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Abstract.

4D topographic point cloud data
::::::
clouds contain information on surface change processes and their spatial and temporal

characteristics, such as the duration, location, and extent of mass movements, e. g., rockfalls or debris flows.
:
. To automati-

cally extract and analyse change and activity patterns
::::::
analyze

:::::::
changes

::::
and

::::::
patterns

:::
of

::::::
surface

::::::
activity

:
from this data, methods

considering the spatial and temporal properties are required. The commonly used M3C2 point cloud distance reduces uncer-5

tainty through spatial averaging for bitemporal analysis. To extend this concept into the full 4D
::::::::::::
spatiotemporal domain, we

use a Kalman filter for point cloud change analysis
::::::
change

:::::::
analysis

::
in

:::::
point

:::::
cloud

::::
time

:::::
series. The filter incorporates M3C2

distances together with uncertainties obtained through error propagation as Bayesian priors in a dynamic model. The Kalman

filter yields a smoothed estimate of the change time series for each spatial location
::
in

:::
the

:::::
scene, again associated with an

uncertainty. Through the temporal smoothing, the Kalman filter uncertainty is , in general,
:::::::
generally

:
lower than the individual10

bitemporal uncertainties, which therefore allows
:::
the detection of more change

::::::
changes

:
as significant. In our example time

series of bi-hourly
::
We

::::::
apply

:::
our

:::::::
method

::
to

::
a

::::::
dataset

::
of

:::::::::
tri-hourly terrestrial laser scanning point clouds of around 6 days

(71
::
90

:::::
days

::::
(674

:
epochs) showcasing a rockfall-affected

:::::::::::
debris-covered

:
high-mountain slope

:::::::
affected

::
by

:::::::::::
gravitational

:::::
mass

:::::::::
movements

:::
and

:::::
snow

:::::
cover

::::::::
dynamics in Tyrol, Austria, we are able .

::::
The

::::::
method

::::::
enables

:
to almost double the number of points

where change is deemed
:::::::
detected

::
as significant (from 14.9% to 28.6

::::::
24.2%

::
to

::::
46.8% of the area of interest). Since the Kalman15

filter allows interpolation and, under certain constraints, also extrapolation of
:::::::::
interpolates

:
the time series, the estimated change

values can be temporally resampled. This can be critical for subsequent analyses
::::::
analysis

::::::::
methods that are unable to deal with

missing data, as may be caused by, e.g., foggy or rainy weather conditions
:
or

:::::::::
temporary

:::::::::
occlusion.

:::::::::::
Furthermore,

:::::
noise

::
in

:::
the

::::
time

:::::
series

::
is

:::::::
reduced

::
by

:::
the

:::::::::::::
spatiotemporal

::::
filter. We demonstrate two different clustering approaches, transforming the 4D

data into 2D map visualisations that can be easily interpreted by analysts. By comparison to two state-of-the-art 4D
::::
other

:
point20

cloud change methods,
::::::
namely

::::::::
temporal

::::::
median

:::::::::
smoothing

::::
and

:::::
linear

:::::::::::
interpolation,

:
we highlight the main advantage of our

methodto be
:
,
:::::
which

::
is
:
the extraction of a smoothed best estimate time series for change

:::
and

::::::::
associated

::::::::::
uncertainty at each lo-

cation. A main disadvantage of not being able to detect spatially overlapping change objects in a single pass remains.
::::::::
drawback

::
of

:::
the

::::::
Kalman

:::::
filter

:
is
::::
that

:
it
::
is

::::::::
ill-suited

::
to

::::::::
accurately

::::::
model

::::::
discrete

::::::
events

::
of

::::
large

::::::::::
magnitude.

::
It

:::::
excels,

::::::::
however,

::
at

::::::::
detecting
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::::::
gradual

::
or

::::::::::
continuous

:::::::
changes

::
at

::::
small

:::::::::::
magnitudes. In conclusion, the consideration of combined

::::::::
combined

:::::::::::
consideration

:::
of25

temporal and spatial
:::::::::
information

::
in

:::
the

:
data enables a notable reduction in the associated uncertainty of the quantified change

value
::::::::
quantified

::::::
change

::::::
values for each point in space and time, in turn allowing the extraction of more information from the

4D point cloud dataset.

1 Introduction

Near-continuous time series of 3D topographic point clouds have recently become readily available through applications in re-30

search (Eitel et al., 2016), industry (Industry 4.0, e.g., Pasinetti et al., 2018), and in the public sector (e.g., distaster management, Biasion et al., 2005)

:::::::::::::::::::::::::::::::::::::::
(e.g., disaster management, Biasion et al., 2005). Commonly, terrestrial laser scanners are installed on surveying pillars to

regularly (e.g. hourly) acquire three-dimensional representations of the surrounding topography. To interpret the data for geo-

graphic monitoring, especially in terms of topographic change processes acting on the surface, information needs to be extracted

in the form of movement patterns (Travelletti et al., 2014), objects(Anders et al., 2020) or clustering ,
::::::::::::::::::
(Anders et al., 2020)35

::
or

::::::
clusters

:
(Kuschnerus et al., 2021). This information can then be used by experts to analyse

::::::
analyze change patterns and

magnitudes
::::::::
properties concerning their underlying causes, predict future events,

:
and assess immediate dangers.

However, with any measurement taken in the real world, uncertainties need to be considered. In the case of topographic laser

scanning, uncertainty may result in estimated change values that seemingly correspond to
:
a
:
change in the topography of the

involved surfaces, though no real change has occurred. For example, a rockfall
::::::
erosion

::
or

:::::::::::
accumulation

:
with a low velocity40

is only
:::::::::
confidently

:
detectable after a certain period-

:
,
:
when the change magnitude is

:::::
grows

:
larger than the random effects

introduced by the measurement.

Two approaches can be combined to alleviate
:::::
handle

:
uncertainty: Statistical tests, such as a t-Test, allow making statements

about uncertain values,
::::::
random

::::::::
variables

:
by transforming them to

:::
into thresholds or interval values using a confidence prob-

ability. For example, a change value of 0.01 m may have a 95% probability to be significantly different from zero. In the45

remaining 5% of cases, the value of 0.01 m would be caused by random errors and result in a false positive detection. The

measurand (the quantity being measured) is seen not only as a singular value but rather as a probability density function. An

analysis of the cumulative distribution function (CDF) then gives the relation between the Type-I
::::
Type

:
I
:

error probability α,

(or the specificity of a test (1−α))
:
and the corresponding confidence interval. This moves the problem of change analysis or

quantification to one of change detection.
::::
Such

:::::::::
approaches

:::::
have

:::::::::
commonly

::::
been

:::::
used,

:::
e.g.

::
in
::::::
tunnel

::::::::::
deformation

::::::::::
monitoring50

:::::::::::::::::::::
(Van Gosliga et al., 2006).

:

The other approach,
:::::::::
alleviating

::::::::::
uncertainty,

:
takes advantage of the fact that no two measurements are completely uncorre-

lated. Generally, the closer they are to each other, the more they are alike. In space, this has been described in Tobler’s first

law of Geography (Tobler, 1970) and logically extends into time. In the analysis of dense time series of 3D point clouds,

this fact is
:::
can

::
be

:
used to reduce uncertainty in change detection. Consequently, lower thresholds for detectable change can55

:::
may

:
be derived while keeping the same significance probability. Change can therefore be detected as statistically significant at

lower change values; or generally with lower change rates. To achieve this reduction
::
of uncertainty, some sort of averaging or
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aggregation of multiple measurements of the same quantity into one value is required. This allows to reduce
::
for

::::::::
reducing the

influence of random errorsbut also reduces the
:
,
:::
but

:::
the

:::::::::
smoothing

::::
also

::::::
reduces

:::::::::::::
high-frequency

:
information contained in the

datathrough smoothing.60

Spatial smoothing, i.e. aggregating points spatially before subjecting them to change analysis, reduces the spatial resolution

at which change can be detected. In the widely employed multiscale model-to-model cloud comparison (M3C2) algorithm, a

method to compare surfaces represented by two point clouds, a search cylinder is used to select and aggregate points of the

two epochs before measuring the distance between them (Lague et al., 2013). This is beneficial over a simple cloud-to-cloud

(nearest-neighbour
::::::
nearest

::::::::
neighbor) distance, because point clouds acquired with a laser scanner never sample the surface65

with the exact same pattern, and therefore no one-to-one correspondences can be established. Additionally, averaging the

point positions reduces uncertainty in the position of the surface. A more simple approach, the creation of digital elevation

models of differences(DoD), also includes spatial averaging when
::
by

:
aggregating all points within a raster cell to a single

value, but is restricted to a single direction of analysis and cannot account for complex 3D topography.
::::
The

:::::::
variance

::
of

:::::
point

:::::::
distances

::
to
:::
the

:::::
fitted

:::::::
surfaces

::
is

::::::::
typically

::::
used

::
as

::
a

:::::::
measure

:::
for

:::
the

:::::::::
uncertainty

::
in

:::
the

::::::::
estimated

:::::::
position

:::
in

:::::::
elevation

:::::::
models70

::::::::::::::::
(Kraus et al., 2006)

:::
and

:::::
M3C2

:::::::
change

:::::
values

::::::::::::::::
(Lague et al., 2013)

:
.

In the time domain, measurement series are often interpreted as signals. Signal smoothing is widely used and a multitude

of methods have been established. In many approaches, a moving window is employed to aggregate multiple consecutive

measurements or samples to remove or reduce outliers. Depending on the aggregation function, different filters are established,

and may be mathematically described as 1D convolutions (e.g., kernel-based smoothing, Kim and Cox, 1996). Alternatively,75

global methods such as Fourier transform may be applied to eliminate high-frequency elements of the signal, resulting in a

low-pass filter (Kaiser and Reed, 1977). For point cloud analyses,

::
To

:::::::
smooth

::::
time

:::::
series,

::::::::::
(B-)splines

:::
are

:::::::::
commonly

::::::::
employed

::::::::::::::::
(Lepot et al., 2017)

:
.
::::::
Splines

:::
are

:::::::::
piece-wise

:::::::::::::
approximations

:::
of

::
the

::::::
signal

::
by

::::::::::
polynomial

::::::::
functions.

::::::::::
Depending

::
on

:::
the

::::::
degree

::
n

::
of

:::
the

:::::::::::
polynomials,

:::
the

::::::::
continuity

::
of
::::::::::
derivatives

:
is
::::::::::
guaranteed

::
up

::
to

:::::
order

::::::
n− 1,

:::::::
resulting

:::
in

::::::
smooth

:::::::::
estimates.

:::
For

::::::::
example,

::::
with

::::::::::
commonly

::::
used

:::::
cubic

:::::::
splines,

:::
the

::::::
second

:::::::::
derivative

::
is80

:::::::::
continuous.

::
In

:::::::
general,

::::::
splines

:::
are

:::::::::::
interpolators,

::::::::
meaning

::::
they

:::
will

::::
pass

:::::::
through

:::::
every

:::
data

:::::
point.

:::
In

:::
the

:::::::
presence

::
of

:::::
noise,

::::
this

:::::
might

:::
not

::
be

:::::::
justified,

:::
and

::::::::::::
approximative

::::::
splines

:::::::
utilizing

:::::::::::
least-squares

:::::::
methods

::::
have

::::
been

::::::::
presented

::::::::::::::::::::::::
(Wegman and Wright, 1983)

:
.
:::
For

::::
time

:::::
series

::
of

:::
3D

:::::
point

::::::
clouds,

:
a moving average filter has been successfully used to reduce daily patterns and random

effects in time series (Kromer et al., 2015; Eltner et al., 2017; Anders et al., 2019).

:::
The

:::::::::::
geostatistical

:::::::::
prediction

:::::::
method

:::
of

:::::::
Kriging

:::::::::::::::::::::::::::::
(Matheron, 1963; Goovaerts, 1997)

:::
has

:::::
been

::::::
applied

:::
in

:::
the

:::::::
analysis

:::
of85

::::
time

:::::
series

::
of

:::::::::
geospatial

:::::
data

:::::::::::::::::::::::::
(e.g., Lindenbergh et al., 2008)

:
.
:::::::
Kriging

::::::
allows

::
to

::::::::
estimate

:::
the

::::::::::
uncertainty

::
of

:::
the

:::::::::
predicted

:::::::::::
(interpolated)

:::::
value

::
to
::::::::

separate
::::::
change

:::::::
signals

:::::
from

:::::
noise

:::::::::::::::::::::::::::
(e.g., Lloyd and Atkinson, 2001).

::::
For

::::::::
example,

::
if

:::
the

::::::::
distance

:::::::
between

::::::::
sampling

::::::::
locations

::::::::
increases,

:::
the

::::::::::
uncertainty

:::
for

::::::::::
predictions

:::::::
between

:::::
these

::::::::
locations

::::
will

::::
also

:::::::
increase,

:::::::::
following

::
the

:::::::::
variogram

:::::::
derived

::
in

:::
the

::::::
Kriging

:::::::
process.

:

4D point cloud analyses have employed both spatial and temporal smoothing separately to increase the Signal-to-Noise90

::::::::::::
signal-to-noise ratio of the change signal . Kromer et al. (2015) go further and combine

::::::::::::::::::::::::::::::::::::
(e.g., Eltner et al., 2017; Anders et al., 2020)

:
.
:::::::::::::::::
Kromer et al. (2015)

:::::::
combine

::::
both

:
spatial and temporal neighbours

::::::::
neighbors

:::
of

:
a
:::::::::::::
high-frequency

::::
time

:::::
series

:
in a median
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filter to remove noisy data
::
the

::::::::
influence

::
of

:::::
noisy

:::::::::::
observations. In this work, we present a complementary approach , where

we employ
::
an

::::::::
approach

:::
that

::::::::
similarly

:::::::::
combines

::::::
spatial

:::
and

::::::::
temporal

:::::::::
smoothing

:::
by

:::::::::
employing

:
a Kalman filterto combine

spatial and temporal smoothing
:
.
::
In

:::::::
contrast

::
to

:
a
:::::::
median

::::
filter,

:::
the

:::::::
Kalman

::::
filter

::
is

::::
able

::
to

:::::::
consider

:::::::::::
observations

::::::
having

::::::
unique95

:::::::::::
uncertainties,

::
as

:
it
:::::::::
optimally

::::::::
combines

::::
these

:::::::::::
observations,

::::
and

::::
gives

:::
an

:::::::
estimate

::
of

:::
the

:::::::::
uncertainty

:::
of

::
the

:::::
result. Kalman filters

are mathematical descriptions of dynamic systems and are commonly used, e.g., in navigation (Cooper and Durrant-Whyte,

1994) or traffic congestion modelling (Sun et al., 2004). They allow the consideration of uncertainties in observations optimally

over time.
:::::::
modeling

:::::::::::::::
(Sun et al., 2004).

:::::::
Typical

::::::::::
applications

::
of

:::::::
Kalman

:::::::
filtering

::::::
include

::::::
sensor

:::::::::
integration

:::::::
settings,

::::
e.g.

::
in

:::
the

:::::::::
integration

::
of

::::::
GNSS

:::
and

:::::
IMU

:::::::
(inertial)

:::::::::::::
measurements,

:::::
when

:::
the

:::::
target

:::::::::
trajectory

::
is

:::::::
smooth.

::
A

::::::
famous

::::::::::
application

::::
was

:::
the100

:::::::
guidance

::::::::
computer

::
in

:::
the

::::::
Apollo

::::::::
missions

:::::::::::::::::::::::
(Grewal and Andrews, 2010)

:
.
:::::::
Kalman

:::::
filters

:::
are

:::::::::
commonly

::::
used

:::::
today

::
in

::::::::
trajectory

:::::::::
estimation,

:::
e.g.

:::
for

:::::
direct

:::::::::::::
georeferencing

::
of

:::::::
airborne

::::
laser

::::::::
scanning

::::
data

:::::::::::::::
(El-Sheimy, 2017)

:
.

