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Abstract. Vegetation plays a critical role in the modulation of fluvial process and morphological evolution. However, 

adequately capturing the spatial variability and complexity of vegetation characteristics remains a challenge. Currently, most 

of the research seeking to address these issues takes place at either the individual plant scale or via larger scale bulk 10 

classifications, with the former seeking to characterise vegetation-flow interactions and the latter identifying spatial variation 

in vegetation types. Herein, we devise a method which extracts functional vegetation traits using UAV laser scanning and 

multispectral imagery, and upscale these to reach scale guild classifications. Simultaneous monitoring of morphological change 

is undertaken to identify eco-geomorphic links between different guilds and the geomorphic response of the system in the 

context of long-term decadal changes. Identification of four guilds from quantitative structural modelling based on analysis of 15 

terrestrial and UAV based laser scanning and two further guilds from image analysis was achieved. These were upscaled to 

reach-scale guild classifications with an overall accuracy of 80% and links to magnitudes of geomorphic activity explored. We 

show that different vegetation guilds have a role in influencing morphological change through the stabilisation of banks, but 

that limits on this influence are evident in the prior long-term analysis. This research reveals that remote sensing offers a 

solution to the difficulty of scaling traits-based approaches for eco-geomorphic research, and that these methods may be applied 20 

to larger areas using airborne laser scanning and satellite imagery datasets. 

1. Introduction 

Fluvial eco-geomorphic interactions are co-dependent, complex, and variable across space and time, representing a continued 

area of interest within river research (Thoms and Parsons, 2002). The diversity of eco-geomorphology in river corridors can 

be attributed to surrounding land use, existing morphology, and flood regimes (Naiman et al., 1993), whilst this same diversity 25 

simultaneously influences the flow of water and sediment, ultimately affecting morphology (Diehl et al., 2017) and floodplain 

conveyance (Nepf and Vivoni, 2000). The role of vegetation within the river corridor is well established, benefiting the local 

ecology (Harvey and Gooseff, 2015; Sweeney et al., 2004) alongside playing a role in natural flood management schemes and 

reconnecting channels and floodplains (Lane, 2017; Wilkinson et al., 2019), especially for small catchments where land cover 

is more influential for flooding (Blöschl et al., 2007). This is important when considered against a backdrop of a rapidly 30 
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changing climate where flow extremes are more varied, flooding more likely (Unisdr and Cred, 2015), and riparian vegetation 

is likely to undergo shifts in composition (Rivaes et al., 2014; Palmer et al., 2009). Consequently, adequately measuring and 

monitoring vegetation with the fluvial domain is critical to understanding how these systems will respond to varying climatic 

and hydrological conditions. 

 35 

The characterisation of riparian vegetation distribution over larger (>1 km) scales has typically relied upon the use of coarse 

classifications such as those identified in the Water Framework Directive (e.g. Gilvear et al., 2004), using techniques such are 

aerial imagery and satellite remote sensing (see Tomsett and Leyland, 2019). Any characterisation must be scalable and 

geographically transferable to cover the vast range of different fluvial landscapes whilst still accounting for the complexity 

presented within river corridors. Over-simplified, coarse classifications may altogether miss the vegetation complexity that 40 

exists, whilst conversely, highly detailed models tend to be necessarily localised and less transferable to alternate systems and 

scenarios. Traits-based classifications, developed and used within ecology, offer a scalable and transferable approach which 

can be applicable to the fluvial domain (Diehl et al., 2017). They have been shown to be useful for modelling topographic 

response to changing vegetation, sediment, and flow conditions (Diehl et al., 2018; Butterfield et al., 2020). However, 

challenges remain in broad application of this approach, with the characterisation of vegetation in the highly detailed manner 45 

required to extract traits metrics being challenging over larger (e.g. >1 km) scales. 

 

To address these gaps, herein we examine the scales over which different traits can be collected from remote sensing methods 

and assess how well these traits can be used to establish eco-geomorphic relationships. We use a UK based temperate river as 

an exemplar site to demonstrate the effectiveness of novel remote sensing techniques for characterising vegetation. We 50 

investigate the limits of trait detection and the scales at which they are most appropriately used to enhance eco-geomorphic 

understanding, enabling us to establish the applicability of these methods to a variety of river corridor environments. Below 

we introduce the concepts of plant functional traits and hydraulically relevant traits before establishing the aims of this research. 

1.1. The Importance of Vegetation 

It is well understood that vegetation plays a key role within the river corridor and that how vegetation is modelled can affect 55 

the outcomes of hydrodynamic simulations. Channels with in-stream vegetation may experience roughness values an order of 

magnitude higher than non-vegetated channels (De Doncker et al., 2009), capable of reducing velocities by up to 90% (Sand‐

Jensen and Pedersen, 1999). However, foliage type and how vegetation is modelled affect the influence that the vegetation has 

on flow (James et al., 2008). The challenges posed by quantifying in-stream vegetation means that it is often difficult to make 

estimations of in-stream roughness (O'hare et al., 2011). Conversely, above water vegetation is easier to measure and monitor 60 

depending on the scales of analysis. Banks are typically eroded via mechanisms of mass failures or entrainment (Hughes, 

2016) and so any stabilising effects of vegetation must influence these processes. Vegetation can reduce stream power, increase 

soil cohesion, and influence soil moisture levels, all of which can help to reduce erosion (Simon et al., 2000; Fox et al., 2007; 
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Kang, 2012). Bank collapse is influenced by three dominant factors, the extra mass of the vegetation, the shear strength 

provided by root reinforcement, and changes to bank pore water pressure (Wiel and Darby, 2007), with above ground biomass 65 

therefore directly influencing the mechanical and hydraulic properties of the substrate (Gurnell, 2014). The above ground 

biomass also has a direct influence on river flow and sediment transport when submerged (Gurnell, 2014), although this is 

stage dependent and depends on plant volume and structure. 

1.2. Plant Functional Traits  

Functional traits originate from ecological research, whereby criticism of using functional types led to a need for a more robust 70 

system of classification for ecological studies. Functional types represent vegetation based on its morphology and physiology, 

amongst other factors (Box, 1981; Box, 1996), but these attributes can exhibit greater variation within functional types as 

opposed to between them (Reich et al., 2007; Wright et al., 2005), as well as not varying between different types at all (Van 

Bodegom et al., 2012). Assessment of plants based on their functional traits has been seen as a method to overcome the 

shortcomings of the classic typological approach (Quétier et al., 2007).  75 

 

Much like the attributes of a plant type, plant functional traits are morphological, physiological, or phenological attributes that 

are measurable at the individual plant level (Violle et al., 2007; Kattge et al., 2011; Savage et al., 2007). These measures can 

either be direct measures of a function such as photosynthesis or be a surrogate measure for a function such as leaf area. To be 

classed as ‘functional’ for ecology, traits must affect either plant growth, reproduction, or survival (Violle et al., 2007). Traits 80 

can either be effect or response based, depending on whether they have an influence on or are influenced by their wider 

environment (Violle et al., 2007). The benefit of traits-based methods is the applicability between different sites without 

needing species specific data (Mcgill et al., 2006). Therefore, the findings of community response to factors such as land use 

or climatic gradients (e.g. De Bello et al., 2006; Garnier et al., 2006) can be applied to a different location with similar trait 

composition. This is possible through the creation of guilds which describe plant groups with similar traits (Lytle et al., 2017) 85 

providing a scalable framework for eco-geomorphic research.  

 

Traits-based approaches are well suited for eco-geomorphic research due to the strong environmental gradients within fluvial 

systems (Naiman et al., 2005). Vegetation responds to hydrological variables, such as water availability and disturbance events 

(Hupp and Osterkamp, 1996) whilst also influencing flow, sediment transport, and morphological stability (Gurnell, 2014), 90 

meaning that the bi-directional nature of this relationship maps well onto a traits-based framework. O'hare et al. (2016) have 

assessed the traits of nearly 500 species that influence river processes, revealing evidence of a broad link between plant form, 

distribution, and stream power within the UK (O'hare et al., 2011). Moreover, traits-based approaches allow for a more 

comprehensive view on eco-geomorphic interactions than a purely taxonomic approach due to the environmental conditions 

having a larger influence on trait compositions than species compositions (Göthe et al., 2017; Corenblit et al., 2015).  95 
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To date, the majority of traits-based research has focussed on ecological responses to hydrological conditions. For example, 

inundation likelihood has been shown to increase the presence of plants with longer and younger leaves (Stromberg and Merritt, 

2016; Mccoy-Sulentic et al., 2017) whilst also being less woody (Kyle and Leishman, 2009; Stromberg and Merritt, 2016), 

with frequent inundation and higher stress environment necessitating greater flexibility. Conversely, plants in lower stress 100 

environments tend to be taller with longer life cycles (Kyle and Leishman, 2009; Stromberg and Merritt, 2016; Mccoy-Sulentic 

et al., 2017). Factors such as nutrient loading (Baattrup-Pedersen et al., 2016; Lukacs et al., 2019), light conditions (Baattrup-

Pedersen et al., 2015), carbon availability (Lukacs et al., 2019), and anthropogenic interference (Baattrup-Pedersen et al., 2002; 

O’briain et al., 2017) are all key controllers of trait composition, with the environmental conditions better related to trait, rather 

than species, composition (Göthe et al., 2017). Furthermore, individual species have been shown to demonstrate differing traits 105 

depending on external stresses. Populus nigra trees were found to be smaller, have greater flexibility, and had a higher number 

of structural roots at a bar head when compared to a bar tail (Hortobágyi et al., 2017). Further work demonstrated that the 

smaller species at the bar head were incapable of trapping sediment when compared to those at the bar tail (Hortobágyi et al., 

2018), highlighting the importance of traits rather than taxonomic approaches.  

 110 

Hydrological variability can also influence trait assemblages. For example, mean flood frequency across 15 sites was found 

not to be related to trait diversity, whereas the magnitude of a 20-year flood and the variability in flood frequency were both 

related (Lawson et al., 2015). Controlled field experiments with artificial flooding and drought showed a decrease in species 

richness in both scenarios, although trait diversity was more tolerant to drought conditions (Baattrup-Pedersen et al., 2018). 

Rivers with more variable flows tend to encourage pioneer species and those with prolonged drought seeing an increased 115 

abundance of water tolerant species (Aguiar et al., 2018). As a result, these responses mean successful river restoration projects 

should focus on the type of restoration more than the extent (Göthe et al., 2016). Taxonomic approaches can still perform 

equally well for fluvial studies, but traits-based approaches tend to account for local and regional conditions better (Tabacchi 

et al., 2019), which is necessary for scalability. 

 120 

Research into effect traits and their geomorphic influence has received less attention as traits concepts have only recently 

started to be explored in hydrological research. However, as noted by Corenblit et al. (2015), the interactions between plant 

traits and fluvial systems are linked, with hydrological conditions affecting plant establishment and survival and plant 

morphological traits affecting morphology and subsequent establishment. There is evidence that changing traits can alter the 

morphological evolution of channels, with invasive species that have higher branching densities and less flexibility increasing 125 

aggradation through reductions in near bed velocities (Manners et al., 2015). Guild location impacts the morphological 

response, with analysis of bars showing different responses downstream and also laterally based on the traits of the dominant 

species in these directions (Hortobágyi et al., 2018). This is supported by Butterfield et al. (2020) who when examining changes 

in multi-annual elevation found that guilds at different locations, experiencing different hydraulic conditions, had differing 

impacts, but also that guilds could not explain all the variation in morphological response. It was found that differing canopy 130 
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architectures that interacted with flow were likely to be the prominent driver of topographic response, supporting the research 

of Manners et al. (2015). However, trait diversity can impact morphological response as much as the individual traits, with 

combinations of guilds interacting to alter responses (Hortobágyi et al., 2018), from which spatially averaging to areas of 

dominant guilds may oversimplify the complexity of interactions. 

1.3. Hydrologically Relevant Functional Traits 135 

Not all vegetation functional traits are relevant when considering direct relationships between vegetation, hydrology, and 

morphology. Moreover, not all traits can be obtained from remote sensing techniques, a necessary requirement when upscaling 

to larger domains. Below we identify the vegetation traits that are directly relevant to river systems and which can potentially 

be captured via remote sensing techniques, thereby allowing the upscaling of any developed methods of characterisation. 

 140 

Existing studies that have considered vegetation-flow interactions have focused on plant height and frontal area as key metrics 

which explain momentum exchanges in river flows. The height of the plant affects the amount of interaction (Nepf and Vivoni, 

2000), with varying flow depth determining the proportion of the plant frontal area which is submerged. Frontal area is an 

often used proxy for the scale of obstruction and is a component of the drag formulation which can have a larger impact on 

flow conditions than the selection of a drag coefficient (Järvelä, 2004; Wilson et al., 2006). However, the limitations of 2D 145 

metrics to describe the complex nature of plants has been highlighted, with the use of 3D data and plant volume offered as 

improved methods (Whittaker et al., 2013; Vasilopoulos, 2017). 

 

Under various flow conditions, the frontal area of a plant may change due to flexing and reshaping, with studies showing that 

not accounting for this can limit the results of drag models (Sand-Jensen, 2008; Whittaker et al., 2013). A higher leaf area 150 

increases the momentum absorbing area of plants with de-leafed vegetation not bending until a higher threshold velocity is 

reached (Wilson et al., 2003; Järvelä, 2002a). Drag has been calculated using leaf area, although not a 1:1 relationship it was 

shown to be suitable for estimating vegetative resistance (Jalonen et al., 2012). The contribution of foliage to resistance 

decreases with flow speed, Whittaker et al. (2013) noting a drop in the drag contribution of foliage from 75% to 20-50% at 

speeds under and over 0.5 ms-1 respectively. This is due to the reshaping of plant structure during higher flows leading to 155 

reductions in drag (Armanini et al., 2005), with the rate at which this reduction happens being plant dependent (Järvelä, 2002b; 

James et al., 2008; Boothroyd et al., 2017). The vertical distribution of plants also has a significant impact on flow, with 

different vertical distributions such as step changes or continuous variations, impacting flow differently and being more 

important than multi-plant arrangement (Lightbody and Nepf, 2006; Jalonen et al., 2012).  

 160 

The arrangement of plants is still important in determining bulk drag, with drag coefficient values for a single foliated stem 

not representative of stems occurring in bulk vegetation (James et al., 2008). Higher plant densities within a channel lead to 

an increase in drag coefficients, however the arrangement of vegetation within the channel has a negligible impact (Järvelä, 
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2002b; Kim and Stoesser, 2011). Sand-Jensen (2008) identified that there was a difference in downstream flow between evenly 

distributed plants and the same biomass distributed into high density clumps, with the former providing the larger increase in 165 

drag and impeding flow the most. Therefore, spatial variation in plant distribution may be more important than the density of 

the patches themselves. A higher stem density does result in more scour around stems and deposition to be further from the 

scour sites, however overall deposition does not increase with increased stem density (Follett and Nepf, 2012). 

