investigating species variability and 

subsequently linking these to traits. The use of purely species data may remove some of the nuance in their traits, based on 

location, and so limit the applicability to fluvial research. Currently, the main difficulty with traits-based analysis is 

gettingcollecting adequate data over large enough areas, this. The methodology developed here provides a potential starting 

point from which a set of tools to classify different hydrologicallyhydraulically relevant guildsfunctional groups across larger 1390 

areas can be baseddeveloped. This may overcome some of the scale issues in linking guildsvegetation functional groups to 

geomorphic change which are currently known., whereby not enough data to link directions of change with different functional 

groups has previously been collected. Currently, most large-scale studies link platform evolution to vegetation presence, and 

small studies are too localised to be applicable across wider areas.reach scales and beyond. This research, although not large 

enough which begins to be able to link guilds statistically toexplore the links between different functional groups and 1395 

morphological evolution, demonstrates that by upscaling to combine enough hydraulic and morphological conditions may 

allow this to further eco-geomorphic insights may be possible.  

 

It is important to understand how the role of guilds may change. Figure 12 shows a pre and post image of the channel in this 

section, suggesting large scale mobilisation of large wood. Being able to identify these changes is key, becauseWhilst the 1400 

analysis undertaken in this study is capable of assessing seasonal and annual changes in vegetation functional groups, one 

aspect that is not taken into account within those groups is the longer term life cycle of vegetation. During a complete growth 

life cycle, the functional role large vegetation plays inwithin the river corridorsystem changes depending on its life stage. Our 
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data suggests that . For example, the role that large trees helps to stabilise the channel, likely through increases in soil cohesion 

and slowing flows during the flood stage. However, once a tree is undermined by erosion and collapses to form large woody 1405 

debris, it provides an increase in in play when they are uprooted changes significantly, from a stabilising feature for riverbanks, 

to one that potentially increases channel roughness and turbulence, divertsdramatically alters flow, directions and leads to 

knock onsubsequent morphological impacts (Jeffries et al., 2003; Sear et al., 2010). It is therefore importantTherefore, when 

classifying regions into functional groups, it may be necessary to consider that guilds and their influence are not stationary, 

but that they are these are dynamic through time both in terms of seasonality and life cycles. This must be considered when 1410 

looking at the implications of guild dispersal and modelling, as the impact of changing from one state to another needs to be 

accounted for. Although the temporal evolution of guilds was not  

classes 

Figure 12 The impact of undercutting within a heavily wooded reach, highlighting how vegetation and river flow interactions change 1415 
through a plant’s life cycle. The fallen trees create key members which form debris dams, leading tovary through timescales greater 

flow diversions, localised flooding and scour points, changing the role of vegetation from one of offering stability to inducing erosion.  

investigated, this presents itself as than the period of repeat survey capture. How we begin to monitor and detect these shifts 

in groups is an area offor future work, andresearch, especially in terms of characterising the possibility to investigate traits-

based methods to classifyimpacts of large woody debris based on , which greatly contributes to the surrounding vegetation 1420 

structuresdynamics of fluvial systems. 

 

The One of the challenges of traits-based approaches is the ability to collect widespread data as outlined previously. The 

classification inputs used herein predominantly focussed on structural and spectral characteristics of the vegetation; however 

, and as a result require advanced data collection techniques. However, it ishas been widely shown that traits vary dependent 1425 

on their underlying hydraulic and environmental conditions. (e.g. Göthe et al., 2017; Corenblit et al., 2015). It is therefore not 

inconceivable that such metrics may be used in the future, such asfor example to show inundation frequency or extent, 

alongside species identification from imagery or the field (Butterfield et al., 2020) to determine the likely composition of traits 
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in these regions.. This may takeresult in a more holistic approach and in cases where less structural data is present, allow for a 

more robust classification of guildsfunctional groups. 

 

There are however several limitations to the methods.Alternative approaches will also be necessary when the limit of trait 

detection is reached from remote sesning techniques. Variations in traits which are undetectable from TLS or UAV-LS methods 1465 

will limit the ability to detect features for certain types of guildfunctional groups, such as those too small to resolve including 

different grasses or those with too complex structuresa structure, such as branchingfor grasses and shrubs. Both of these are 

prominent features of UK river corridors and so their ommision from thecurrent analysis is a limitation. However, theyThe 

current methods can still be mappedmap their extents but would require in field trait collection or species identification for the 

use of trait databases (, e.g. the TRY database (Kattge et al., 2020)). The remote sensing equipment used for this research is 1470 

not cheap (see Tomsett and Leyland, 2021, noting that our custom system is considerably more economical than commercial 

off-the-shelf packages) and requires a degree of expertise in processing and manipulating the data. However, commercial 

improvements are seeing more easy to deploy, whose limitations have already been discussed. Yet species identification can 

be achieved with platforms cheaper, sensor systems than those used in this study and supplemented with in field data assuming 

access to the site is safe, providing opportunity for wider implementation.  1475 