In our case, the observations are bitemporal point cloud distances. In a Bayesian sense, each observation provides prior

information on the system. The Kalman filter combines this information in a joint probability distribution to obtain estimates

for the target variables that are, in general, more accurate (less uncertain) than the original observations. When estimates of po-105

sition, velocity,
:
and acceleration have been made, they can even be propagated into the future, beyond the newest measurement

(Kalman, 1960).

We use the Kalman filter on change values between each epoch and a reference epoch, to obtain a smoother, less uncertain

time series of change for each spatial location. To obtain accurate uncertainty estimates for the change values, we apply M3C2-

EP
::::::::::::::::::::
(Winiwarter et al., 2021), a method that allows the propagation of measurement and alignment uncertainties in bitemporal110

point cloud analysis to the obtained change values(Winiwarter et al., 2021), but different methods of uncertainty quantification

can also be imagined. M3C2-EP contains an aggregation step derived from M3C2, where (spatial ) neighbours
:::::
spatial

:::::::::
neighbors

are collected to create a local planar model of the surface. In combination, this
:::::
Using

:::
this

::
as

::
an

:::::
input

::
to

:::::::
Kalman

::::::
filtering

:
leads to

spatial and temporal smoothing, where the spatial smoothing step provides
:::
acts

:::
as a Bayesian prior to the temporal smoothing

step.115

We further derive several features from the smoothed time series, where noise has been reduced, and use them to form clusters

of similar change. We also show how the smoothed time series can be used to improve the results obtained with established

clustering methods, namely k-Means clustering, which has been applied to 4D point cloud data by Kuschnerus et al. (2021) to

identify change patterns on a sandy beach.

To show the applicability of our method, we analyse a dense (bi-hourly
::::::
analyze

:
a
::::::::
synthetic

:::::
scene

:::
and

:
a
:::::
dense

:::::::::
(tri-hourly) time120

series of Terrestrial
::::::::
terrestrial Laser Scanning (TLS) scans

::::
point

::::::
clouds acquired in Vals, Tyrol (Schröder and Nowacki, 2021)

. After a rockfall in 2017, permanent
:::::::::::::::::::::
(cf. Schröder et al., 2022).

:::::::::
Permanent

:
TLS surveys were carried out to ensure the safety

of workers repairing the road and moving debris .
::::
after

::
a

::::::
rockfall

:::
in

:::::
2017. We showcase how our method allows extracting

interpretable information from a large amount of data present in the time series of 71
:::
674 epochs with about 20-23 million

points
:::
0.6

:
-
:::
1.7

::::::
million

::::::
points

:::::
(after

:::::
outlier

:::::::
removal

::::
and

:::::::
filtering)

:
each.125
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:::
We

::::::
further

:::::
show

::::
how

:::
the

:::::::::
smoothed

::::
time

:::::
series

::::
can

::
be

:::::
used

::
to

:::::::
improve

::::
the

::::::
results

:::::::
obtained

::::
with

::::::::::
established

:::::::::
clustering

:::::::
methods,

:::::::
namely

::::::::
K-Means

:::::::::
clustering,

:::::
which

:::
has

:::::
been

::::::
applied

::
to
:::
4D

:::::
point

:::::
cloud

::::
data

:::
by

::::::::::::::::::::
Kuschnerus et al. (2021)

::
to

:::::::
identify

::::::
change

::::::
patterns

:::
on

:
a
::::::
sandy

:::::
beach.

:

The contribution of our research is twofold: Firstly, the combination of the
:::::
First,

:::
we

:::::::
combine

::::
the existing methods of

M3C2-EP point cloud change quantification including the quantification of associated uncertainty with a Kalman filter to take130

advantage of the temporal domain, resulting in lower detection thresholds and less noise in the change extracted from the

time series. Secondly
::::::
Second, we show how the smoothed time series improves existing clustering techniques and present a

complementary technique, and finally compare our results to two different state-of-the-art approaches.
:::::::
different

:::::::::
smoothing

:::::::
methods

:::
for

::::::::::
topographic

:::::
point

:::::
cloud

::::
time

:::::
series

::::::::
influence

:::
the

::::::
results

::
of

:::::::::
clustering

::
to

:::::
derive

:::::::
change

:::::::
patterns

::
in

:::
the

::::::::
observed

:::::
scene.135

2 Methods

In this section, we will first present the dataset which is subsequently used to explain the methods and later on serves as

an example dataset. We then highlight selected state-of-the-art methods in 4D point cloud analysis (Sect. ??), focusing on

methods that can use more than two timestamps, i.e. more than bitemporal analysis. In Sect. 3.1, we show how measurement

uncertainties can be propagated to bitemporal change values using M3C2-EP. The Kalman filter equations are presented in140

Sect. 3.3. We then extract different feature spaces from the time series and use them to cluster areas of similar change in a 4D

topographic point cloud of a rockfall area

2
:::::::
Datasets

:::
We

:::::::::
investigate

:::
the

:::::::::
performace

:::
of

:::
our

::::::
method

:::
on

:::
two

::::::::
different

:::::::
datasets:

::
a

:::
real

:::::
scene

::::::::
featuring

::::::
surface

:::::::
erosion

:::
and

:::::
snow

:::::
cover

::::::
changes

:::
on

::
a
::::::::::::
debris-covered

::::::
slope,

:::
and

::
a
::::::::
synthetic

:::::
scene

::::::
created

:::::
from

::
a

:::
3D

::::::
surface

:::::
mesh

::::::
model

::::
with

::::::
known

:::::::::::
deformation145

::::::::
properties.

2.1 Dataset: Valsrockfall

We
:::
For

::
a

:::
real

::::
use

::::
case,

:::
we

:
are using TLS data of a rockfall-affected area

:::::::
acquired

::::
over

:::::::
approx.

::::
three

:::::::
months,

:::::::
totaling

::::
674

::::::
epochs

::::
from

::::::::::
2021-08-17

::
at

:::::
12:00

::
to

:::::::::
2021-11-15

::
at
:::::
18:00

:::
(all

:::::
times

:::
are

::::
local

::::::
times) in Vals, Tyrol, Austria (WGS84: 47°02’48"

N 11°32’08" E)from August 2020. During this period, rock masses in the debris fan of the rockfall were relocated with150

excavators. These artificial, anthropogenic changes are clearly visible in the dataset, e.g. by simple differencing between the

first and last epoch of the 5 days and 20 hours dataset that is being used in this research (Fig. 1a ). Additionally, further up

on the slope, erosion patterns are forming where precipitation and thunderstorms in the evenings are causing the relocation of

debris. These patterns give an idea of the activity at the study site.
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The data
:
.
::::
The

::::
scene

::::
was

:::::::::
monitored

::
in

::
an

:::::
effort

::
to

::::::
ensure

:::::
safety

:::
for

:::
the

:::::
valley

::::::::
following

::
a
::::::
rockfall

:::::
event

::::
that

:::::::
occurred

:::::
three155

:::
and

:
a
::::
half

:::::
years

:::::
prior,

::::::
namely

:::
on

::
24

:::::::::
December

:::::
2017.

::
A
:::::

road
::::::
located

:::::::::::
immediately

::::::
beneath

:::
the

:::::::
rockfall

:::::
slope

::::
was

:::::::
covered

::
in

:
8
::
m

::
of

::::::
debris,

:::
and

::
a

::::
total

::::
rock

::::::
volume

::
of

:::::::
116,000

:::
m3

::::
was

:::::::
relocated

:::::::::::
(Hartl, 2019)

:
.
::::
Data was recorded using a RIEGL VZ-2000i

laser scanner
::::
TLS permanently installed on a survey pillar in a shelter on the opposite slope about 800

:::::::
500-800 m from the

area affected by the rockfall. The rockfall depicted in the dataset originally occurred on 24 December 2017. A road located

immediately beneath the rockfall slope was covered in 8 m of debris, and a total rock volume of 116,000 m 3 was relocated160

(Hartl, 2019). Though no serious damage was reported at buildings located in the area, and a replacement road could be opened

in 2019, the rockfall and the source arealocated above are since being continuously monitored to ensure that any movement or

indicators for a new rockfall event would be detected

::
As

:::
the

:::::
point

::::::
clouds

:::
are

::::
not

::::::::
perfectly

::::::
aligned

:::
to

::::
each

:::::
other

:::::::::::::::::::
(Schröder et al., 2022),

::::::::::::
retroreflective

::::::
survey

::::::
prisms

:::::::
located

::::::
around

:::
the

::::::::::::::
rockfall-affected

::::
area

::::
were

::::::::
measured

:::::
using

::::::::
RIEGL’s

::::::
’prism

::::
fine

:::::
scan’

:::::::::::
measurement

::::::::
program.

:::::
These

:::::
scans

:::::
were165

::::::
carried

:::
out

:::::
every

::::
hour

::
in

:::::::
between

:::::::
regular,

::::::::
tri-hourly

:::::
scans

:::::
(e.g.,

::
at

:::::
13:00,

::
at
::::::
14:00,

:::
and

::::
then

:::::
again

::
at
::::::
16:00,

::::
with

:::::
point

:::::
cloud

:::::::::
acquisition

::
of

:::
the

:::
full

:::::
scene

::
in

:::
high

:::::::::
resolution

::
at

::::::
15:00).

:::
The

::::::::
positions

::
of

:::
the

:::::
prisms

:::::
were

:::::::
extracted

:::::::::
following

:::::::::::::::::::::::::
Gaisecker and Schröder (2022)

:
,
::::
using

::::
two

::::::::
amplitude

:::::::::
thresholds.

::::
The

::::::
angular

:::::::
position

::
of

:::
the

::::::
prisms

::::
was

::::::::
calculated

::::
from

:::
the

::::::
points

::::
with

:::
the

::::::
highest

:::::::::
amplitude,

:::::::
whereas

::
the

:::::::
ranging

:::::::::
component

::::
was

::::::::
calculated

:::::
based

:::
on

:
a
:::::
plane

::
fit

:::::::
through

:::
the

:::::
points

::::::
around

::::
these

::::::::
maxima.

:::::::::::
Comparisons

::::
with

:
a
::::
total

::::::
station

:::
and

:::
an

:::::
EDM

:::::::::
calibration

:::
line

:::::::
showed

:::::::::
accuracies

:::
for

:::
this

:::::
prism

::::::::
detection

::
of

::
a

:::
few

::::
mm

::
to

:::
< 2

:::
cm

::
at
::::::
ranges

::
of

:::
up170

::
to

:::::
1,200

::
m

::::::::::::::::::::::::::
(Gaisecker and Schröder, 2022).

:

:::
We

:::::
define

:::
the

:::::
epoch

::::::::::
2021-08-17

::
at

:::::
11:00

::
as

::::::
global

::::::::
reference

:::
(the

:::::
’null

::::::
epoch’)

::::
and

:::::
derive

:::::::::::::
transformation

:::::::::
parameters

:::::
using

::
the

:::::
prism

:::::::::
positions.

::
In

:::::::
addition

::
to

:::
the

:::::::::
parameters

:::
for

:
a
::::::::::
7-parameter

:::::::
Helmert

:::::::::::::
transformation,

::
a

:::
full

:::::::::
covariance

::::::
matrix

:
is
:::::::
derived

::::::
through

::::::::::
adjustment

:::::::::::
computation.

:::
The

:::::::::::::
transformations

:::
are

::::::::::::
subsequently

::::::
applied

::
to

:::
the

:::
full

:::::::::::::
high-resolution

:::::
scans

:::
by

:::::
using

:::
the

::::::::
respective

:::::::
previous

:::::
prism

::::
fine

::::
scan

::::
(i.e.,

:::::
prism

::::
scan

::::
one

::::
hour

:::::
before

::::
full

:::::
scan).175

::::::
During

:::
this

:::::::
period,

::::
both

:::::::
natural,

::
as

::::
well

::
as

:::::::::::::
anthropogenic

::::::
surface

::::::::
changes,

::::
were

::::::::
captured.

:::
To

:::::::::
investigate

:::
the

:::::::
benefits

:::
of

:::
full

:::
4D

:::::
point

:::::
cloud

::::::::
analysis,

:::
we

:::::
focus

:::
on

::::::::
relatively

::::::::::::::
small-magnitude

::::
and

::::::::::::
long-duration

:::::::
changes.

::::
We,

:::::::::
therefore,

:::::
select

:::
an

:::
area

:::
of

:::::::
interest

:::::::::
consisting

::
of

:::
the

:::::::::::::
debris-covered

::::::
slopes

:::::::::
excluding

:::
the

::::::
valley,

::::::
where

::::::::
excavator

::::::
works

::::
lead

::
to
:::::::

sudden
::::
and

:::::::::::::
high-magnitude

:::::::
changes

:::::
(Fig.

:::
1a).

::::
For

:::::
these

:::::
types

:::
of

::::::
surface

::::::::
changes,

::::::
simple

::::::::::
bitemporal

::::::
change

::::::::::::
quantification

::::::::
typically

:::::::
suffices.

:::
On

::::::::::
2021-11-05,

:::::
heavy

::::::::
snowfall

:::::::
occurred

:::
in

:::
the

::::
area,

::::::
which

:::
led

::
to

::::
large

::::::::::::
displacement

:::::
values

::
in
::

a
:::::
short

::::
time.

::::::
While180

::::
most

::
of

::::
this

::::
snow

::::::
melted

:::::
again

:::
by

::::::::::
2021-11-15,

:::
an

::::::::
avalanche

:::
led

::
to

:::
an

:::::::::::
accumulation

::
of

:::::
snow,

::::::
which

:::::::
persisted

::::::::::
throughout

:::
the

:::::::::
observation

::::::
period.

::::
This

:::::::::
deposition

::::
can

::
be

::::
seen

::
in

::::::
Figure

::
1b

:::
on

:::
the

::::::
bottom

::::
right

::
in

:::
red

:::::::
(marked

:::
as

:
i).

The dataset presented here is part of this continuous monitoring setup
:
a
:::::::::
continuous

::::::::::
monitoring

::::::::
campaign, which was in

operation from August to October
:
in

:::::
three

:::::::::
subsequent

:::::::
setups,

:::
one

::
in
:

2020 and
:::
two

::
in
::::::

2021,
:::
and

:::
of

:::::
which

:::
we

::::::::
consider

:::
the

::::
third

:::::
setup.

::
It was designed to collect data for various research and development activities regarding the deployment of long-185

range laser scanners within a remotely controlled, web-based monitoring system from an engineering geodetic perspective. In

addition to the laser scanner, a total station (LEICA TM30), inclination sensors on the pillars (PC-IN1-1° from POSITION

CONTROL) and various meteorological sensors were used in the shelterand
:
.
:::
For

:::
the

::::
first

:::
two

::::::
setups,

::
a

::::
total

::::::
station

:::::::
(LEICA

::::::
TM30)

:::
and

::::::::
additional

:::::::::::::
meteorological

::::::
sensors

::::::
placed

:::::::::
throughout

:
the area of the rockfall

::::::
interest

::::
were

::::::::
employed. The additional
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measurements are used to verify systematic error influences on the result results . The topic is currently ongoing research.190

The methods presented in this paper are based on a part of the recorded data from 2020-08-20 00:00 to 2020-08-25 20:00 (all

times are local time), corresponding to a total of 71 individual scans . Every 2 hours, a high-resolution scan of the area was

performed with a resolution of 15 mdeg in azimuth and elevation and a measurement rate of 50 kHz.
:::
and

:::::
align

::::
well

::::
with

:::
the

::::::::::::
transformation

:::::::::
parameters

::::::::
extracted

::::
from

:::
the

:::::
prism

:::::
scans

:::::::::::::::::::
(Schröder et al., 2022).