 

Whilst both vegetation structure and distribution of individual plants directly impact flow, many other vegetation traits can 170 

impact sediment transport processes, for example through playing a role in altering the erodibility of periodically submerged 

banks or bar surfaces, or through increased resistance from root structures. Although vegetation height, frontal area, and leaf 

area are all key effect traits which can be measured directly, accounting for secondary impacts of vegetation related to below 

ground biomass for example, and how all traits vary spatially and temporally remains the challenge for advancing our 

understanding of eco-geomorphic interactions. 175 

1.4. Remote Sensing of River Corridor Vegetation 

Although many of these traits are inherently measurable in the field, many of them are not obtainable from current remote 

sensing methods. Direct trait extraction for riparian vegetation from airborne (i.e. large scale) remote sensing has not yet been 

utilised to enhance eco-geomorphic studies. Currently, collection of trait data relies on direct ground based field surveys and 

lab analysis, or species are identified in the field and traits taken from databases (e.g. TRY database (Kattge et al., 2020)). 180 

Methods are often dependent on site access, species richness, and variation within the study area (Palmquist et al., 2019), 

utilising methods such as quadrat surveying or transect sampling. This technique is effective for establishing traits but is limited 

by the spatial extent of ground coverage. Some variables inevitably require databases to avoid substantial disturbance, such as 

root characteristics (e.g. Stromberg and Merritt, 2016; Aguiar et al., 2018; Baattrup-Pedersen et al., 2018), although databases 

should be used with caution; for example, maximum plant height is not related to the plant submergence height at the time of 185 

a particular flow event, and great variation can be seen in both effect and response traits for a singular species (Hortobágyi et 

al., 2017; Hortobágyi et al., 2018). Therefore, accounting for temporal and spatial variation in traits is important and highlights 

the need for temporally and spatially relevant data collection. 

 

For fluvial research, multispectral imagery can be used to determine species using supervised and unsupervised classifications 190 

with good accuracy (Butterfield et al., 2020). Outside of fluvial research there is an increasing awareness of the potential of 

remote sensing methods to help drive the scalability of functional traits, especially in relation to physical traits such as plant 

height, leaf area index, phenology, and biomass (Abelleira Martínez et al., 2016; Aguirre-Gutiérrez et al., 2021), yet 

considerable limitations remain due to the uncertainty in relating spectral and physical properties to functional traits (Houborg 

et al., 2015). Upscaling localised high resolution data is possible however, for example from TLS (Terrestrial Laser Scanning) 195 

to large scale ALS (Airborne Laser Scanning) data (Manners et al. (2013).  
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Advances in UAV (Uncrewed Aerial Vehicle) remote sensing can create an important link between these two scales of data 

collection. UAV data collection allows high resolution imagery and active remote sensing methods such as laser scanning to 

be conducted on large reaches relatively easily (Tomsett and Leyland, 2019), increasing coverage and providing a middle 200 

ground for relating local to large scale data. Multispectral cameras have already helped to improve the classification of 

vegetation from UAVs (Al-Ali et al., 2020), and active UAV-LS (UAV Laser Scanning) has also been shown to be comparable 

in estimating tree structures to TLS methods (Brede et al., 2019). Such methods therefore present an opportunity to not only 

classify vegetation by types and assign them to guilds, but to define guilds based on characteristics acquired from remote 

sensing directly, before upscaling this to reach scale classifications. 205 

1.5. Aims  

The aim of this research is to develop a set of scalable traits-based 3D vegetation metrics which can be used to assess spatial 

and temporal (i.e. 4D) variation and importance of eco-geomorphic interactions on an exemplar UK river system. This is 

achieved using the following specific objectives:  

1. Undertake an assessment of the longer term (multi-decadal) eco-geomorphic evolution of the channel using satellite 210 

remote sensing, to compare planform evolution within vegetated and non-vegetated channel sections. 

2. Identify and select hydrologically relevant traits which can be extracted from high resolution remote sensing data.  

3. Establish the presence of vegetation guilds (those with similar traits) for the river reach, based on exploratory analysis 

and object orientated random forest classifications. 

4. Compare the spatial extent of these guilds to morphological change over the study period to establish eco-geomorphic 215 

feedbacks.  

2. Study Site 

The exemplar site is located on the upper course of the River Teme on the English-Welsh border in the UK (Figure 1A). The 

study area consists of two broader regions; the upstream section consisting of open grassland with patches of heterogeneous 

vegetation, and the downstream section which flows through denser vegetation. The River Teme is a highly mobile, gravel 220 

bed river within an alluvial floodplain which exhibits numerous avulsions. There is active lateral erosion of the channel, 

depositional gravel bar features, and woody debris dams across the study site (Figure 1A). The reach has typically low flows 

(Figure 1B), with an average depth of 0.69 m (+/- 0.15 m) throughout the year with slightly higher average flow depths in the 

winter months (November – February, 0.79 m +/- 0.15 m). 95% of river depth has been below 0.99 m and 99.9% of the flow 

depth has been below 1.48 m. The largest recorded river depth was 2.85 m on the 16th February 2020 during Strom Dennis. 225 

Figures are obtained from a gauge station 3 km downstream of the study site, starting from the earliest gauge record. 
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Figure 1 Study Site of the River Teme and the long term water level at the Knighton gauge station 3km downstream. A) Study Site 

Location on the River Teme, UK. Inset images show active bank erosion and a large debris dam caused by falling trees. 230 
Orthoimagery collected February 2020 and background imagery provided by ESRI (2021). B) River Gauge Level at the Knighton 

monitoring station ~1 km downstream from study reach (data available from 2002 – present).   

3. Methods 

3.1. Long Term (Decadal) Analysis 

To assess the longer-term context of eco-geomorphic interactions within the study reach, historical satellite imagery was 235 

analysed to identify channel mobility in relation to riparian vegetation. Channel mobility was assessed by digitising bank edges 

across multiple years. This method is well established and has been used previously to study the evolution of a large river 

confluence (Dixon et al., 2018) and for multi-decadal analysis of a single river (Yao et al., 2013; Gupta et al., 2013), to identify 

the drivers of morphological change. These have typically been restricted to coarse (e.g. 30 m ground resolution) satellite 

datasets, with planform change only detectable if it is greater in magnitude than the image resolution. This can result in mixed 240 

pixels; where multiple land cover and vegetation types are misidentified into one category (Henshaw et al., 2013). Here we 
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make use of high spatial resolution imagery from Google Earth (0.5 - 2 m, source dependent (Google Earth Pro, 2021)) and 

Pleiades (0.5 m) to identify historical changes in channel location and vegetation cover. Google Earth historical imagery for 

the years 2000, 2006, 2008, and 2009 and Pleiades data from 2013, 2015, 2016, 2018, and 2020 were used from which bank 

lines were digitised, resulting in 20 years of channel evolution. Banks under tree cover were identified where possible using a 245 

mix of spectral bands (Pleiades data only) to highlight channel position. To account for the images being taken at various time 

periods throughout the years and subsequently having different flow regimes, bank tops were digitised as opposed to water 

edges to reduce uncertainty resulting from variable flow stage. The exception to this was where no clear bank top was present, 

for example on the large bars, where evidence of usual high flows from colour changes and trash lines in the imagery were 

used to guide digitisation of bankfull channel width. 250 

 

All analysis of bank movement was performed in ArcGIS using the Digital Shoreline Analysis System (DSAS, (Himmelstoss 

et al., 2018)) with a 1.5 km long baseline created for both left and right banks based on the dominant river planform trend. 

Transects were cast every 5 m and manually edited where necessary in order to intersect the outermost bank, especially on 

tight meander bends. The Shoreline Change Envelope (SCE), the distance between the nearest and furthest bank from the 255 

baseline, is used to infer total channel mobility throughout the reach. 

 

To assess the impact of vegetation, the channel was classified into two classes: those containing structurally large vegetation 

and those that did not. Areas classed as containing structurally large vegetation could either include a small number of trees 

clumped around the channel, a linear section of vegetation on one bank, or larger areas of vegetation such as woodland. These 260 

regions were user defined based on all of the image sets available and were used to group transects within regions containing 

large vegetation and those that did not, for comparison of the SCE statistics. As vegetation may have an influence on both the 

local scale and broader reach scale morphology, the analysis was repeated for changes excluding the reoccupation of new or 

former channels (classed as avulsions). To achieve this, DSAS transects that spanned across two separate channels from 

different years were removed. Each individual channel was then reanalysed using separate baselines, consequently the impact 265 

on the results from channel switching can be isolated and removed.   

 

Statistical comparison was undertaken of the SCE values for sections containing large vegetation and sections that did not. 

These could be used to identify any differences in the SCE values and therefore inferred mobility of these sections, and the 

influence vegetation may have on planform evolution. To investigate the morphological process of avulsions, the development 270 

of new channels between satellite images was also tracked. New and developing channels which were visible in satellite 

imagery were digitised for each set of images. These were compared to UAV flood extent imagery from February 2020 

alongside historical LiDAR data from 2007 of the river corridor and qualitatively assessed in relation to how topography and 

flood events influence planform, and the processes by which channel switching occurs.  
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3.2. Field Collection of High Resolution 4D data 275 

High resolution UAV-LS (UAV Laser Scanning) and UAV-MS (UAV Multispectral Imagery) were collected over the entire 

reach through February 2020 until June 2021, capturing all seasonality. To complement these flights, Terrestrial Laser 

Scanning (TLS) surveys of vegetated and bar sections were undertaken to gain a benchmark ultra-high-resolution dataset for 

comparison to the UAV-LS and for characterising small herbaceous vegetation. A UAV-RGB (Red Green Blue) survey was 

also undertaken during overbank flow on the falling limb of Storm Dennis in February 2020, to identify the flood extent. Table 280 

1 summarises the survey dates, extents, and data collection methods. 

 

Table 1 Data collection methods, extent and point density for each survey date. TLS point density is based on the resultant point 

cloud after registration. Ground Sampling Distance (GSD) is the resolution of the resultant orthomosaics. UAV-LS point density is 

taken once cleaning of the raw clouds has taken place. 285 

Date Survey Sensor Point Density/GSD 

06/02/2020 (Winter) Whole Reach 
UAV-LS 778 m-2 

UAV-MS 0.04 m GSD 

18/02/2020 (Winter) Whole Reach UAV-RGB 0.02 m GSD 

16/07/2020 (Summer) Subsection 

UAV-LS 810 m-2 

UAV-MS 0.04 m GSD 

TLS 16,000 m-2 

14/09/2020 (Autumn) Whole Reach 
UAV-LS 762 m-2 

UAV-MS 0.04 m GSD 

14/04/2021 (Spring) Whole Reach 
UAV-LS 791 m-2 

UAV-MS 0.04 m GSD 

03/06/2021 (Summer) Whole Reach 
UAV-LS 804 m-2 

UAV-MS 0.04 m GSD 

 

A detailed outline of the UAV based sensor set up, processing routine and accuracy assessment can be found in Tomsett and 

Leyland (2021), with a short overview of the system provided below. UAV-LS and UAV-MS were collected using a DJI 

Matrice 600 Pro multirotor aircraft, capable of flying for 20 minutes per flight. Two sets of batteries allow for the spatially 

complex 1 km reach of the River Teme to be captured with some redundancy. Multispectral imagery was obtained from a 290 

MicaSense RedEdge MX camera, collecting imagery with a ground resolution of ~0.035 m across five spectral bands, 

consisting of blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm), and near infra-red (842 nm) wavelengths 

(Micasense, 2021). The laser scanner is a Velodyne VLP-16 Puck Lite, firing 16 laser-detector pairs at approximately 300,000 
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points per second, with a 360 horizontal and 30 vertical field of view. The sensor has a range of up to 100 m and a typical 

ranging accuracy of +/- 0.03 m (Velodyne Lidar, 2016). Both sensors use direct georeferencing from an Applanix APX-15, 295 

which utilises multi-frequency GNSS and MEMS (Micro Electro-Mechanical System) inertial motion unit to provide post 

processed positional and orientation accuracies up to 0.02 m and 0.025 respectively (Applanix, 2016). This removes the need 

for extensive GCP placement throughout the reach. Georeferenced point clouds from the laser scanner and Structure from 

Motion based point clouds and orthomosaics from the multispectral imagery were produced, both with vertical accuracy under 

0.1 m. UAV-RGB imagery was collected from a DJI Inspire 2 with a Zenmuse X4S camera, resulting in a ground resolution 300 

of 0.017 m from a flight height of 60 m. An on-board EMLID REACH M2 provides positioning accuracy of up to 0.015 m 

when post-processed (Emlid, 2021), with a connection to the on board camera to allow image captures to be timestamped to 

assist with the SfM processing. TLS data was captured in July 2020 using a Leica P20 Scanstation, collecting high resolution 

(0.0031 m point spacing at 10 m distance from scanner, resulting in a mean point density of 16,000 points per m2 within the 

area of interest) scans of two locations. The first, an area of channel containing large vegetation at the inlet of the study site 305 

(two convergent TLS scans), and the second, part of a large meander bend in the centre of the study area (four convergent TLS 

scans) where large vegetation was absent. Targets were used to register scans together, acquired using a Lecia TS06 total 

station, with a resultant scan registration accuracy of +/- 0.007 m. 

3.3. Vegetation Functional Trait Extraction 

The workflow developed to extract plant functional traits consisted of five steps: (1) Separation of individual plant point clouds 310 

that could be used for analysis, (2) Analysis of these individual clouds to extract metrics related to their traits, (3) Separation 

of plants into guilds adapted from Diehl et al. (2017) based on similar traits, (4) Identification of guild properties extractable 

from temporal UAV-LS and UAV-MS datasets for reach scale classification inputs, and (5) Use of an object-based random 

forest classifier to determine the spatial discretisation of guilds. 

3.3.1. Point Cloud Segmentation 315 

A number of automatic methods exist to classify very dense point cloud scenes into different groups (e.g. Brodu and Lague, 

2012; Zhong et al., 2016). However, the majority of these are designed for very high-resolution TLS datasets and so here a 

semi-automated approach was employed. Smaller vegetation whose structural composition cannot be fully resolved from 

UAV-LS data were analysed from the summer TLS survey. Automatic classification of ground/non-ground points was 

performed using the progressive morphological filter in the LidR package (Roussel et al., 2020) before manually segmenting 320 

in CloudCompare (https://www.danielgm.net/cc/) to create individual plant models (Figure 2, Raw Point Cloud).  

 

For the herbaceous plants, leaves and flowering parts were removed from the clouds so as not to interfere with the quantitative 

structural modelling (QSM). Although foliage is important, for the methods used herein they could not be accounted for due 
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to point densities. Any statistical outliers were detected, removing points 2.5 standard deviations and above the mean distance 325 

between points, resulting in a dataset consisting of 37 herbaceous plants. 

 

Tree segmentation also used a combination of manual and automatic classification based on surveys in leaf-off conditions 

exposing the full internal tree structure. 24 trees were selected from across the reach representing a range of structures and 

sizes from which complete models could be created. As above, initial separation of ground and vegetation points was 330 

performed using a progressive morphological filter. Whilst automatic classification methods such as CANUPO exist (Brodu 

and Lague, 2012), the UAV-LS point densities necessitated the manual extraction of individual trees, prior to interactive 

filtering using a number of statistical measures. Local volume density helped to separate points distinct from the main tree 

woody structure, whilst linearity metric filters (how aligned points are within a set radius) remove points that are highly 

complex or not part of the main tree structure. The statistical outlier removal tool and a final manual check can then be used 335 

to remove any remaining erroneous points. This resulted in a point cloud of predominantly large branches, with a clearer 

structural profile as can be seen in Figure 2 (Filtered Point Cloud). The thresholds for separating individual trees are size, 

structure, and point density dependent, hence the need for interactive selection. 

 

This adds an element of user bias as to what is deemed a ‘main’ branch, but the lower density of UAV-LS scans makes this a 340 

necessary method before reconstructing vegetation models (Brede et al., 2019). Shrubs and grasses whose structure could not 

be fully resolved from the UAV-LS or TLS data were not analysed for traits extraction. Aside from requiring many TLS scans 

to capture the extensive and complex branching networks of these plants, in eco-geomorphic terms a traits-based rather than 

bulk roughness approach is likely to be limited. 

