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Abstract. Vegetation plays a critical role in the modulation of fluvial process and morphological evolution. However, 

adequately capturing the spatial and temporal variability and complexity of vegetation characteristics remains a challenge. 

Currently, most of the research seeking to address these issues takes place at either the individual plant scale or via larger scale 10 

bulk roughness classifications, with the former seeking to characterise vegetation-flow interactions and the latter identifying 

spatial variation in vegetation types. Herein, we devise a method which extracts functional vegetation traits using UAV laser 

scanning and multispectral imagery, and upscale these to reach scale functional group classifications. Simultaneous monitoring 

of morphological change is undertaken to identify eco-geomorphic links between different functional groups and the 

geomorphic response of the system. Identification of four groups from quantitative structural modelling and two further groups 15 

from image analysis was achieved and were upscaled to reach-scale group classifications with an overall accuracy of 80%. 

Plant structure was then used to assess seasonal changes in excess vegetative drag and relate these to geomorphic change across 

the study site. This research reveals that remote sensing offers a solution to the difficulty of scaling traits-based approaches for 

eco-geomorphic research, and that future work should investigate how these methods may be applied to larger areas using 

airborne laser scanning and satellite imagery datasets. 20 

1. Introduction 

Fluvial eco-geomorphic interactions are co-dependent, complex, and variable across space and time, representing a continued 

area of interest within river research (Thoms and Parsons, 2002). The diversity of eco-geomorphology in river corridors can 

be attributed to surrounding land use, existing morphology, and flood regimes (Naiman et al., 1993), whilst this same diversity 

simultaneously influences the flow of water and sediment, ultimately affecting morphology (Diehl et al., 2017a) and floodplain 25 

conveyance (Nepf and Vivoni, 2000). The role of vegetation within the river corridor is well established, benefiting the local 

ecology (Harvey and Gooseff, 2015; Sweeney et al., 2004) alongside playing a role in natural flood management schemes and 

reconnecting channels and floodplains (Lane, 2017; Wilkinson et al., 2019), especially for small catchments where land cover 

is more influential for flooding (Blöschl et al., 2007). This is important when considered against a backdrop of a rapidly 

changing climate where flow extremes are more varied, flooding more likely (Unisdr and Cred, 2015), and riparian vegetation 30 
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is likely to undergo shifts in composition (Rivaes et al., 2014; Palmer et al., 2009). Consequently, adequately measuring and 

monitoring vegetation with the fluvial domain is critical to understanding how these systems will respond to varying climatic 

and hydraulic conditions. 

 

The characterisation of riparian vegetation distribution over larger (>1 km) scales has typically relied upon the use of coarse 35 

classifications such as those identified in the Water Framework Directive (e.g. Gilvear et al., 2004), using techniques such as 

aerial imagery and satellite remote sensing (see Tomsett and Leyland, 2019). Any characterisation must be scalable and 

geographically transferable to cover the vast range of different fluvial landscapes, whilst still accounting for the complexity 

presented within river corridors. Over-simplified, coarse classifications may altogether miss the vegetation complexity that 

exists, whilst conversely, highly detailed models tend to be necessarily localised and less transferable to alternate systems and 40 

scenarios.  

 

Traits-based classifications, developed and used within ecology, offer a scalable and transferable approach which can be 

applicable to the fluvial domain (Diehl et al., 2017a), and have been shown to be useful for modelling topographic response to 

changing vegetation, sediment, and flow conditions (Diehl et al., 2018; Butterfield et al., 2020). However, the application of 45 

traits-based classifications over larger reaches has yet to be fully realised, due to the challenges in collecting appropriately 

high resolution data at these scales (e.g. >1 km). If such challenges can be overcome, it offers an opportunity for those analysing 

vegetation both within the river corridor and elsewhere in the landscape to obtain spatially explicit data on vegetation that was 

previously unattainable.  

 50 

To address these gaps, herein we examine the scales over which different traits can be collected from remote sensing methods 

and assess how well these traits can be used to establish eco-geomorphic relationships. We use a UK based temperate river as 

an example site to demonstrate the effectiveness of novel remote sensing techniques for characterising vegetation through 

time. We investigate the limits of trait detection and the scales at which they are most appropriately used to enhance eco-

geomorphic understanding, enabling us to establish the applicability of these methods to a variety of river corridor 55 

environments. Below we introduce the concepts of plant functional traits and hydraulically relevant traits before establishing 

the aims of this research. 

1.1. The Importance of Vegetation 

It is well understood that vegetation plays a key role within the river corridor and that how vegetation is represented in models 

(e.g. constant and varying roughness values, rigid cylinders etc.) can affect the outcomes of hydrodynamic simulations. 60 

Channels with in-stream vegetation may experience roughness values an order of magnitude higher than non-vegetated 

channels (De Doncker et al., 2009), capable of reducing velocities by up to 90% (Sand‐Jensen and Pedersen, 1999), with stem 

shape, the amount of foliage, and deformation at various flow stages, all influencing river flow (James et al., 2008). The 
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challenges posed by quantifying in-stream vegetation means that it is often difficult to make estimations of in-stream roughness 

(O'Hare et al., 2011). Conversely, terrestrial vegetation that influences flow during periods of flooding is easier to measure 65 

and monitor depending on the scales of analysis. Banks are typically eroded via mechanisms of mass failure or entrainment 

(Hughes, 2016), therefore any stabilising effects of vegetation will influence these processes. Vegetation can reduce stream 

power, increase soil cohesion, and influence soil moisture levels, all of which can help to limit bank erosion (Simon et al., 

2000; Fox et al., 2007; Kang, 2012). Bank collapse is influenced by three dominant factors, the extra mass of the vegetation, 

the shear strength provided by root reinforcement, and changes to bank pore water pressure (Wiel and Darby, 2007), with 70 

above ground biomass therefore directly influencing the mechanical and hydraulic properties of the substrate (Gurnell, 2014). 

The above ground biomass also has a direct influence on river flow and sediment transport when submerged (Gurnell, 2014), 

acting as a sediment trap and stabilising bars (Hortobágyi et al., 2018; Sharpe and James, 2006), although this is stage 

dependent and depends on plant volume and structure.  

 75 

The below ground biomass is of equal importance, with root networks decreasing the erodibility of beds and banks by 

increasing the critical shear stress required for erosion to take place (Millar and Quick, 1998; Wiel and Darby, 2007). The 

presence of grass compared to bare sediment can increase the stability of soil by a factor is 1.97 (Julian and Torres, 2006) and 

that comparisons between trees and grass can lead to similar increases in stability again (Millar and Quick, 1998; Huang and 

Nanson, 1998). Furthermore, the below ground portion of vegetation is highly influential in vegetation removal during peak 80 

flow events (Caponi et al., 2020; Bankhead et al., 2017; Francalanci et al., 2020), a critical phase in the feedback loops between 

vegetation, flow, and morphology. Yet the difficulties in obtaining below ground data is well noted when compared to above 

ground data, and continues to remain a challenge for remote sensing studies.  

1.2. Plant Functional Traits  

Functional traits originate from ecological research, and are morphological, physiological, and phenological attributes that can 85 

be measured at the individual plant level (Violle et al., 2007; Kattge et al., 2011; Savage et al., 2007). These can either be 

direct measurements of a function, such as photosynthesis, or a surrogate measure for that function, such as leaf area, but to 

be classed as functional in ecology these must either affect plant growth, reproduction, or survival (Violle et al., 2007; Quétier 

et al., 2007). These measured traits can either be an effect or response trait, whereby they either have an influence on or are 

influenced by their surrounding environment respectively (Violle et al., 2007; Kattge et al., 2020).  90 

 

One of the benefits of collecting traits-based data, is the ability to group plants that display similar functional traits into 

functional groups (Blondel, 2003). Herein we specifically use the term ‘functional group’ (sensu Blondel, 2003) because we 

explore how aggregated ecosystem processes ultimately affect geomorphological response. This approach provides a scalable 

framework for eco-geomorphic research, increasing the applicability of research at one site to another without the requirement 95 

to contain the same species, rather only the need for those species to have similar traits (Mcgill et al., 2006). Therefore, the 
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findings of a community response to factors such as land use change or climate change in one location can be applied to 

different locations with similar trait compositions (De Bello et al., 2006; Garnier et al., 2006). This is supported in findings by 

Tabacchi et al. (2019) into bio-geomorphological succession, whereby taxonomic approaches worked well but traits-based 

methods accounted for variation in local and regional conditions better, which is essential for scalability. 100 

 

Traits-based approaches are well suited for eco-geomorphic research due to the strong environmental gradients within fluvial 

systems (Naiman et al., 2005). Vegetation responds to hydrological variables, such as water availability and disturbance events 

(Hupp and Osterkamp, 1996) whilst also influencing flow, sediment transport, and morphological stability (Gurnell, 2014), 

meaning that the bi-directional nature of this relationship maps well onto a traits-based framework. O'Hare et al. (2016) have 105 

assessed the traits of nearly 500 species that influence river processes, revealing evidence of a broad link between plant form, 

distribution, and stream power within the UK (O'Hare et al., 2011). Moreover, traits-based approaches allow for a more 

comprehensive view on eco-geomorphic interactions than a purely taxonomic approach due to the environmental conditions 

having a larger influence on trait compositions than species compositions (Göthe et al., 2017; Corenblit et al., 2015).  

 110 

To date, most traits-based research has focussed on ecological responses to environmental conditions. For example, greater 

inundation likelihood has been shown to increase the presence of plants with longer and younger leaves (Stromberg and Merritt, 

2016; Mccoy-Sulentic et al., 2017) whilst also being less woody (Kyle and Leishman, 2009; Stromberg and Merritt, 2016). 

Conversely, plants in lower stress environments tend to be taller with longer life cycles (Kyle and Leishman, 2009; Stromberg 

and Merritt, 2016; Mccoy-Sulentic et al., 2017). Factors such as nutrient loading (Baattrup-Pedersen et al., 2016; Lukacs et 115 

al., 2019), light conditions (Baattrup-Pedersen et al., 2015), carbon availability (Lukacs et al., 2019), and anthropogenic 

interference (Baattrup-Pedersen et al., 2002; O’Briain et al., 2017) are all key controllers of trait composition. Furthermore, 

individual species have been shown to demonstrate differing traits depending on external stresses. Populus nigra trees were 

found to be smaller, have greater flexibility, and had a higher number of structural roots at a bar head when compared to a bar 

tail (Hortobágyi et al., 2017). Further work demonstrated that the trees located at the bar head were less effective at trapping 120 

sediment when compared to those at the bar tail (Hortobágyi et al., 2018). This highlights that in certain examples, the 

morphological response to a vegetation may be harder to identify from taxonomic approaches alone, with traits-based data 

helping to unpick the processes that are occurring. 