:

The first epoch (2020-08-20 00:00) was used as a reference epoch, also referred to as the null epoch. All subsequent epochs195

were aligned to this epoch by applying an ICP algorithm (Besl and McKay, 1992) implemented in OPALS (Glira et al., 2015)

using stable surfaces adjacent to the rockfall area. The obtained transformations were applied to the dataset , and
::
In

:::::::
addition

::
to

::::::
dataset

:::::::::
alignment,

:::::::::::
preprocessing

::::::::
consisted

::
of

:::
the

:::::::
removal

::
of

:
outliers and vegetation points were filtered using the statistical

outlier filter (k=8, multiplier=10.0; Rusu et al., 2008) and the SMRF filter (cell size=0.5 m, slope=2; Pingel et al., 2013), as

well as a filter on the waveform deviation (≤50),
::
all implemented in PDAL (PDAL Contributors, 2018). The parameter file is200

supplied with the code (see Code availability statement).

On
::
In these data, we quantified bitemporal change magnitudes and uncertainties using M3C2-EP (cf.

:::::::
presented

:::
in

:::::
detail

::
in Sect. 3.1). We used the same normal vectors for all epochs, calculated on the null epoch

:::::
which

::::
were

:::::::::
calculated

:
using a

5 m search radius
::
on

:::
the

::::
null

:::::
epoch. The M3C2 distancing was carried out on a subset of the null epoch ("core points") that

was
::
the

:::::
“core

:::::::
points”)

:
created by distance-based subsampling in CloudCompare, reducing the number of points to around205

200
:::
555,000 (average resulting point density: 0.8 points/m2

:::
min.

:::::
point

:::::::
spacing:

::::
0.25

::
m). The projection radius was 0.5 m and

the maximum cylinder length was 3.0 m. As uncertainty measures, we used the values of the RIEGL VZ-2000i as presented

in Winiwarter et al. (2021): 0.005 m ranging accuracy and 0.0675 mrad uncertainty in yaw and elevation(
::::
With

:
a
:::
0.5

::
m

::::::
search

:::::
radius,

:::
we

:::::::
ensured

:::
that

::
a
::::::::
sufficient

::::::
number

::
of

::::::
points

::::
were

:::::
found

:::
for

:::
the

::::::
central

::::
area

::
of

::::::
interest

::::
(the

::::::::::::
debris-covered

::::::
slope).

::::
Fig.

::
2a

:::::
shows

::
a
::::::::
histogram

::
of

:::
the

:::::::
number

::
of

::::::
points

:::::
found

::
in

:::
the

:::::::
cylinder

::::
over

::
all

:::::::
epochs.210

::
To

::::::::
estimate

:::
the

:::::::
ranging

:::::::::
uncertainty

::::
and

:::
its

::::::::
variation

::::
over

:::::
time,

:::
we

:::::
again

::::
used

::::
the

::::::
prisms

:::::::
installed

:::
in

:::
the

::::::
scene.

:::::
After

::::::::
extracting

:::::
them

::::
from

:::
the

::::
full

::::::::::::
high-resolution

:::::
scans

:::::
using

:::::::::::
thresholding

:::
on

:::
the

:::::::
returned

:::::::::
amplitude

:::
and

:::::::::::
approximate

::::::::
locations

::
of

:::
the

::::::
prisms,

::
a

:::::
planar

::
fit

::::
was

::::::
carried

::::
out.

::::
The

:::::::
variance

::
of

:::
the

:::::::::
orthogonal

::::::::
distances

:::
to

:::
this

:::::
plane

::::
was

::::
then

::::::::
extracted

::
for

:::::
each

:::::
prism

:::
and

::::::::
averaged

:::
for

::::
each

::::::
epoch.

::::
The

:::::::
resulting

::::::::
precision

::::::::
measure,

::::::
ranging

:::::
from

:::::
0.004

::
m

::
to

:::::
0.006

:::
m

::::::::
(standard

:::::::::
deviation),

:::
was

::::
used

:::
as

::
an

:::::
input

::
for

:::::::::
M3C2-EP

:::
for

::::
each

::::::
epoch,

:::::::::::
respectively.

:::::::
Epochs,

:::::
where

::
no

::::::
prisms

:::::
were

:::::::
detected

:::
due

:::
to

:::::::::::
precipitation,215

::::
were

::::::::
assigned

:::
the

:::::::::
maximum

:::::::
ranging

:::::::::
uncertainty

:::::
value

:::
of

:::::
0.006

:::
m.

:::
For

:::::::
angular

::::::::::
uncertainty

::
in

:::::::
azimuth

::::
and

:::::::::
elevation,

:::
we

::::
used

::::::
0.0675

:::::
mrad,

::::::
derived

:::::
from

:::
the

::::
beam

::::::::::
divergence

::
as

::::::::
presented

::
in

::::::::::::::::::::
Winiwarter et al. (2021)

:::::
(again

:
values of single standard

deviation respectively).

a) 3D perspective view of differences between the last and the first epoch of the 5 days and 20 hours dataset. Change

magnitudes range from -3 to +3 metres, but are capped to ±0.1 metres to more clearly show less prominent changes. The dark220

red and blue areas are where excavators moved debris during the study period (I+II). On the hillside, multiple erosion channels

are forming (III). b) Associated uncertainty expressed as the variance for the bitemporal change analysis, calculated using

M3C2-EP, where locations closer to the scan position (SP) lead to less uncertainty and more points in the search cylinder.
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Figure 1.
::
a)

::
3D

:::::::::
perspective

::::
view

::
of

:::
the

::::
study

:::
area

::::::::
(WGS84:

::::::::
47°02’48"

::
N

:::::::
11°32’08"

:::
E).

:::
The

:::::::::::
debris-covered

:::::
slope

:::
can

::
be

::::
seen

:
in
::::

gray.
::::

The

::::
point

::::
cloud

:::::
which

::
is

:::
used

:::
for

::::::
analysis

:::
and

:::::
which

::
is

:::::
shown

::
in

::::::::
subsequent

::::
plots

::
is

::::::
outlined

::
in

::::::
orange,

:::
and

::::::
singular

:::::::
locations

:::::::::
investigated

::::
later

::
on

::
are

::::::
labeled

::
as

:::
1-5.

::
b)

:::::::::
Bitemporal

::::::::
differences

:::::::
estimated

::::
with

::::::::
M3C2-EP

:::
over

:::
the

:::
full

:::::::
timespan.

::::
The

:::::
change

::
of

:
>
:::
0.1

::
m

::
on

:::
the

::::
lower

::::
right

::
is

:::::
packed

::::
snow

::::
after

::
an

::::::::
avalanche

::
(i).

::::
The

:::
blue

::::
edge

::
at

::
the

::::::
bottom

::
is

:::::
erosion

:::
due

::
to
::
an

:::::::::::
anthropogenic

:::::
break

:::
line

::
in

::
the

:::::
terrain

:::
(ii).

2.2 Point cloud time series analysis
::::::::
Synthetic

:::::
scene

The large amount of data acquired by permanent laser scanning setups makes it necessary to distil the information in the225

dataset. Whereas the recorded near-continuous point cloud data is 4D, researchers, decision-makers and engineers require a

human-readable presentation in 2D maps and 1D time series for selected locations. Therefore, the detection and selection of

objects are crucial. Singular objects can then be located in space on a map and in time by plotting an aggregated change history

of the concerned locations. For comparison with the state-of-the-art, we select two methods with fundamentally different

approaches.This allows us to discuss our method in the scope of the full spectrum of
::
To

:::::::
validate

:::
and

:::::::
compare

::::::::
different

:::::::
methods230

::
of

:::
4D

::::
point

:::::
cloud

::::::::::
processing,

::
we

::::::
create

:
a
::::::::
synthetic 4D change analysis.

::::
point

:::::
cloud

::::::
dataset.

::
A

:::::
mesh

:::::
model

::
of

::
a

:::
100

:::::::
m×100

::
m

::::
plane

::
is
::::::
created

:::
for

:::
40

::::::
epochs

:::
by

::::::
creating

::::::
points

::
in

:
a
:::::::
regular

:
1
::
×

::
1

::
m

::::
grid

:::
and

:::::::::
computing

:
a
:::::::::
Delaunay

:::::::::::
triangulation.

::::::::
Different

::::::
change

:::::
values

:::
are

::::
then

:::::::
applied

::::
over

::::
time.

::::
The

:::::::::
magnitude

::
of

:::
the

::::::
change

:::::
values

::::::
ranges

:::::
from

::::
0.00

::
m

::
to

::::
0.05

::
m

::::::
(linear

:::::::::
gradient),

:::
and

:::
the

::::::::
temporal

::::::
pattern

::
is
::::::::

modeled
:::
by

:
a
:::::::::

sinusoidal
::::::::

function
::::
(Eq.

:::
1).

::::
This

::::::
pattern

:::
is

::::::
chosen

::
to

::::::
obtain

::
a

:::::::::::
non-uniform

:::
yet

:::::::::
continuous

:::::::
velocity

:::
and

:::::::::::
acceleration.235

Generally, unsupervised machine learning allows the clustering or segmentation of objects with similar properties. In the case

of time series, these properties may be derived from the change history. For example, Anders et al. (2020) use discrete-time
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Figure 2.
::
a)

::::::::
Histogram

::::
over

:::::
points

::::
found

::
in

::::
each

:::::
M3C2

:::::
search

:::::::
cylinder

::
for

:::
the

::::::::
respective

:::::
second

:::::
epoch

::
of

::
all

:::::::::
bitemporal

::::::::::
comparisons.

::
b)

::
3D

::::
view

::
of

:::
the

::::::
number

::
of

:::::
points

:::::
found

::
in

::
the

:::::
M3C2

::::::
search

:::::::
cylinders

::
for

:::::
Epoch

:::::::::
2021-11-15

:::::
18:00.

::::
The

:::::
search

:::::
radius

::
of

::::
0.5m

:::
was

::::::
chosen

:::
such

:::
that

::::
most

:::::
areas

:
of
::::::

interest
::::::::
(especially

:::
the

:::::::::::
debris-covered

:::::
slope,

::
cf.

::::
Fig.

::
1a)

:::
are

::::::::::::
well-represented

::
in
::::
most

::::::
epochs.

warping distance to define a similarity metric between change histories of two locations. They then use seeded region growing

to find spatially connected components, based on this similarity. A change object (so-called 4D object-by-change) , once found,

can then be shown in a list, where it may be analysed in space and time. These objects may also overlap in space or in time,240

allowing to extract multiple processes that impose change at a single location separately.

f(t) = (sin(t)+ 1)/2
:::::::::::::::::

for t ∈ [−π/2,π/2] , mapped to days 0 to 40
::::::::::::::::::::::::::::::::::::

(1)

Kuschnerus et al. (2021) use the relative elevation values at spatial locations as features for clustering algorithms.They

compare the performance of k-Means, agglomerative clustering, and DBSCAN on a dataset of
::
We

::::::
apply

::::::::::::
displacements

::::::::::
orthogonally

:::
to

:::
the

:::::
mesh

::::::
surface

::::
and

:::::
rotate

:::
the

:::::
mesh

:::
to

::::::::
represent

:
a
:::::

slope
:::

of
::::
60◦.

::::::::::::
Subsequently,

:::
we

:::::::
perform

::::::
virtual

:::::
laser245

:::::::
scanning

:::::
from

:
a
:::::
single

::::
TLS

:::::::
position

:::::::
located

:::
300

::
m
:::::

away
:::::
from

:::
the

:::::
plane

:::::
center,

:::::
using

:::
the

::::::::::::
specifications

::
of

:
a
:::::::
RIEGL

:::::::
VZ-400

::::
TLS

:::::::::::
implemented

::
in

:::
the

::::::::::
HELIOS++

::::::
virtual

:::::
laser

:::::::
scanning

:::::::::
simulator

::::::::::::::::::::
(Winiwarter et al., 2022)

:
.
:::
The

::::::::
resulting

:::::
point

:::::::
spacing

:::::
ranges

:::::
from

::::
0.63

::
m

::
to

::::
1.04

:::
m.

:::
To

:::::::
simulate

:::::::::
alignment

::::::
errors,

:::
we

::::
draw

:::::::
random

::::::::::::
transformation

::::::::::
parameters

:::
for

:
a
:::::::::::

7-parameter

:::::::
Helmert

::::::::::::
transformation

::::
from

:
a
::::::
normal

::::::::::
distribution

:::::::::::::::::::::::::::
(µ= 0,σx = σy = σz = 0.002m,

:::::::::::::::::::::::::::::::::::::::::::
σα = σβ = 0.001◦,σγ = 0.005◦,σm = 0.00001ppm).

:::
The

::::::::::
uncertainty

:::::
values

:::
are

:::::::
derived

::
to

::
be

::::::
similar

::
to

:::
the

:::::::::
maximum

:::::
values

::::::::::
encountered

:::
in

::
the

::::
real

:::::::
dataset.250

:::
For

::::
each

:::::
epoch,

:
a sandy beach, where both natural and anthropogenic forces impact the surface morphology.In their research,

they show that k-Means and agglomerative clustering perform similarly well, whereas DBSCAN suffers from the non-binary

9



boundaries between neighbouring changes of similar properties.They also point out that their method is not able to cluster

changes with similar properties if they occurred at different points in time. As they use the change
:::::::
different

:::::::::::::
transformation

:
is
::::
then

:::::::
applied

::
to

:::
the

:::::
point

::::::
cloud.

:::::::::::
Subsequently,

:::::::::
M3C2-EP

::::
was

::::
used

::
to

::::::::
quantify

:::::::::
bitemporal

::::::
surface

:::::::
changes

::::
and

:::::::::
associated255

:::::::::::
uncertainties,

:::::
where

:::
the

:::::
same

::::::
normal

::::::::::
distribution

:::::::::
parameters

::::
were

::::
used

:::
as

:::::::::
covariance

::::::::::
information

::
for

:::
the

:::::::::::::
transformation.

::::
The

:::
full

::::
point

:::::
cloud

::
of

:::
the

::::
null

:::::
epoch

:::
(no

::::::::::::
deformations)

::::
was

::::
used

::
as

::::
core

::::::
points,

:::
and

:::
the

::::::
normal

::::::
vector

:::
was

:::::::
defined

::
to

::
be

:::
the

:::::
plane

::::::
normal

:::::
vector

::
of

:::
the

:::::::
original

:::::
mesh

:::
for

:::
all

::::::
points.

:::
For

:::::::::
M3C2-EP

:::
and

::::::
M3C2

:::::::
distance

::::::::::
calculations,

::
a
::::::
search

:::::
radius

::
of

::
1
::
m

::::
was

::::
used,

::::::::
resulting

::
in

::
an

:::::::
average

::
of

::
10

::::::
points

::::::
falling

:::::
within

:::
the

::::::
search

:::::::
cylinder.

:

3
:::::::
Methods260

::
In

:::
this

:::::::
section,

:::
we

1.
::::
show

::::
how

:::::::::::
measurement

:::::::::::
uncertainties

:::
can

:::
be

:::::::::
propagated

::
to

:::::::::
bitemporal

::::::
change

:
values at the respective epochs as feature

space, all dimensions have the same scale and unit (i.e., meters), and locations where one or more measurements are

missing (e. g., due to temporary occlusion) cannot be assigned to a cluster.
::::
using

:::::::::
M3C2-EP

:::::
(Sect.

::::
3.1),

:

2.
::::::
present

:
a
:::::::
baseline

:::::::
method

::
of

::::
time

:::::
series

:::::::::
smoothing

:::::
using

:
a
::::::::
temporal

::::::
median

::::
filter

::::::
(Sect.

::::
3.2),265

3.
::::::::
introduce

::
the

:::::::
Kalman

:::::
filter

:::
and

:::
the

::::::::::::
corresponding

::::::::
equations

:::::
(Sect.

::::
3.3),

::::
and

4.
:::
use

::::::::
clustering

::
to

:::::::
identify

::::
areas

:::
of

::::::
similar

::::::
change

:::::::
patterns

:::::
(Sect.

::::
3.4).