3.3.2. Trait Metric Extraction  345 

For the reconstruction of vegetation stems into cylindrical models, the open source TreeQSM method was applied to the 

partitioned UAV-LS and TLS derived vegetation data (Brede et al., 2019). TreeQSM utilises ‘patches’ to determine connected 

points in the vegetation cloud, before growing the tree structure by joining patches together to form a complete model 

(Raumonen et al., 2013). These are created using user defined initial patch sizes to adjoin points, before refining the patch 

sizes using minimum and maximum sizes to create a complete model. This allows the coarse branch structure of the tree to be 350 

identified (Figure 2, Segmented Point Cloud). Sections are then generalised as cylinders for computational efficiency and as 

they provide a robust representation of trees (Raumonen et al., 2013). These cylinders can then be used to describe the overall 

structure and properties of the individual plant (Figure 2, QSM Cylinder Model). A full method description can be found in 

Raumonen et al. (2013). QSM methods have been noted to overstate the volume of smaller branches and are sensitive to noise 

in the data alongside variable point density (Fang and Strimbu, 2019; Hackenberg et al., 2015). However, QSM reconstructs 355 

tree structures in a manner which resolve many of the hydraulically relevant vegetation traits. 
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Figure 2 Vegetation trait extraction, from an individual raw point cloud to a cylindrical model and frontal area. The process is 

demonstrated for two extracted vegetation point clouds, a large tree within the study reach collected from UAV-LS data, and a small 

perennial on the central bar collected from TLS, note the difference in scales. The segmented point cloud is coloured by branching 360 
order from blue to red, with the cylinders coloured in the same manner.  

 

Patch diameters (which are used to determine adjacent points within the same tree) were chosen following a parameter 

sensitivity exercise, with the range of values initially based around those of Raumonen et al. (2013) and Brede et al. (2019) for 

TLS and UAV-LS approaches respectively. A visual assessment was performed to identify parameters that created models 365 

similar to the point cloud structure due to the lack of reference data. After testing for the optimum patch sizes for reconstruction, 

the TLS scans of herbaceous vegetation initial patch diameter was set at a size of 0.005 m, with the second patch diameter 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

minimum and maximum sizes of 0.002 and 0.01 m. The minimum cylinder radius was set to 0.005 m, prescribing the smallest 

detectable branch structure of the extracted herbaceous plants. For the UAV-LS derived tree data, the initial patch diameter 

was 0.2 m, with the second patch dimeter minimum and maximum sizes of 0.1 and 0.5 m. The minimum cylinder radius was 370 

0.1 m, based on manual measurements of tree branches within the point cloud that were detectable. For each plant model the 

cylinder reconstruction and variable extraction was repeated ten times. As the modelling begins at a random location each time 

the start point can affect the results, and so multiple averaged simulations provides a more accurate solution. The modelling 

produces a number of metrics, but for this study height, number of branches, diameter at breast height, volume, and maximum 

branching order, were collected. For each metric of interest, the average value and standard deviation of these values are taken 375 

from the ten runs.  

 

The frontal areas of all segregated vegetation clouds were extracted alongside the construction of the cylinder models, based 

on the 2D methods described by Vasilopoulos (2017). For each discretised plant point cloud, the data was flattened from 3D 

to 2D by collapsing the data along a single horizontal dimension on a regular grid (Figure 2, 2D Frontal Area). The grid 380 

resolution was set at half the width of the minimal detectable feature resolved by the QSM modelling; 0.005 m for the TLS 

derived herbaceous plants and UAV-LS 0.05 m for UAV-LS derived trees. 

3.3.3 Guild Identification 

Based on the separated points clouds, each were assigned to a guild based loosely on hydrologically relevant traits outlined in 

O'hare et al. (2016) and Diehl et al. (2017). As outlined above, a decision was made to discretise grasses and shrubs using bulk 385 

roughness metrics due to their relative homogeneity and the need for ultra-high-resolution data. Short branching herbs and 

taller single stemmed herbs were identified, with discrepancies in flexibility, branching, and height, likely to influence 

hydrology differently. Woody vegetation was further split in to two guilds, those with high diameter at breast heights (DBH) 

that had low density of trunks and those with lower DBH that had a higher trunk density. The analysis was preformed separately 

for woody and herbaceous vegetation. As the aim was to identify characteristics that would separate out the guilds from 390 

remotely sensed data, there was little need to compare woody and herbaceous species directly as height would be a dominant 

component. 

 

In order to assess whether remotely sensed data could separate out plants into their guilds in a statistically robust way, a 

Principal Components Analysis (PCA) was undertaken to identify the variables which explained most variation within their 395 

derived metrics. The metrics used for the PCA analysis were those obtained from the QSM and frontal area calculations which 

were normalised to remove the influence of different scales (Alaibakhsh et al., 2017). The principal components identified 

were used to inform the classification of reach scale guilds, identifying those variables that most explained the variation 

between guilds. 

 400 
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3.2.4. Linking Traits to Reach Scale Metrics 

To scale the analysis from individual plants to the entire reach level, a method of linking plant scale traits to broader scale data 

is required. Convex hulls representing the spatial extent for each vegetation point cloud extracted and analysed above were 

used to define the regions from which UAV-LS and UAV-MS data were extracted. For small herbaceous vegetation, this was 

buffered by 0.25 m to account for any misalignment between TLS and UAV-LS clouds. For tree vegetation polygons this 405 

buffer was increased to 1 m to incorporate peripheral branches and leaves removed during point cloud filtering. Polygons for 

small branching trees and large shrubs were created based on field observations and UAV-MS imagery. A total of 11 polygons 

were created for this combined guild category, with 11 made for grasses, 8 for water classes, and 5 for gravel bars and bare 

earth. Within these polygons, multiple seasonal variables were extracted for scaling local guild identification to reach scale 

classification. The structural characteristics of the point cloud were extracted through TopCAT (Brasington et al., 2012), 410 

obtaining the standard deviation, skewness, and kurtosis over a decimated grid at both 1 and 4 m resolutions, the latter to 

account for larger vegetation footprints. The 4 m resolution decimated grid only considered points classified as vegetation in 

the initial ‘ground/other’ point clouds to remove ground points from further analysis. To extract a Canopy Height Model 

(CHM), a bare earth digital terrain model (1 m resolution) was subtracted from a 0.25 m digital surface model incorporating 

the vegetation points. The Normalised Difference Vegetation Index (NDVI) across the reach was calculated using the red band 415 

along with both the red-edge and near infrared bands of the MicaSense orthomosaic images to produce two separate NDVI 

layers. As the red-edge can be used to separate out vegetation signatures, using a combination of both was expected to help 

differentiate plants with similar structural but different spectral properties. Analysis of structural and spectral data was 

performed for each of the four seasons to gain an insight in to how these properties vary temporally.  For each of the vegetation 

polygons, the attributes of each of these layers for each season were extracted using zonal statistics. The mean and standard 420 

deviation for each attribute for each season were then calculated across the different guilds for use in the classification model. 

3.2.5. Reach Scale Guild Classification 

To scale from guilds created from individual UAV-LS and TLS derived plants, to the entire reach, an object based random 

forest classification was undertaken. Object based approaches overcome some of the issues of variation and complexity in high 

resolution images (Myint et al., 2011), improving continuity in the results (Duro et al., 2012; Wang et al., 2018).  The RGB 425 

bands from the multispectral camera and the CHM were combined to create a 4-layer image from which to classify distinct 

objects. The Felzenszwalb Algorithm was applied which uses graph based image analysis to segment an image into its 

component parts based on the pixel properties (Felzenszwalb and Huttenlocher, 2004). This results in regions within the image 

being grouped base on them having similar properties according to the input layers, avoiding the salt and pepper effect found 

in traditional pixel by pixel classification approaches (Wang et al., 2018). 430 
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Table 2 Description of guilds used for training the random forest classifier, showing the number of training objects from the image 

segmentation and the training area size. 

 435 

In total, 644 training objects were identified using the previously discretised vegetation convex hull regions, with multiple 

objects present within each training sample (Table 2). A random forest classifier was then trained based on the layers that were 

deemed to distinguish between the different guilds, having proved an effective machine learning technique (Adelabu and Dube, 

2015; Chan and Paelinckx, 2008; Adam and Mutanga, 2009), with a water mask included to reduce errors associated with 

varying flow stage. An analysis of model accuracy vs number of forests showed a convergence of accuracy above 100 forests 440 

and a reduction in band importance variability above 300 forests (Figure 3). Higher variation in band importance suggested 

that the number of trees was influencing the likelihood of an optimal solution. This random forest classification was then 

applied to the remaining objects within the reach.  

 

Due to the limited number of samples being used, there were not enough training samples to split into a training and test 445 

dataset. The multi-tree approach of random forests is constructed on a sample of the dataset and as such can be tested against 

itself to determine an out of bag accuracy score. It also successively adds and removes bands to determine the band importance 

in the classification (Adelabu and Dube, 2015). Alongside this self-assessment, for the final guilds classes a total of 80 random 

points were generated across the study site with an equal number in each outputted guild. These were manually classified using 

high resolution ortho-imagery from a UAV-RGB (0.02 m resolution) survey and study site knowledge. The output 450 

classification was not visible when undertaking this assessment and the order of the points shuffled to remove user bias. The 

classified guilds map was then used to extract the predicted guilds of these points before a confusion matrix was utilised to 

assess the accuracy of the classification.  

Guild No. of Training Objects Training Area Size (m2) 

Grasses 93 321 

Branching Herbs 15 25 

Single Stemmed Herbs 16 29 

Branching Shrubs 135 388 

Low DBH Trees 158 876 

High DBH Trees 62 238 

Bars 122 641 

Water 41 157 
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Figure 3 Random forest classifier out of bag accuracy and variations in band importance for guild classification. A) Out of bag 455 
accuracy scores for different numbers of trees used within the random forest classification, showing a distinct levelling off in 

accuracy after ~100 trees are used. B) The standard deviation in individual band importance across 10 sample runs to identify at 

what number of trees band importance becomes consistent across all runs, in this instance around 300 trees.  

 

3.3. Morphological Change 460 

The M3C2 algorithm (Lague et al., 2013) was employed to calculate morphological change, whereby the surface normals from 

a subsampled cloud of core points (here at 0.1 m resolution) are calculated, and change along the normal direction is identified 

with the calculation of a local confidence interval. This overcomes some of the limitations of traditional elevation model 

differencing which can’t account for the direction of change. The benefits of using both SfM and UAV-LS data allows their 

respective drawbacks to be overcome through combining both datasets. SfM has been shown to perform poorly in vegetated 465 

reaches, whereas UAV-LS maintains good ground point densities, whereas SfM provides good continuity and high point 

densities in unobstructed areas. Therefore, in order to obtain good surface normals for assessing change the two clouds were 

merged (see Tomsett and Leyland (2021) for error analysis) and their vegetation removed through the use of the same 

progressive morphological filter used previously to produce resultant clouds which were then differenced using M3C2.  
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4. Results 470 

4.1. Decadal Scale Change 

Analysis of planform shift from the year 2000 through to 2020 has identified that the channel is highly mobile, experiencing 

rapid change in places as well as more gradual evolution in others. From the 586 bank transects cast, the average SCE (extent 

of bank movement) was 38 m whilst the median change was 25 m. The smallest change was 1 m whereas the largest was 120 

m. Comparison of sections with large vegetation present and absent suggests there is a greater average mobility in vegetation 475 

present sections (Table 3). This goes against the assumption that vegetation helps to reduce channel mobility. However, Figure 

4 suggests that the areas where the channel has remained predominantly stable through time have some vegetation influence. 

Of the four areas of significant change, only one appears to follow the traditional meander development model of lateral erosion 

leading to a cut off, with the three remaining sections showing likely avulsion or previous channel reoccupation. Analysis of 

channel mobility excluding these avulsions indicates that reaches with large vegetation present have lower rates of lateral 480 

mobility, and that there is evidence of large vegetation reducing rates of planform shift. 

 

Table 3 Transect statistics showing the difference between sections with large vegetation present and those where it is absent s, with 

and without channel reoccupations (avulsions). N refers to the number of transects within each category. 

 SCE statistics for each scenario 

 N Mean Median Std. Deviation Max. 

Large Vegetation Present (Inc. 

Channel Reoccupation) 
220 48 24 41 121 

Large Vegetation Absent (Inc. 

Channel Reoccupation) 
348 35 27 27 101 

Large Vegetation Present (Exc. 

Channel Reoccupation) 
290 10 8 7 47 

Large Vegetation Absent (Exc. 

Channel Reoccupation) 
339 22 16 18 72 

 485 

Figure 4 (A) and (B) compares frequency of SCE values for sections with and without large vegetation being present, including 

and excluding avulsions. For reaches with large vegetation, removing the avulsions has a notable impact on the distribution, 

with many more transects falling within smaller SCE values. Although this shift is seen in the transects without large vegetation 

also, the change in distributions is less prominent and is supported by a smaller change in mean values, dropping from 35 m 

to 27 m for large vegetation absent reaches and from 48 m to 10 m for reaches with large vegetation present.  490 
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Figure 4 Results from the decadal DSAS analysis. A) DSAS results showing channel evolution from 2000 – 2020, with left- and right-

hand banks digitised for each year. Spatial variability in maximum planform shift is shown in blue. Background imagery provided 

by ESRI (2021). B) shows the range of SCE values from both the left- and right-hand banks combined, for sections classed as 495 
containing large vegetation and those that do not. C) shows the SCE values when the effects of avulsion are removed from the data, 

for both large vegetation present and absent sections also. 

 

This channel switching appears to involve reoccupation of former channels that have lower floodplain elevations during 

overbank flow events. The three erosion channels in Figure 5 show the stages of progression. Feature C demonstrates a 500 

completed channel neck cut off for a double meander bend. Both features A and B appear to be developing during flood events, 

with the orthomosaic insets showing the overbank flow captured during a flood event and the resulting channel position post 
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flood for feature B. This implies a consistent pattern in new channel development that occurs during successive overbank flow 

events.  

 505 

 

Figure 5 Historical analysis of avulsion development across the floodplain. The top panel shows two developing channels (A and B) 

across the floodplain and one channel neck cut off (C). The bottom left panel (Channel A) shows how this development is influencing 

successive planform shift, and the bottom right panels (Channel B) demonstrates how this is linked to overbank flow. 

 510 
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4.2. Hydrologically Relevant Trait Analysis 

4.2.1. Extraction and Analysis of Traits 

The QSM analysis appears to output visually sensible results and produce models appropriate for the vegetation being 

modelling (see Figure 2). Table 4 shows the standard deviation of a selection of QSM metrics as a percentage of the mean 

value. The repeat modelling was more consistent for larger vegetation, with lower relative standard deviations. However, for 515 

some metrics such as number of branches, herbaceous plants with few branches may be adversely affecting the results. For 

example, plants with 5 stems having errors of +/- 1 branch is a 20% difference, whereas for 20 stems this is only 5%. Overall, 

model repeats appear to have good agreement with one another, and provide a basis for separating out vegetation with similar 

hydraulic functional traits. 

 520 

Table 4 Standard deviations in trait values as a percentage of the mean values for herbaceous and tree guilds. Guilds aggregated to 

include all herbaceous and tree data. Expressed as a percentage of mean due to the varying scales of data between the two guilds. 