 

Research into effect traits and their geomorphic influence has received relatively less attention as traits concepts have only 125 

recently started to be explored in fluvial research. However, as noted by Corenblit et al. (2015), the interactions between plant 

traits and fluvial systems are linked, with hydraulic conditions affecting plant establishment and survival, and with plant traits 

affecting flow and subsequent morphology. Temporally, changes in the dominant traits can lead to changing morphology 

(Manners et al., 2015), whilst spatially the location of dominant traits has been shown to alter morphological response, with 

combinations of different functional groups adding to the complexity (Hortobágyi et al., 2018). However, functional groups 130 



5 

 

alone cannot explain all the variation in topographic response, with different groups, in different locations, under different 

hydraulic conditions, exhibiting different topographic responses (Butterfield et al., 2020).  

 

1.3. Hydraulically Relevant Traits 

Not all vegetation traits are equally relevant when considering direct relationships between vegetation, river flow, and 135 

morphology. Moreover, not all traits can be obtained from remote sensing techniques, a necessary requirement when upscaling 

to larger domains. Below we briefly summarise vegetation traits that are relevant to fluvial environments and which have the 

potential to be captured via remote sensing techniques, thereby allowing the upscaling of any developed methods of 

characterisation. These are based off Table 2 in Diehl et al. (2017a) which highlights the morphological effect of vegetation 

traits on geomorphic form.  140 

 

Both plant height and frontal area are key traits which influence momentum exchange in river flows. The height of a plant will 

alter the extent of interaction it has with flow at various stages, whilst the frontal area of the submerged plant structure will 

impact the drag exerted on the water column (Nepf and Vivoni, 2000; Järvelä, 2004; Wilson et al., 2006). Using 2D frontal 

area to describe the complex structure of plants is not without limitations, and the possibility of using 3D data has offered 145 

improvements in this regard (Whittaker et al., 2013; Vasilopoulos, 2017). The frontal area of a plant will vary under different 

hydraulic conditions, making flexibility an important trait when investigating morphological response. Not accounting for 

flexibility can limit the applicability of study results (Sand-Jensen, 2008; Whittaker et al., 2013), with differences in foliated 

and non-foliated vegetation deforming at different threshold velocities (Wilson et al., 2003; Järvelä, 2002a). Likewise, 

differences in woody and non-woody stems for plants of similar shape will influence their flexibility, with woody stems 150 

requiring a higher flow rate for deformation to occur (O'Hare et al., 2016; Sand-Jensen, 2003). However, the ability to obtain 

vegetation stem flexure directly from remote sensing is currently not possible, yet leaf area from remote sensing does show 

potential and taxonomic approaches may better identify the ‘woodiness’ of a species. Likewise, the vertical distribution of 

vegetation is important in determining the interaction between foliage and flow stage (Lightbody and Nepf, 2006; Jalonen et 

al., 2012), which can be obtained from remotely sensed data.  155 

 

At patch scales, the density and configuration of plants can impact the resultant drag effects. Although this is an extension of 

the individual plant-based methods within ecological research, including density and configuration allows for the impact of 

multiple plants on drag to be accounted for. The non-equivalence between the drag induced by individual plants and stems and 

those in bulk vegetation requires the inclusion of bulk factors into vegetation analysis (James et al., 2008). Higher densities of 160 

plants will lead to an increase in drag, with differences in the arrangement and density of patches causing variation in the 

resultant reduction in water velocities (Järvelä, 2002b; Kim and Stoesser, 2011; Sand-Jensen, 2008). The resultant changes in 

flow patterns through patches of higher density vegetation can subsequently increase scour around individual stems (Follett 
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and Nepf, 2012), highlighting the need to account for plant spacing when examining changes in morphology, which remote 

sensing is capable of achieving. At the reach scale, functional groups have an aggregated response in modulating scour or 165 

deposition, and resultant planform morphology. Vegetation dynamics have been described using traits-based frameworks 

previously in fluvial systems (Diehl et al., 2017a; Diehl et al., 2018; Butterfield et al., 2020), with a wealth of studies showing 

the wider impact that vegetation has on planform morphology and erosion in flumes (Van Dijk et al., 2013; Coulthard, 2005; 

Bertoldi et al., 2015), modelling studies (Oorschot et al., 2016; Crosato and Saleh, 2011), and field based research (Bywater-

Reyes et al., 2017; Diehl et al., 2017b).  170 

 

Whilst we have focused on hydraulically relevant traits that can be measured using remote sensing techniques, Diehl et al. 

(2017a), present others which cannot be easily obtained from the remote sensing techniques outlined below. Factors such as 

plant biomass, buoyancy, and root architecture are all outlined as having a role in affecting subsequent morphology (Sand-

Jensen, 2008; Abernethy and Rutherfurd, 2001; De Baets et al., 2007). This highlights the potential role of taxonomic 175 

approaches alongside the measurement of structural data to both capture the variability where possible and enhance this with 

wider datasets on traits that cannot be remotely sensed but are still relevant to morphology.  

 

1.4. Trait Data Collection 

Although many of these traits are inherently measurable in the field, many of them are not obtainable from current remote 180 

sensing methods. Direct trait extraction for riparian vegetation from airborne (i.e. large scale) remote sensing has not yet been 

utilised to enhance eco-geomorphic studies. Currently, the collection of trait data relies on ground-based field surveys and lab 

analysis, or species being identified in the field and traits inferred from lookup tables; such as the TRY database (Kattge et al., 

2020). Methods are often dependent on site access, species richness, and variation within the study area (Palmquist et al., 

2019), utilising methods such as quadrat surveying or transect sampling. This technique is effective for establishing traits but 185 

is limited by the spatial extent of ground coverage. Some variables inevitably require the use of databases to avoid substantial 

disturbance, such as the estimation of root characteristics (e.g. Stromberg and Merritt, 2016; Aguiar et al., 2018; Baattrup-

Pedersen et al., 2018). However, it is known that a single species can display different traits depending on their position relative 

to the channel (Hortobágyi et al., 2017; Hortobágyi et al., 2018). Therefore, knowledge of a plant location, which can be 

obtained from remote sensing data, alongside using plant traits databases is important for successfully utilising such traits-190 

based analysis in the fluvial domain. Although efforts have been made to utilise remote sensing methods to infer traits in other 

fields (e.g. Anderson et al., 2018; Valbuena et al., 2020; Zhao et al., 2022), these typically relate only to vegetation height and 

volume.   

 

In fluvial research, multispectral imagery can be used to determine species, which can then be used to identify dominant traits, 195 

via supervised and unsupervised classifications (Butterfield et al., 2020). Outside of fluvial research there is an increasing 
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awareness of the potential of remote sensing methods to help drive the scalability of functional traits as an analysis framework, 

especially in relation to physical traits such as plant height, leaf area index, phenology, and biomass (Abelleira Martínez et al., 

2016; Aguirre-Gutiérrez et al., 2021), yet considerable limitations remain due to the uncertainty in relating spectral and 

physical properties to functional traits (Houborg et al., 2015). Upscaling localised high resolution data is possible however, 200 

for example from TLS (Terrestrial Laser Scanning) to large scale ALS (Airborne Laser Scanning) data (Manners et al., 2013).  

 

Advances in UAV (Uncrewed Aerial Vehicle) remote sensing can offer a way of bridging the scales from ground surveys to 

larger extents. UAV data collection allows high resolution imagery and active remote sensing methods such as laser scanning 

to be conducted on large reaches relatively easily (Tomsett and Leyland, 2019), increasing coverage and providing a middle 205 

ground for relating local to large scale data. Multispectral cameras have already helped to improve the classification of 

vegetation from UAVs (Al-Ali et al., 2020), and active UAV-LS (UAV Laser Scanning) has been shown to be comparable in 

estimating tree structures to TLS methods (Brede et al., 2019). Such methods present an opportunity to not only classify 

vegetation by types and assign them to functional groups, but also to define these very groups based on characteristics acquired 

from remote sensing directly, before upscaling them to reach scale classifications. Moreover, a key advance in using UAV 210 

based methods for collecting vegetation data is the spatial resolution at which functional groups can be discretised and the 

temporal resolution which can be achieved by undertaking multiple repeat surveys. The potential to capture evolving 3D data 

through time (which we refer to as the 4th dimension herein) provides arguably the biggest advantage of using UAV based 

methods to collect data, avoiding the need to make assumptions about variability through phenological cycles by collecting 

this information directly.  215 

 

1.5. Aims  

The aim of this research is to use UAV derived and terrestrial 3D datasets to extract relevant plant traits which can be used to 

assess the spatial and temporal (i.e. 4D) variation and importance of eco-geomorphic interactions on a UK river system. This 

is achieved using the following specific objectives:  220 

1. Identify and select hydraulically relevant traits which can be extracted from high resolution remote sensing data.  

2. Establish the presence of functional groups (those with similar traits) for the river reach using exploratory analysis 

and machine learning.  

3. Establish links between the spatial variation in functional groups and morphological change across a two year period 

to identify eco-geomorphic feedbacks that may be present. 225 

4. Utilise the structural data to identify how roughness across functional groups may change seasonally across summer 

and winter conditions throughout the study area, how interactions between water and vegetation vary across different 

flow depths, and the impact these both have on erosion and deposition.  
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2. Study Site 230 

The study site is located on the upper course of the River Teme on the English-Welsh border in the UK (Figure 1A). The study 

area consists of two distinct reaches; an upstream section consisting of open grassland with patches of heterogeneous 

vegetation, and a downstream section which flows through denser vegetation and woodland. The River Teme is a highly 

mobile, gravel bed river within an alluvial floodplain which exhibits numerous avulsions, typical of many UK rivers. There is 

active lateral erosion of the channel, depositional gravel bar features, and woody debris dams across the study site (Figure 1B). 235 

The reach has typically low flows (Figure 1C), with an average depth of 0.69 m (+/- 0.15 m) throughout the year with slightly 

higher average flow depths in the winter months (November – February, 0.79 m +/- 0.15 m). 95% of river depth has been 

below 0.99 m and 99% of the flow depth has been below 1.48 m. The largest recorded river depth was 2.85 m on the 16th 

February 2020 during Strom Dennis.  

 240 

Figure 1 A) Study Site Location on the River Teme, UK. B) Plan view of the reach with inset images showing active bank erosion 

and a large debris dam caused by falling trees. The red dashed outline indicates the flood extent modelled in section 3.4. 