:::
The

:::
full

:::::::::
processing

:::::::::
workflow

:
is
::::::
shown

::
in

::::::
Figure

::
3.

3.1 M3C2-EP point cloud change analysis

Every (physical) measurement is subject to errors . In the course of point cloud change analysis, these errors are propagated270

and can be quantified to estimate the variance of the actual
:::
To

:::::
enable

::::::::
analysis

::
of

:::
the

::::
time

::::::
series,

:::
we

:::::::
convert

:::
the

:::
4D

:::::
point

::::
cloud

::::
into

::
a

:::::
series

::
of change values

::
at

:::::::
selected

::::::::
locations

:::
(the

:::::
“core

::::::::
points”).

::
As

:::
we

:::::
want

::
to

:::::::::
rigorously

:::::::
consider

:::::::::::
uncertainties

::
in

::::
order

::
to

:::::::
separate

:::::
noise

::::
from

::::::
change

::::::
signal,

:::
we

::::::
employ

:::::::::
multiscale

:::::::::::::
model-to-model

:::::
cloud

::::::::::
comparison

::::
using

:::::
error

::::::::::
propagation

:::::::::::::::::::::::::::::
(M3C2-EP, Winiwarter et al., 2021).

::::
This

::::::
method

::::::::
considers

:::::::::::
measurement

::::
and

::::::::
alignment

:::::
errors

::
of

:::
the

::::
laser

::::::::
scanning

::::::::::
observations

::
to

:::::
arrive

:
at
:::
an

:::::::
estimate

::
of

:::
the

:::::::::
uncertainty

:::
for

:::::::
obtained

::::::
change

:::::
values. Especially in laser scanning, where subsequent acquisitions275

never result in the measurement of identical points (Williams et al., 2018), derived change values will almost never be zero.

A careful consideration of measurement and processing errors therefore allows a statistical test
:
In

::::
turn,

:::::
such

::::::::::
uncertainties

::::
can

::
be

::::
used

::
in

::::::::
statistical

::::
tests

:
on the significance of a change value (Lague et al., 2013). For example, a change of 0.02 m may be

significant for a relatively precise dataset, e.g. acquired with TLS. The same change magnitude may not be distinguishable from

the noise for a different, less precise dataset, e.g. acquired by ALS. The so-called
:::::
change

::::::
values

::::::::::::::::
(Lague et al., 2013).

:::::::::
Typically,280

::
the

::::
test

:
is
:::::::::
expressed

::
as

:
a
:::::::
spatially

:::::::
varying Level of Detection

:
,
:::::
which is a measure of how large a change value has to be

:
in

:::::
order

::
to

::
be

:
attributed to actual change. As a probability measure and result of a statistical test, the

:::
The

:
Level of Detection depends

10
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Figure 3.
::::::::
Flowchart

::
of

::
the

::::::::
workflow

::::::::
undertaken

::
in

:::
this

:::::::
research.

:::
The

:::::
novel

:::::
method

::
is
:::::::::
highlighted

::::
using

::::
bold

:::::
arrows

:::
and

:::::
boxes.

:::::
Three

::::
time

:::::::::
series-based

:::
and

:::
one

::::::::
bitemporal

::::::
method

:::
are

::::::::
compared.

::::::::::
Additionally,

:::
we

::
use

::::::::
K-Means

:::::::
clustering

:::::
based

::
on

:::::::::::::::::::
(Kuschnerus et al., 2021)

::
on

:::
the

::::::::::
multitemporal

:::::::
methods

:::
and

::::::
compare

:::
the

:::::::
resulting

::::::
clusters.

on a significance level, which is commonly
:::::::
typically

:
set to 95% (Lague et al., 2013; James et al., 2017). We, therefore, speak

of the LoDetection95%. In Winiwarter et al. (2021), we showed how the LoDetection95% ::::
Level

::
of

:::::::::
Detection can be derived

from knowledge on the sensor accuracies (e.g. from the sensor data-sheet) and alignment accuracy (using an ICP alignment;285

Besl and McKay, 1992) by error propagation. In addition, we weighted the individual measurements
:::
are

::::::::
weighted by their

respective uncertainties to arrive at an unbiased estimate for the change value
:::::
values. We refer to this method as M3C2-EP, as

it extends the M3C2 algorithm by error propagation.

The
::::
error

::::::::::
propagation

::
is

::::::
carried

:::
out

:::
by

:::::
taking

::::
the

:::::::::::
mathematical

::::::
model

::
of

::::
how

:::::
point

:::::
cloud

::::::::::
coordinates

:::
are

:::::::
obtained

:::::
from

::::::::::
transforming

::::::::
measured

:::::::::
quantities

::::::
(range,

::::::
azimuth

::::::
angle,

:::
and

:::::::
elevation

::::::
angle)

:::
and

::::::::
computed

:::::::::
quantities

::::::::::::
(transformation

:::::::::::
parameters).290

::::
This

:::::
model

::
is

::::
then

:::::::::
linearized

::
by

::
a
::::::
Taylor

::::::::::::
approximation.

:::::::::
Following

::::::::::::::
Niemeier (2001)

:
,
:::
the

:::::::::
uncertainty

::
in
:::
the

:::::::::
Cartesian

:::::
target

:::::::::
coordinates

::::::
(Cxyz)

::::
can

::::
then

::
be

:::::::::
estimated

::
by

::::::::::
multiplying

:::
the

:::::
linear

:::::::::::::
approximation

:::::
model

::
in
:::
the

:::::
form

::
of

:::
the

::::::::
Jacobian

::::::
matrix

11



::
A

::::
onto

:::
the

:::::::::
covariance

::::::
matrix

::
of

:::
the

:::::
input

:::::::::
quantities

::::
Crφθ:::::

from
:::
the

:::::
right,

::::
and

:::
the

::::::::
transpose

::
of

:::
the

::::::::
Jacobian

:::::
from

:::
the

:::::
right,

::::::::::
respectively

:::
(cf.

:::
Eq.

:::
2).

Cxyz = AT · Crφθ · A
:::::::::::::::::::::::::::

(2)295

:::::
While

::::::
M3C2

::::
itself

::::
also

::::::::
quantifies

:::
the

::::::::::
uncertainty

::
of

:::
the

::::::::
estimated

:::::::::
bitemporal

::::::::::
differences,

::::
this

:::::::
estimate

::
is

::::::
derived

:::::
from

:::
the

:::
data

::::::::::
distribution

::::
and

:::::::::
influenced

::
by

:::::::::::::
non-orthogonal

::::::::
incidence

:::::::
angles,

:::
and

::::::
object

::::::::
roughness

::::::
within

:::
the

::::::
M3C2

::::::
search

:::::::
cylinder

:::::::::::::::::::::::::::::::::::::::::
(Fey and Wichmann, 2017; Winiwarter et al., 2021)

:
.

:::
The

:
M3C2-EP point cloud distance measure

:::::
hence allows transferring uncertainty attributed to each of the original mea-

surements, i.e., laser ranges and angular measurements, to uncertainty in point cloud change for every individual core point.300

Thereby, the obtained M3C2-EP distance and its spatially heterogeneous uncertainty are representing our knowledge on
::
of the

point cloud change itself, not on
:
of

:
the measurements. This property allows us to use the distance for further-going analyses,

such as the one presented in the following section
:::::::
following

::::::::
analyses.

:::
We

:::::::
resample

::::
the

::::
time

:::::
series

::
to

::
a

::::::
regular

::::::
dataset

:::
by

:::::
using

:::::
linear

:::::::::::
interpolation

::
to

:::
fill

::
in

:::::::
missing

::::
data

::::::
points,

:::
e.g.

::::::
caused

:::
by

::::::::
temporary

::::::::
occlusion

::
in
:::
the

::::::::
observed

::::::
scene.305

3.2
::::::::

Temporal
:::::::
median

:::::::::
smoothing

::
As

::
a

:::::::
baseline

::::::
method

::
to

:::::::
compare

:::
the

:::::::
Kalman

::::
filter

:::::
result

:::::
with,

::
we

:::::
apply

::
a

:::::::
temporal

::::::
median

:::::
filter

::
for

:::::::::
smoothing

:::
the

::::
time

::::::
series,

::
as

::::::::
presented

:::
by

:::::::::::::::::
Kromer et al. (2015).

::
In

::::
this

:::::::
’sliding

:::::::
window’

:::::::::
approach,

:::
the

::::::
median

::::::::
function

:
is
:::::::

applied
::
to

:::
all

::::::
change

::::::
values

::
in

:
a
::::::::
temporal

:::::::
window.

::::
The

:::::::
median

:::::::
function

:::
has

:::
the

:::::::::
advantage

::::
that

:::
the

:::::
exact

:::::
points

:::
in

::::
time

:::::
when

::::::
change

::
is

:::::::::
measured,

::::
will

:::
not

::
be

:::::::
altered.

:::::::::::
Furthermore,

::::::
outliers

::::
can

::
be

::::::::::
completely

::::::::
removed,

::
as

:::::
single

::::::
spikes

::
in

:::
the

:::::
input

::::
time

:::::
series

::::
will

:::
not

:::::::::
propagate310

::
to

:::
the

::::::::
smoothed

:::::
result.

::::::::
However,

:::
the

:::::::
median

:::::::
function

::
is

:::
not

::::::::::::
differentiable,

:::
nor

::::
does

::
it

:::::::
consider

:::::::
different

:::::::
weights

::
in

:::
the

::::::
inputs

::::::
(which

::::
may

::
be

:::::::
derived

::::
from

::::::::::::
measurement

::::::::::::
uncertainties).

:::::::::
Therefore,

:::
the

::::
error

:::
in

:::
the

::::::::
quantified

::::::::::
differences

::::::
cannot

::
be

::::::
easily

:::::::::
propagated.

::::::::::::
Furthermore,

:
a
:::::::

window
::::

size
::::::

needs
::
to

:::
be

::::::
chosen.

::
If
:::::::

chosen
:::
too

:::::
large,

:::::::::
temporary

:::::::
surface

:::::::::
alterations,

:::::
such

::
as

::
a

::::::::
deposition

::
of
::::::::
material

:::::::
followed

:::
by

::::::
erosion,

::::
will

::
be

:::::::::
smoothed

:::
out.

::::
For

:::
too

::::
small

:::::::::
windows,

:::
the

:::::
benefit

:::
of

:::::::::
smoothing

::
in

:::::
terms

::
of

::::
noise

::::::::::
elimination

:::::::
becomes

:::::::::
negligible.

:::
To

:::::::
account

:::
for

:::
this,

:::
the

:::::::
window

:::::
must

::
be

::::::
chosen

:::::::
smaller

::::
than

:::
the

:::::::
expected

::::::
change

:::::
rates315

:::::::::::::::::
(Kromer et al., 2015)

::::::
thereby

:::::::::
depending

:::
on

:::
the

::::::
change

::::::
process

::::
that

::
is

::::::::::
investigated.

:

3.3 Kalman filter and smoother for change analysis

The Kalman filter can
:::
We

::::::
present

:::
the

::::
use

::
of

:
a
:::::::

Kalman
:::::

filter,
::::::
which

:::
can

:::
be

::::
used

::
to

::::::::::
incorporate

:::::::
multiple

:::::::::::
observations

::
(in

::::
our

:::
case

::::
the

::::::
change

::::::
values

:::
for

::::
each

::::::
epoch,

:::::::::
quantified

:::::
along

:::
the

::::
local

:::
3D

:::::::
surface

:::::::
normals

:::::
using

:::::::::
M3C2-EP,

:::
cf.

::::::
Section

::::
2.1)

::::
and

:::::
obtain

::::::::::
predictions

:::::
about

:::
the

:::::::::::
displacement

::
at

:::::::
arbitrary

::::::
points

::
in

:::
the

::::
time

::::::
series,

:::::::::
analogous

::
to

:::
the

::::::
median

::::::::::
smoothing.

::
A

:::::
main320

::::::::
advantage

::
of

:::
the

:::::::
Kalman

::::
filter

::
is

::
its

::::::::
potential

::
to

:::::::
consider

:::::::::::
uncertainties

::::
both

::
in

:::
the

::::::
inputs,

:::::::
allowing

:::
for

::::::::::
observations

::
of

::::::::
different

:::::::
qualities

::
to

::
be

:::::::::
combined,

::
as
::::

well
:::

as
::
in

:::
the

::::::
output.

:::::
Here,

::
an

::::::::::
uncertainty

:::::
value

:::
for

::::
each

:::::
point

::
in

::::
time

::
is

::::::::
estimated,

::::::::
allowing

:::
for

::::::::
statistical

:::::
testing

:::
of

:::
the

:::::::
obtained

:::::::::
smoothed

::::::
change

:::::
values

:::
(as

::
in
:::

the
::::::

M3C2
:::
for

:::::::::
bitemporal

:::::::
change

::::::
values).

::::::
While

:::
the

:::::::
Kalman
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::::
filter

::
is

:::::::::
commonly

::::::::
empliyed

:::
for

:::::::
smooth,

::::::::::
continuous

::::
time

::::::
series,

:::
not

:::
all

:::::::
changes

:::
are

:::::::
smooth

::
in

:::
our

::::
case

:::
of

:::
4D

:::::
point

:::::
cloud

::::::
change

:::::::
analysis.

::::
The

:::::::::
limitations

::::::
arising

::::::
thereof

:::
are

::::::::
discussed

::::
later

:::::::
(Section

:::
5).325

:::::
While

:::
the

:::::::
Kalman

::::
filter

::
is
:::

an
:::::::
“online”

:::::::
method,

::::::
which

::::::
allows

:::::::
updates

::
by

::::::
adding

::::
new

::::
data

::::::
points,

:::
we

::::::::
consider

:
a
::::
post

::::
hoc

::::::
analysis

::::
and

::::::
assume

::::
that

::
all

::::::::::::
measurements

:::
are

::::::::
available

::
at

:::
the

::::
time

::
of

:::::::
analysis.

::::
This

::::::
allows

::
us

:::
not

::::
only

:::
to

:::::::
consider

:::::::::
previously

:::::::
observed

::::::
change

::::::
values

::
at

:
a
:::::
given

:::::::
location,

:::
but

::::
also

::
to

::::::::::
incorporate

:::::
future

:::::::::::
observations.

::
To

::::
that

::::
end,

::
we

::::
can

::::
make

:::
use

:::
of

::
the

::::
full

::
4D

:::::::
domain

::
of

:::
the

:::::::
dataset.

:::
The

:::::::
Kalman

::::
filter

:::
can

:
be seen as a temporal extension of adjustment computation. It allows the integration of measurements330

over time into a state vector
::
xt:

describing the system at a specific point in time
:
t. This state can contain information on position,

velocity, acceleration
:
, or other quantities. For the propagation from one state to the next, the so-called state transition matrix

F is used1. It is a linear approximation of how the state changes from one point in time to the next, based on all the values in

the state. The following examples of the matrices and vectors correspond to the implementations in the method presented in

this paper. For a state vector containing the position, the velocity, and the acceleration of an object, the state transition matrix335

is given in Eq. 3:

F =


1 ∆t ∆t2

2

0 1 ∆t

0 0 1

 (3)

Here, the next position (at t1 = t0 +∆t) derives from the current position (at t0), onto which the velocity multiplied by the

time step and the contribution of the acceleration are added. The diagonal entries of 1 ensure that the current position, velocity,

and acceleration are transferred to the next point in time. The transition of the state vector from t0 to t1 is done using the340

prediction update equation (Eq. 4) in the prediction step:

xt+∆t = F ·xt (4)

A measurement may subsequently be introduced in the so-called correction step. For this, a linear approximation of the

measurement function H is required. A measurement consisting only of the position of the object, or in our case, the change

magnitude at a position, results in a matrix H as shown in Eq. 5. The velocity and the acceleration are not observed, so345

the second and third elements are zero. One could also imagine including physical measurements of velocity, e.g., using a

Doppler radar system, or of acceleration, such as from an inertial measurement unit. In our application of terrestrial laser

scanning repeated from a fixed position, we do not have such measurements
::::
such

::::::::::::
measurements

:::
are

::::::::
typically

:::
not

::::::::
available

::::
when

:::::::::::
investigating

::::::::::
geomorphic

::::::
surface

:::::::
changes.