 

A key discussion point tends to revolve around how much data is required? Within this study, the repeat surveying was used 

to better group and map the extents of different vegetation, yet it is not always possible to collect such quantities of data. The 

analysis above would suggest that the seasonality of data collection plays a critical role, with tree species being brought to the 

market, likely to have a positive impact on eco-geomorphic researchbetter seperated in termsthe winter, due to the leaf off 1480 

conditions providing better conditions for identifying overall structure, whilst summer surveys better capture the extent of 

allowing broad uptake of the methods developed herein for applied monitoring and river corridor managementdifferent 

herbaceous groups. As a result, it is unlikely that a singular time frame is best for capturing such variety and in order for traits-

based approaches to become common using remote sensing, further work to indeitfy optimal timings for data collection needs 

to be undertaken. 1485 

7. Conclusion 

WeIn this study, we have presented a novel method for collecting and extracting vegetation functional trait data that is relevant 

to eco-geomprohicgeomorphic research. Herein we used  UAV-LS and UAV-MS datasets to advance our ability to collect 

high resolution 4D datasets, improving the spatial and temporal resolution of riparian vegetation monitoring and geomorphic 

change detection, allowing. This has allowed us to gain an insight into how ripairanthe inlfuence of riparian vegetation 1490 

evolveschnages through time and to better discretise the spatial variation of vegetation in a manner that is applicable andto 

functional groups which are scaleable over large river reaches. As such, we have been able to provide insight in to how traits-
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based frameworks for vegetation analysis can be linked to trends and patterns in morpholoigical evolution at scales that were 

previously not attainable. Throughout the study reach, shifts in planform were the dominant forcing of changes in group 

presence, with no group displaying consistent directions of change in erosion or deposition, with most eroson being seasonally 1495 

driven across both winters. The shrub group was identified as being the greatest comntributer to reach excess drag, whereas 

single stemmed herbs saw the greatest change in interannual coverage and thus contirbution to total excess drag. When relating 

morphological change to each functional group and flow depth, although all vegetation groups saw an increase in erosion with 

greater flow depths, the variation in rates of erosion demonstarted some of the depth dependent interactions with vegetaion, 

and how they may limit or accelerate morphological change. We have also outlined the limits for current trait extraction from 1500 

remote sensing techniques. UAV-LS can characterise larger vegetation structures and be used to upscale local TLS models, 

but even TLS is limited in its ability to characterise the spatial complexity of some vegetation traits at the resolution required 

to linkextract traits which can be linked with geomorphic change. This builds on current research which has analysed 

ecogeomorphic interactions on small river sections, or used species based imagery classification to determine largeinvestigate 

geomoprhic variations. The use of remote sensing allows data to be captured, analysed, related to broader dataset statistics, 1505 

and upscaled to include larger reaches. Simultanously, the same data allows for the collection of topographic responses to flow 

events which can be linked to the variation in vegetation. This analysis uses seasonality to improve the classification of 

guildsfunctional groups via chages in structural and spectral properties, advancing current methods available to the 

ecogeomrophology community. The trait data can then be used to infer changes in excess drag across the reach, and also be 

linked to specific flow events ot investigate how vegetation type and interaction with differening flows effects geomorphic 1510 

response. Despite some noted limitations, this research represents an important step towards better discretisation of traits across 

greater scales and the furthers the possibility of implementing widespread traits-based research. 

 

Future research is needed to investigate the limits of various remote sensing methods in relation to their ability to be used for 

traits extarction and thereby improve understanding of a systems ecogeomorphic evolution. Of particular note is the currently 1515 

untapped resource that exists in relation to coarse scale global coverage of land cover from which vegeation traits could be 

extracted using methods such as those presented herein to link the scales of analysis., with a focus on high resolution land 

cover data, remote sensing imagery, and ALS. Likewise, a need to advance the relationship between vegetation, morphology, 

and flow interaction is required, accounting for the spatial variations in flow depths and therefore identification of which 

elements of individual plants are interacting with the flow. This is especially important when examining the variation within 1520 

different functional groups and across different hydrological regimes. These methods offer a bridge across sclaes, within which 

to consider the ways in which riparian vegetation within the river corridor is mapped, evaluated, and modelled through time, 

with implications for establishing new insights into the functioning of eco-geomorphic systems across scales ranging from 

river sections to intercontinental basins. 

 1525 
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