Orthoimagery collected February 2020 and background imagery provided by ESRI (2021). C) River gauge level at the Knighton 

monitoring station ~2 km downstream from study reach (data available from 2002 – present, operated by the UK Environment 

Agency).   245 
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3. Methods 

3.1. Field Collection of High Resolution 4D data 

A series of six high resolution UAV-LS (UAV Laser Scanning) and UAV-MS (UAV Multispectral) surveys were collected 

over the entire reach shown in Figure 1 from February 2020 until June 2021, capturing all seasonality. To complement these 

flights, a Terrestrial Laser Scanning (TLS) survey using a Leica P20 was undertaken of vegetated and bar sections to gain a 250 

benchmark ultra-high-resolution dataset for characterising small herbaceous vegetation, co-registered to an accuracy of +/- 

0.007 m with georeferenced scan targets. UAV-RGB (Red, Green, Blue) surveys were also undertaken during overbank flow 

from Storm Dennis in February 2020 to identify the flood extent, and September 2020 for classification validation. Table 1 

summarises the survey dates, extents, data collection methods, and point density for UAV-LS and GSD (Ground Sampling 

Distance) for UAV-MS. A detailed outline of the UAV based sensor set up, processing routine and accuracy assessment can 255 

be found in Tomsett and Leyland (2021). All data was processed in the WGS UTM Zone 30N coordinate system. 

 

Table 1 Data collection methods, extent and point density for each survey date. TLS point density is based on the resultant point 

cloud after registration. UAV-LS point density is determined after cleaning of the raw clouds has taken place. Ground Sampling 

Distance (GSD) is the resolution of the resultant orthomosaics.  260 

Date Survey Sensor Point Density/GSD 

06/02/2020 (Winter) Whole Reach 
UAV-LS 778 m-2 

UAV-MS 0.04 m GSD 

18/02/2020 (Winter) Whole Reach UAV-RGB 0.02 m GSD 

16/07/2020 (Summer) Subsection 

UAV-LS 810 m-2 

UAV-MS 0.04 m GSD 

TLS 16,000 m-2 

14/09/2020 (Autumn) Whole Reach 

UAV-LS 762 m-2 

UAV-MS 0.04 m GSD 

UAV-RGB 0.02 m GSD 

14/04/2021 (Spring) Whole Reach 
UAV-LS 791 m-2 

UAV-MS 0.04 m GSD 

03/06/2021 (Summer) Whole Reach 
UAV-LS 804 m-2 

UAV-MS 0.04 m GSD 
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3.2. Vegetation Functional Trait Extraction 

The workflow developed to extract plant functional traits consisted of five steps: (1) Separation of individual plant point clouds 

from the UAV-LS and TLS data, (2) Analysis of these individual clouds to extract metrics related to their traits, (3) Separation 265 

of plants into functional groups adapted from Diehl et al. (2017a), based on similar traits, (4) Identification of functional group 

properties from UAV-LS and UAV-MS datasets for reach scale classification inputs, and (5) Use of an object-based random 

forest classifier to determine the spatial discretisation of these functional groups. These steps are outlined in the following 

sections. 

3.2.1. Point Cloud Segmentation 270 

A number of automatic methods exist to classify very dense point cloud scenes into different groups (e.g. Brodu and Lague, 

2012; Zhong et al., 2016). However, the majority of these are designed for very high-resolution TLS datasets and so here a 

semi-automated approach was employed. Smaller vegetation, whose structural composition cannot be fully resolved from 

UAV-LS data, were analysed from the summer TLS survey. Automatic classification of ground/non-ground points was 

performed using the progressive morphological filter in the LidR package (Roussel et al., 2020) before manually segmenting 275 

in CloudCompare (https://www.danielgm.net/cc/) to create individual plant models (Figure 2, Raw Point Cloud).  

 

For the herbaceous plants in the TLS data, leaves and flowering parts were manually removed from the clouds so as not to 

influence with the quantitative structural modelling (QSM; see 3.2.2). This was done based on field images and the structural 

appearance of the clouds to leave just the structural components. Although foliage has been shown to be important, for the 280 

methods used herein it could not be fully resolved due to insufficient point densities. Any statistical outliers were then detected 

and removed from the dataset, identifying points >2.5 standard deviations above the mean separation distance between points 

within the segmented cloud. This process was repeated for plants in both TLS scan locations, resulting in a sample dataset 

consisting of 37 herbaceous plants. Plants were selected in the main TLS point cloud that represented complete vertical profiles 

to minimise the effect of shadowing from different scan angles. 285 

 

Tree segmentation also used a combination of manual and automatic classification, based on surveys undertaken in leaf-off 

conditions, exposing the full tree structure. 24 trees were selected from across the reach representing a range of structures and 

sizes from which complete models could be created. Initial separation of ground and vegetation points was performed using a 

progressive morphological filter. Trees were then manually extracted prior to interactive filtering using a number of statistical 290 

measures; local volume density helped to separate points distinct from the main tree woody structure, whilst linearity metric 

filters (how aligned points are within a set radius) removes points that are highly complex or not part of the main tree structure. 

The statistical outlier removal tool and a final manual check can then be used to remove any remaining points which are not 

part of the main tree structure. This resulted in a point cloud of predominantly large branches, with a clearer structural profile 

https://www.danielgm.net/cc/
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as can be seen in Figure 2 (Filtered Point Cloud). The thresholds for separating individual trees are size, structure, and point 295 

density dependent, hence the need for interactive selection. Although this adds an element of user bias as to what is deemed a 

‘main’ branch, the lower density of UAV-LS scans makes user input necessary before reconstructing vegetation models (Brede 

et al., 2019). Shrubs and grasses whose structure could not be fully resolved from the UAV-LS or TLS data were not analysed 

for traits extraction. Grasses are typically too short to remotely sense with high degrees of confidence, and the complex and 

extensive nature of the branching network of shrubs would require several TLS scans per plant, with numerous plants needing 300 

to be surveyed to get a reliable trait description.  As a result, point clouds for shrub classes were only used for classification 

training, frontal area, and density calculations. 

3.2.2. Trait Metric Extraction  

The hydraulically relevant traits collected were based on those noted within Diehl et al. (2017a) that could be measured using 

the remote sensing methods within this study. These were; plant height, number of branches, maximum branching order, stem 305 

diameter, plant volume, frontal area, and plant density. For the reconstruction of vegetation stems into cylindrical models, the 

open source TreeQSM method (Raumonen et al., 2013) was applied to the partitioned UAV-LS and TLS derived vegetation 

data. TreeQSM utilises ‘patches’ to determine connected points in the vegetation cloud, before growing the tree structure by 

joining patches together to form a complete model (Raumonen et al., 2013). These are created using user defined initial patch 

sizes to adjoin points, before refining the patch sizes using minimum and maximum limits to create a complete model. This 310 

allows the coarse branch structure of the tree to be identified (Figure 2, Segmented Point Cloud). Sections are then generalised 

as cylinders, both for computational efficiency and because they provide a robust representation of trees (Raumonen et al., 

2013). The cylinders are then used to describe the overall structure and properties of the individual plant (Figure 2, QSM 

Cylinder Model). A full method description can be found in Raumonen et al. (2013). QSM methods have been noted to 

overstate the volume of smaller branches and are sensitive to noise in the data alongside variable point density (Fang and 315 

Strimbu, 2019; Hackenberg et al., 2015). However, QSM reconstructs tree structures in a manner which resolve many of the 

hydraulically relevant vegetation traits. 
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Figure 2 Vegetation trait extraction, from an individual raw point cloud to a cylindrical model and frontal area. The process is 

demonstrated for two extracted vegetation point clouds, a large tree within the study reach collected from UAV-LS data, and a 320 
perennial on the central bar collected from TLS, note the difference in scales. The segmented point cloud is coloured by branching 

order from blue to green to red, with the cylinders coloured in the same manner. The 2D frontal areas are based on the filtered point 

clouds rather than the segmented point clouds or QSM cylinder models, and as such these steps are not required to compute the 

frontal area data.  

 325 

Patch diameters (which are used to determine adjacent points within the same tree) were chosen following a parameter 

sensitivity exercise, with the range of values initially based around those of Raumonen et al. (2013) and Brede et al. (2019) for 

TLS and UAV-LS approaches respectively. A visual assessment was performed to identify parameters that created models 

similar to the observed  vegetation structure in the point cloud, due to the lack of reference data. After testing for the optimum 

patch sizes for reconstruction, the TLS scans of herbaceous vegetation initial patch diameter was set at a size of 0.005 m, with 330 

the second patch diameter minimum and maximum sizes of 0.002 and 0.01 m. The minimum cylinder radius was set to 0.005 

m, prescribing the smallest detectable branch structure of the extracted herbaceous plants. For the UAV-LS derived tree data, 

the initial patch diameter was 0.2 m, with the second patch dimeter minimum and maximum sizes of 0.1 and 0.5 m. The 

minimum cylinder radius was 0.1 m, based on manual measurements of tree branches within the point cloud that were 

detectable. For each individual plant model the cylinder reconstruction and variable extraction was repeated ten times. As the 335 

modelling begins at a random location each time the start point can affect the results, and so multiple averaged simulations 



13 

 

provide a more representative solution. The modelling produces a number of metrics, but for this study hydraulically relevant 

traits of plant height, number of branches, stem diameter, volume, and maximum branching order, were collected. For each 

metric of interest, the average value and standard deviation of these values are taken from the ten runs.  

 340 

The frontal areas of all segregated vegetation clouds were extracted alongside the construction of the cylinder models, based 

on the 2D methods described by Vasilopoulos (2017). For each discretised filtered plant point cloud (Figure 2, Filtered Point 

Cloud), the data was flattened from 3D to 2D by collapsing the data along a single horizontal dimension on a regular grid 

(Figure 2, 2D Frontal Area). The grid resolution was set at half the width of the minimal detectable feature resolved by the 

QSM modelling; 0.0025 m for the TLS derived herbaceous plants and UAV-LS 0.05 m for UAV-LS derived trees. Each plant 345 

was flattened along the X and Y axis respectively, with an average frontal area taken.  

3.3.3 Identification of Functional Groups 

For the separated individual plant point clouds, each were assigned to a functional group adapted from those outlined in O'Hare 

et al. (2016) and Diehl et al. (2017a). These groups were grasses, short branching herbs, tall single stemmed herbs, shrubs and 

bushes, low DBH trees, and high DBH trees. As discussed previously, shrubs and grasses were not identified using trait 350 

extraction. Short branching herbs and taller single stemmed herbs were separated due to the likely discrepancies in flexibility, 

branching architecture, and height, all of which interact differently with flow. Large woody vegetation was split into two 

functional groups, those with high diameter at breast height (DBH) that had low density of trunks, and those with lower DBH 

that had a higher trunk density, to account for the different interactions with overbank flow. 