 

 

Figure 6 shows the PCA plots of herbaceous vegetation metrics from the TLS scans (A) and woody vegetation metrics from 525 

the UAV-LS scans (B). It is clear that some separation of points through dominant metrics is possible, with both plots 

exhibiting two principal components capable of separating the defined guilds. Panel A shows the PCA plot for herbaceous 

vegetation. Height is a clear component between each guild, as well as volume. Although the number of branches was not a 

key component for separating guilds, branches per unit height explained some of the variability in the data. Taller plants may 

have a similar number of branches, and so accounting for plant height produces a density of branches independent of size to 530 

help explain plant structure. Of the four identified components, only the height is identifiable from the UAV-LS data for 

upscaling, however, point density and spectral properties may improve guild separation. Panel B shows the PCA plot for 

woody vegetation. Height is less important in distinguishing the two guilds than for herbaceous vegetation, yet trees under or 

over certain heights are likely to be one guild or the other suggesting minimum and maximum threshold values. For separating 

guilds, the most important components appear to be DBH and vertical skew which was expected as this was the basis for initial 535 

guild classes. DBH cannot always be easily extracted from UAV-LS data if it is incomplete, therefore as the vertical 

distribution acts in the same component direction, this can be used as a potential method for differentiating guilds. There is 

however considerable overlap in both of these PCA plots for woody and herbaceous vegetation. There are dominant trends 

such as the DBH and plant height for separation, but there is considerable variation within the guilds for their QSM based 

metrics which may impact the final classification.  540 

 Height Number of Branches DBH Volume MBO 

Herbaceous Guilds 3.87 16.77 17.83 12.18 17.52 

Tree Guilds 1.16 8.79 15.58 12.89 15.00 
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Figure 6 PCA analysis of (A) herbaceous and (B) tree guilds to investigate differences in trait characteristics. Lines indicate direction 

of each variable that explains variation in the data. 

4.2.2. Linking PCA Clusters to Reach Scale UAV-LS Data 545 

Figure 7 shows the results of the seasonal analysis of different variables derived from UAV-LS and UAV-MS imagery for 

each of the guild classes. There are clear variables which can separate different guilds with ease, for example the height of the 

canopy is a key indicator between woody, herbaceous, shrub, and grass guilds. Separating out similar guilds does appear to be 

more nuanced. The High DBH and Low DBH woody guilds both have very similar values and seasonal patterns of changes in 

NDVI values as well as in their height. This is unsurprising as the PCA analysis showed, with height not a dominant factor in 550 

explaining variation with numerous samples showing crossover. Vertical skew did show guild separation, with the samples 

used for QSM analysis collected in leaf off conditions. Figure 7 does suggest that changes in winter skew are visible between 

the two guilds, with a smaller amount of crossover as expected. Spring, summer, and autumn skewness is less informative, 

likely due to leaf on conditions effecting full tree reconstruction, with higher variability in results between the sample areas.  

 555 

Separating out herbaceous guilds is also a challenge. Elevation values for single stemmed herbs are more variable and cross 

over in to grasses and multi-branching herbs. However, the mean elevation values are higher in line with the PCA analysis and 

may enable herbaceous guild separation. Likewise, the average skew values help to differentiate between classes, but again 

the variability in the data suggests it is harder to separate by structural content alone. Conversely, spectral data shows great 
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promise in differentiating between guilds. Both the absolute values between herbaceous guilds show different as well as their 560 

seasonal patterns especially when utilising the red edge band for NDVI calculations.  

 

Figure 7 Results of seasonal analysis (X-axis within subplots) of different reach scale metrics (Y-axis) from UAV-LS and UAV-MS 

data for each identified guild. The point clouds at the top provide an example point cloud of each guild class, with canopy height 

ranges acquired from trait extraction for the four analysed guilds and from the reach scale analysis for the remaining grass and 565 
shrub guilds. Error bars indicate one standard deviation around the mean, CHM (Canopy Height Model) is given in metres, IR 

refers to Infra-Red and RE to Red-Edge bands in the NDVI calculations.    
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4.2.3. Creation of Seasonal Reach Scale Guilds Maps 

The resultant classification from guild classification can be shown in Figure 8 with many areas being classified as expected. 

There appears to be an over classification of the branching shrubs class based on initial comparisons with ortho-imagery, 570 

whereby the edges of larger vegetation and some predominantly grass regions appear to have been misclassified. This may be 

due to the large variation in structural and spectral characteristics of this guild which were less well accounted for. Herbaceous 

guilds were predicted in areas that were expected, in mobile areas of the channel were larger vegetation would find it more 

challenging to establish. The out-of-bag accuracy score when training the random forest classifier with 300 trees was 87.2%. 

Figure 9 A shows the importance of each band in the classifier, with structural elements proving key in separating guilds, 575 

especially using summer standard deviation of point elevations. The near infra-red band and winter standard deviation are the 

next most important elements, with the remaining individual spectral bands providing a smaller contribution to the 

classification. The higher importance of the two NDVI layers implies that providing the classifier with analysed image data is 

more useful than individual bands alone. Likewise, the canopy models alone are less informative than the variation in 

elevations when detecting guilds, supporting the use of manipulated rather than simple metrics to help improve classification. 580 

 

The confusion matrix can be seen in Figure 9 B comparing the number of check points that are correctly and incorrectly 

predicted. The overall model accuracy is 80%, lower than the out-of-bag prediction. However, this is not surprising as training 

areas were delineated based on complete structural profiles for the QSM analysis and the total number of samples used for 

training was small relative to the possible variation across the reach. There was a general over classification of points as grass 585 

guild, with only one grass control point incorrectly classed as branching herbs. Branching herbs which are more detectable 

from imagery and likely to return more laser scan points were classified reasonably well, only being misclassified as grass.   

 

Figure 8 Resulting classification from reach scale analysis for the areas covered by both UAV-LS and UAV-MS data. Note the over 

classification of shrubs and bushes, especially at the edge of larger wooded guilds. 590 
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Figure 9 Individual band importance in the final classification (A) and confusion matrix (B) from the accuracy assessment. The band 

importance represents the contribution of an individual layer to the final classification. The confusion matrix demonstrates for which 

guilds the classification struggled, showing an over-classification of grasses and the poor detection of single stem herbs. The overall 

classification accuracy was 80%. 595 

Single branching herbs however were relatively poorly classified (50% accuracy), being misclassified as grass, branching 

herbs, and even water. However, their narrow structure and sparse spacing make them hard to identify from coarser imagery 

and they return fewer laser scan points. This class also exhibited the greatest variation in values when using reach scale metrics 

to evaluate guild samples. Shrubs were predominantly misclassified as branching herbs and grass, this may be due to the object 

segmentation not always isolating complete plants or including surrounding ground points which may have affected the 600 

classification. Low DBH trees with a top skew were classified well by the model, most likely due to their larger heights and 

winter skew, whereas higher DBH trees were misclassified as both low DBH trees and grass. The former likely due to the 

difficulty in separating out these two guilds which have subtle differences in certain classification layers such as winter skew, 

and the latter from surrounding data being included in an object likely from shadowing continuing an object outside its true 

bounds. However, of all 20 tree check points, only one was incorrectly classified as a guild with clearly different traits, a High 605 

DBH Tree as Grass (see Figure 9). 

4.3. Morphological Change 

As is expected, the majority of morphological change occurs over winter months when there are high flows (Figure 10). 

Conversely, over periods of lower flow during the summer both the extent and magnitude of change is reduced. Throughout 

the first winter period erosion occurs on the outer bank edges with fairly consistent planform evolution throughout the reach. 610 

Deposition is evident throughout the entire reach, however erosion is considerably more dominant than deposition, with almost 
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14,000 m3
 of net erosion. The second winter appears to have more localised effects on morphology, with clear channel 

reshaping through the upper half of the study area. This has led to considerable deposition on both sides of the channel in areas 

of previously active erosion as well as localised erosional hot spots (~23,000 m3 net erosion). Both histograms within the 

winter seasons show a dominance in erosion overall. This is in line with previous long-term analysis which shows this as an 615 

area of high mobility with previous channel reshaping occurring. Over both winters, morphological change in the tree 

dominated downstream reach has undergone similar levels of change with areas or erosion and deposition influenced by the  

 

 

Figure 10 Morphological change throughout the monitoring period, showing the spatial variation in erosion and deposition as well 620 
as the net change in sediment. Note that February 20 – July 2020 is a composite DEM of difference consisting of comparisons between 

February and July to the left of the dashed line and February to September to the right of it. In July, only half of the survey area 

was captured. The stability of the reach over summer (July to September) justifies attributing change to the February – July result. 

The histograms adjacent to each time period show the distribution of magnitude of change, and whether this tends to be favouring 

net erosion or deposition.   625 
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presence of large vegetation. Both summer periods have a greater degree of stability, with erosion and deposition taking place 

but in lower magnitudes. This is consistent throughout the reach with no hotspot areas of either deposition or erosion, with 

deposition showing to be more dominant overall. 

5. DISCUSSION 630 

5.1. Multi-Decadal Evolution 

The multi-decadal evolution for this reach is complex and analysis of the formation of new channels implies that flood events 

might be a key control on the switching from one channel to another and the reoccupation of former channels. It is not possible 

to isolate a single variable that may cause such switches to take place, such as particular flow thresholds, baseline conditions, 

vegetation, or soil characteristics. However, it does appear that areas influenced by large vegetation experience less localised 635 

bank evolution, with the vegetation constraining the channel to some degree. This does not appear to stop large switches in 

channel position into or away from vegetated sections. This implies that vegetation is playing a role in the stabilisation of 

channels up to some, as yet unidentifiable, threshold. The reoccupation of former channels implies that vegetation plays a 

lesser role than topography in these conditions, suggesting that whilst vegetation can have controls on channel evolution, these 

eco-geomorphic feedbacks are locale and flow condition dependent. This supports the concept of vegetation acting as river 640 

system engineers and providing an influence on channel morphology (Gurnell, 2014) and that varying vegetation densities 

may be impacting the resistance to morphological evolution (Bertoldi et al., 2011). Therefore, at a decadal scale, although 

vegetation may not be the sole control on planform evolution, it is shown to be an important factor in this reach of the River 

Teme. 

5.2. Trait Extraction and Guild Formation 645 

Current measurements of plant functional traits are still predominantly ground based and therefore limited by on site access 

(Palmquist et al., 2019), requiring extensive sampling to extract enough data to create guilds relevant to a particular study (e.g. 

Diehl et al., 2017; Hortobágyi et al., 2017; Stromberg and Merritt, 2016). Remote sensing of these traits is therefore a 

potentially novel way to collect data across large areas, depending on the vegetation size and methods of data collection. 

Although no ground truth data relating to traits was collected in the field, the assessment of variability in model construction 650 

suggests that the final cylindrical models were of good fit for the point clouds collected. This suggests that the use of remote 

sensing to collect structural trait data has an important role to play in eco-geomorphic research moving forward, especially 

once trade-offs in terms of time and spatial extent are accounted for.  

 

The use of pre-determined rather than site specific guilds was a method employed by Butterfield et al. (2020) on the basis of 655 

guilds outlined in Diehl et al. (2017). The sites used in both of these studies were similar, and the application to a temperate 
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UK based site is challenging. However, the comparatively smaller sample size used in this study, and the lack of a 

comprehensive guilds list for riparian vegetation, made using predetermined guilds described in Diehl et al. (2017) and O'hare 

et al. (2016) justified. The lack of suitable ultra-high-resolution data reduced the number of herbaceous guilds to two, on which 

most distinction could be observed. The variation in woody vegetation created two guilds within this single previously outlined 660 

guild, as they were likely to have different hydraulic effect traits. This basis appears to have proved effective with differences 

in structural characteristics which are likely to impact flow and subsequent morphology noted between the guilds during PCA 

analysis. Predominantly single stemmed herbs were taller, likely due to their improved structural standing, and although the 

number of branches was similar the number of branches per unit height was different. A taller, stronger, and less branching 

herb is going to have a distinctly different impact than a shorter more flexible one (Nepf and Vivoni, 2000; Järvelä, 2004; 665 

Sand-Jensen, 2008). Being able to differentiate successfully between these two highlights the success of the survey and trait 

extraction methods. Likewise, the difference in flow conditions between low DBH trees that are closely packed to less densely 

packed high DBH trees may show a resemblance to the influence found at smaller scales on plant density (Järvelä, 2002b; Kim 

and Stoesser, 2011). The relationship between DBH and vertical skew is not surprising; considering the higher plant spacing 

density the competition for space is likely higher, resulting in more mass higher up the tree profile. As plants cannot yet be 670 

easily differentiated by their DBH, using vertical skew gives promising results for upscaling to larger areas whereby ALS 

surveys may be able to differentiate between woody guilds for better informed hydrological analysis.  

 

However, UAV-LS has been shown to overestimate canopy reconstruction volume (Brede et al., 2019), which mirrors the over 

complexity demonstrated in Figure 2 (QSM Cylinder Model) with some awkwardly orientated cylinders. Extracting traits using 675 

remote sensing is novel and can outcompete ground-based methods for coverage but is not yet likely to match the accuracy 

and interpretive ability of in-field measurements. Moreover, use of TLS is highly localised with a limit to the survey extent 

that can be captured (Lague, 2020), meaning only a small number of samples can be analysed which may not reflect the full 

variation in vegetation morphology from differing hydrological and environmental conditions. The UAV-LS data, although 

covering more ground, does take significant levels of time to post-process and extract multiple individual vegetation models, 680 

although as the spatial extent of coverage increases, the time gains improve as the same vegetation models can be used to 

classify increasingly larger sites. Algorithms which can extract traits and classify large areas are likely to improve with the 

increasing availability of very high-grade commercial UAV-LS surveying equipment in much the same way that SfM methods 

developed, beginning to rival the resolution and accuracy of ground-based TLS.  

 685 

Currently, UAV remote sensing methods can only obtain above ground structural traits, and although these make up a 

significant component of hydrologically relevant traits, they do eliminate the collection of traits such as root structure, strength, 

and plant flexibility. Both UAV-LS and TLS also struggle to capture the complex structures of shrubs, with TLS requiring too 

many scans to resolve the structure of enough samples and UAV-LS having too low point density and canopy penetration for 
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such complex branching. However, methods pioneered by Manners et al. (2013) may help to overcome this by relating vertical 690 

profiles from TLS and ALS data to enable upscaling to larger extents. 

5.3. Reach Scale Guild mapping 

The benefits of remote sensing of plant traits does not come from individual plant analysis but from upscaling to larger extents. 

Using the same datasets provides continuity between both the individual analysis and reach wide guilds. Finding common 

features of defined guilds is more computationally effective than analysing individual plants throughout the reach at present. 695 

Using structural characteristics of the point cloud alongside spectral properties across time allows the absolute and temporal 

patterns of each layer to enhance guild classification. It is clear that distinctive separation between guild types can initially be 

made on canopy height, with this providing the clearest initial separation. The need for seasonal data is emphasised by the 

herbaceous guilds, whereby height is a useful separator but has large variability, whereas winter and spring NDVI values are 

more effective, supporting previous work emphasising the need for seasonal data to improve eco-geomorphic research 700 

(Nallaperuma and Asaeda, 2020; Bertoldi et al., 2011). Variations in NDVI were distinct between several guilds, both in 

absolute values and seasonal variation. Single stemmed herbs appear to be more seasonal, with lower winter values than multi 

stemmed herbs, whereas shrubs NDVI experience a dip in spring surveys as a consequence of flowering affecting spectral 

properties. When investigating differences in woody guilds, winter data collection is key, as in leaf off conditions the full tree 

structure is captured in more detail and so differences in skew which are related to DBH are better captured. Later in the year, 705 

these variables become more overlapped between guilds with greater variation. Therefore, the timing of data collection will 

likely impact classification results, with some guilds being better separated at different times of the year. For these methods to 

be applied elsewhere, it therefore follows that a seasonal monitoring approach is required.  