1we use the nomenclature of the Python package "FilterPy" and the accompanying book "Kalman and Bayesian Filters in Python" (Labbe, 2014)
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H =


1

0

0

 (5)350

The step size of the update ∆t is not necessarily equal to the measurement interval, leading to prediction steps without

correction steps. This allows the estimation of the state for points in time where no measurement was recorded, based on

previous measurements only. State estimation is not limited to interpolation but includes
::::
also

::::::
allows extrapolation into the

future.

As in adjustment computation, every measurement in the Kalman filter is attributed with uncertainties, herein presented by355

the measurement noise matrix R. In our application, we use the uncertainty in point cloud distance obtained by M3C2-EP for

each epoch’s change value.

Finally, the process noise matrix Q represents how much uncertainty is introduced in each prediction step, and therefore

depends on the time step ∆t. By transitioning from t to t+∆t, the state vector becomes more uncertain, unless new measure-

ments are introduced. Q is representative of the system’s ability to change outside of the filter constraints. In our example, we360

:::
We

:::
can,

:::
for

::::::::
example,

:
assume a system with constant acceleration, however,

:
.
::::::::
However,

:
in reality, this is not the case, as, e.g.,

in a rockfall setting
::::::::::
gravitational

:::::
mass

:::::::::
movement

::::::::
processes, friction coefficients between topsoil and stable subsurface will

change for different temperatures, moisture,
:
and other parameters, so we allow for an adaptation of the acceleration over time.

A common approach to model the process noise is discrete white noise. Here, we define the variance of the highest-order

element (
:::
e.g.,

:
the acceleration) as σ2 and calculate the effect of this variance on the other elements of the system’s state365

(i.e., velocity and position)according to Labbe (2014, Chapter 07).
:
,
:::
cf.

::::::::
Equation

::
6,

::::::::
following

:::::::::::::::::::::
Labbe (2014, Chapter 7).

:
In

consequence, the state of the system becomes less certain over a longer time and can be made more certain by introducing

a new measurement with adequate uncertainty. For example, in the case of permanent
:::::::::::::
near-continuous TLS, change can be

estimated one day into the future after having acquired one week of hourly measurements. This allows estimating whether a

larger interval between the measurements still fully represents the expected changes.370

Qxva
::

=


∆t4

4
∆t3

2
∆t2

2

∆t3

2 ∆t2 ∆t

∆t2

2 ∆t 1

σa
2 (6)

The exact choice of this process noise model, especially the choice of the value of σ2
:
, is critical to the success of Kalman

filtering. For this
::::::::
Therefore, we compare three different choices for σ2, investigate the resulting time series and pick one where

the overfitting
:::::::::
over-fitting of the measurement data is reduced while the model still is flexible enough to represent most of the

:::::
subtle changes apparent in the dataset appropriately.

::
For

::::::
models

::::::
where

:::
the

::::
state

:::::
vector

::::
only

:::::::
includes

:::::::
velocity

:::
and

::::::::::::
displacement,375

::
or

:::
just

:::
the

:::::::::::
displacement

:::::
value

:::::
itself,

:::
the

:::::
white

::::
noise

:::::::
models

:::
are

:::::
given

::
in

::::::::
Equations

::
7

:::
and

::
8,

::::::::::
respectively.

:
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To start

Qxv =

∆t2 ∆t

∆t 1

σ2
v

:::::::::::::::::::::

(7)

Qx = σ2
x

:::::::
(8)

::
To

::::::::
initialize the iterative Kalman filter algorithm, starting values for the state and its uncertainty are required. As we start380

the time series at the null epoch
:::
with

::::
zero

:::::::
change, we define the

::::
initial

:
state vector to be (0,0,0)

T . Because the change values

are quantified with respect to this null epoch, we can be very certain that there is no change in the null epoch
:::
(by

:::::::::
definition)

and therefore set the variance of the position to be σ2
x = 0 m2. We allow the velocity and acceleration to take other values, and

set them to σ2
v = σ2

a = 1.0 m2/day2 / m2/day4. The exact choice of these values does not matter
:
is

:::::::::
negligible, as long as they

are larger than the expected magnitude of velocity and acceleration (Labbe, 2014, Chapter 8).385

Running the Kalman filter then results in estimates of the state and its uncertainty for each point in time, based on all previous

states and measurements. This is referred to as a "forward pass", as calculation on a time series starts with the first measurement

and then continues forward in time (Gelb et al., 1974, p. 156). It is, however, also possible to include consecutive states and

measurements, which can decrease uncertainty and lead to a better estimate of the state as, e.g., outliers are much more easily

detected compared to just using a forward pass. The Rauch-Tung-Striebel (RTS) smoother is a linear Gaussian method (such as390

the Kalman Filter itself) to consider consecutive states of the system (Rauch et al., 1965). It operates backwards
::::::::
backward

:
on

the time series, starting with the latest Kalman state estimate ("backward pass"). The
::::
final result is then a smoothed, estimated

time series, making use of all of the available information (Gelb et al., 1974, p. 169). For
:::::::
discrete,

:::::::::::
instantaneous

::::::::
changes,

:::
the

::::::::
backward

::::
pass

::::::
further

:::::::
ensures

:::
that

:::
the

::::::::
resulting

::::
time

::::::
series

:::
will

:::::
have

:
a
:::::::
change

::
of

::::::::
curvature

:::::::::
temporally

:::::::::
collocated

:::::
with

:::
the

::::::
change

:::::
event,

::::::::
allowing

:::
for

::::::
precise

:::::::::
extraction

::
of

:::
the

::::::
event’s

::::::::
temporal

:::::::
location.

::::
For more detail on the RTS smoother and its395

alternatives, the reader is referred to in-depth literature (e.g., Gelb et al., 1974; Labbe, 2014).
::
In

:::
the

::::::
results,

:::
we

::::::
always

:::::
show

::
the

::::
RTS

::::::::
smoother

:::::::::
estimates.

3.4 Time series feature extraction

Analysis of the estimated (smoothed) time series of the position (change value), velocity, and acceleration allows us to describe

the surface change in a feature vector. This feature vector is the basis to transform the 4D point cloud data to 2D representations400

in a map. To find locations of similar change patterns

3.4
::::::::

Clustering
::::

and
::::::::::::
identification

::
of

:::::::
change

:::::::
patterns

::
To

::::::::
represent

:::
the

::::::::::
information

::::::::
contained

:::
in

:::
the

::::
time

:::::
series

::
in

::
a

::::
static

::::
map, we use the feature vector in a clustering algorithm,

similar to using the entire smoothed time series. By using the derived features
:
a
:::::::::
clustering

::::::::
approach.

:::::
Here,

::::
data

::::::
points

::::
with

::::::
similar

:::::::
features

:::
are

:::::::::
aggregated

::::
into

::::::
groups

:::
or

:::::::
clusters.

::::
Due

::
to

:::
its

:::::::::::
unsupervised

::::::
nature,

:::
no

:::::::
training

::::
data

::
is
::::::::
required,

::::::
which405
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:::::
would

:::::
often

::
be

::::::
lacking

:::
in

:::
the

::::
case

::
of

::::::::::
topographic

:::::::::
monitoring

::
of
::::::

scenes
::::::::
featuring

:::::::
variable,

:::::::
a-priori

:::::::
typically

::::::::
unknown

:::::::
surface

::::::::
dynamics.

:::::::
Instead,

:::
the

:::::::
resulting

:::::::
clusters

:::
can

:::
be

:::::::
analyzed

::::
with

::::::
respect

::
to

::::
their

:::::
size,

:::::::
location,

:::
and

::::::::::
magnitude,

::
as

::::
well

::
as

:::::::
visually

::
by

::::
their

:::::
shape

:::
in

:::
3D

:::::
space,

::::
and

::::::::
ultimately

:::::::::
attributed

::
to

::::::
certain

::::::
process

::::::
types.

:::
We

:::
use

::
a

::::::::
K-Means

:::::::::
clustering,

:::::
which

:::
has

:::::
been

:::::
found

::
to

:::::::
perform

::::
well

:::
for

::::
the

:::::::::::
identification

::
of

:::::::
change

:::::::
patterns

::
in

:::
4D

:::::
point

::::::
clouds

:::
by

::::::::::::::::::::
Kuschnerus et al. (2021).

:::
As

:::::::
feature

:::::
space,

:::
the

::::::::
estimated

:::::
time

:::::
series

::
of

:::::::
change

::::::
values

:::
for

::::
each

::::
core

:::::
point,

::::
i.e., however, (a) the dimensionality can be reduced410

and is independent of the length of the time series and (b) features can be grouped by their definition. In the example of the

Vals dataset, such a feature may describe how sudden a change is happening (by maximum absolute velocity), independent of

when it happens. A different feature then extracts the epoch where the most prominent change happened, irrespective of the

magnitude.These features are then assigned to different groups.

We approach time-series feature definition from two different perspectives: First, we calculate several hand-picked features,415

grouped into four categories. The first group contains parameters that describe the most prominent events in the time series,

like the magnitudes of the largest and smallest change (
:
a
:::
list

::
of

:::::::::::
displacement

::::::
values

::::
over

::::
time,

::
is

:::::
used.

:::
The

::::::
spatial

::::::::::
component,

i.e., signed maximum and minimum values), velocity and acceleration, as well as the acceleration at the point where the change

value is maximal/minimal. The velocity value at these points is zero (as the velocity is the first derivative) unless the change

value is maximal/minimal at the very end of the
::
the

:::::::
location

::
of

:::
the

::::
core

:::::
point

::
in
:::
the

::::::
scene,

::
is

:::
not

::::::::
included

::
in

:::
the

:::::::::
clustering,420

:::::::
meaning

:::
that

::::
any

::::::
spatial

::::::
patterns

:::::::::
emerging

::
in

:::
the

::::::
clusters

:::
are

::::::
solely

:::
due

::
to

::::::
similar

:
time series. These parameters are grouped

as "Event attribute" in Table ??
:::
We

:::::::::
investigate

::::
how

:::
the

:::::::
different

::::
time

:::::
series

::::
lead

::
to

:::::::
different

::::::
cluster

::::::
results

::
in

::::::
Section

:::
4.3.

In the second group, we collect parameters that are aggregated from the full time series. Here, the duration of the time series

can take a large influence, as mean values for change, velocity and acceleration are calculated. Additionally, the mean absolute

slope of the change values is calculated as well as the total curvature (sum over the second derivative). Finally, the sum of425

squared residuals (change measurement - RTS smoother estimate)for the change values is computed. These parameters are

summarised as "Full time series" in Table ??.

The third group contains all parameters related to the timing of the events whose magnitude was represented in the first group,

i. e.
::::::::
K-Means,

:::
the

::::::::
clustering

::::::::
algorithm

:::::::::
iteratively

:::::::::
minimizes

:::
the

::::
total

:::
sum

:::
of

::
all

::::::::
distances

::::
from

::::
data

:::::
points

::
to

:::
the

::::::::
centroids

::
of

::
k

::::::
clusters

:::::::::::::::::::::::
(Hartigan and Wong, 1979).

:::
As

:::
the

:::::::
distance

::
is

::::::::
euclidean,

:::
all

:::::::::
dimensions

:::
are

::::::::
expected

::
to

::
be

::
in

:::
the

:::::
same

:::
unit

::::
and

:::::
scale.430

::
An

:::::::::
important

::::::::
parameter

::
is

:::
the

::::::::
selection

::
of

:::
the

::::::
number

::
of

:::::::
clusters.

::::
We,

::::::::
therefore,

::::::
create

:::::::::::
segmentations

::::
with

::
4, the epoch of the

maximum change value
:
8,

:::
10,

:::
and

:::
12

::::::
clusters

::::
and

:::::::
compare

::::
them

:::::::
visually.

::::
The

::::
goal

::
is

::
to

:::::
detect

::
all

::::::
groups

::
of

::::::::
different

::::::::
processes

:::::
acting

::
on

:::
the

:::::
scene

:::::
while

::::::::
avoiding

:::::::
splitting

::
up

::::::
groups

::
of

:::
the

:::::
same

::::::::
processes

::::
into

:::::::::
subclusters

:::::::::::::::::
(over-segmentation).

:

4
::::::
Results

:::
We

:::
first

:::::::
present

:::
the

::::::
impact

::
of

::::::::
different

::::::
model

:::
and

:::::::::
parameter

::::::
choices

:::
on

:::
the

:::::::::
clustering

:::
and

:::::::
change

::::::::
detection

::::::
results,

::::::
before435

:::::::::
comparing

:::
our

:::::::
resulting

:::::::
change

::::
time

:::::
series

::::
with

:::
the

::::
ones

::
of

:::::
linear

::::::::::::
interpolation,

:::::::
temporal

:::::::
median

:::::::::
smoothing,

::::
and

:::::::::
bitemporal

::::::::
M3C2-EP

:::
(cf.

::::
Fig.

:::
3).

:::
The

::::::
results

::
of

:::
the

:::::::
synthetic

::::::::::
experiment

:::
are

::::::::
presented

:::::::::::
subsequently.

:::::::
Finally,

::::::::
clustering

::
is

::::::
carried

:::
out.

::::
The

:::::
results

:::
are

::::
then

::::::::
discussed

::
in

:::::::
Section

::
5.
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4.1
::::::

Impact
::
of

:::::
model

::::
and

::::::::::
parameter

::::::
choice

:::
We

:::::
tested

:::::
three

:::::::
different

::::::
model

:::::::
choices

:::
for

:::
the

::::::::
Kalman

::::
filter

::::
and

:
a
:::::::

number
:::

of
:::::::::
parameters

:::
for

:::::
each

::::::
model.

::::
The

::::::::
different440

::::::
models

:::::::
increase

::
in
::::::::::

complexity
::::
and

::::::::::
dimensions

::
of

::::
their

:::::
state

::::::
vector:

::::
The

::::
first

::::::
model

::::::
simply

:::::
tracks

:::
the

::::::::::::
displacement

:::::
value

::::
itself.

::::
The

::::::::::
assumption

:::
for

::::
this

::::::
model

::
is

:::
that

::::
the

:::::::
allowed

:::::::
variance

:::
(σ)

:::::::::::
representing

::::
how

:::
the

:::::
state

::::
may

::::::
change

::::
over

:::::
time

::
is

:::::::
sufficient

::
to
:::::::
explain

:::
the

:::::::::::
displacement

:::::::
changes.

::::
The

::::::
second

:::::
model

::::
adds

:::::::
velocity

::
as

::
a

:::::::::
component

::
to

:::
the

::::
state

:::::
vector

::::
and

:::::::
imposes

::
the

:::::::::
restriction

::
of

:::
the

::::::::
variance

::
on

:::
the

:::::::
velocity

::::::::::
component.

::::::::::
According

::
to

:::
Eq.

::
7,

:::
the

:::::::
variance

:::
in

:::
the

:::::::::::
displacement

:::::
value

::
is

::::
then

::::::
derived

:::
via

::::
error

::::::::::
propagation

:::::
from

:::
the

:::::::
variance

::
in

:::::::
velocity.

:::::::
Finally,

:
a
:::::
model

::::::::
including

::::::::::::
displacement, velocity, and acceleration445

. We collect them as "Event timing" in Table ??.

The final group is describing the final state of the filter, i. e., the change value, velocity and acceleration of the last epoch,

and is shown as "Final state" in Table ??.
::
is

:::::::
created.

:::
The

::::::::::
motivation

:::
for

:::
this

::::::
model

::
is

:
a
::::::::
constant,

:::::::::::
gravitational

:::::::::::
acceleration,

::::::::
governing

:::
the

::::::
surface

:::::::
erosion

::::::::
processes

:::::::
observed

::
in
:::
the

::::::
scene.