 355 

To assess whether remotely sensed data could separate out plants into their functional groups in a statistically robust way, a 

Principal Components Analysis (PCA) was undertaken to identify the variables which explained the most variation within the 

derived trait metrics. The metrics used for the PCA were those obtained from the QSM and frontal area calculations outlined 

previously, which were normalised to remove the influence of different scales (Alaibakhsh et al., 2017). The principal 

components identified were used to inform the classification of reach scale functional groups, identifying those variables that 360 

most explained the variation between groups. The PCA was performed separately on the two herb groups and the two woody 

groups, as although height would be an obvious dominant variable between these two groups, it would not necessarily be one 

within the groups. All of the herbaceous point clouds from the TLS survey were used in the herbs group PCA, and all the high 

and low DBH trees from the UAV-LS data were included in the woody group PCA.  

3.2.4. Traits and Land Cover Metrics at the Reach Scale  365 

To scale the analysis from individual plants to the entire reach level, a method of linking plant scale traits to broader scale data 

is required. Convex hulls representing the spatial extent for each vegetation point cloud extracted and analysed above were 

used to define the regions from which UAV-LS and UAV-MS data were extracted. For small herbaceous vegetation, this was 
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buffered by 0.25 m to account for any misalignment between TLS and UAV-LS clouds. For tree vegetation polygons this 

buffer was increased to 1 m to incorporate peripheral branches and leaves removed during point cloud filtering. 11 polygons 370 

for shrubs and bushes were created based on field notes from various surveys and photographs from the summer surveys, their 

outlines in the UAV-LS point clouds, and UAV-MS imagery. Similarly, 11 polygons were defined for grasses. In addition to 

these vegetation functional groups, 8 polygons for water classes, and 5 for a combined gravel bars and bare earth class were 

also created using the same technique to classify the remaining land cover. Within these polygons, multiple seasonal variables 

were extracted for scaling local functional group identification to reach scale classification. The structural characteristics of 375 

the point cloud were extracted through TopCAT (Brasington et al., 2012), obtaining the standard deviation, skewness, and 

kurtosis over a sampled grid at 1 and 4 m resolutions, the latter to account for larger vegetation footprints. The 4 m resolution 

grid only considered points classified as vegetation in the initial ‘ground/other’ point clouds to remove ground points from 

further analysis. To extract a Canopy Height Model (CHM), a bare earth digital terrain model (1 m resolution) was subtracted 

from a 0.25 m resolution digital surface model incorporating the vegetation points. The Normalised Difference Vegetation 380 

Index (NDVI) across the reach was calculated using the red band along with both the red-edge and near infrared bands of the 

MicaSense orthomosaic images to produce two separate NDVI layers. As the red-edge can be used to separate out vegetation 

signatures, using a combination of both was expected to help differentiate plants with similar structural but different spectral 

properties (Schuster et al., 2012). Analysis of structural and spectral data was performed for each of the surveys to gain an 

insight in to how these properties vary temporally.  For each of the vegetation polygons, the attributes of each of these layers 385 

for each season were extracted using zonal statistics. The mean and standard deviation for each attribute for each survey were 

then calculated across the different functional groups for use in the classification model. 

3.2.5. Reach Scale Functional Group and Land Cover Classification 

To scale from groups created from individual UAV-LS and TLS derived plants, to the entire reach, an object-based random 

forest classification was undertaken. Object-based approaches overcome some of the issues of variation and complexity in 390 

high resolution images (Myint et al., 2011), improving continuity in the results (Duro et al., 2012; Wang et al., 2018).  The 

RGB bands from the multispectral camera and the CHM were combined to create a 4-layer image from which to identify 

distinct objects in summer imagery for 2020 and 2021. The Felzenszwalb Algorithm was applied which uses graph based 

image analysis to segment an image into its component parts based on the pixel properties (Felzenszwalb and Huttenlocher, 

2004). This results in regions within the image being grouped base on them having similar properties according to the input 395 

layers, avoiding the salt and pepper effect found in traditional pixel by pixel classification approaches (Wang et al., 2018). 

 

Table 2 Description of functional groups and land cover classes used for training the random forest classifier, showing the number 

of training objects from the image segmentation for 2020 imagery, and the training area size. 
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 400 

In total, 644 training objects were identified for the 2020 summer imagery, with the previously discretised vegetation convex 

hulls having multiple training objects present within each sample (Table 2). A random forest classifier was then trained using 

this 2020 data, having proved an effective machine learning technique (Adelabu and Dube, 2015; Chan and Paelinckx, 2008; 

Adam and Mutanga, 2009). The layers that were deemed to distinguish between the different vegetation functional groups, 

gravel bars, and water in 3.2.4 being used as the input, and a water mask included to reduce errors associated with varying 405 

flow stage. As the distinguishing features of each functional group required the inclusion of both summer and winter data, an 

annual classification as opposed to a seasonal one, is undertaken. This helps to improve confidence in the classification where 

variation in reach scale metrics happen both between groups and between seasons. An analysis of model accuracy vs number 

of forests showed a convergence of accuracy above 100 forests and a reduction in band importance variability above 300 

forests (Figure 3). Higher variation in band importance suggested that the number of trees was influencing the likelihood of 410 

an optimal solution. This random forest classification was then applied to the remaining objects within the reach for 2020, and 

also for all objects detected in the 2021 data.  

Functional group/Land cover No. of Training Objects Training Area Size (m2) 

Grasses 93 321 

Branching Herbs 15 25 

Single Stemmed Herbs 16 29 

Branching Shrubs 135 388 

Low DBH Trees 158 876 

High DBH Trees 62 238 

Gravel Bars and Bare Earth 122 641 

Water 41 157 
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Figure 3. Random forest classifier out of bag accuracy and variations in band importance for functional group classification. A) Out 

of bag accuracy scores for different numbers of trees used within the random forest classification, showing a distinct levelling off in 415 
accuracy after ~100 trees are used. B) The standard deviation in individual band importance across 10 sample runs to identify at 

what number of trees band importance becomes consistent across all runs, in this instance around 300 trees.  

 

Due to the limited number of extracted samples from the point clouds, there were not enough to split into a training and test 

dataset. The multi-tree approach of random forests is constructed on a sample of the dataset and as such can be tested against 420 

itself to determine an out of bag accuracy score. It also successively adds and removes bands to determine the band importance 

in the classification (Adelabu and Dube, 2015). Alongside this self-assessment, for the final functional group classes a total of 

80 random points were generated across the study site with an equal number in each outputted group. These were manually 

classified using high resolution ortho-imagery from a UAV-RGB (0.02 m resolution) survey from September 2020, in field 

photographs, and study site knowledge. The output classification could not be seen when undertaking this accuracy assessment 425 

and the order of the control points shuffled to remove user bias. The classified functional groups map for 2020 was then used 

to extract the predicted functional groups of these points before a confusion matrix was utilised to assess the accuracy of the 

classification. 

3.3. Morphological Change 

The M3C2 algorithm (Lague et al., 2013) was employed to calculate morphological change, whereby the surface normals from 430 

a subsampled cloud of core points (here at 0.1 m resolution) are calculated, and change along the normal direction is identified 
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with the calculation of a local confidence interval. This overcomes some of the limitations of traditional elevation model 

differencing which cannot account for the direction of change, a problem that is pronounced for example on the vertical faces 

of river banks (Leyland et al., 2017). The benefits of using both SfM and UAV-LS data allows their respective drawbacks to 

be overcome through combining both datasets. SfM has been shown to perform poorly in vegetated reaches where UAV-LS 435 

maintains good ground point densities, yet SfM provides good continuity and high point densities in unobstructed areas. 

Therefore, in order to obtain good surface normals for assessing change, both the UAV-LS and UAV-SfM  clouds were merged 

for each survey date (see Tomsett and Leyland (2021) for error analysis) and their vegetation removed through the use of the 

same progressive morphological filter used previously. These resultant clouds were then differenced from their preceding 

survey date using the M3C2 algorithm.  440 

 

3.4. Assessing Time Varying Eco-Geomorphic Interactions and Functional Group Hydraulic Roughness 

To identify the presence of possible eco-geomorphic feedbacks and establish whether there were differences in directions or 

magnitudes of morphological change between the different functional groups, the classified functional group maps were 

compared to the morphological change detection datasets. Each pixel of the vegetation maps had the corresponding 445 

morphological change values extracted, with the vegetation maps for year one being used for both the February- July 2021 

and July – September 2021 morphological change values, and the vegetation maps for year two being used for the September 

2021 – April 2022 and April – June 2022 morphological change values. The distribution of these datasets as well as the grouped 

total net change was then compared between each time interval to reveal the annual patterns of erosion and corresponding 

functional groups.  450 

 

To assess the potential seasonal influence of different functional groups on the conveyance of water through the reach a 

different approach was required because each of the full classification maps produced necessarily utilised data from both 

summer (leaf-on) and winter (leaf-off) conditions. To assess the changing nature of the functional groups through time, the 

point clouds used for extracting traits from the herbaceous and tree groups, along with ten individual shrub point clouds, were 455 

used to estimate the depth varying excess drag created for summer and winter vegetation states. The depth of flow used in the 

calculations was determined based off a large flood event that occurred in the winter of 2020/21 (see Figure 1), representing a 

maximum hypothetical flow depth from which to assess the interaction between vegetation and flow. The flood extent, flow 

velocities, and depth used to calculate drag was modelled using Delft3D (Deltares, 2021), set up using measured DEMs and  

SfM corrected bathymetry along with flow conditions constrained by the gauge data measured downstream of the reach. 460 

 

For each of the functional groups derived, the frontal areas at depths of up to 0.1, 0.5, 1, 2, and 4 m were extracted, with these 

elevation bands representing natural breaks in different vegetation vertical structures. Each of these depth dependent frontal 

areas were then used to determine the excess drag component (F) of a single plant according to, 
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 465 

𝐹 =  
1

2
 𝐶𝐷 𝐴0 𝜌 𝑈2    [1] 

 

where CD is the coefficient of drag, A0 is the frontal area of the plant facing the flow, ρ is the fluid density, and U is the velocity 

of the fluid, estimated using Delft3D. The excess drag for an individual plant was then transformed into an excess drag per 

metre squared, being multiplied by the plant density. Plant density was calculated for each functional group by creating a raster 470 

surface from extracted TLS and UAV-LS data of each relevant group (0.05 m resolution for herbaceous and 0.2 m for shrubs), 

using a local maximum filter to identify the top of individual plants, similar to the procedures used to delineate individual trees 

in dense canopies (Douss and Farah, 2022; Chen et al., 2020). The number of individual plants was calculated, and divided by 

the total patch area, to provide plant density. For trees, where the trunks could be reconstructed, the point cloud was inverted 

before running the local maximum model to identify the locations of tree trunks. A 0.2 m resolution raster surface was used 475 

for this and the number of trunks was counted to provide both sets of tree density data.  