 

The use of random forest classification for this study site has been successful and builds on the growing body of research for 710 

their application to high resolution classifications (Adelabu and Dube, 2015; Chan and Paelinckx, 2008; Adam and Mutanga, 

2009). The misclassifications from the random forest classifier are in line with misclassifications experienced by Butterfield 

et al. (2020) when using multispectral imagery alone, with most misclassifications happening in guilds adjacent and most 

similar to the true class. Woody guilds appear to be buffered by shrub guilds, potentially resulting from the image segmentation 

not delineating the vegetation edge successfully. These locations are likely to have lower relative heights and so be 715 

misclassified as shrubs, whereas a better image segmentation may avoid these issues.  

 

The resulting classification accuracy (Figure 8 and Figure 9B) shows promise for linking local scale trait modelling to larger 

guilds, with good separation between broad guilds and promising initial results for separation between similar guilds. The 

presence of herbaceous species in the active meandering section is as expected, as these are more adaptable to changing and 720 

flood conditions whilst larger woody species are seen in more stable sections of the river when compared to the historical 

change, as these species require more stable hydraulic conditions (Kyle and Leishman, 2009; Stromberg and Merritt, 2016; 
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Aguiar et al., 2018). The classification herein advances work by (Butterfield et al., 2020) who used imagery to classify species 

and subsequently assign guilds, whereas this method uses the structural and spectral characteristics to designate the spatial 

distribution of guilds, removing the species identification component. This is important as the same species may display 725 

varying traits-based on their proximity to the channel (Hortobágyi et al., 2017) and as such, using the physical characteristics 

of plants can be seen as an advantage. The use of image segmentation to delineate similar areas also helps to reduce the salt 

and pepper effect of high-resolution data classifications and so provides an effective method when looking at high resolution 

structural and spectral features of a reach.  

5.4. Eco-Geomorphic Change 730 

Given the hydrology of the river, the majority of morphological change occurs over the winter months as expected. The 

temporal resolution of the surveys is not capable of picking out whether this is the result of a single flow event or continuously 

high flows, however it is clear that significant geomorphological re-profiling can occur within a single winter. There appears 

to be more localised evolution in the second winter of surveying whereas the first winter appears to show more continual 

response throughout the reach. The singular lower peak in water levels for the second winter as opposed to several higher 735 

peaks in the first (see Figure 1) suggests that priming may be more important for large avulsions, whereby a singular flow 

event of lower magnitude can incite a greater resultant planform shift. The response in summer is much smaller both in terms 

of deposition and erosion, with little morphological change occurring unsurprisingly. What change does occur may be from 

reductions in bank support from high flows leaving banks exposed to collapse (Zhao et al., 2020). The largest areas of change 

appear to be within the reaches absent of large vegetation, with the stable patches aligning well with those identified in the 740 

decadal analysis.  

 

It is difficult to extract any definitive link between the types of morphological change occurring and the underlying vegetation. 

It is clear from the historical analysis that although vegetation plays a role in morphological evolution, it is not the sole driver 

of change. There are also a number of unique features in the reach which are hard to categorise or group, morphologically 745 

speaking, with different vegetation patterns, hydraulic conditions, and pre-existing morphology adding complexity. However, 

by grouping guilds based on their potential ability to influence vegetation, and categorising erosion and deposition into bands 

of morphological change in either direction, it is possible to visualise the links between vegetation and morphological change. 

 

Figure 11 shows a bivariate classification of vegetation stability and morphological evolution. Grasses and herbaceous guilds 750 

are grouped along with bars as having the least morphological stability, followed by shrubs, and then woody guilds. 

Morphological evolution was split into 0 to 1 m of change, 1 to 2 m of change, and greater than 2m of change, which were 

chosen to represent the majority of change values. It is clear that most of the reach is shown in the lighter colour tones indicating 

low magnitudes of morphological change. However, areas with higher morphological change begin to become more apparent 

for areas of little vegetative stability, for example on the outer meander banks in several places. Darker oranges and purples  755 
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Figure 11 Bivariate classification of eco-geomorphic process-form interactions, with examples highlighting the stabilising effect of 

vegetation. The bivariate colour scheme shows the impact of the likely increase in stability from vegetation (red to green) and the 

increasing magnitudes of geomorphic change (light to dark shades). This allows the presence and potential influence of vegetation 

to be mapped together. Vegetation stability was classed by grouping grasses and herbs, shrubs and bushes, and different woody tree 760 
guilds. Morphological change was split into 0-1 m, 1-2 m, and greater than 2 m of change, regardless of whether this was erosion or 

deposition. Insets show patterns of erosion and deposition against the presence and absence of larger vegetation across various 

sections of the reach. 

are dominant in comparison to the areas of dark green. Although compared to the overall areas of each vegetation stability 

class you would expect fewer dark green regions, there is clear evidence of light green patches where dark green patches may 765 

be expected had the vegetations stabilising effect not been present. 

 

Some of these sections are highlighted in the panels of Figure 11 identifying regions where erosion may be expected but is not 

present. The left-hand panel shows a double meander bend, the first which has a heavily vegetated bank and the second which 

has little established vegetation. The total change in these two sections is dominated by erosion in the second meander bend 770 

which has a similar curvature to the first. The second bend does contain a knickpoint caused by overland flow which is not 

present in the first bend, yet the bend exit also shows far less erosion. Therefore, it is suggested that this dense patch of 

vegetation is having some stabilising effect, with soil cohesion increased, and flow velocities reduced. The central panel is just 

downstream and is constricted in planform by established vegetation, which despite substantial reworking across the survey 

period has remained relatively stable and exhibits deposition close to the vegetation on the left-hand bank. Subsequently, not 775 

only is the vegetation acting to stabilise banks, but likely slow the flow to encourage deposition in this area. Finally, the right-

hand panel at the entrance to the region dominated by woody guilds is characterised by a large cut bank several metres in 

height that is progressively eroding, with the bulk of this erosion occurring just before entry into this woody guild dominated 

section. The vegetation on the outer bank is likely to play a stabilising role on the bank, until undercutting and removal of 

these trees occurs. There is evidence of such undercutting in action (Figure 12), suggesting that vegetation provides additional 780 

stability only as far as a given threshold, as was suggested in relation to the long-term decadal analysis.  
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6. Remote Sensing of Plant Functional Traits: What Next? 

One of the key benefits of using remote sensing is the ability to quickly capture datasets over scales not possible with ground-

based surveying. It is clear from the analysis herein that although the collection of data is fairly straightforward, the subsequent 

post processing time has to be taken into account. Yet once data has been processed, and the seasonality of the data acquired 785 

through spectral and structural characteristics, the success of the classification suggests that guilds can be classified for other 

sites that contain similar guilds, such as most temperate UK rivers which display these prominent guild types (O'hare et al., 

2016), in much the same way as other research has used previous guild classes for similar environmental conditions (e.g. 

Butterfield et al., 2020). It also allows guild analysis for regions that are more remote and less accessible to more traditional 

surveys. This improves the applicability and usability of traits methods when compared to more traditional taxonomic 790 

vegetation discretisation approaches. 

 

Combining vegetation structural and spectral data provides the opportunity to upscale to datasets collected via other platforms, 

with high resolution satellite imagery and ALS datasets offering the potential to improve the impact of such classification 

methods. This also allows the direct measurement of trait variability rather than investigating species variability and 795 

subsequently linking these to traits. The use of purely species data may remove some of the nuance in their traits, based on 

location, and so limit the applicability to fluvial research. Currently, the main difficulty with traits-based analysis is getting 

adequate data over large enough areas, this methodology provides a potential starting point from which a set of tools to classify 

different hydrologically relevant guilds across larger areas can be based. This may overcome some of the scale issues in linking 

guilds to geomorphic change which are currently known. Currently most large-scale studies link evolution to vegetation 800 

presence, and small studies are too localised to be applicable across wider areas. This research, although not large enough to 

be able to link guilds statistically to morphological evolution, demonstrates that by upscaling to combine enough hydraulic 

and morphological conditions may allow this to be possible.  

 

It is important to understand how the role of guilds may change. Figure 12 shows a pre and post image of the channel in this 805 

section, suggesting large scale mobilisation of large wood. Being able to identify these changes is key, because the functional 

role large vegetation plays in the river corridor changes depending on its life stage. Our data suggests that large trees helps to 

stabilise the channel, likely through increases in soil cohesion and slowing flows during the flood stage. However, once a tree 

is undermined by erosion and collapses to form large woody debris, it provides an increase in in channel roughness and 

turbulence, diverts flow, and leads to knock on morphological impacts (Jeffries et al., 2003; Sear et al., 2010). It is therefore 810 

important to consider that guilds and their influence are not stationary, but that they are dynamic through time both in terms 

of seasonality and life cycles. This must be considered when looking at the implications of guild dispersal and modelling, as 

the impact of changing from one state to another needs to be accounted for. Although the temporal evolution of guilds was not  
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Figure 12 The impact of undercutting within a heavily wooded reach, highlighting how vegetation and river flow interactions change 815 
through a plant’s life cycle. The fallen trees create key members which form debris dams, leading to greater flow diversions, localised 

flooding and scour points, changing the role of vegetation from one of offering stability to inducing erosion.  

investigated, this presents itself as an area of future work, and the possibility to investigate traits-based methods to classify 

woody debris based on the surrounding vegetation structures. 

 820 

The classification inputs predominantly focussed on structural and spectral characteristics of the vegetation; however it is 

widely shown that traits vary dependent on their underlying hydraulic and environmental conditions. It is therefore not 

inconceivable that such metrics may be used in future, such as to show inundation frequency or extent, to determine the likely 

composition of traits in these regions. This may take a more holistic approach and in cases where less structural data is present, 

allow for a more robust classification of guilds. 825 

 

There are however several limitations to the methods. Variations in traits undetectable from TLS or UAV-LS methods will 

limit the ability to detect features for certain types of guild, such as those too small to resolve including different grasses or 

those with too complex structures, such as branching shrubs. Both of these are prominent features of UK river corridors and 

so their ommision from the analysis is a limitation. However, they can still be mapped but would require in field trait collection 830 

or species identification for the use of trait databases (e.g. TRY (Kattge et al., 2020)). The remote sensing equipment used for 

this research is not cheap (see Tomsett and Leyland, 2021, noting that our custom system is considerably more economical 

than commercial off-the-shelf packages) and requires a degree of expertise in processing and manipulating the data. However, 

commercial improvements are seeing more easy to deploy, cheaper, sensor systems being brought to the market, likely to have 

a positive impact on eco-geomorphic research in terms of allowing broad uptake of the methods developed herein for applied 835 

monitoring and river corridor management. 
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7. Conclusion 

We have presented a novel method for collecting and extracting vegetation functional trait data that is relevant to eco-

geomprohic research. Herein we used  UAV-LS and UAV-MS datasets to advance our ability to collect high resolution 4D 

datasets, improving the spatial and temporal resolution of riparian vegetation monitoring and geomorphic change detection, 840 

allowing us to gain an insight into how ripairan vegetation evolves and to better discretise the spatial variation of vegetation 

in a manner that is applicable and scaleable over large river reaches. As such, we have been able to provide insight in to how 

traits-based frameworks for vegetation analysis can be linked to trends and patterns in morpholoigical evolution at scales that 

were previously not attainable.  We have also outlined the limits for current trait extraction from remote sensing techniques. 

UAV-LS can characterise larger vegetation structures and be used to upscale local TLS models, but even TLS is limited in its 845 

ability to characterise the spatial complexity of some vegetation traits at the resolution required to link with geomorphic change. 

This builds on current research which has analysed ecogeomorphic interactions on small river sections, or used species based 

imagery classification to determine large variations. The use of remote sensing allows data to be captured, analysed, related to 

broader dataset statistics, and upscaled to include larger reaches. Simultanously, the same data allows for the collection of 

topographic responses to flow events which can be linked to the variation in vegetation. This analysis uses seasonality to 850 

improve the classification of guilds via chages in structural and spectral properties, advancing current methods available to the 

ecogeomrophology community. Despite some noted limitations, this research represents an important step towards better 

discretisation of traits across greater scales and the furthers the possibility of implementing widespread traits-based research. 

 

Future research is needed to investigate the limits of various remote sensing methods in relation to their ability to be used for 855 

traits extarction and thereby improve understanding of a systems ecogeomorphic evolution. Of particular note is the currently 

untapped resource that exists in relation to coarse scale global coverage of land cover from which vegeation traits could be 

extracted using methods such as those presented herein to link the scales of analysis. These methods offer a bridge across 

sclaes, within which to consider the ways in which riparian vegetation within the river corridor is mapped, evaluated, and 

modelled through time, with implications for establishing new insights into the functioning of eco-geomorphic systems across 860 

scales ranging from river sections to intercontinental basins. 

 

 

 

 865 

 

 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



35 

 

Data Availability 

The raw data used in this analysis is available at https://zenodo.org/record/5529739#.YbDLBtDP1PY 

Author Contributions 870 

Study conceptualisation was done by C.T. and J.L. Data collection was undertaken by C.T. and J.L. Processing and data 

analysis was performed by C.T., with supervision from J.L. Original draft preparation by C.T. with reviewing and editing by 

C.T. and J.L. All authors have read and agreed to the published version of the manuscript. 

Competing Interests 

The authors declare that they have no conflict of interest. 875 

Acknowledgements 

This research was funded by the Natural Environment Research Council (NERC), grant number 1937474 via PhD studentship 

support to CT as part of the Next Generation Unmanned System Science (NEXUSS) Centre for Doctoral Training, hosted at 

University of Southampton. 

8. References 880 

Abelleira Martínez, O. J., Fremier, A. K., Günter, S., Ramos Bendaña, Z., Vierling, L., Galbraith, S. M., Bosque-Pérez, N. A., 

and Ordoñez, J. C.: Scaling up functional traits for ecosystem services with remote sensing: concepts and methods, Ecol. Evol., 

6, 4359-4371, https://doi.org/10.1002/ece3.2201, 2016. 

Adam, E. and Mutanga, O.: Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field 

spectrometry, ISPRS Journal of Photogrammetry and Remote Sensing, 64, 612-620, 885 

https://doi.org/10.1016/j.isprsjprs.2009.04.004, 2009. 

Adelabu, S. and Dube, T.: Employing ground and satellite-based QuickBird data and random forest to discriminate five tree 

species in a Southern African Woodland, Geocarto International, 30, 457-471, 10.1080/10106049.2014.885589, 2015. 

Aguiar, F. C., Segurado, P., Martins, M. J., Bejarano, M. D., Nilsson, C., Portela, M. M., and Merritt, D. M.: The abundance 

and distribution of guilds of riparian woody plants change in response to land use and flow regulation, J. Appl. Ecol., 55, 2227-890 

2240, 10.1111/1365-2664.13110, 2018. 