::::::::
However,

:::
this

:::::::::
motivation

::::::::
assumes

:::
that

::::::
friction

::::::::::
coefficients

::::
also

::::::
change

::::::::::
continuously

::::::::::
throughout

:::
the

:::::
scene.

:
450

Secondly, we extract established time series characteristics. These include FFT- (Fast Fourier Transform) and autoregression

coefficients, statistical measures (mean, max, min), linear trend parameters, and more . By applying the EfficientFCParams

from the Python package tsfresh (v0.18, Christ et al., 2018), 781 features are extracted from the time series of smoothed

change,
:::
For

::::
each

::
of

:::
the

:::::
three

:::::::
models,

::
we

::::::::::::
experimented

::::
with

:::
the

:::::::
process

:::::
noise

:::::::
variance

::
σ.

:::
As

::::::
shown

::
in

::::
Fig.

::
4,

:::::
larger

::::::
values

:::
lead

:::
to

:
a
:::::

more
:::::::
flexible

::::
time

:::::
series

:::::::
model,

:::::::
whereas

:::::::
smaller

:::::
values

::::::
ensure

::
a
:::::
more

:::::::
smooth

:::::::
temporal

:::::::::
trajectory.

::::
For

:::::::
discrete455

::::::
events,

:::::
larger

::::::
values

::::
lead

::
to

::::::
ringing

:::::::
effects,

::::::::
especially

:::::
with

:::
the

::::::::::
higher-order

:::::::
models

::::
that

::::::
include

:
velocity and acceleration,

respectively. For a comprehensive listing, please refer to the documentation2. This amounts to more data dimensions than the

original measurements (which is .
::::
The

::::::
choice

::
of

::
σ

:::
also

:::::::::
influences

:::
the

:::::::::
achievable

:::::
Level

::
of

:::::::::
Detection:

:::::
With

:
a
:::::::
smaller

:
σ
::::::
value,

the number of epochs, in our example 71). The number of extracted features does not depend on the length or density of the

time series
::::
Level

::
of

:::::::::
Detection

::::::::
decreases,

::
as

::::::::::
subsequent

::::::::::::
measurements

:::
are

:::::::::
considered

::
to

::
be

:::::
more

::::::::
correlated

::
to
:::::
each

:::::
other.

::::
This460

:
is
::::::::
reflected

::
by

:::
the

:::::
width

::
of

:::
the

:::::
error

::::
band

::
in

:::
the

::::
plot.

:::::::::
Generally,

:::::
lower

:::::
values

::
in
::
σ
::::
lead

::
to

:::::
more

::::::::
smoothing

::::
and

:::::
lower

::::::
Levels

::
of

::::::::
Detection.

minChange Magnitude of the maximum (positive)change value
::
To

:::
find

::::::::::
appropriate

::::::
values

:::
for

::
σ

:::
for

::::
each

:::
of

:::
the

:::::::
models,

::
the

:::::::::
following

::::::
options

:::::
were

::::::::::
investigated:

::::
For

:::
the

:::::::::::::::
displacement-only

:::::
model

::::::
(Order

:::
0),

::::::
values

::
of

::::::
0.0002

::
m,

::::::
0.0005

:::
m,

:::::
0.001

:::
m,

:::::
0.002

::
m,

::::
and

:::::
0.005

::
m

:::::
were

::::::::
compared

:::::
(Fig.

::::
4a).

:::
The

::::
goal

::::
was

::
to
:::::::

recover
::::::::
processes

:::::::::
exhibiting

:::::::
smooth

::::::::::::
displacements

:::::
while465

:::::::
avoiding

:::::
fitting

::::
any

:::::
daily

:::::::
patterns,

::::::
which

:::
we

:::::::
attribute

::
to

:::::::::::
atmospheric

::::::
effects

::
in

:::
our

:::::
case.

::::
We,

::::::::
therefore,

:::::::
selected

::::::
0.0005

:::
m

::
as

:::
the

:::::
value

:::
for

::::::::::
subsequent

::::::::
analyses

::
of

::::
our

:::::::
example

:::::::::::
application.

::::::::
Similarly,

::::
for

:::
the

::::::::::::
velocity-based

::::::
model

::::::
(Order

::::
1),

:::
we

::::::::::
investigated

:::::
values

::
of

::::
σ =

:::::
0.002 mmaxChange Magnitude of the minimum (negative)change value m maxVel Magnitude of the

maximum (positive)velocity m/dayminVel Magnitude of the minimum (negative) velocity ,
:::::
0.005

:
m/daymaxAcc Magnitude

of the maximum (positive) acceleration ,
::::
0.01

:
m/day2minAcc Magnitude of the minimum (negative) acceleration ,

::::
0.02

:
m/day470

2accAtMinChange Acceleration value at the time of minimum (negative)change value
::
and

:::::
0.05

:::::
m/day

::::
(cf.

::::
Fig.

::::
4b).

:::::
Here,

2
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Figure 4. Time
:::::::
Retrieved

::::::
Kalman

::::::::
smoother

:::::::
estimates

::
for

::::
three

:::::::
different

::::::
models:

::
a)

::::
using

::::
only

::
the

::::::::::
displacement

::
x,

::
b)

::::
using

:::
the

::::::::::
displacement

:::
and

::
the

::::::
velocity

::
v,
:::
and

::
c)
:::::
using

::
the

:::::::::::
displacement,

::
the

:::::::
velocity,

:::
and

:::
the

:::::::::
acceleration

:
a
::
in

:::
the

:::::
model.

:::
For

::::
each

:::::
model,

:::::::
different

::::::
choices

::
for

:::
the

::::::
variance

::
σ

:
in
:::

the
::::
state

:::::
vector

::::
were

:::::
tested.

:::
The

::::
final

::::::
choices,

:::::::
manually

:::::
picked

::
to
::::
have

:::
the

:::::
largest

::::
value

:::
that

::::
does

:::
not

:::::
follow

::::
daily

::::::
signals,

:::
are

::::::::
highlighted

::
in

::::
bold

:::
font.

::::
The

::::::
location

::
of

::::
these

:::
time

:
series features extracted as attributes

:
is
::::::
labeled

:::
’1’

:
in
::::
Fig.

:
1.
::::
The

::::
levels

:
of most prominent

events
:::::::
detection

::
at

:::
95%

::::::::::
significance

::
are

::::::
shown

:::
with

:::
the

::::
thin,

:::::
dotted

::::
lines

:
in 4D topographic point clouds

::
the

::::::::
respective

:::::
colors.

::::
Note

::::
how

::::
lower

:::::
values

::
of

::
σ

:::
lead

::
to
:::::
lower

::::
levels

::
of
::::::::

detection,
:::
and

::::
more

:::::::::
smoothing

:
in
:::

the
::::::::
estimated

::::::::::
displacement

:::::::::
trajectories.

:::
The

::::
plots

:::
are

::
cut

:::
off

::
at

:::::::::
2021-11-03,

:::
just

:::::
before

:::
the

::::
main

:::::::
avalanche

:::::
event,

::
as

:::
this

:::::
event’s

::::::::
magnitude

:::::::
exceeds

::
the

::::
axes

:::::
limits.

Parameter name Description
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::
we

:::::
chose

::::::::
σ = 0.02

:
m/day 2accAtMaxChange Acceleration value at the time of maximum (positive)change value

::
to

::
be

:::::
most

:::::::::
appropriate

:::
for

:::
our

:::
use

:::::
case.

::
In

:::
the

::::
case

::
of

:::
the

:::::::::::::::
acceleration-based

::::::
model

::::::
(Order

::
2),

:::
we

::::::::
compared

::::::
values

::
of

::::::
0.0005

:
m/day2

Attributes describing the course of the full time series Parameter name Description meanChange Mean of the change values

mmeanVel Mean of the velocity values m,
:::::
0.001

::
m/daymeanAcc Mean of the acceleration values

:

2,
:::::
0.002 m/day2meanAbsSlope475

Mean of the absolute slopes between the change values
:
,
:::::
0.005 m/daytotalCurvature Sum over the absolute second derivative

of the change values
:

2,
::::
0.01

:
m/day2sqSumResiduals Sum of the squared residuals between estimated and observed change

values m2

Attributes describing the timing of the most prominent event Parameter name Description tMaxChange Epoch of the

maximum (positive)change value days since zero epochtMinChange Epoch of the minimum (negative) change value days since480

zero epochtMaxVel Epoch of the maximum (positive) velocity days since zero epochtMinVel Epoch of the minimum (negative)

velocity days since zero epochtMaxAcc Epoch of the maximum (positive) acceleration days since zero epochtMinAcc Epoch

of the minimum (negative) acceleration days since zero epoch

Attributes describing the final state Parameter name Description lastChange Change value at the last epoch mlastVel Velocity

at the last epoch m,
::::
and

::::
0.02

::
m/daylastAcc Acceleration at the last epoch m2

::::
(cf.

:::
Fig.

::::
4c),

:::
and

:::::::
selected

::::::::
σ =0.002

:::
m/day2485

4.2 Clustering and identification of change patterns

Clustering is an unsupervised machine learning method. It allows the aggregation of similar data points to groups or clusters.

Due to its unsupervised nature, no training data is required, which would often be lacking in the case of geomorphic monitoring.Instead,

the resulting clusters can be analysed with respect to their size and magnitude, as well as visually by their shape in 3D space,

and ultimately attributed to certain process types
::
to

::
be

:::::::
optimal.

:::::
While

::::
Fig.

:
4
::::
only

::::::
shows

::
the

::::::::
retrieved

:::::::::
trajectories

:::
for

:::
one

:::::::
specific490

:::::::
location,

:::
our

:::::::::::
investigation

:::
was

::::::
carried

:::
out

:::
for

::
all

::::::::
locations

::::::
shown

::
in

:::
Fig.

::
5,

:::
and

::::::
similar

::::::
results

::::
were

::::::::
obtained

:::
for

::::
these

::::::::
locations

::::::
(always

:::::::::
excluding

::
the

:::::::
sudden

:::::::
changes

::::::
induced

:::
by

:::::::
snowfall

::::
and

::::::::
avalanche

::::::
events).

In this work, we selected two approaches to clustering: One is using the estimated change values themselves as a feature

vector, and the other one uses features extracted from the time series prior to clustering. These features allow a more physical

interpretation of the processes forming the clusters (cf. Sect ??).495

For the first approach, we use a k-Means clustering, which has been found to perform well by Kuschnerus et al. (2021).

The clustering algorithm minimizes the total sum of all distances from data points to the centroids of k clusters in an iterative

approach (Hartigan and Wong, 1979). As the distance is euclidean, all dimensions are expected to be in the same unit and

scale
:::
For

::::::
sudden

:::::::
changes

::::
that

:::::
result

::
in

:
a
:::::
’step

:::::::::::
function’-like

:::::::::
trajectory,

::::::
smaller

::::::
values

::
of

::
σ

:::::::
strongly

::::::
smooth

:::
out

:::
the

:::::::::
trajectory

::
of

:::
the

:::::
event.

::::::
While

:::::
these

::::::::::
trajectories

::::::
clearly

:::
do

:::
not

::::::::
represent

:::
the

::::::
actual

::::::
change

::::::::::
happening,

:::
the

:::::
event

::::
can

::::
still

::
be

:::::::
located500

:::::::::
temporally

::
by

::::::
means

::
of

:::
the

:::::::
change

::
of

:::::::::
curvature.

::
In

::::::
Figure

::
4,

::
all

:::::::::
estimated

:::::::::
trajectories

::::::::
intersect

::
at

::::
their

::::::
change

:::
of

::::::::
curvature

:::::
points

::
on

::::::::::
2021-10-05.

The second approach, as it extracts features from the time series, cannot satisfy the constraint of the same unit for all

dimensions (cf.Sect. ??). We, therefore, use a Gaussian mixture model (GMM) , which fits multidimensional Gaussian distributions

to
::::
With

:::::::::
increasing

::::
order

::
of

:::
the

::::::
model,

:
the data. These distributions include a full covariance matrix, i.e., allow different scaling505
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in all feature dimensions. GMMs as implemented in the Python-package scikit-learnmake use of the expectation-maximization

algorithm to estimate mean and covariance for the cluster centroids (Pedregosa et al., 2011). We cluster the time series with

GMMs of 20
:::::
smooth

::::::::::
trajectories

:::
are

:::::
more

:::::::::
oscillating.

:::
For

:::
the

::::::
model

::
of

:::::
order

::
2

::::
(Fig.

::::
4c),

:::
this

:::
can

:::
be

::::
seen

::::::::
especially

:::::
after

:::
the

::::::
sudden

::::::
change

::
on

:::::::::::
2021-10-05.

:::::
Here,

:
a
::::::
model

::::
with

:
a
::::::::::::

comparatively
::::
high

::::::::::
dampening

:::::::::
(σ = 0.002

::::::::
m/day2)

:
is
::::::::

required
::
to

:::::
avoid

::
the

:::::::::::
oscillations,

::
in

:::
turn

:::::::
limiting

:::
the

:::::
ability

::
to
:::::
adapt

::
to

:::::
actual

:::::::
changes

::
in

:::
the

:::::
data.

::
To

::::::
further

::::::::
showcase

:::
the

::::::::
suitability

::
of

::::::::
different510

::::::
models

:::
for

:::::::
different

::::::::
locations

:::
and

::::::::::::
corresponding

::::::
change

:::::
types, 30, 50, 100 and 150 clusters.

5 Results

In this section, we present the results of applying our methods to the Vals dataset in different visualisations and representations,

which are subsequently discussed in Sect. 5.

Firstly, we analyse the time series generated by the Kalman filter for every core point. The result for the time series at an515

example core point location with the individual change measurements is visualized in Fig. ??. We show the individual change

measurements, their uncertainties, the Kalman filter and RTS smoother states, and the LoDetection95% of the smoother state

in the time series. The examples present how the choice of
:::::::::
trajectories

:::::::
obtained

::::
with

:::
the

:::::::
models

::
of

:::::
orders

:::::
zero,

::::
one,

:::
and

::::
two

:::
and

:::
the

:::::::::
respective

::::::
choices

::
of

:::::
state

:::::::
variance

:
σ and therefore the process noise matrix Q

::
for

::::::::
selected

:::::::
locations

::
in
::::

the
:::::
scene

::
in

:::::
Figure

::
5.
::::
The

::::::::
locations

:::
are

::::::::::
highlighted

::
in

::::::
Figure

::
1.

:::
For

::::::::::
subsequent

::::::::
analyses,

:::
we

:::::
focus

::
on

:::
the

:::::
order

::
1

::::::
model,

::
as

:::
the

:::::
order

::
2520

:::::
model

:::::::
exhibits

::::::
ringing

:::::::
artifacts

::
at

:::
the

::::::
discrete

::::::
events,

::::
and

::
the

:::::
order

::
0

:::::
model

::::
does

:::
not

::::::
follow

:::
the

::::::
change

:::::
signal

:::::::::
sufficiently

:::::
well.

4.1
::::::::::
Comparison

::::
with

:::::
other

::::::::
methods

::
To

:::::::::
investigate

:::
the

:::::::::::
performance

:::
of

:::
the

:::::::
Kalman

::::
filter

::::::
within

:::
the

::::
field

:::
of

:::
4D

::::::
change

:::::::
analysis

::::::::
methods,

:::
we

:::
ran

::::::::
analyses

:::::
using

:::
two

:::::
other

:::::::
methods

::
on

:::
our

:::::::
dataset (cf. Sect. 3.3)influences the filter and smoother states and uncertainties. The timeline a) with525

σ=0.005 m/day2 shows that this level of process noise appropriately filters daily effects, visible mostly in the first two days of

the time series. A sudden change occurring just before the onset of the third day shows the different models’ ability to follow

and represent the change. Lower choices of σ, e. g., in Fig ??a), only very slowly adapt to the change and the RTS smoother

already anticipates the movement almost a day earlier, when the observations clearly do not show this yet. The third model

(Fig. ??c) , with σ=0.5 m/day2, represents this sudden change most closely to the actual change values but also adapts the530

daily patterns. High alternating amplitudes in acceleration and in velocity indicate overfitting the data. We, therefore, choose

σ=0.05 m/day2 (Fig. ??b) as a trade-off, where the effects of smoothing and overfitting are balanced for this use-case and

dataset
:::
Fig.