 

Drag coefficients were estimated using a combination of plant morphology and values from the wider literature. They were 

also adjusted seasonally, ranging from 0.55 to 1 (see supplementary material), with foliated plants being subject to a greater 

reconfiguration process during high flows (Sand-Jensen, 2008; Whittaker et al., 2013). The original frontal areas of each plant 480 

were also extracted from defoliated plants, and as such a comparison in the literature of foliated to non-foliated frontal area 

was used to adjust the frontal areas accordingly at each depth interval (Wilson et al., 2003; Järvelä, 2002a). As a result, four 

spatial distributions of hypothetical excess drag were calculated across the domain for the summer and winters of 2020 and 

2021 (assuming the large flood inundation extent and flow) which could then be used to inform discussions of how the presence 

of different functional groups link to location on the floodplain and potential eco-geomorphic feedbacks. 485 

4. Results 

4.2. Hydraulically Relevant Trait Analysis 

4.2.1. Extraction and Analysis of Traits 

The QSM analysis appears to output visually sensible results and produce models appropriate for the vegetation being modelled 

(see Figure 2). The repeat modelling of the individual plants produced consistent trait results. The heights of herbaceous groups 490 

were consistent to within 4%, whilst tree groups were consistent to just over 1%. Repeat diameter calculations were within 

16% (0.08 m) for tree groups and within 18% (0.002 m) for herbaceous groups, with higher discrepancies in the number of 

branches. For trees, the number of branches for each model repeat were within 9% of each other, equivalent to 12 branches, 

whereas for herbaceous functional groups this was 17%, which equates to under 1 branch. The complexity of the larger tree 

models makes this variation quite likely, especially when the resolution of branches approaches the resolution of the scan data, 495 
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whereas for herbaceous groups the higher variation is a result of the low number of total branches, so an additional branch 

being identified has a larger impact on the results. Overall, model repeats of individual plants appear to have good agreement 

with one another, and provide a basis for separating out vegetation with similar functional traits. 

 

As no manual ecological field measurements were taken of plant structure, values extracted from the survey data were 500 

compared to those found in the wider literature and online databases. Within the tree functional groups, those with a low DBH 

had an average height of 18.2 m +/- 3.3 m, and a DBH of 0.39 m +/- 0.08 m. Field identification from photos taken on site 

identified a large number of these trees to be of the Poplar variety. Comparison with both the TRY databases (Kattge et al., 

2020) and observations in the literature comparing height and DBH for these species (e.g. Burgess et al., 2019; Engindeniz 

and Olgun, 2003; Zhang et al., 2020) showed good agreement. The range of heights within the TRY database incorporated 505 

those measured from the trait extraction methods and aligned well with the comparison of tree heights and DBH identified by 

both Burgess et al. (2019) and Engindeniz and Olgun (2003),with the latter studying Poplars from Turkey as opposed to the 

UK. Trees with a higher DBH were predominantly identified as a mix of Willow and Alder, with average heights of 14.9 m 

+/- 3.2 m with DBH values of 0.69 m +/- 0.11 m. This aligned well with the overall height ranges observed in the TRY database 

for Alder trees, and the only record with both height and DBH values for Alder showing a tree of 30 m having a DBH of 0.9 510 

m. Southall et al. (2003) found diameters of up to 0.45 m for plants 8-9 m in height, with the trees in this study being both 

taller and larger in diameter suggesting a difference in maturity. Conversely, both Colbert et al. (2002) and Jurekova et al. 

(2008) both found DBH values within the observed range of diameters in this study for trees of similar height. This suggests 

that although the original QSM methods were tested on Fir, Spruce, Beech, and Oak trees, the methods are suitable for use on 

a wider variety of trees and produce results in line with those expected for the species being observed.  515 

 

Field observations of the single stemmed herbaceous group identified a dominance of Marsh Thistle, with average heights of 

1.14 m +/- 0.17 m and an average stem diameter of 0.013 m +/- 0.002 m. Height values align well with those found in the TRY 

database, with the majority of recorded heights between 0.8 – 2 m (Kattge et al., 2020). Van Leeuwen (1983) measured stem 

circumferences of between 0.026-0.070 m, equating to diameters of between 0.008 and 0.022 m, yet very little other literature 520 

or values on stem circumference or diameter are available. Nevertheless, both the observations of Marsh Thistle height and 

stem diameters suggests that the modelling has effectively reconstructed the vegetation. Likewise, comparison between the 

average height values of the branching herbaceous group, predominantly identified as Hedge Mustard, and those values in the 

TRY database indicate good agreement, with reconstructed values from the field having heights of 0.46 m +/- 0.12 m and 

values in the TRY database averaging 0.49 m, albeit with a much higher variation of +/- 0.25 m. As with the single stemmed 525 

herbaceous group, there is very little data to compare obtained values of stem diameter with. It would be expected that the 

branching herbs would have a lower diameter based on field images, and this is the case with an average of 0.011 m +/- 0.003 

m. However, this is approaching the likely limit of detection of the TLS scans, whereby the stem diameter approaches the 

resolution of the scan data. Yet for both of the herbaceous functional groups, the methods deployed appear to have consistently 
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modelled individual plants, and produced values in line with those in the wider literature. For both the herbaceous and tree 530 

groups, the extracted traits can be reliably used to examine which traits distinguish between different functional groups.   

 

Figure 4 shows the PCA plots of herbaceous vegetation metrics from the TLS scans and woody vegetation metrics from the 

UAV-LS scans. It is clear that some separation of points through dominant metrics is possible, with both plots exhibiting two 

principal components capable of separating the defined functional groups. Figure 4A shows the PCA plot for herbaceous 535 

vegetation. Height is identified as a clear component between each functional group, as well as volume. Although the number 

of branches was not a key component for separating functional groups, branches per unit height explained some of the 

variability in the data. Taller plants may have a similar number of branches, and so accounting for plant height produces a 

density of branches independent of size to help explain plant structure. Of the four identified components, only height is 

identifiable from the UAV-LS data for upscaling, however, point density and spectral properties may improve group 540 

separation. Figure 4B shows the PCA plot for woody vegetation. Height is less important in distinguishing the two functional 

groups than for herbaceous vegetation, yet trees under or over certain heights are likely to be one group or the other suggesting 

minimum and maximum threshold values. For separating functional groups, the most important components appear to be DBH 

and vertical skew which was expected as this was the basis for initial functional group classes. DBH cannot always be easily 

extracted from UAV-LS data if it is incomplete, therefore as the vertical distribution acts in the same component direction, 545 

this can be used as a potential method for differentiating functional groups. There is however considerable overlap in both of 

these PCA plots for woody and herbaceous vegetation. There are dominant trends such as the DBH and plant height for 

separation, but there is considerable variation within the functional groups for their QSM based metrics which may impact the 

final classification.  

 550 
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Figure 4 PCA analysis of (A) herbaceous and (B) tree functional groups to investigate differences in trait characteristics. Lines 

indicate direction of each variable that explains variation in the data. 

4.2.2. Linking PCA Clusters to Reach Scale UAV-LS Data 

Figure 5 shows the results of the seasonal analysis of different variables derived from UAV-LS and UAV-MS imagery for 555 

each of the functional group classes. There are clear variables which can separate different functional groups with ease, for 

example the height of the canopy is a key indicator between woody, herbaceous, shrub, and grass functional groups. Separating 

out similar functional groups does appear to be more nuanced. The High DBH and Low DBH woody functional groups both 

have very similar values and seasonal patterns of changes in NDVI values as well as in their height. This is unsurprising as the 

PCA analysis showed height not being a dominant factor in explaining variation, with numerous samples showing crossover. 560 

Vertical skew did show group separation, with the samples used for QSM analysis collected in leaf-off conditions. Figure 5 

suggests that changes in winter skew are visible between the two tree functional groups, with a smaller amount of crossover 

as expected. Spring, summer, and autumn skewness is less informative, likely due to leaf-on conditions affecting full tree 

reconstruction, with higher variability in results between the sample areas.  

 565 

Separating out herbaceous functional groups is also a challenge. CHM values for single stemmed herbs are more variable and 

cross over into grasses and multi-branching herbs. However, the mean CHM values are higher, in line with the PCA analysis, 

and may enable herbaceous group separation. Likewise, the average skew values help to differentiate between classes, but 

again the variability in the data suggests it is harder to separate by structural content alone. Conversely, spectral data shows 



22 

 

great promise in differentiating between functional groups. Both the absolute values between herbaceous functional groups 570 

show different as well as their seasonal patterns especially when utilising the red edge band for NDVI calculations.  

 

 

Figure 5 Results of seasonal analysis (X-axis within subplots) of different reach scale metrics (Y-axis) from UAV-LS and UAV-MS 

data for each identified plant functional group. The point clouds at the top provide an example of vegetation in each functional 575 
group, with canopy height ranges acquired from trait extraction for the four analysed functional groups and from the reach scale 

analysis for the remaining grass and shrub functional groups. Error bars indicate one standard deviation around the mean, CHM 

(Canopy Height Model) is given in metres, IR refers to Infra-Red and RE to Red-Edge bands in the NDVI calculations.    
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4.2.3. Creation of Seasonal Reach Scale Functional Group Maps 

The annualised reach scale classifications based on functional groups and land cover is shown in Figure 6. There appears to 580 

be an over classification of shrubs based on initial comparisons with ortho-imagery, where the edges of larger vegetation and 

some predominantly grass regions appear to have been misclassified. This may be due to the large variation in structural and 

spectral characteristics of this group which were less well accounted for. Herbaceous groups were predicted in areas that were 

to be expected; including mobile areas of the channel were larger vegetation would find it more challenging to establish. The 

out of bag accuracy score when training the random forest classifier with 300 trees was 87.2%. Figure 7A shows the importance 585 

of each band in the classifier, with structural elements proving key in separating functional groups, especially using summer 

standard deviation 

 

 

Figure 6 Resulting classification from reach scale analysis for the areas covered by both UAV-LS and UAV-MS data for year 1 and 590 
year 2 of the surveys. Note the over classification of shrubs and bushes, especially at the edge of larger wooded groups, and the 

changes in channel planform and functional groups through the central section of the reach. 

 

of point heights. The near infra-red band and winter standard deviation are the next most important elements, with the 

remaining individual spectral bands providing a smaller contribution to the classification. The higher importance of the two 595 
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NDVI layers implies that providing the classifier with analysed image data is more useful than individual bands alone. 