Aguirre-Gutiérrez, J., Rifai, S., Shenkin, A., Oliveras, I., Bentley, L. P., Svátek, M., Girardin, C. A. J., Both, S., Riutta, T., 

Berenguer, E., Kissling, W. D., Bauman, D., Raab, N., Moore, S., Farfan-Rios, W., Figueiredo, A. E. S., Reis, S. M., Ndong, 

J. E., Ondo, F. E., N'Ssi Bengone, N., Mihindou, V., Moraes de Seixas, M. M., Adu-Bredu, S., Abernethy, K., Asner, G. P., 

Barlow, J., Burslem, D. F. R. P., Coomes, D. A., Cernusak, L. A., Dargie, G. C., Enquist, B. J., Ewers, R. M., Ferreira, J., 895 

Jeffery, K. J., Joly, C. A., Lewis, S. L., Marimon-Junior, B. H., Martin, R. E., Morandi, P. S., Phillips, O. L., Quesada, C. A., 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



36 

 

Salinas, N., Schwantes Marimon, B., Silman, M., Teh, Y. A., White, L. J. T., and Malhi, Y.: Pantropical modelling of canopy 

functional traits using Sentinel-2 remote sensing data, Remote Sens. Environ., 252, 112122, 

https://doi.org/10.1016/j.rse.2020.112122, 2021. 

Al-Ali, Z. M., Abdullah, M. M., Asadalla, N. B., and Gholoum, M.: A comparative study of remote sensing classification 900 

methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor, Environ. Monit. Assess., 

192, 389, 10.1007/s10661-020-08330-1, 2020. 

Alaibakhsh, M., Emelyanova, I., Barron, O., Sims, N., Khiadani, M., and Mohyeddin, A.: Delineation of riparian vegetation 

from Landsat multi-temporal imagery using PCA, Hydrol. Process., 31, 800-810, https://doi.org/10.1002/hyp.11054, 2017. 

APX-15 UAV Datasheet: https://www.applanix.com/downloads/products/specs/APX15_DS_NEW_0408_YW.pdf, last 905 

access: 25/01/2018. 

Armanini, A., Righetti, M., and Grisenti, P.: Direct measurement of vegetation resistance in prototype scale, Journal of 

Hydraulic Research, 43, 481-487, 10.1080/00221680509500146, 2005. 

Baattrup-Pedersen, A., Larsen, S. E., and Riis, T.: Long-term effects of stream management on plant communities in two 

Danish lowland streams, Hydrobiologia, 481, 33-45, 10.1023/a:1021296519187, 2002. 910 

Baattrup-Pedersen, A., Göthe, E., Riis, T., and O'Hare, M. T.: Functional trait composition of aquatic plants can serve to 

disentangle multiple interacting stressors in lowland streams, Science of The Total Environment, 543, 230-238, 

https://doi.org/10.1016/j.scitotenv.2015.11.027, 2016. 

Baattrup-Pedersen, A., Gothe, E., Larsen, S. E., O'Hare, M., Birk, S., Riis, T., and Friberg, N.: Plant trait characteristics vary 

with size and eutrophication in European lowland streams, J. Appl. Ecol., 52, 1617-1628, 10.1111/1365-2664.12509, 2015. 915 

Baattrup-Pedersen, A., Garssen, A., Gothe, E., Hoffmann, C. C., Oddershede, A., Riis, T., van Bodegom, P. M., Larsen, S. E., 

and Soons, M.: Structural and functional responses of plant communities to climate change-mediated alterations in the 

hydrology of riparian areas in temperate Europe, Ecol. Evol., 8, 4120-4135, 10.1002/ece3.3973, 2018. 

Bertoldi, W., Drake, N. A., and Gurnell, A. M.: Interactions between river flows and colonizing vegetation on a braided river: 

exploring spatial and temporal dynamics in riparian vegetation cover using satellite data, Earth Surf. Process. Landf., 36, 1474-920 

1486, https://doi.org/10.1002/esp.2166, 2011. 

Blöschl, G., Ardoin-Bardin, S., Bonell, M., Dorninger, M., Goodrich, D., Gutknecht, D., Matamoros, D., Merz, B., Shand, P., 

and Szolgay, J.: At what scales do climate variability and land cover change impact on flooding and low flows?, Hydrol. 

Process., 21, 1241-1247, https://doi.org/10.1002/hyp.6669, 2007. 

Boothroyd, R., Hardy, R., Warburton, J., and Marjoribanks, T.: Modeling complex flow structures and drag around a 925 

submerged plant of varied posture, Water Resources Research, 53, 2877-2901, 10.1002/2016wr020186, 2017. 

Box, E.: Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography, 1, Springer Netherlands, 

10.1007/978-94-009-8680-0, 1981. 

Box, E. O.: Plant functional types and climate at the global scale, Journal of Vegetation Science, 7, 309-320, 1996. 

Brasington, J., Vericat, D., and Rychkov, I.: Modeling river bed morphology, roughness, and surface sedimentology using 930 

high resolution terrestrial laser scanning, Water Resources Research, 48, 18, 10.1029/2012wr012223, 2012. 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



37 

 

Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H. M., Herold, M., and Kooistra, L.: Non-destructive tree 

volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR, Remote 

Sens. Environ., 233, 111355, https://doi.org/10.1016/j.rse.2019.111355, 2019. 

Brodu, N. and Lague, D.: 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality 935 

criterion: Applications in geomorphology, ISPRS Journal of Photogrammetry and Remote Sensing, 68, 121-134, 

https://doi.org/10.1016/j.isprsjprs.2012.01.006, 2012. 

Butterfield, B. J., Grams, P. E., Durning, L. E., Hazel, J., Palmquist, E. C., Ralston, B. E., and Sankey, J. B.: Associations 

between riparian plant morphological guilds and fluvial sediment dynamics along the regulated Colorado River in Grand 

Canyon, River Research and Applications, 36, 410-421, https://doi.org/10.1002/rra.3589, 2020. 940 

Chan, J. C.-W. and Paelinckx, D.: Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral 

band selection for ecotope mapping using airborne hyperspectral imagery, Remote Sens. Environ., 112, 2999-3011, 

https://doi.org/10.1016/j.rse.2008.02.011, 2008. 

Corenblit, D., Baas, A., Balke, T., Bouma, T., Fromard, F., Garófano-Gómez, V., González, E., Gurnell, A. M., Hortobágyi, 

B., Julien, F., Kim, D., Lambs, L., Stallins, J. A., Steiger, J., Tabacchi, E., and Walcker, R.: Engineer pioneer plants respond 945 

to and affect geomorphic constraints similarly along water–terrestrial interfaces world-wide, Global Ecology and 

Biogeography, 24, 1363-1376, 10.1111/geb.12373, 2015. 

De Bello, F., Lepš, J., and Sebastià, M. T.: Variations in species and functional plant diversity along climatic and grazing 

gradients, Ecography, 29, 801-810, 2006. 

De Doncker, L., Troch, P., Verhoeven, R., Bal, K., Desmet, N., and Meire, P.: Relation between resistance characteristics due 950 

to aquatic weed growth and the hydraulic capacity of the river Aa, River Research and Applications, 25, 1287-1303, 

https://doi.org/10.1002/rra.1240, 2009. 

Diehl, R. M., Merritt, D. M., Wilcox, A. C., and Scott, M. L.: Applying Functional Traits to Ecogeomorphic Processes in 

Riparian Ecosystems, Bioscience, 67, 729-743, 10.1093/biosci/bix080, 2017. 

Diehl, R. M., Wilcox, A. C., Merritt, D. M., Perkins, D. W., and Scott, J. A.: Development of an eco-geomorphic modeling 955 

framework to evaluate riparian ecosystem response to flow-regime changes, Ecological Engineering, 123, 112-126, 

https://doi.org/10.1016/j.ecoleng.2018.08.024, 2018. 

Dixon, S. J., Sambrook Smith, G. H., Best, J. L., Nicholas, A. P., Bull, J. M., Vardy, M. E., Sarker, M. H., and Goodbred, S.: 

The planform mobility of river channel confluences: Insights from analysis of remotely sensed imagery, Earth-Science 

Reviews, 176, 1-18, https://doi.org/10.1016/j.earscirev.2017.09.009, 2018. 960 

Duro, D. C., Franklin, S. E., and Dube, M. G.: A comparison of pixel-based and object-based image analysis with selected 

machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery, Remote Sens. 

Environ., 118, 259-272, 10.1016/j.rse.2011.11.020, 2012. 

EMLID: RTK GNSS modules for UAV mapping,  2021. 

ESRI: Imagery [Basemap], Maxar Imagery (28/09/2014), 2021. 965 

Fang, R. and Strimbu, B. M.: Comparison of Mature Douglas-Firs’ Crown Structures Developed with Two Quantitative 

Structural Models Using TLS Point Clouds for Neighboring Trees in a Natural Regime Stand, Remote Sensing, 11, 1661, 2019. 

Felzenszwalb, P. F. and Huttenlocher, D. P.: Efficient Graph-Based Image Segmentation, International Journal of Computer 

Vision, 59, 167-181, 10.1023/B:VISI.0000022288.19776.77, 2004. 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



38 

 

Follett, E. and Nepf, H.: Sediment patterns near a model patch of reedy emergent vegetation, Geomorphology, 179, 141–151, 970 

10.1016/j.geomorph.2012.08.006, 2012. 

Fox, G. A., Wilson, G. V., Simon, A., Langendoen, E. J., Akay, O., and Fuchs, J. W.: Measuring streambank erosion due to 

ground water seepage: correlation to bank pore water pressure, precipitation and stream stage, Earth Surf. Process. Landf., 32, 

1558-1573, 2007. 

Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., 975 

Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman, R., Papadimitriou, M., 

Papanastasis, V. P., Quested, H., Quétier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, J.-P., 

Thébault, A., Vile, D., and Zarovali, M. P.: Assessing the Effects of Land-use Change on Plant Traits, Communities and 

Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites, 

Annals of Botany, 99, 967-985, 10.1093/aob/mcl215, 2006. 980 

Gilvear, D., Tyler, A., and Davids, C.: Detection of estuarine and tidal river hydromorphology using hyper-spectral and LiDAR 

data: Forth estuary, Scotland, Estuar. Coast. Shelf Sci., 61, 379-392, 10.1016/j.ecss.2004.06.007, 2004. 

Google Earth Pro: River Teme, 52°21'28.96"N,   3° 4'12.82"W, elevation 180 m., 2021. 

Göthe, E., Timmermann, A., Januschke, K., and Baattrup-Pedersen, A.: Structural and functional responses of floodplain 

vegetation to stream ecosystem restoration, Hydrobiologia, 769, 79-92, 10.1007/s10750-015-2401-3, 2016. 985 

Göthe, E., Baattrup-Pedersen, A., Wiberg-Larsen, P., Graeber, D., Kristensen, E. A., and Friberg, N.: Environmental and 

spatial controls of taxonomic versus trait composition of stream biota, Freshwater Biology, 62, 397-413, 10.1111/fwb.12875, 

2017. 

Gupta, N., Atkinson, P. M., and Carling, P. A.: Decadal length changes in the fluvial planform of the River Ganga: bringing a 

mega-river to life with Landsat archives, Remote Sensing Letters, 4, 1-9, 10.1080/2150704X.2012.682658, 2013. 990 

Gurnell, A.: Plants as river system engineers, Earth Surf. Process. Landf., 39, 4-25, 2014. 

Hackenberg, J., Spiecker, H., Calders, K., Disney, M., and Raumonen, P.: SimpleTree —An Efficient Open Source Tool to 

Build Tree Models from TLS Clouds, Forests, 6, 4245-4294, 2015. 

Harvey, J. and Gooseff, M.: River corridor science: Hydrologic exchange and ecological consequences from bedforms to 

basins, Water Resources Research, 51, 6893-6922, doi:10.1002/2015WR017617, 2015. 995 

Henshaw, A. J., Gurnell, A. M., Bertoldi, W., and Drake, N. A.: An assessment of the degree to which Landsat TM data can 

support the assessment of fluvial dynamics, as revealed by changes in vegetation extent and channel position, along a large 

river, Geomorphology, 202, 74-85, 10.1016/j.geomorph.2013.01.011, 2013. 

Himmelstoss, E. A., Farris, A. S., Henderson, R. E., Kratzmann, M. G., Ergul, A., Zhang, O., Zichichi, J. L., and Thieler, E. 

R.: Digital Shoreline Analysis System (version 5.0),  2018. 1000 

Hortobágyi, B., Corenblit, D., Steiger, J., and Peiry, J.-L.: Niche construction within riparian corridors. Part I: Exploring 

biogeomorphic feedback windows of three pioneer riparian species (Allier River, France), Geomorphology, 305, 94-111, 

https://doi.org/10.1016/j.geomorph.2017.08.048, 2018. 

Hortobágyi, B., Corenblit, D., Ding, Z., Lambs, L., and Steiger, J.: Above-and belowground responses of Populus nigra L. to 

mechanical stress observed on the Allier River, France, Géomorphologie: relief, processus, environnement, 23, 219-231, 2017. 1005 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



39 

 

Houborg, R., Fisher, J. B., and Skidmore, A. K.: Advances in remote sensing of vegetation function and traits, International 

Journal of Applied Earth Observation and Geoinformation, 43, 1-6, https://doi.org/10.1016/j.jag.2015.06.001, 2015. 

Hughes, A. O.: Riparian management and stream bank erosion in New Zealand, New Zealand Journal of Marine and 

Freshwater Research, 50, 277-290, 10.1080/00288330.2015.1116449, 2016. 

Hupp, C. R. and Osterkamp, W.: Riparian vegetation and fluvial geomorphic processes, Geomorphology, 14, 277-295, 1996. 1010 

Jalonen, J., Järvelä, J., and Aberle, J.: Leaf area index as vegetation density measure for hydraulic analyses, Journal of 

Hydraulic Engineering, 139, 461-469, 2012. 

James, C. S., Goldbeck, U. K., Patini, A., and Jordanova, A. A.: Influence of foliage on flow resistance of emergent vegetation, 

Journal of Hydraulic Research, 46, 536-542, 10.3826/jhr.2008.3177, 2008. 

Järvelä, J.: Determination of flow resistance of vegetated channel banks and floodplains, River Flow 2002, 311-318, 2002a. 1015 

Järvelä, J.: Flow resistance of flexible and stiff vegetation: a flume study with natural plants, Journal of Hydrology, 269, 44-

54, https://doi.org/10.1016/S0022-1694(02)00193-2, 2002b. 

Järvelä, J.: Determination of flow resistance caused by non‐submerged woody vegetation, Int. J. River Basin Manag., 2, 61-

70, 10.1080/15715124.2004.9635222, 2004. 

Jeffries, R., Darby, S. E., and Sear, D. A.: The influence of vegetation and organic debris on flood-plain sediment dynamics: 1020 

case study of a low-order stream in the New Forest, England, Geomorphology, 51, 61-80, https://doi.org/10.1016/S0169-

555X(02)00325-2, 2003. 

Kang, R. S.: GEOMORPHIC EFFECTS OF MOSSES IN A LOW-ORDER STREAM IN FAIRFAX COUNTY, VIRGINIA, 

Phys. Geogr., 33, 360-382, 10.2747/0272-3646.33.4.360, 2012. 

Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., and Wright, 1025 

I. J.: TRY–a global database of plant traits, Global change biology, 17, 2905-2935, 2011. 

Kattge, J. and Bönisch, G. and Díaz, S. and Lavorel, S. and Prentice, I. C. and Leadley, P. and Tautenhahn, S. and Werner, G. 