::
3).

::
In

::::::
Figure

::
6,

:::
we

::::::
present

:::
the

:::::::::
trajectories

::::::::
obtained

::
by

:::
(i)

:::::
linear

:::::::::::
interpolation

::
of

::::::::::
subsequent

:::::
M3C2

:::::::::
distances,

:::
(ii)

:::::::
temporal

:::::::
median

::::::::
smoothing

:::::::::
following

:::::::::::::::::
Kromer et al. (2015)

::::
with

:::
two

::::::::
different

::::::
window

:::::
sizes,

::::
and

:::
(iii)

:::
our

:::::::
method

:::
for

:::::::
selected

::::::::
locations,

:::::
which

:::
are

:::::::
marked

::
in

:::::
Figure

::
1.
:

535

::
An

:::::::::
important

:::::
result

::
of

:::
the

:::::::
Kalman

::::
filter

::
is
:::
the

::::::::::::
quantification

::
of

:::
the

:::::
Level

:::
of

::::::::
Detection,

::::::
which

:::
we

:::::::
compare

::
to
:::
the

:::::
Level

:::
of

::::::::
Detection

::
of

:::
the

:::::::::
bitemporal

::::::
M3C2

::::
with

:::::
error

:::::::::::
propagation.

::
In

:::::
Fig.7,

:::
we

:::::
show

:::
the

:::::::
relative

::::::
number

:::
of

::::::::::
observations

::
(for three
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Comparison of Kalman models of different order

Figure 5.
:::::::
Estimated

:::::::
Kalman

:::::::
smoother

:::::::::
trajectories

:::
for

::::::
models

::
of
:::::::

different
::::::

order:
:::::
Order

::::
zero

::::::::::
(displacement

:::::
only)

::
in
:::::

blue,
::::
order

::::
one

::::::::::
(displacement

:::
and

:::::::
velocity)

::
in
::::
red,

:::
and

::::
order

:::
two

::::::::::::
(displacement,

::::::
velocity,

:::
and

::::::::::
acceleration)

::
in
::::::
yellow.

:::
The

:::::
scale

::
of

::
the

::::::
y-axes

::
is

::::::
adapted

:
to
:::
the

::::::
change

::::::::
magnitudes

::
at
:::
the

::::::::
respective

:::::::
locations,

:::
but

::
the

::::::::
horizontal

:::
grid

::::
lines

:::
are

:::::
always

::::::
spaced

::
by

::::
0.01

::
m

:
to
:::::::
facilitate

:::::::::
comparison.

::::
The

::::::
locations

::::::
shown

::::::
represent

:::::::
different

::::::::::
combinations

::
of

:::::
surface

:::::::::::::
change-inducing

:::::::
processes.

::::
The

::::
levels

::
of

:::::::
detection

::
at

:::
95%

:::::::::
significance

:::
are

:::::
shown

:::
with

:::
the

:::
thin,

:::::
dotted

::::
lines

::
in

::
the

::::::::
respective

:::::
colors.

::
To

:::::
avoid

::::::::::::::
over-representation

:::
due

::
to

::
the

::::
high

::::::::
magnitude,

:::
the

::::::
snowfall

:::::
period

:::
and

:::::::::
subsequent

:::::::
avalanche

::::
event

:::
on

::::::::
2021-11-04

:::
are

:::::::
excluded

::::
from

::::::
display.

:
In
::::::::
subfigures

::
a,

::
b,

:
d,
:::
and

::
e,

:::
the

::::
onset

::
of

:::
this

::::
event

::
in

::
the

::::::
Kalman

:::::::
smoother

:::::::
estimate

::
can

:::
be

:::
seen

::
at

:::
the

:::
very

:::::
right.

:::::::
Subfigure

:
c
::::::::
represents

:
a
::::::
location

::
at
::
an

:::::
almost

::::::
vertical

::::
rock

::::
face,

:::::
where

::
no

::::
snow

::
is

::::::::::
accumulated.

:::
The

::::::::
subfigures

::::::::
correspond

::
to

::
the

::::::::
following

:::::::
numbers

:
in
::::
Fig.

::
1:

:
a
:
-
::
1,

:
b
:
-
::
2,

:
c
:
-
::
3,

:
d
:
-
::
4,
:::
and

:
e
:
-
::

5.

21



Time series

0.2

0.1

0.0
C

ha
ng

e 
va

lu
e 

[m
]a) Erosion rill

Linear interp.
Temp. median48

Temp. median96

Kalman0.02m/day
1

0.025

0.000

0.025

C
ha

ng
e 

va
lu

e 
[m

]

b) Avalanche area

0.02

0.00

C
ha

ng
e 

va
lu

e 
[m

]

c) Rock face

0.0

0.1

C
ha

ng
e 

va
lu

e 
[m

]

d) Deep erosion rill

2021-08-15 2021-09-01 2021-09-15 2021-10-01 2021-10-15 2021-11-01

0.1

0.0

C
ha

ng
e 

va
lu

e 
[m

]

e) Boulder
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Figure 6.
:::::::::
Comparison

::
of

:::::::
different

:::::::
temporal

::::::::
smoothing

:::::::
methods:

:::::
Linear

::::::::::
interpolation

:::::
(grey),

:::::::
temporal

::::::
median

::::
with

::
48

:::::
hours

::::
(blue)

:::
and

:::
96

::::
hours

:::::::
(orange)

:::
filter

::::
size,

:::
and

::
an

::::
order

::
1
::::::
Kalman

:::::
model

::::::
(green).

::
To

:::::
avoid

::::::::::::::
over-representation

:::
due

::
to

::
the

::::
high

::::::::
magnitude,

:::
the

:::::::
snowfall

:::::
period

:::
and

::::::::
subsequent

::::::::
avalanche

::::
event

::
on

:::::::::
2021-11-04

::
are

:::::::
excluded

::::
from

::::::
display

::
as

:
in
::::::
Figure

:
5.
::::
The

:::::::
subfigures

:::::::::
correspond

::
to

::
the

::::::::
following

::::::
location

::::::
numbers

::
in

:::
Fig.

::
1:
:
a
:

-
::

1,
::
b

:
-
:
2,
::

c
:
-
::
3,

:
d
:
-
::
4,

:::
and

:
e
:
-
::
5.
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Figure 7.
::::::::
Percentage

::
of

::::
time

::::
over the highest

:::
full

:::::::
timespan

:::::
where

:::::
change

::::
was

::::::
detected

:::::::::::
(displacement value

::::
larger

:::
than

:::
the

::::::::
respective

::::
level

of σ = 0.5 m/day2
::::::::
detection).

:::
The

:::::
results

::::
from

:::
the

::::::::
bitemporal

:::::::
detection (c

:
a)

:::
show

::::
most

:::::
points

::::
with

:::
only

:::::::
minimal

::::::
detected

::::::
change

::
(<

::::
10%),

strong overfitting in acceleration
:::
with

::
a

:::
few

::::::::
exceptions

::
at

::
the

::::::
bottom

::::
edge and velocity is visible. When

:
in
:

the green dashed line is outside

of the green shaded
::::::::::::::
avalanche-affected area

::
on

::
the

::::::
bottom

::::
right.

:::
In

:::::::::
comparison, significant

::
the

:::::::::::
multitemporal

:::::
change

:
(95% confidence

:
b)

change between
:::::
lowers the null epoch and

::::
level

::
of

:::::::
detection

::
so

:::
that

:::::
many

:::::
points,

::::::::
especially

::::
close

::
to

:
the respective epoch can be observed

:::::
erosion

::::
rills in the RTS smoother time series. Note how

::::
lower

:::
part

::
of
:

the LoDetection95% increases for periods where measurements are

missing
:::
slope, and at the end

::::
show

::::::::
significant

:::::
change

::::
over

::::
>50%

:
of the time series

:::
full

:::::::
timespan

::
(in

:::::
shades

::
of
:::::
green).

different choices of σ: a) 0.005, b) 0.05 and c) 0.5 m/day2
:::::::::
epoch-wise

:::::::::
bitemporal

::::::::::
M3C2-EP)

::::::::::
respectively

:::
the

::::::
relative

:::::::
amount

::
of

::::
time

::::
over

:::
the

:::
full

::::::::::
interpolated

:::::::
Kalman

::::
filter

:::::
result

::::::
where

:::
the

:::::::::::
displacement

:::::::::
magnitude

::
is

:::::
larger

::::
than

:::
the

:::::::::
associated

:::::
Level

::
of

::::::::
Detection

:::
for

::::
each

::::
core

:::::
point.

:::::::::
Generally,

:::::
larger

:::::
values

:::::
mean

::::::
earlier

::::::::
detection

::
of

::::::
change

::
of

:::
any

:::::
type.

::
It

:::
can

::
be

::::::
clearly

::::
seen

::::
that540

::
the

:::::::
Kalman

:::::
filter

:::::
shows

:::::
more

:::::::
changes

::
as

:::::::::
significant

::::
than

:::
the

:::::::::
bitemporal

:::::::::
approach,

:::::::::
comparing

::::
each

:::::
epoch

:::::::::::
individually

::
to

:::
the

:::
null

:::::
epoch. For

From the time series, different scalar attributes can be extracted to create 3D visualisations of the scene. The estimated

magnitude of change at the epoch of maximum absolute change is shown for every core point in the scene (Fig. 8a). Core point

locations, where the estimated change magnitude is lower than the corresponding LoDetection95%, i. e., where estimated545

changes are not significant, are shown in grey. The differences in detectability for bitemporal and multitemporal change

detection, i. e., the effect of including
::
We

:::::
show

:::
the

::::::::
locations

:::
of

:::::
points

::::::
where

::::::
change

::
is
::::::::

detected
::::
with

::::
only

:::
the

::::::::::
bitemporal

::::::::
approach,

:::::
where

::
it

:
is
:::::::
detected

::::
with

::::::::::::
multitemporal

:::::::
Kalman

:::::::
filtering,

:::
and

:::::
where

::
it
::
is

:::::::
detected

::::
with

::::
both

::
in

:::::
Figure

:::
8b.

::::::::::::
Approximately

::::::
26.92%

::
of

:::
the

::::
core

::::::
points

::
in

::
the

:::::
study

::::
area

::::
were

:::::::::
attributed

::::
with

::::::::
significant

:::::::
change

::::
when

:::::
using

:::
the

::::::::::::
multitemporal

::::::::
approach

:::
but

23



only multitemporal (26.91%)
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Figure 8. a) Maximum change
::::::
Change magnitudes resulting from multitemporal analysis (smoothed Kalman estimates

::::
using

:::
the

::::
order

::
1

:::::
model). The values displayed are the maximum absolute magnitudes throughout all epochs

:
at

:::
the

:::
end

::
of

:::
the

::::::::::
investigation

:::::
period. Points

where the magnitude is lower than the LoDetection95% throughout the whole time series are coloured in grey. b) Differences between

bi- and multitemporal change detection. Yellow points represent locations where change has been detected as significant by both bi- and

multitemporal analysis, red points are locations where change has only been detected in the bitemporal comparison, and blue points show

where the multitemporal analysis enabled to detect significant change that was not detected by the bitemporal method. Especially note the

erosion channels (III) in the upper slope area and the border around the main anthropogenic change (II) at the bottom. The area displayed in

this and the following plots
:::::::
Subfigure

::
b is outlined by (I) in

:
a
:::::::::
comparison

::
of

:::::::
Subfigure

::
a
:::
with

:
Fig. 1and is given by the corner coordinates

:
b

(lower left; upper right) in WGS84/UTM32N: 692458 E, 5213583 N; 692753 E, 5213318 N. The percentages in
::::::::
bitemporal

:::::::
changes

::
for

:
the

legend are relative
::
last

:
to all the points

:::
first

:::::
epoch in this cutout area

::
the

::::
time

:::::
series).

:::
not

::::
with

:::
the

:::::::::
bitemporal

::::::::
approach.

::::
This

::::::
mostly

::::::::
concerns

:::::
areas

::
on

:::
the

:::::
lower

:::::
slope

:::::::
(colored

::
in
::::::
blue),

:::::
where

:::
the

::::::::::
magnitudes

:::
are550

:::::::
between

::::
0.02

:::
and

:::::
0.06

::
m

::::
from

:::::::::
deposited

:::::
snow.

::
In

::::::::
contrast,

:::::
about

::::::
4.26%

::
of

:::
the

::::
core

::::::
points

::::
were

:::::::::
attributed

::::
with

:::::::::
significant

::::::
change

::
in

:::
the

::::::::::
bitemporal

::::::::
analysis,

:::
but

:::
not

:::
for

::::
the

::::::::::::
multitemporal

::::
case.

:::::::
Figure

::
1b

::::::
shows

:::
the

:::::::
change

::::::
values

:::::::
obtained

:::::
with

:::::::::
bitemporal

:::::::::
M3C2-EP,

:::::
when

:::
not

:::::::
making

:::
use

::
of

:
the full time seriesvia the Kalman filter and the RTS smoother are depicted

in Figure 8b)
:
,
:::
for

::::::::::
comparison.

An important information layer in time series analysis is the point in time where a change can first be detected as significant,555

especially when analysing surface change properties in relation to other data

4.2
::::::

Results
::
on

::::::::
synthetic

:::::
data
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:::
For

:::
the

:::
real

:::::::
dataset,

:::::
there

::
is

::
no

:::::::::
validation

::::
data

::
or

:::::
other

:::::::::
area-wide

::::::::
reference

::::
data

::::
with

::
a

:::::
much

:::::
higher

::::::::
accuracy

::::::::
available,

:::
as

::::
TLS

::
is

:::::::::
considered

::
to

:::
be

:::
the

:::::
“gold

:::::::::
standard”.

::::
This

::::::
means

::::
that

:::
we

::::::
cannot

:::::::::
investigate

:::::::
whether

:::
the

::::::::
detected

::::::
change

::
is
::::::
actual

::::::
change.

::::
We,

::::::::
therefore,

::::::::
employed

::
a
::::::::
synthetic

::::
scene

:::::
with

::::::
exactly

::::::
known

:::::::::::
displacement

::
to

:::::
study

:::
the

:::::::
behavior

::
of

:::
our

:::::::
method.

::::
For560

::
the

::::::::
analysis,

:::
we

::::::::
followed

:::
the

::::
same

::::::::
approach

::
as
:::::

with
:::
the

:::
real

::::
data, e.g., from environmental sensors. Also, for early warning

systems in natural hazard protection, minimal yet significant changes are of relevance. Each core point is colour-coded by

the first epoch in which the estimated change magnitude is larger than the respective LoDetection95% in Fig. ??a). This plot

depicts clear patterns of different changeprocesses occurring at different points in time. Note that for a specific core point

location, the LoDetection95% threshold may be exceeded more than once. This is the case if the change is reverted, i.e.,565

decreases in magnitude, or if the uncertainty increases, for example, if measurements are missing from the dataset over longer

periods. We also display the epoch of maximum acceleration, corresponding to the onset of the most prominent event in the

time series (Fig. ??b). At the bottom of the slope (in the area marked "IV") , these two values differ. Here, the first significant

changes (between days 0 and 1) do not represent the changes with the maximum acceleration (occurring on day 4) .
:::::::
selecting

:
a
::::::
proper

:::::
value

::
of

::
σ

:::
for

:::
the

:::::::
Kalman

::::::
models

::
of
:::::::

zeroth,
::::
first,

:::
and

:::::::
second

::::
order

::::::
based

::
on

::::::
visual

:::::::::::
interpretation

::
of

:::
the

:::::::::
estimated570

:::::::::
trajectories.