Likewise, the canopy models alone are less informative than the variation in plant height when detecting functional groups, 

supporting the use of manipulated rather than simple metrics to help improve classification. 

 

The confusion matrix can be seen in Figure 7B comparing the number of check points that are correctly and incorrectly 600 

predicted. The overall model accuracy is 80%, lower than the out-of-bag prediction. However, this is not surprising as training 

areas were delineated based on complete structural profiles for the QSM analysis and the total number of samples used for 

training was small relative to the possible variation across the reach. There was a general over classification of points within 

the grass functional group, with only one grass control point incorrectly classed as branching herbs. Branching herbs which 

are more detectable from imagery and likely to return more laser scan points were classified reasonably well, only being 605 

misclassified as grass.   

 

 

Figure 7 Individual band importance in the final classification (A) and confusion matrix (B) from the accuracy assessment. The band 

importance represents the contribution of an individual layer to the final classification. The confusion matrix demonstrates for which 610 
functional groups the classification struggled, showing an over-classification of grasses and the poor detection of single stem herbs. 

The overall classification accuracy was 80%. 

Single branching herbs were relatively poorly classified (50% accuracy), being misclassified as grass, branching herbs, and 

even water. However, their narrow structure and sparse spacing make them hard to identify from coarser imagery, as they 

return fewer laser scan points. This class also exhibited the greatest variation in values when using reach scale metrics to 615 

evaluate functional group samples. Shrubs were predominantly misclassified as branching herbs and grass; this may be due to 

the object segmentation not always isolating complete plants or including surrounding ground points which may have affected 
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the classification. Low DBH trees with a top skew were classified well by the model, most likely due to their larger heights 

and winter skew, whereas higher DBH trees were misclassified as both low DBH trees and grass. The former likely due to the 

difficulty in separating out these two functional groups which have subtle differences in certain classification layers such as 620 

winter skew, and the latter from surrounding data being included in an object likely from shadowing continuing an object 

outside its true bounds. However, of all 20 tree check points, only one was incorrectly classified as a functional group with 

clearly different traits, a High DBH Tree as Grass (see Figure 7B). 

4.3. Morphological Change 

As expected, the majority of morphological change occurs over winter months when there are high flows (Figure 8). 625 

Conversely, over periods of lower flow during the summer both the extent and magnitude of change is reduced. Throughout 

the first winter period erosion occurs on the outer bank edges with fairly consistent planform evolution throughout the reach. 

Deposition is evident throughout the entire reach, however erosion is considerably more dominant than deposition, with just 

under 3000 m3
 of net erosion. The second winter appears to have more localised effects on morphology, with clear channel 

reshaping through the upper half of the study area. Overall, despite having similar levels of deposition across both winters 630 

(~2000 m3), the increase in erosion for the second year possibly due to an increased level of time at higher flows has led to a 

greater increase in net erosion (~5000 m3). Both histograms of change within the winter seasons show a dominance in erosion 

overall. Over both winters, morphological change in the tree dominated downstream reach has undergone similar levels of 

change with areas of erosion and deposition influenced by the presence of large vegetation. Both summer periods have a greater 

degree of stability, with erosion and deposition taking place but in lower magnitudes. This is consistent throughout the reach 635 

with no hotspot areas of either deposition or erosion, with deposition showing to be more dominant overall. 
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Figure 8. Morphological change throughout the monitoring period, showing the spatial variation in erosion and deposition as well 640 
as the net change in sediment. Note that February 20 – July 2020 is a composite DEM of difference consisting of comparisons between 

February and July to the left of the dashed line and February to September to the right of it. In July, only half of the survey area 

was captured. The stability of the reach over summer (July to September) justifies attributing change to the February – July result. 

Change less than 0.1 m in elevation was not shown as this was deemed below the level of detection of the sensor (see Tomsett and 

Leyland (2021) for accuracy assessment details). The histograms adjacent to each time period show the distribution of magnitude of 645 
change, the volume of erosion and deposition over that time period, and states the net volume change across the corresponding time 

periods.   

4.4. Eco-Geomorphic Interactions 

A key benefit of being able to identify the location of different functionl groups, is the ability to decompose the overall 

distribution of morphological change into each functional group for each time period (Figure 9). When assessing the 650 

distirbutions of erosion and deposition between groups across the four time periods, each functional group follows the overall 

pattern presented in the general morphological analysis, whereby there is a clear dominance of erosion over deposition signals 

in winter, and a balanced or deposition dominant signal in the summer periods. Unsurprisingly, there is a domanance in both 

winters of erosion in locations that are classed as water due to multiple areas experiencing movements of channel location in 

this time. In this case the presence of planform change was the prominent form of morphological change, accounting for a 655 
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large proportion of the net volume shift, with only grass and high DBH trees seeing large volumes of net erosion at over 100 

m3. In fact, when compared to the changes in the summer, most of the functional groups saw similar magnitudes of change 

across the two time periods. Compared to winter 2021 however, the net change in volume for areas classified as water was 

similar, with the remainder of change happening throughout the remaining functional groups and on exposed bars. During this 

time, there was net deposition on channel bars, however there are large quantities of both erosion and depositon in this group, 660 

in line with the highly active nature of such features. Whilst across all functional groups there is an increase in the net erosion 

compared with the first winter period, this is exagerated amongst grasses and shrubs, accounting for 32% of net erosion. For 

both cases, these are likely to be the result of channel reactivation during overbank flow removing large quantities of floodplain 

sediment. Throughout all of the time periods, no group exhibits a consisitent pattern of erosion or deposition, changing based 

on season and year, making it difficult to identify any direct eco-geomorphic interactions at these scales. However all groups 665 

appear to undergo a dominnant erosion signal in the winter followed by an acretion signal in the summer, suggesting that 

vegetation that can recover or survive winter flows and act to trap sediment and stabilise the channel and adjacent floodplain 

during spring and summer.  
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Figure 9. Histograms of morphological change for each classified functional group location throughout the reach for each of the 670 
time periods studied. Below each is the volume of erosion and deposition in m3, as well as the net volume change. The transparent 

elements of the histogram show the changed that occurred below the minimum level of detection, and was not included in the eroison, 

deposition, and net volume change information. Note the change in X axis values for the erosion and depositon bars for the water 

class so as not to subdue the other groups due to the dispraportionate amount of change over both winters here.  

 675 

Importantly, the above results show the spatial relationship between different functional groups and the geomorphic change 

that occurs at that location. Yet, the interaction each group has with flow is not accounted for, with different groups having a 

different proximity to the channel and areas of overbank flow. To assess the influence that each functional group is having on 

flow, the spatially varying drag calculated in section 3.4. was aggregated to identify how different functional groups interact 

with a simulated large flood across each time period. Table 3 documents the change in both the combined total area of each 680 
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functional group between each year, and the various excess drag exerted across the domain between summer and winter and 

between each year. Overall, it is clear that shrubs have the greatest influence on flow in terms of excess drag, due to their 

density and the uniformly structured vertical leaf profile. Low DBH trees also have relatively high excess drag across the 

reach, and when compared to the high DBH trees will exert a large influence on flow through the catchment. This is again 

most likely as a result of density and coverage, as the frontal area of the low DBH trees will be lower than those with a higher 685 

DBH. Yet the measured density of low DBH trees is an order of magnitude less and as such has less influence on overland 

flow. The excess drag created across the reach by single stemmed herbs is similar to that of high DBH trees, implying that 

proximity to the channel, vegetation coverage, depth of flow interaction, and seasonality, can all influence which functional 

groups play the biggest role across the domain. 

 690 

The largest changes in excess drag between summer and winter occur within the herbacous and shrub groups, with single 

stemmed herbs showing the largest increase. As the majority of interactions between trees and flow throughout the year is with 

trunks rather than leaves, these experience the smallest difference in excess drag. The increases in excess drag may provide an 

explanantion of the deposition occuring in the summer months; and despite the lower flow depths occuring in the summer the 

increased foliage will help to trap any sediment during higher flow events.  695 
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Table 3. A comparison of total excess drag calculations for the functional groups across the study site, comparing changes between 715 
seasons and years, as well as assessing changes in group extent between years. Changes in seasonal drag are between the summer 

and the winter within a year, whereas the changes in annual drag are an average of the changes between winter 2020 and 2021, and 

summer 2020 and 2021. No excess drag was calculated for grass, water and bars, and so only comparisons in spatial extent are 

examined for these groups.  

 720 

When comparing the annual changes, there are large shifts in both the excess drag components of individual groups and overall 

excess drag throughout the reach. Changes in excess drag can be attributed to total cover of each functional group, such as 

branching herbs where both area and drag increase by similar proportions, and the small decrease in High DBH trees is 

accompanied by a small increase in drag. Yet, for both low DBH trees and shurbs, the seperation between excess drag and 

coverage suggests that the distribution of each group is changing so that the interaction with flow is altered. The drop in both 725 

area and subsequent drag from single stemmed herbs at first seems to be related to the increase in area of chanel bars, suggesting 

a removal of such vegetation in situ. However, as Figure 10 shows, the change that is most prominent is from single stemmed 

herbs to water, whereby the channel has removed vegetation, and bars have formed in place of the old channel which are yet 

to be established with vegetation.  

 730 

 

 

  

2020  2022 

Area 

(m2) 

Excess Drag (N) Seasonal 

Change in 

Drag 

Area 

(m2) 

Annual 

Change in 

Area 

Drag (N) Annual 

Change in 

Drag Winter Summer Winter Summer 

Grass 49358 - - - 49671 1 % - - - 

Branching Herbs 2564 19 21 10 % 2784 9 % 22 24 12 % 

Single Stemmed 

Herbs 
3388 76 100 31 % 1680 -50 % 38 49 -49 % 

Shrubs 20240 511 614 20 % 18780 -7 % 439 527 -14 % 

High DBH Trees 8956 33 35 7 % 8744 -2 % 34 37 4 % 

Low DBH Trees 5960 135 144 6 % 5732 -4 % 120 127 -12 % 

Water 12360 - - - 11218 -9 % - - - 

Bars 4981 - - - 7872 58 % - - - 

Total 107807 775 914 18 % 106481 -1 % 652 765 -16 % 
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Figure 10. The three most common changes in functional groups and land cover across the study site, accounting for 45% of all 

change. Water to gravel bars was the most common change (28%), followed by single stemmed herbs to water (9%), and then gravel 

bars to water (8%).   