D. A. and Aakala, T. and Abedi, M. and Acosta, A. T. R. and Adamidis, G. C. and Adamson, K. and Aiba, M. and Albert, C. 

H. and Alcántara, J. M. and Alcázar C, C. and Aleixo, I. and Ali, H. and Amiaud, B. and Ammer, C. and Amoroso, M. M. and 

Anand, M. and Anderson, C. and Anten, N. and Antos, J. and Apgaua, D. M. G. and Ashman, T.-L. and Asmara, D. H. and 1030 

Asner, G. P. and Aspinwall, M. and Atkin, O. and Aubin, I. and Baastrup-Spohr, L. and Bahalkeh, K. and Bahn, M. and Baker, 

T. and Baker, W. J. and Bakker, J. P. and Baldocchi, D. and Baltzer, J. and Banerjee, A. and Baranger, A. and Barlow, J. and 

Barneche, D. R. and Baruch, Z. and Bastianelli, D. and Battles, J. and Bauerle, W. and Bauters, M. and Bazzato, E. and 

Beckmann, M. and Beeckman, H. and Beierkuhnlein, C. and Bekker, R. and Belfry, G. and Belluau, M. and Beloiu, M. and 

Benavides, R. and Benomar, L. and Berdugo-Lattke, M. L. and Berenguer, E. and Bergamin, R. and Bergmann, J. and 1035 

Bergmann Carlucci, M. and Berner, L. and Bernhardt-Römermann, M. and Bigler, C. and Bjorkman, A. D. and Blackman, C. 

and Blanco, C. and Blonder, B. and Blumenthal, D. and Bocanegra-González, K. T. and Boeckx, P. and Bohlman, S. and 

Böhning-Gaese, K. and Boisvert-Marsh, L. and Bond, W. and Bond-Lamberty, B. and Boom, A. and Boonman, C. C. F. and 

Bordin, K. and Boughton, E. H. and Boukili, V. and Bowman, D. M. J. S. and Bravo, S. and Brendel, M. R. and Broadley, M. 

R. and Brown, K. A. and Bruelheide, H. and Brumnich, F. and Bruun, H. H. and Bruy, D. and Buchanan, S. W. and Bucher, 1040 

S. F. and Buchmann, N. and Buitenwerf, R. and Bunker, D. E. and Bürger, J. and Burrascano, S. and Burslem, D. F. R. P. and 

Butterfield, B. J. and Byun, C. and Marques, M. and Scalon, M. C. and Caccianiga, M. and Cadotte, M. and Cailleret, M. and 

Camac, J. and Camarero, J. J. and Campany, C. and Campetella, G. and Campos, J. A. and Cano-Arboleda, L. and Canullo, R. 

and Carbognani, M. and Carvalho, F. and Casanoves, F. and Castagneyrol, B. and Catford, J. A. and Cavender-Bares, J. and 

Cerabolini, B. E. L. and Cervellini, M. and Chacón-Madrigal, E. and Chapin, K. and Chapin, F. S. and Chelli, S. and Chen, 1045 

S.-C. and Chen, A. and Cherubini, P. and Chianucci, F. and Choat, B. and Chung, K.-S. and Chytrý, M. and Ciccarelli, D. and 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



40 

 

Coll, L. and Collins, C. G. and Conti, L. and Coomes, D. and Cornelissen, J. H. C. and Cornwell, W. K. and Corona, P. and 

Coyea, M. and Craine, J. and Craven, D. and Cromsigt, J. P. G. M. and Csecserits, A. and Cufar, K. and Cuntz, M. and da 

Silva, A. C. and Dahlin, K. M. and Dainese, M. and Dalke, I. and Dalle Fratte, M. and Dang-Le, A. T. and Danihelka, J. and 

Dannoura, M. and Dawson, S. and de Beer, A. J. and De Frutos, A. and De Long, J. R. and Dechant, B. and Delagrange, S. 1050 

and Delpierre, N. and Derroire, G. and Dias, A. S. and Diaz-Toribio, M. H. and Dimitrakopoulos, P. G. and Dobrowolski, M. 

and Doktor, D. and Dřevojan, P. and Dong, N. and Dransfield, J. and Dressler, S. and Duarte, L. and Ducouret, E. and Dullinger, 

S. and Durka, W. and Duursma, R. and Dymova, O. and E-Vojtkó, A. and Eckstein, R. L. and Ejtehadi, H. and Elser, J. and 

Emilio, T. and Engemann, K. and Erfanian, M. B. and Erfmeier, A. and Esquivel-Muelbert, A. and Esser, G. and Estiarte, M. 

and Domingues, T. F. and Fagan, W. F. and Fagúndez, J. and Falster, D. S. and Fan, Y. and Fang, J. and Farris, E. and Fazlioglu, 1055 

F. and Feng, Y. and Fernandez-Mendez, F. and Ferrara, C. and Ferreira, J. and Fidelis, A. and Finegan, B. and Firn, J. and 

Flowers, T. J. and Flynn, D. F. B. and Fontana, V. and Forey, E. and Forgiarini, C. and François, L. and Frangipani, M. and 

Frank, D. and Frenette-Dussault, C. and Freschet, G. T. and Fry, E. L. and Fyllas, N. M. and Mazzochini, G. G. and Gachet, 

S. and Gallagher, R. and Ganade, G. and Ganga, F. and García-Palacios, P. and Gargaglione, V. and Garnier, E. and Garrido, 

J. L. and de Gasper, A. L. and Gea-Izquierdo, G. and Gibson, D. and Gillison, A. N. and Giroldo, A. and Glasenhardt, M.-C. 1060 

and Gleason, S. and Gliesch, M. and Goldberg, E. and Göldel, B. and Gonzalez-Akre, E. and Gonzalez-Andujar, J. L. and 

González-Melo, A. and González-Robles, A. and Graae, B. J. and Granda, E. and Graves, S. and Green, W. A. and Gregor, T. 

and Gross, N. and Guerin, G. R. and Günther, A. and Gutiérrez, A. G. and Haddock, L. and Haines, A. and Hall, J. and 

Hambuckers, A. and Han, W. and Harrison, S. P. and Hattingh, W. and Hawes, J. E. and He, T. and He, P. and Heberling, J. 

M. and Helm, A. and Hempel, S. and Hentschel, J. and Hérault, B. and Hereş, A.-M. and Herz, K. and Heuertz, M. and Hickler, 1065 

T. and Hietz, P. and Higuchi, P. and Hipp, A. L. and Hirons, A. and Hock, M. and Hogan, J. A. and Holl, K. and Honnay, O. 

and Hornstein, D. and Hou, E. and Hough-Snee, N. and Hovstad, K. A. and Ichie, T. and Igić, B. and Illa, E. and Isaac, M. and 

Ishihara, M. and Ivanov, L. and Ivanova, L. and Iversen, C. M. and Izquierdo, J. and Jackson, R. B. and Jackson, B. and Jactel, 

H. and Jagodzinski, A. M. and Jandt, U. and Jansen, S. and Jenkins, T. and Jentsch, A. and Jespersen, J. R. P. and Jiang, G.-F. 

and Johansen, J. L. and Johnson, D. and Jokela, E. J. and Joly, C. A. and Jordan, G. J. and Joseph, G. S. and Junaedi, D. and 1070 

Junker, R. R. and Justes, E. and Kabzems, R. and Kane, J. and Kaplan, Z. and Kattenborn, T. and Kavelenova, L. and Kearsley, 

E. and Kempel, A. and Kenzo, T. and Kerkhoff, A. and Khalil, M. I. and Kinlock, N. L. and Kissling, W. D. and Kitajima, K. 

and Kitzberger, T. and Kjøller, R. and Klein, T. and Kleyer, M. and Klimešová, J. and Klipel, J. and Kloeppel, B. and Klotz, 

S. and Knops, J. M. H. and Kohyama, T. and Koike, F. and Kollmann, J. and Komac, B. and Komatsu, K. and König, C. and 

Kraft, N. J. B. and Kramer, K. and Kreft, H. and Kühn, I. and Kumarathunge, D. and Kuppler, J. and Kurokawa, H. and 1075 

Kurosawa, Y. and Kuyah, S. and Laclau, J.-P. and Lafleur, B. and Lallai, E. and Lamb, E. and Lamprecht, A. and Larkin, D. 

J. and Laughlin, D. and Le Bagousse-Pinguet, Y. and le Maire, G. and le Roux, P. C. and le Roux, E. and Lee, T. and Lens, F. 

and Lewis, S. L. and Lhotsky, B. and Li, Y. and Li, X. and Lichstein, J. W. and Liebergesell, M. and Lim, J. Y. and Lin, Y.-

S. and Linares, J. C. and Liu, C. and Liu, D. and Liu, U. and Livingstone, S. and Llusià, J. and Lohbeck, M. and López-García, 

Á. and Lopez-Gonzalez, G. and Lososová, Z. and Louault, F. and Lukács, B. A. and Lukeš, P. and Luo, Y. and Lussu, M. and 1080 

Ma, S. and Maciel Rabelo Pereira, C. and Mack, M. and Maire, V. and Mäkelä, A. and Mäkinen, H. and Malhado, A. C. M. 

and Mallik, A. and Manning, P. and Manzoni, S. and Marchetti, Z. and Marchino, L. and Marcilio-Silva, V. and Marcon, E. 

and Marignani, M. and Markesteijn, L. and Martin, A. and Martínez-Garza, C. and Martínez-Vilalta, J. and Mašková, T. and 

Mason, K. and Mason, N. and Massad, T. J. and Masse, J. and Mayrose, I. and McCarthy, J. and McCormack, M. L. and 

McCulloh, K. and McFadden, I. R. and McGill, B. J. and McPartland, M. Y. and Medeiros, J. S. and Medlyn, B. and Meerts, 1085 

P. and Mehrabi, Z. and Meir, P. and Melo, F. P. L. and Mencuccini, M. and Meredieu, C. and Messier, J. and Mészáros, I. and 

Metsaranta, J. and Michaletz, S. T. and Michelaki, C. and Migalina, S. and Milla, R. and Miller, J. E. D. and Minden, V. and 

Ming, R. and Mokany, K. and Moles, A. T. and Molnár V, A. and Molofsky, J. and Molz, M. and Montgomery, R. A. and 

Monty, A. and Moravcová, L. and Moreno-Martínez, A. and Moretti, M. and Mori, A. S. and Mori, S. and Morris, D. and 

Morrison, J. and Mucina, L. and Mueller, S. and Muir, C. D. and Müller, S. C. and Munoz, F. and Myers-Smith, I. H. and 1090 

Myster, R. W. and Nagano, M. and Naidu, S. and Narayanan, A. and Natesan, B. and Negoita, L. and Nelson, A. S. and 

Neuschulz, E. L. and Ni, J. and Niedrist, G. and Nieto, J. and Niinemets, Ü. and Nolan, R. and Nottebrock, H. and Nouvellon, 

Y. and Novakovskiy, A. and Network, T. N. and Nystuen, K. O. and O'Grady, A. and O'Hara, K. and O'Reilly-Nugent, A. and 

Oakley, S. and Oberhuber, W. and Ohtsuka, T. and Oliveira, R. and Öllerer, K. and Olson, M. E. and Onipchenko, V. and 

Onoda, Y. and Onstein, R. E. and Ordonez, J. C. and Osada, N. and Ostonen, I. and Ottaviani, G. and Otto, S. and Overbeck, 1095 

G. E. and Ozinga, W. A. and Pahl, A. T. and Paine, C. E. T. and Pakeman, R. J. and Papageorgiou, A. C. and Parfionova, E. 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



41 

 

and Pärtel, M. and Patacca, M. and Paula, S. and Paule, J. and Pauli, H. and Pausas, J. G. and Peco, B. and Penuelas, J. and 

Perea, A. and Peri, P. L. and Petisco-Souza, A. C. and Petraglia, A. and Petritan, A. M. and Phillips, O. L. and Pierce, S. and 

Pillar, V. D. and Pisek, J. and Pomogaybin, A. and Poorter, H. and Portsmuth, A. and Poschlod, P. and Potvin, C. and Pounds, 

D. and Powell, A. S. and Power, S. A. and Prinzing, A. and Puglielli, G. and Pyšek, P. and Raevel, V. and Rammig, A. and 1100 

Ransijn, J. and Ray, C. A. and Reich, P. B. and Reichstein, M. and Reid, D. E. B. and Réjou-Méchain, M. and de Dios, V. R. 

and Ribeiro, S. and Richardson, S. and Riibak, K. and Rillig, M. C. and Riviera, F. and Robert, E. M. R. and Roberts, S. and 

Robroek, B. and Roddy, A. and Rodrigues, A. V. and Rogers, A. and Rollinson, E. and Rolo, V. and Römermann, C. and 

Ronzhina, D. and Roscher, C. and Rosell, J. A. and Rosenfield, M. F. and Rossi, C. and Roy, D. B. and Royer-Tardif, S. and 

Rüger, N. and Ruiz-Peinado, R. and Rumpf, S. B. and Rusch, G. M. and Ryo, M. and Sack, L. and Saldaña, A. and Salgado-1105 

Negret, B. and Salguero-Gomez, R. and Santa-Regina, I. and Santacruz-García, A. C. and Santos, J. and Sardans, J. and 

Schamp, B. and Scherer-Lorenzen, M. and Schleuning, M. and Schmid, B. and Schmidt, M. and Schmitt, S. and Schneider, J. 

V. and Schowanek, S. D. and Schrader, J. and Schrodt, F. and Schuldt, B. and Schurr, F. and Selaya Garvizu, G. and Semchenko, 

M. and Seymour, C. and Sfair, J. C. and Sharpe, J. M. and Sheppard, C. S. and Sheremetiev, S. and Shiodera, S. and Shipley, 

B. and Shovon, T. A. and Siebenkäs, A. and Sierra, C. and Silva, V. and Silva, M. and Sitzia, T. and Sjöman, H. and Slot, M. 1110 

and Smith, N. G. and Sodhi, D. and Soltis, P. and Soltis, D. and Somers, B. and Sonnier, G. and Sørensen, M. V. and Sosinski 

Jr, E. E. and Soudzilovskaia, N. A. and Souza, A. F. and Spasojevic, M. and Sperandii, M. G. and Stan, A. B. and Stegen, J. 

and Steinbauer, K. and Stephan, J. G. and Sterck, F. and Stojanovic, D. B. and Strydom, T. and Suarez, M. L. and Svenning, 

J.-C. and Svitková, I. and Svitok, M. and Svoboda, M. and Swaine, E. and Swenson, N. and Tabarelli, M. and Takagi, K. and 

Tappeiner, U. and Tarifa, R. and Tauugourdeau, S. and Tavsanoglu, C. and te Beest, M. and Tedersoo, L. and Thiffault, N. 1115 

and Thom, D. and Thomas, E. and Thompson, K. and Thornton, P. E. and Thuiller, W. and Tichý, L. and Tissue, D. and 

Tjoelker, M. G. and Tng, D. Y. P. and Tobias, J. and Török, P. and Tarin, T. and Torres-Ruiz, J. M. and Tóthmérész, B. and 

Treurnicht, M. and Trivellone, V. and Trolliet, F. and Trotsiuk, V. and Tsakalos, J. L. and Tsiripidis, I. and Tysklind, N. and 

Umehara, T. and Usoltsev, V. and Vadeboncoeur, M. and Vaezi, J. and Valladares, F. and Vamosi, J. and van Bodegom, P. 