5. DISCUSSION 735 

5.1. Trait Extraction and Functional Group Formation 

Current measurements of plant functional traits are still predominantly ground based and therefore limited by on site access 

(Palmquist et al., 2019), requiring extensive sampling to extract enough data to create functional groups relevant to a particular 

study (e.g. Diehl et al., 2017a; Hortobágyi et al., 2017; Stromberg and Merritt, 2016). Remote sensing of these traits is therefore 

a potentially useful way to collect data across large areas, depending on the vegetation size and methods of data collection. 740 

Although no ground truth data relating to traits was collected in the field, the assessment of variability in model construction 

and comparison to wider records based on dominant species suggests that the methods developed herein performed well at 

extracting physical attributes. This highlights the potential of remote sensing to collect structural trait data for eco-geomorphic 

research moving forward, especially once trade-offs in terms of time and spatial extent are accounted for. For example, data 

from field surveys are generally limited to that site, and although the findings can be applied to locations elsewhere, this 745 

requires knowledge of the vegetation present at a site. If metrics can be extracted from remotely sensed data and be used to 

classify functional groups and over land cover, this represents an improvement in the applicability of traits-based research.  

 

The use of pre-determined rather than site specific functional groups was a method employed by Butterfield et al. (2020) on 

the basis of those outlined in Diehl et al. (2017a). The sites used in both of these studies were similar, and the application to a 750 

temperate UK based site is challenging because of the complexity and similarities of some plants. However, the lack of a 

comprehensive list of functional groups for riparian vegetation made using predetermined groups justified in this case. When 

compared to previous studies, the reduction in the number of extracted herbaceous functional groups is due to the data 
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resolution, whereby only two categories could be explicitly detected. For woody species, the method allowed for separation of 

two sub classes which have different impacts on flow, especially when used to determine excess drag. The methods used 755 

provided sensible separation of groups, each of which have a demonstrably different hydraulic influence. Single stemmed 

herbs were taller and although the number of branches was similar to the branching herbaceous group, the number of branches 

per unit height was lower. A taller, stronger, and less branching herb is going to have a distinctly different impact than a shorter 

more flexible one (Nepf and Vivoni, 2000; Järvelä, 2004; Sand-Jensen, 2008), and being able to differentiate successfully 

between these two groups highlights the success of the survey and trait extraction methods developed herein. Likewise, the 760 

difference in flow conditions between low DBH trees, that are closely packed, to less densely packed high DBH trees may 

show a resemblance to the influence found at smaller scales on plant density (Järvelä, 2002a; Kim and Stoesser, 2011), with 

noticeable differences in estimated excess drag values. The relationship between DBH and vertical skew is not surprising; 

considering the higher plant spacing density, the competition for space is likely higher resulting in more mass higher up the 

tree profile. As plants cannot yet be easily differentiated by measuring their DBH, using vertical skew provides promising 765 

results for upscaling to larger areas whereby ALS surveys may be able to differentiate between woody functional groups for 

better informed hydrological analysis, with similar work being done using vertical distribution to classify forests already 

(Antonarakis et al., 2008; Michałowska and Rapiński, 2021).  

 

UAV-LS has been shown to overestimate canopy reconstruction volume (Brede et al., 2019; Dalla Corte et al., 2022), which 770 

mirrors the over complexity demonstrated in the QSM Cylinder Model (Figure 2) with some awkwardly orientated cylinders. 

Extracting traits using remote sensing is novel and can improve on ground-based methods for coverage but is not yet likely to 

match the accuracy and interpretive ability of manual in-field measurements undertaken by an individual, as shown in 

estimations of forestry structure for height, DBH, and volume (Dalla Corte et al., 2022). Moreover, the use of TLS for analysing 

herbaceous functional groups is highly localised (Lague, 2020), meaning only a small number of samples can be analysed 775 

which may not reflect the full variation in vegetation morphology. Despite covering a relatively large area of the river reach 

(Figure 1) the UAV-LS data collected for this study took a significant amount of time to post-process, although as the spatial 

extent of coverage increases the time gains improve as the same vegetation models can be used to classify increasingly larger 

areas. Algorithms which can extract traits and classify large areas are likely to improve in much the same way that SfM methods 

developed, such as those presented by Burt et al. (2019) and Krisanski et al. (2021).  780 

 

Currently, UAV remote sensing methods can only obtain above ground structural traits, and although these make up a 

significant component of hydraulically relevant traits, they do ignore the importance of traits such as root structure, strength, 

and plant flexibility. Both UAV-LS and TLS also struggle to capture the complex structures of shrubs, with TLS requiring 

many scans to resolve the structure of enough samples and UAV-LS having too low point density and canopy penetration for 785 

such complex branching. However, methods pioneered by Manners et al. (2013) relating vertical profiles from TLS and ALS 

data may help to overcome this by upscaling to larger extents. Similarly, more work is needed to overcome the difficulty in 
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separating out species that appear similar structurally (and spectrally), such as woody saplings and herbaceous plants, but 

which may have very different hydraulic roughness measurements. At present, these two different vegetation types could easily 

be misclassified, and with the likely different interactions with flow and subsequent morphology, not being able to account for 790 

these with remote sensing is currently a limiting factor. Efforts to further investigate this, possibly using proximity measures 

to other functional groups, or probabilistic rather than categorical classification methods, may help to overcome this issue.  

5.2. Reach Scale Functional Group Mapping 

The benefits of remote sensing of plant traits does not come from individual plant analysis but from upscaling across space 

and time. Using the same datasets provides continuity between both the individual analysis and reach wide functional groups. 795 

Finding common features of defined functional groups is more computationally effective than analysing individual plants 

throughout the reach at present. Using structural characteristics of the point cloud alongside spectral properties across time 

allows the temporal patterns to enhance functional group classification. It is clear that initial separation between functional 

group types can be made based on canopy height. The need for seasonal data is emphasised across functional groups, whereby 

herbaceous groups benefit from having winter and spring NDVI values to complement the difference in height, and tree groups 800 

require leaf-off vertical distribution to help with separation, supporting previous work emphasising the need for seasonal data 

to improve eco-geomorphic research (Bertoldi et al., 2011; Nallaperuma and Asaeda, 2020). Overall, single stemmed herbs 

appear to be more seasonal, with lower winter values than branching herbs, whereas the NDVI of shrubs experiences a dip in 

spring surveys as a consequence of flowering affecting spectral properties. For tree functional groups, capturing data in the 

winter has a greater penetration and as such the timing of data collection will likely impact classification results, with some 805 

functional groups being better separated at different times of the year. For these methods to be applied elsewhere, it follows 

that the seasonal monitoring approach used herein and in other studies (Van Iersel et al., 2018; Souza and Hooke, 2021) is 

likely required.  

 

The use of random forest classification for this study site has been successful and adds to the growing body of evidence 810 

supporting their use for application to high resolution classifications (Adelabu and Dube, 2015; Chan and Paelinckx, 2008; 

Adam and Mutanga, 2009). The misclassification statistics from the random forest classifier are in line with those reported by 

Butterfield et al. (2020) when using multispectral imagery alone, with most misclassifications happening in functional groups 

which are adjacent and most similar to the true class. This is unsurprising when viewing the uncertainties in functional group 

properties (Figure 5), where there is evidence of overlap across multiple attributes for two different groups. Moreover, where 815 

there are transitions between functional groups with similar properties, or where the image segmentation has incorrectly 

defined ‘similar’ pixels, it is likely that misclassification may occur. Identifying ways to better segment regions of vegetation 

may help to improve the overall classification success. A related drawback is that the categorical output used in this method 

means that a segmented region must be allocated to one type of functional group and as such cannot distinguish between the 

presence of multiple groups. This is especially the case for woody regions, which will have a mixture of understory vegetation 820 
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which is not currently detected and characterised, and is another area which may need further developmental work to improve 

vegetation characterisation. 

 

Despite the above limitations, the resulting classification accuracy (Figure 6 and Figure 7B) shows promise for linking local 

scale trait modelling to larger functional group mapping. The overall distribution of classes throughout the reach is as expected, 825 

with herbaceous species dominating the active meandering section as these are more adaptable to changing and flood 

conditions, whilst larger woody species are seen in more stable sections of the river as these species require more stable 

hydraulic conditions (Kyle and Leishman, 2009; Stromberg and Merritt, 2016; Aguiar et al., 2018). The classification herein 

takes a different approach  to work by (Butterfield et al., 2020) who used imagery to classify species and subsequently assign 

vegetation groups, whereas the remote sensing method used here utilises the structural and spectral characteristics to designate 830 

the spatial distribution of functional groups, removing the species identification component. This is important as the same 

species may display varying traits-based on their proximity to the channel (Hortobágyi et al., 2017), and as such using the 

physical characteristics of plants can be seen as an advantage. Species identification still plays an important role, and has been 

used in this study to both assess the reconstruction of vegetation and to inform the coefficient of drag values used. However, 

as noted previously, obtaining secondary data on a range of plant traits that are relevant to the area of study can be challenging, 835 

and may limit the applicability of traits-based methods in the wider scientific community,   

5.3. Eco-Geomorphic Change 

Given the hydrology of the river, the majority of morphological change occurs over the winter months as expected. The 

temporal resolution of the surveys is not capable of detecting whether this is the result of a single flow event or continuously 

high flows. There appears to be more localised evolution in the second winter of surveying whereas the first winter appears to 840 

show a more continual response throughout the reach. The singular lower peak in water levels for the second winter as opposed 

to several higher peaks in the first (see Figure 1C) suggests that priming may be more important for large avulsions, whereby 

a single flow event of lower magnitude can incite a greater resultant planform shift. The response in summer is much smaller 

both in terms of deposition and erosion, with little morphological change occurring. What change does occur may be from 

reductions in bank support (via confining water pressure) from high flows leaving banks exposed to collapse (Zhao et al., 845 

2020).  

 

It is difficult to identify any definitive links between the morphological change and vegetation presence, due to the limited 

time of study and the variations in vegetation extent and proximity to the channel. Yet, by aggregating the change across these 

various functional groups it was possible to see some of the effects of different groups, with areas such as grass consistently 850 

contributing to areas of erosion during the winter months, and tree functional groups undergoing just as much morphological 

change as herbaceous functional groups despite their well-known stabilising effects (Gurnell, 2014; Hortobágyi et al., 2018). 

Importantly, it is clear that the use of temporal monitoring to identify patterns of change is a challenge due to the inherent 
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variability between seasons, exemplified when looking at the excess drag provided by each functional group between years. 

Changes in the spatial distribution and extent of different functional groups can alter the overall hydraulic roughness across 855 

the floodplain, and in this case results in a drop in roughness from one season to the next. Moreover, being able to adjust these 

for both summer and winter periods gives a greater insight in to the fluctuations in the influence of vegetation across a domain, 

and should continue to be accounted for when investigating the influence of vegetation on flow both in field studies and 

modelling (Song et al., 2017; De Doncker et al., 2009; Champion and Tanner, 2000; Cotton et al., 2006). 

 860 

Herein we linked the functional groups to morphological change and, in addition, estimated the excess drag across the domain 

created by each functional group. Investigating the morphological change compared to depth dependent drag is challenging 

however, as it is spatially and temporally varying with different river stage. Yet, for the reference flood event used to predict 

flow depths, the morphological change experienced over that time period can be compared to each functional groups excess 

drag, and the impact this had on subsequent morphology assessed.  865 

 

Figure 11 illustrates the changing excess drag provided by each functional group at different reference flow depths, and the 

equivalent morphological change experienced at these locations for the winter of 2021/22. All functional groups exhibit an 

increase in erosion with greater flow depths, implying that any variation in erosion patterns seen across the range of flow 

depths may be in part due to the function of the vegetation. For both herbaceous functional groups, the influence of the plant 870 

form on flow increases up until their maximum heights, and for both of these groups the level of erosion reduces up until below 

this maximum height, until above this height levels of erosion increase. Clearly, at greater flow depths the shear stress on the 

bed will increase (e.g. Biron et al., 2004; Phillips, 2015) and as such induce greater levels of erosion. Nevertheless, as this 

trend is not linear in nature with increasing depth, it suggests that herbaceous functional groups are having an impact on flow 

and subsequent morphological change within the reach over this time period. The remaining three functional groups all see 875 

consistently increasing levels of excess drag across flow depths as the plant heights exceed the maximum depth. Shrub frontal 

area increases more quickly with flow depth as the branching network becomes more complex with a greater presence of 

foliage. The difference in excess drag experienced by the low and high DBH groups is predominantly the result of differences 

in plant density. Shrubs show the most consistent morphological stability, most likely due to their ability to reduce flow speeds, 

and the root structures of larger vegetation providing greater soil cohesion. Both sets of tree groups follow a similar pattern, 880 

appearing to accelerate erosion at low flow depths, before showing a stabilising effect at greater depth, some of which may be 

in part due to the poor ability to classify understory vegetation, missing some of the variability in these areas.  
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Figure 11. A comparison of how for each separate functional group, the excess drag (coloured lines, no dots) and morphological 885 
response (black line, dotted), changes with flow depth. The diagram at the top helps to illustrate how for different groups, different 

flow depths result in different proportions of the plant interacting with flow.   

This begins to raise questions around the coupled nature of flow and vegetation, and at what point does one begin to dominate 

in dictating geomorphic evolution. The exploratory analysis undertaken here begins to disentangle this by using structural data 

across the domain to determine the vegetation influence at flow depths seen in the field, whilst also assessing real changes in 890 

morphology. Although the drag calculations are averaged for the entire functional group, and the morphological signal used is 

an average, this provides a new avenue of research which could relate an individual plants influence on various flood stages 

and the subsequent morphological response of the channel.  
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6. Remote Sensing of Plant Functional Traits: What Next? 

One of the key benefits of using remote sensing is the ability to quickly capture datasets over scales not possible with ground-895 

based surveying. It is clear from the analysis herein that although the collection of data is fairly straightforward, the subsequent 

post processing time has to be taken into account when considering routine application of a traits-based approach. Once data 

has been processed, and the seasonality of the data acquired through spectral and structural characteristics, the success of the 

classification suggests that functional groups can be classified for other sites that contain similar vegetation in much the same 

way as other research has used previous classes for similar environmental conditions before (e.g. Butterfield et al., 2020). It 900 

also allows for functional groups to be mapped in regions that are more remote and less accessible to more traditional survey 

techniques. This improves the applicability and usability of trait based methods when compared to more traditional taxonomic 

vegetation discretisation approaches. 

 

Combining vegetation structural and spectral data provides the opportunity to upscale to datasets collected via other platforms, 905 

with high resolution satellite imagery and ALS datasets offering the potential to improve the impact of such classification 

methods. Currently, the main difficulty with traits-based analysis is collecting adequate data over large enough areas. The 

methodology developed here provides a potential starting point from which a set of tools to classify different hydraulically 

relevant functional groups across larger areas can be developed. This may overcome some of the scale issues in linking 

vegetation functional groups to geomorphic change, whereby not enough data to link directions of change with different 910 

functional groups has previously been collected. Currently, most large-scale studies link platform evolution to vegetation 

presence and small studies are too localised to be applicable across reach scales and beyond. This research which begins to 

explore the links between different functional groups and morphological evolution demonstrates that by upscaling to combine 

enough hydraulic and morphological conditions further eco-geomorphic insights may be possible. 

 915 

Whilst the analysis undertaken in this study is capable of assessing seasonal and annual changes in vegetation functional 

groups, one aspect that is not taken into account within those groups is the longer term life cycle of vegetation. During a 

complete growth life cycle, the functional role vegetation plays within the river system changes. For example, the role that 

large trees play when they are uprooted changes significantly, from a stabilising feature for riverbanks, to one that potentially 

increases channel roughness and turbulence, dramatically alters flow directions and leads to subsequent morphological impacts 920 

(Jeffries et al., 2003; Sear et al., 2010). Therefore, when classifying regions into functional groups, it may be necessary to 

consider that these are dynamic classes which vary through timescales greater than the period of repeat survey capture. How 

we begin to monitor and detect these shifts in groups is an area for future research, especially in terms of characterising the 

impacts of large woody debris, which greatly contributes to the dynamics of fluvial systems. 

 925 



38 

 

One of the challenges of traits-based approaches is the ability to collect widespread data as outlined previously. The 

classification inputs used herein predominantly focussed on structural and spectral characteristics of the vegetation, and as a 

result require advanced data collection techniques. However, it has been widely shown that traits vary dependent on their 

underlying hydraulic and environmental conditions (e.g. Göthe et al., 2017; Corenblit et al., 2015). It is therefore not 

inconceivable that such metrics may be used in the future, for example to show inundation frequency or extent, alongside 930 

species identification from imagery or the field (Butterfield et al., 2020) to determine the likely composition of traits. This may 

result in a more holistic approach and in cases where less structural data is present, allow for a more robust classification of 

functional groups. 

 

Alternative approaches will also be necessary when the limit of trait detection is reached from remote sesning techniques. 935 

Variations in traits which are undetectable from TLS or UAV-LS methods will limit the ability to detect features for certain 

types of functional groups, such as those too small to resolve or those with too complex a structure, such as for grasses and 

shrubs. Both of these are prominent features of UK river corridors and so their ommision from current analysis is a limitation. 

The current methods can still map their extents but would require in field trait collection or the use of trait databases, e.g. the 

TRY database (Kattge et al., 2020) whose limitations have already been discussed. Yet species identification can be achieved 940 

with platforms cheaper than those used in this study and supplemented with in field data assuming access to the site is safe, 

providing opportunity for wider implementation.  

 

A key discussion point tends to revolve around how much data is required? Within this study, the repeat surveying was used 

to better group and map the extents of different vegetation, yet it is not always possible to collect such quantities of data. The 945 

analysis above would suggest that the seasonality of data collection plays a critical role, with tree species being better seperated 

in the winter, due to the leaf off conditions providing better conditions for identifying overall structure, whilst summer surveys 

better capture the extent of different herbaceous groups. As a result, it is unlikely that a singular time frame is best for capturing 

such variety and in order for traits-based approaches to become common using remote sensing, further work to indeitfy optimal 

timings for data collection needs to be undertaken. 950 

7. Conclusion 

In this study, we have presented a novel method for collecting and extracting vegetation functional trait data that is relevant to 

eco-geomorphic research. Herein we used UAV-LS and UAV-MS datasets to advance our ability to collect high resolution 4D 

datasets, improving the spatial and temporal resolution of riparian vegetation monitoring and geomorphic change detection. 

This has allowed us to gain an insight into how the inlfuence of riparian vegetation chnages through time and to better discretise 955 

the spatial variation of vegetation in to functional groups which are scaleable. As such, we have been able to provide insight 

in to how traits-based frameworks for vegetation analysis can be linked to trends and patterns in morpholoigical evolution at 
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scales that were previously not attainable. Throughout the study reach, shifts in planform were the dominant forcing of changes 

in group presence, with no group displaying consistent directions of change in erosion or deposition, with most eroson being 

seasonally driven across both winters. The shrub group was identified as being the greatest comntributer to reach excess drag, 960 

whereas single stemmed herbs saw the greatest change in interannual coverage and thus contirbution to total excess drag. 

When relating morphological change to each functional group and flow depth, although all vegetation groups saw an increase 

in erosion with greater flow depths, the variation in rates of erosion demonstarted some of the depth dependent interactions 

with vegetaion, and how they may limit or accelerate morphological change. We have also outlined the limits for current trait 

extraction from remote sensing techniques. UAV-LS can characterise larger vegetation structures and be used to upscale local 965 

TLS models, but even TLS is limited in its ability to characterise the spatial complexity of some vegetation traits at the 

resolution required to extract traits which can be linked with geomorphic change. This builds on current research which has 

analysed ecogeomorphic interactions on small river sections, or used species based imagery classification to investigate 

geomoprhic variations. The use of remote sensing allows data to be captured, analysed, related to broader dataset statistics, 

and upscaled to include larger reaches. Simultanously, the same data allows for the collection of topographic responses to flow 970 

events which can be linked to the variation in vegetation. This analysis uses seasonality to improve the classification of 

functional groups via chages in structural and spectral properties, advancing current methods available to the 

ecogeomrophology community. The trait data can then be used to infer changes in excess drag across the reach, and also be 

linked to specific flow events ot investigate how vegetation type and interaction with differening flows effects geomorphic 

response. Despite some noted limitations, this research represents an important step towards better discretisation of traits across 975 

greater scales and furthers the possibility of implementing widespread traits-based research. 

 

Future research is needed to investigate the limits of various remote sensing methods in relation to their ability to be used for 

traits extarction and thereby improve understanding of a systems ecogeomorphic evolution, with a focus on high resolution 

land cover data, remote sensing imagery, and ALS. Likewise, a need to advance the relationship between vegetation, 980 

morphology, and flow interaction is required, accounting for the spatial variations in flow depths and therefore identification 

of which elements of individual plants are interacting with the flow. This is especially important when examining the variation 

within different functional groups and across different hydrological regimes. These methods offer a bridge across sclaes, within 

which to consider the ways in which riparian vegetation within the river corridor is mapped, evaluated, and modelled through 

time, with implications for establishing new insights into the functioning of eco-geomorphic systems. 985 
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