M. and van Breugel, M. and Van Cleemput, E. and van de Weg, M. and van der Merwe, S. and van der Plas, F. and van der 1120 

Sande, M. T. and van Kleunen, M. and Van Meerbeek, K. and Vanderwel, M. and Vanselow, K. A. and Vårhammar, A. and 

Varone, L. and Vasquez Valderrama, M. Y. and Vassilev, K. and Vellend, M. and Veneklaas, E. J. and Verbeeck, H. and 

Verheyen, K. and Vibrans, A. and Vieira, I. and Villacís, J. and Violle, C. and Vivek, P. and Wagner, K. and Waldram, M. 

and Waldron, A. and Walker, A. P. and Waller, M. and Walther, G. and Wang, H. and Wang, F. and Wang, W. and Watkins, 

H. and Watkins, J. and Weber, U. and Weedon, J. T. and Wei, L. and Weigelt, P. and Weiher, E. and Wells, A. W. and 1125 

Wellstein, C. and Wenk, E. and Westoby, M. and Westwood, A. and White, P. J. and Whitten, M. and Williams, M. and 

Winkler, D. E. and Winter, K. and Womack, C. and Wright, I. J. and Wright, S. J. and Wright, J. and Pinho, B. X. and Ximenes, 

F. and Yamada, T. and Yamaji, K. and Yanai, R. and Yankov, N. and Yguel, B. and Zanini, K. J. and Zanne, A. E. and Zelený, 

D. and Zhao, Y.-P. and Zheng, J. and Zheng, J. and Ziemińska, K. and Zirbel, C. R. and Zizka, G. and Zo-Bi, I. C. and Zotz, 

G. and Wirth, C.: TRY plant trait database – enhanced coverage and open access, Global Change Biology, 26, 119-188, 1130 

https://doi.org/10.1111/gcb.14904, 2020. 

Kim, S. J. and Stoesser, T.: Closure modeling and direct simulation of vegetation drag in flow through emergent vegetation, 

Water Resources Research, 47, https://doi.org/10.1029/2011WR010561, 2011. 

Kyle, G. and Leishman, M. R.: Plant functional trait variation in relation to riparian geomorphology: The importance of 

disturbance, Austral Ecology, 34, 793-804, 10.1111/j.1442-9993.2009.01988.x, 2009. 1135 

Lague, D.: Chapter 8 - Terrestrial laser scanner applied to fluvial geomorphology, in: Developments in Earth Surface Processes, 

edited by: Tarolli, P., and Mudd, S. M., Elsevier, Amsterdam, The Netherlands, 231-254, https://doi.org/10.1016/B978-0-444-

64177-9.00008-4, 2020. 

Lague, D., Brodu, N., and Leroux, J.: Accurate 3D comparison of complex topography with terrestrial laser scanner: 

Application to the Rangitikei canyon (NZ), ISPRS journal of photogrammetry and remote sensing, 82, 10-26, 2013. 1140 

Lane, S. N.: Natural flood management, Wiley Interdiscip. Rev.-Water, 4, 14, 10.1002/wat2.1211, 2017. 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



42 

 

Lawson, J. R., Fryirs, K. A., Lenz, T., and Leishman, M. R.: Heterogeneous flows foster heterogeneous assemblages: 

relationships between functional diversity and hydrological heterogeneity in riparian plant communities, Freshwater Biology, 

60, 2208-2225, 10.1111/fwb.12649, 2015. 

Lightbody, A. F. and Nepf, H. M.: Prediction of near-field shear dispersion in an emergent canopy with heterogeneous 1145 

morphology, Environmental Fluid Mechanics, 6, 477-488, 10.1007/s10652-006-9002-7, 2006. 

Lukacs, B. A., E-Vojtko, A., Eros, T., Molnar, V. A., Szabo, S., and Gotzenberger, L.: Carbon forms, nutrients and water 

velocity filter hydrophyte and riverbank species differently: A trait-based study, Journal of Vegetation Science, 30, 471-484, 

10.1111/jvs.12738, 2019. 

Lytle, D. A., Merritt, D. M., Tonkin, J. D., Olden, J. D., and Reynolds, L. V.: Linking river flow regimes to riparian plant 1150 

guilds: a community‐wide modeling approach, Ecological applications, 27, 1338-1350, 2017. 

Manners, R., Schmidt, J., and Wheaton, J. M.: Multiscalar model for the determination of spatially explicit riparian vegetation 

roughness, J. Geophys. Res.-Earth Surf., 118, 65-83, 10.1029/2011jf002188, 2013. 

Manners, R. B., Wilcox, A. C., Kui, L., Lightbody, A. F., Stella, J. C., and Sklar, L. S.: When do plants modify fluvial processes? 

Plant-hydraulic interactions under variable flow and sediment supply rates, Journal of Geophysical Research: Earth Surface, 1155 

120, 325-345, https://doi.org/10.1002/2014JF003265, 2015. 

McCoy-Sulentic, M. E., Kolb, T. E., Merritt, D. M., Palmquist, E., Ralston, B. E., Sarr, D. A., and Shafroth, P. B.: Changes in 

Community-Level Riparian Plant Traits over Inundation Gradients, Colorado River, Grand Canyon, Wetlands, 37, 635-646, 

10.1007/s13157-017-0895-3, 2017. 

McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M.: Rebuilding community ecology from functional traits, Trends in 1160 

ecology & evolution, 21, 178-185, 2006. 

RedEdge-MX: https://micasense.com/rededge-mx/, last access: 17/11/2021. 

Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., and Weng, Q.: Per-pixel vs. object-based classification of urban 

land cover extraction using high spatial resolution imagery, Remote Sens. Environ., 115, 1145-1161, 

https://doi.org/10.1016/j.rse.2010.12.017, 2011. 1165 

Naiman, R. J., Decamps, H., and Pollock, M.: THE ROLE OF RIPARIAN CORRIDORS IN MAINTAINING REGIONAL 

BIODIVERSITY, Ecological Applications, 3, 209-212, 10.2307/1941822, 1993. 

Naiman, R. J., Bechtold, J. S., Drake, D. C., Latterell, J. J., O'keefe, T. C., and Balian, E. V.: Origins, patterns, and importance 

of heterogeneity in riparian systems, in: Ecosystem function in heterogeneous landscapes, Springer, 279-309, 2005. 

Nallaperuma, B. and Asaeda, T.: The long-term legacy of riparian vegetation in a hydrogeomorphologically remodelled fluvial 1170 

setting, River Research and Applications, 36, 1690-1700, https://doi.org/10.1002/rra.3665, 2020. 

Nepf, H. M. and Vivoni, E. R.: Flow structure in depth-limited, vegetated flow, Journal of Geophysical Research: Oceans, 105, 

28547-28557, https://doi.org/10.1029/2000JC900145, 2000. 

O'hare, J., O'hare, M., Gurnell, A., Dunbar, M., Scarlett, P., and Laize, C.: Physical constraints on the distribution of 

macrophytes linked with flow and sediment dynamics in British rivers, River Research and Applications, 27, 671-683, 2011. 1175 

O'Hare, M., Mountford, J., Maroto, J., and Gunn, I.: Plant traits relevant to fluvial geomorphology and hydrological interactions, 

River Research and Applications, 32, 179-189, 2016. 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



43 

 

O’Briain, R., Shephard, S., and Coghlan, B.: Pioneer macrophyte species engineer fine-scale physical heterogeneity in a 

shallow lowland river, Ecological Engineering, 102, 451-458, https://doi.org/10.1016/j.ecoleng.2017.02.047, 2017. 

Palmer, M. A., Lettenmaier, D. P., Poff, N. L., Postel, S. L., Richter, B., and Warner, R.: Climate change and river ecosystems: 1180 

protection and adaptation options, Environmental management, 44, 1053-1068, 2009. 

Palmquist, E. C., Sterner, S. A., and Ralston, B. E.: A comparison of riparian vegetation sampling methods along a large, 

regulated river, River Research and Applications, 35, 759-767, 10.1002/rra.3440, 2019. 

Quétier, F., Lavorel, S., Thuiller, W., and Davies, I.: Plant‐trait‐based modeling assessment of ecosystem‐service sensitivity 

to land‐use change, Ecological Applications, 17, 2377-2386, 2007. 1185 

Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., 

and Lewis, P.: Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data, Remote Sensing, 5, 491-520, 2013. 

Reich, P. B., Wright, I. J., and Lusk, C. H.: Predicting leaf physiology from simple plant and climate attributes: a global 

GLOPNET analysis, Ecological Applications, 17, 1982-1988, 2007. 

Rivaes, R. P., Rodriguez-Gonzalez, P. M., Ferreira, M. T., Pinheiro, A. N., Politti, E., Egger, G., Garcia-Arias, A., and Frances, 1190 

F.: Modeling the Evolution of Riparian Woodlands Facing Climate Change in Three European Rivers with Contrasting Flow 

Regimes, Plos One, 9, 14, 10.1371/journal.pone.0110200, 2014. 

Roussel, J.-R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Meador, A. S., Bourdon, J.-F., de Boissieu, F., and 

Achim, A.: lidR: An R package for analysis of Airborne Laser Scanning (ALS) data, Remote Sens. Environ., 251, 112061, 

https://doi.org/10.1016/j.rse.2020.112061, 2020. 1195 

Sand-Jensen, K.: Drag forces on common plant species in temperate streams: consequences of morphology, velocity and 

biomass, Hydrobiologia, 610, 307-319, 2008. 

Sand‐Jensen, K. and Pedersen, O.: Velocity gradients and turbulence around macrophyte stands in streams, Freshwater Biology, 

42, 315-328, 1999. 

Savage, V. M., Webb, C. T., and Norberg, J.: A general multi-trait-based framework for studying the effects of biodiversity 1200 

on ecosystem functioning, Journal of theoretical biology, 247, 213-229, 2007. 

Sear, D. A., Millington, C. E., Kitts, D. R., and Jeffries, R.: Logjam controls on channel:floodplain interactions in wooded 

catchments and their role in the formation of multi-channel patterns, Geomorphology, 116, 305-319, 

https://doi.org/10.1016/j.geomorph.2009.11.022, 2010. 

Simon, A., Curini, A., Darby, S. E., and Langendoen, E. J.: Bank and near-bank processes in an incised channel, 1205 

Geomorphology, 35, 193-217, 2000. 

Stromberg, J. C. and Merritt, D. M.: Riparian plant guilds of ephemeral, intermittent and perennial rivers, Freshwater Biology, 

61, 1259-1275, 10.1111/fwb.12686, 2016. 

Sweeney, B. W., Bott, T. L., Jackson, J. K., Kaplan, L. A., Newbold, J. D., Standley, L. J., Hession, W. C., and Horwitz, R. J.: 

Riparian deforestation, stream narrowing, and loss of stream ecosystem services, Proc. Natl. Acad. Sci. U. S. A., 101, 14132-1210 

14137, 10.1073/pnas.0405895101, 2004. 

Tabacchi, E., González, E., Corenblit, D., Garófano-Gómez, V., Planty-Tabacchi, A.-M., and Steiger, J.: Species composition 

and plant traits: Characterization of the biogeomorphological succession within contrasting river corridors, River Research 

and Applications, 35, 1228-1240, 10.1002/rra.3511, 2019. 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



44 

 

Thoms, M. C. and Parsons, M.: Eco-geomorphology: an interdisciplinary approach to river science, International Association 1215 

of Hydrological Sciences, Publication, 276, 113-119p, 2002. 

Tomsett, C. and Leyland, J.: Remote sensing of river corridors: A review of current trends and future directions, River Research 

and Applications, 35, 779-803, 10.1002/rra.3479, 2019. 

Tomsett, C. and Leyland, J.: Development and Testing of a UAV Laser Scanner and Multispectral Camera System for Eco-

Geomorphic Applications, Sensors, 21, 7719, 2021. 1220 

UNISDR and CRED: The Human Cost of Weather Related Disasters: 1995-2015, United Nations Office for Disaster Risk 

Reduction, 2015. 

Van Bodegom, P., Douma, J., Witte, J., Ordonez, J., Bartholomeus, R., and Aerts, R.: Going beyond limitations of plant 

functional types when predicting global ecosystem–atmosphere fluxes: exploring the merits of traits‐based approaches, Global 

Ecology and Biogeography, 21, 625-636, 2012. 1225 

Vasilopoulos, G.: Characterising the structure and fluvial drag of emergent vegetation, Geography and the Environment, 

Univeristy of Southampton, 2017. 

VLP-16 User manual: https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf, last 

access: 17/11/2021. 

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E.: Let the concept of trait be functional!, 1230 

Oikos, 116, 882-892, 2007. 

Wang, D., Wan, B., Qiu, P., Su, Y., Guo, Q., and Wu, X.: Artificial Mangrove Species Mapping Using Pléiades-1: An 

Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms, Remote Sensing, 

10, 294, 2018. 

Whittaker, P., Wilson, C., Aberle, J., Rauch, H. P., and Xavier, P.: A drag force model to incorporate the reconfiguration of 1235 

full-scale riparian trees under hydrodynamic loading, Journal of Hydraulic Research, 51, 569-580, 

10.1080/00221686.2013.822936, 2013. 

Wiel, M. J. V. D. and Darby, S. E.: A new model to analyse the impact of woody riparian vegetation on the geotechnical 

stability of riverbanks, Earth Surf. Process. Landf., 32, 2185-2198, https://doi.org/10.1002/esp.1522, 2007. 

Wilkinson, M. E., Addy, S., Quinn, P. F., and Stutter, M.: Natural flood management: small-scale progress and larger-scale 1240 

challenges, Scott. Geogr. J., 135, 23-32, 10.1080/14702541.2019.1610571, 2019. 

Wilson, C., Bateman, A., Bates, P., and Stoesser, T.: Open Channel Flow through Different Forms of Submerged Flexible 

Vegetation, Journal of Hydraulic Engineering, 129, 10.1061/(ASCE)0733-9429(2003)129:11(847), 2003. 

Wilson, C. A. M. E., Yagci, O., Rauch, H. P., and Olsen, N. R. B.: 3D numerical modelling of a willow vegetated 

river/floodplain system, Journal of Hydrology, 327, 13-21, https://doi.org/10.1016/j.jhydrol.2005.11.027, 2006. 1245 

Wright, I. J., Reich, P. B., Cornelissen, J. H., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., 

and Osada, N.: Assessing the generality of global leaf trait relationships, New phytologist, 166, 485-496, 2005. 

Yao, Z. Y., Xiao, J. H., Ta, W. Q., and Jia, X. P.: Planform channel dynamics along the Ningxia-Inner Mongolia reaches of 

the Yellow River from 1958 to 2008: analysis using Landsat images and topographic maps, Environ. Earth Sci., 70, 97-106, 

10.1007/s12665-012-2106-0, 2013. 1250 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.



45 

 

Zhao, K., Gong, Z., Zhang, K., Wang, K., Jin, C., Zhou, Z., Xu, F., and Coco, G.: Laboratory Experiments of Bank Collapse: 

The Role of Bank Height and Near-Bank Water Depth, Journal of Geophysical Research: Earth Surface, 125, e2019JF005281, 

https://doi.org/10.1029/2019JF005281, 2020. 

Zhong, L., Cheng, L., Xu, H., Wu, Y., Chen, Y., and Li, M.: Segmentation of Individual Trees From TLS and MLS Data, 

IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 10, 1-14, 10.1109/JSTARS.2016.2565519, 2016. 1255 

 

https://doi.org/10.5194/esurf-2021-102
Preprint. Discussion started: 7 January 2022
c© Author(s) 2022. CC BY 4.0 License.