:::::::::::
Additionally,

:::
for

:::
the

::::::::
synthetic

:::::
data,

:::
we

:::
can

:::::::
quantify

:::
the

::::::::
residuals

::
to

:::
the

::::
true

::::::::::::
displacement.

:::::
Table

:
1
::::::

shows
:::::
these

::::
mean

::::::::
residuals

:::
for

::::::::
different

::::
order

:::::::
models

:::
and

::::::::
different

:::::::
choices

::
of

::
σ,

::::::
which

:::
are

::::::::
compared

:::::
with

:::
the

:::::::
residuals

:::::
from

::::::::
temporal

::::::
median

:::::::::
smoothing

::::::
(higher

:::
by

::::::
approx.

::
a

:::::
factor

::
of

::
2)

:::
and

:::::
linear

:::::::::::
interpolation

::::::
(higher

:::
by

:
a
:::::
factor

:::
of

::
3)

a) Epoch of first significant change for each core point location. All grey points represent that no significant change could

be detected at these locations. b) Epoch of maximum acceleration. This often, but not always, corresponds to the time of first575

significant change, and highlights areas where the most prominent changes (i.e., the largest accelerations) co-occur temporally,

and which may be linked with regards to the external drivers of change.

The difference between the RTS smoother estimate and the original measurements quantified by the sum of the squared

residuals provides insights into how well the dynamic model of the Kalman filter fits to the data. This model includes the

choice for the value of580

::
In

:::::::
addition,

:::
we

:::::
show

:::
the

:::::::::
alternative

::::::
models

::
of

:::::
linear

:::::::::::
interpolation

::::
and

:::::::
temporal

:::::::
median

:::::::::
smoothing

::
for

::::
two

::::::::
locations

::
at

:::
the

:::::::
extremes

:::::
(zero

:::::::::::
displacement

:::
and

:::::::::
maximum

::::::::::::::
positive/negative

::::::::::::
displacement)

::
in

:::::
Figure

::
9.
::::
The

:::::::
detected

::::::
change

::
at
:::
the

::::
end

::
of

:::
the

::::::::
simulated

::::::
40-day

::::::
change

:::::::
process

::
is

:::::
shown

:::
in

:::::
Figure

:::
10,

::::::
where

:::
the

:::::::
different

::::::
levels

::
of

::::::::
detection

:::::
result

::
in

:
a
:::::
large

:::::::::
difference

::
in

::::
terms

:::
of

::::::::
detectable

::::::
change.

As presented in Sect. 3.4, the time series can be clustered using a k-Means-Algorithm on the time series values themselves.585

Following Kuschnerus et al. (2021), we extract the smoothed estimates of change value from the RTS smoother and use them

as a feature vector for clustering. The result is presented in Fig. ??, where the former method results in no data (in grey) at a

large share of locations. As soon as a single observation is missing from the time series, k-Means fails to assign the point to a

cluster. The

4.3
::::::::

Clustering
:::

of
::::::
change

::::::
signal590
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c)

Comparison of different filter models on synthetic data 

Figure 9. Magnitude of the sum of squared residuals
:::::::
Timelines for two different settings of σ:

::::::
models

:::::::::
representing

::::::
change

:::::
values

::
in

:::
the

::::::
synthetic

:::::
scene.

:
a) σ=0.5 m/day2. b

::
and

::
c) σ=0.05 m/day2. Note how

::::
show

:::::::
locations

::
at the larger uncertainty reduces the residuals

::::::
negative

:::
and

::::::
positive

::::::
maxima,

::::::::::
respectively,

:::
and

::
b)

::::
shows

::
a

:::
core

::::
point

:
at the cost

::::
center

::::
line of overfitting

:::
the

::::
scene,

:::::
where

:::
the

:::
true

::::::::::
displacement

:::::
(black

:::::
dashed

::::
line)

:
is
::::
zero. The forest areas to

::::
This

:::
true

::::::::::
displacement

:
is
::::::::
calculated

::::
from the sides

:::::::::
y-coordinate of the rockfall slope

:::
core

::::
point

:::::
using

::
the

::::::::::
displacement

::::::
formula

:
(V

::::::
Equation

:
1)appear in a deep purple as the residuals are large here.
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:::::
Model σ and the resulting process noise matrix Q (Sect. 3.3) . This value is visualized for all core point locations for two options of σ in Fig. ??. Note the bead-like structures marked in the area of anthropogenic change (marked "II"), which closely relate to the different sections of excavator works carried out. These are also visible in Fig. ?? as different periods but disappear from the visualisation of the final changemagnitude image at the end of the observation period (Fig 8)[

:
m]

:
/ [

::::
m/day]

:
/ [

:::::
m/day2] ::::

Sum
:
of
::::::

squared
:::::::

residual [
::
m2]

Kalman

order 0

(x)

::::
0.001

::::
3.636

:

::::
0.002

::::
3.154

:

::::
0.005

::::
4.323

:

Kalman

order 1

(x, v)

:::::
0.0002

::::
3.067

:

:::::
0.0005

::::
2.686

:

:::::
0.0010

::::
2.923

:

Kalman

order 2

(x, v, a)

::::::
0.00002

::::
2.864

:

::::::
0.00005

::::
2.683

::::::
0.00010

::::
2.797

:

:::::::
Temporal

::::::
median

::::::
window

:::
size

:::
24

::::
4.297

:

:::::::
Temporal

::::::
median

::::::
window

:::
size

:::
12

::::
4.435

:

:::::
Linear

::::::::::
interpolation

:
–

::::
8.425

:

Table 1.
:::
Sum

::
of

::::::
squared

:::::::
residuals

::::::::
(estimated

::
-
::::
true)

::
for

:::
the

:::::::
synthetic

::::::
change

::::::::
aggregated

:::
for

::
all

::::
core

:::::
points

::::
over

::
the

:::
full

::::
time

:::::
series.

::::
The

:::
true

::::::::::
displacement

:
is
::::::::

calculated
:::
by

::::
using

:::
the

:::::::::
y-coordinate

::
of

:::
the

:::
core

:::::
point

::::
using

:::
the

:::::
model

:::::::
presented

::
in

::::::
Section

:::
2.2.

:::
The

::::::::
minimum

::::
value

::
is

:::::::::
highlighted.

::
To

::::::
assess

:::
the

::::::::
influence

::
of

:::::::
filtering

:::
on

:::::::::
subsequent

::::::::
analyses,

:::
we

:::
use

:::
the

:::::::::
estimated

::::
time

:::::
series

::
of

:::::::
change

:::::
values

:::
to

::::::
cluster

:::
the

:::
core

::::::
points

::::::::
following

:::
the

::::::::
approach

:::
by

::::::::::::::::::::
Kuschnerus et al. (2021)

:
.
:::
As

:::
the

::::::
number

:::
of

:::::::
clusters

:
is
:::

an
::::::::
important

:::::::::
parameter

::
in

::::
any

::::::::
clustering

::::::::
approach,

:::
we

:::::::
visually

::::::
inspect

:::
the

:::::
results

::
of

:::::::::
clustering

:::
the

::::::
Kalman

:
smoothed time series interpolates and extrapolates

the observations, and is, therefore, able to fill the gaps, including uncertainty estimates for these values. The uncertainty

increases when measurements are not available (cf. Fig. ??). Clusters are created as presented in Sect. 3.4, without any spatial595

information included. The obtained clusters however exhibit clear spatial boundaries, which line up with the expected changes.

:::::
(order

::
1

::::::
model)

:::
for

::
4,

::
8,
::::

10,
:::
and

:::
12

:::::::
clusters

::::::
(Figure

::::
11).

:::
As

:::
the

:::::::
number

::
of

:::::::
clusters

:::::::::
increases,

:
a
::::::
larger

::::::
number

:::
of

:::::::
patterns

::::::
become

:::::::
visible.

:::
For

::::
our

:::
use

:::::
case,

:::
we

::::::
choose

::
a

::::::
cluster

:::::::
number

::
of

:::
10,

::::
and

:::::::
compare

::::
the

::::::
results

::
of

:::::::::
clustering

::::
from

::::::::
different

::::
time

:::::
series

:::::::
analysis

:::::::
methods

:::
in

::::::
Figure

:::
12.

:::::::::::
Additionally,

:::
we

:::::::
include

:::
the

:::::::
Kalman

::::::
models

:::
of

:::::
orders

::
0
:::
and

::
2
:::
for

:::::::::::
comparison.

:::::::::
Comparing

:::::::
Figures

:::
12a

:::
and

::
b
::
to

::::::
Figure

:::
11c

:::::
shows

:::
the

:::::::
clusters

::::::::
resulting

::::
from

:::
the

:::::::
Kalman

::::::
models

::
of

::::::::
different

:::::
order.

:::
The

:::::
most600

:::::::
apparent

::::::::
difference

::
is
::::
that

:::
the

:::::
order

:
0
::::::
model

::::
(Fig.

::::
12a)

::::::
assigns

:::
the

:::::
lower

:::::
slope

::
to

::::::
cluster

::
8,

:::::
while

:::
the

::::
other

::::
two

::::::
models

::::::
assign

:
it
::
to

::::::
cluster

::
9.

:::
As

:::
the

:::::::
clusters

:::
are

:::::::
ordered

::
by

::::
size,

:::
we

::::
can

:::::::
conclude

::::
that

:::::
more

:::::
points

:::
are

:::::::
grouped

:::::
with

:::
the

:::::
lower

:::::
slope

::
in

:::
the

::::
order

::
1

:::
and

::
2

::::::
models

::::
than

::
in

:::
the

:::::
order

:
0
::::::
model.

::
In

:::::
terms

:::
of

:::
the

::::
other

:::::::
clusters,

:::
the

::::::
results

:::
are

:::::
quite

::::::
similar.

:::
All

::
of

:::::
them

::::::
clearly

::::
show

:::
the

:::::
areas

::
of

:::::
snow

::::::
deposit

:::::
after

:::
the

::::::::
avalanche

:::::
event

::
in

::::
two

::::::
shades

::
of

::::
blue,

::::
and

::::
pick

:::
up

:::
the

::::::
central

::::::
erosion

:::
rill

::
in

::::::
green.

::::::::::
Furthermore,

:::
the

:::::
lower

:::::
slope

::
is

::::::
clearly

::::::::
separated

::::
from

:::
the

:::::
upper

::::::
slope,

:::::
where

:::::
snow

:::
did

:::
not

::::::::::
accumulate.605

:::::::::
Comparing

:::
the

::::::
results

::::
from

:::
the

::::::::
temporal

::::::
median

::::::
model

:::::
(using

::
a
:::::::
window

:::
size

::
of
:::

96
::::::
hours)

::
to

:::
the

:::::::
Kalman

::::
filter,

::
a
:::
less

:::::
clear

:::::::::::
segmentation

::
is

::::::::
observed

:::
for

:::
the

::::::::
temporal

::::::
median

::::::
model

:::
on

:::
the

::::::
central

:::::
slope

:::::::
(cluster

::
8)

::::::
where

:::
two

:::::::
erosion

::::
rills

:::::
cross

:::
the

:::::::
segment.

::
In

::::
the

::::::
Kalman

:::::::
model,

::::::::
especially

:::
of

::::
order

:::
1,

:::
this

:::::::
segment

::
is
:::::
much

:::::
more

::::::
clearly

:::::::::::
represented.

::::
This

:::::::
behavior

::
is
:::::

even
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a) Bitemporal M3C2-EP change detection b) Multitemporal Kalman filter change detection
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Figure 10.
:::::::::
Comparison

::
of

:::::::
detected

:::::::
synthetic

:::::
change

::
at

:::
the

:::
end

::
of

:::
the

:::::
40-day

:::::
period

::::
with

:
a
::::::::
maximum

::::::::::
displacement

::
of

::::
0.05

::
m

:
at
:::

the
:::::
edges

:
of
:::

the
:::::
scene.

::::
The

::::::::
bitemporal

::::::::
M3C2-EP

::::::
method

::
(a)

::::
picks

:::
up

::::::
changes

:::::
above

::::::
approx.

::::
0.04

::
m,

::::::
whereas

:::
the

::::::::::::::
Kalman-smoother

::::::
method

:::::
allows

:
to
:::::
detect

::::::
changes

::
in
:::
the

::::
time

::::
series

:::::
larger

:::
than

:::::
0.008

::
m.

::::
Note

:::
that

::::
these

:::::::
changes

:::
and

::
the

::::
error

:::::
budget

::::::
include

:
a
::::::
random

:::::::::::
transformation

:::::
error.

::::
From

:::
the

:::::
image,

:
it
:::

can
:::

be
:::
seen

:::
that

:::
the

::::::::
quantified

::::::
changes

:::
are

:::
still

::::::
reliable,

::::
i.e.,

::::
there

::
are

:::
no

::::::
changes

::::
with

::::::
reversed

::::
signs

:::
on

::
the

:::::
wrong

::::
side

:
of
:::

the
:::::
plane.

::::
more

::::::::::
pronounced

:::::
when

::::::::::
comparing

:::
the

:::::::
Kalman

:::::
model

::::::
results

:::
to

:::
the

::::
ones

::::::::
obtained

::::
from

:::::
linear

::::::::::::
interpolation:

:::::
Here,

:::::::
clusters

:
8
::::
and

:
9
:::
are

:::::
much

:::::
more

::::::
mixed

::::
than

::
in

:::
the

:::::::
Kalman

:::::::
results.

:::::::::::
Additionally,

:::::
more

:::::
noise

::::::
appears

:::::::::
especially

::
in

:::
the

::::::
upper

:::
half

:::
of610

::
the

::::::
study

::::
site,

:::::
where

:::::
many

::::::
green

:::::
points

::::::::
(clusters

:
6
::::

and
:::
7)

::::::
appear.

::::
The

::::::
erosion

::::
rill

::
on

::::
the

::::::
central

:::::
lower

:::::
slope

::
is

::::
also

::::
less

:::::::::
pronounced

::::
than

::
in
:::
the

:::::
other

:::::::
models.

::::
Still,

:::
the

::::
areas

:::
of

::::
snow

::::::::::::
accumulation

::
are

::::::
clearly

:::::::::
segmented

::
as
:::::::
clusters

::
2

:::
and

::
3.

::::
Note

::::
that

::::
these

:::::::
clusters

::::
have

::::
been

::::::
created

:::::::
without

:::
any

::::::
spatial

:::::::::::
components,

:::
i.e.,

::::::::
spatially

:::::::::
contiguous

::::
areas

:::
are

::::::
solely

:::
the

:::::
result

::
of

::::::
similar

::::::
change

::::::::
behavior.

Gaussian mixed model clusters resulting from the different subsets of features are presented in Fig. ??. The four different615

subset cluster results facilitate interpretation of how clusters are formed, and how they change over time. Clusters appear

spatially connected, but some clusters also consist of two separate parts, with similar properties, depending on the type of

features used.

We compare the result of the engineered features to the state-of-the-art time series characteristics extracted using tsfresh

(Christ et al., 2018) for clustering, and compare this result to the one achieved by spatiotempral segmentation using 4D Objects-By-Change620

(4D-OBCs Anders et al., 2020), the clusters obtained by k-Means clustering as presented by Kuschnerus et al. (2021), and our

adapted version where we use the RTS smoother result instead of the measurements themselves. To more clearly highlight
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a) Clustering resulting from applying the method of Kuschnerus et al. (2021) using k-Means with k=50 clusters. Many locations, where at

least one epoch is missing data, mostly due to bad meteorological conditions on 2020-08-22 (around 23:00), cannot be included in the

clustering. b) k-Means cluster result using k=100 clusters on the smoothed and interpolated time series resulting from the Kalman RTS

smoother. The whole area can be clustered and even the erosion channels are partially segmented from the surrounding debris. Randomized

single colours refer to individual clusters.
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Result of time series clustering for different numbers of clusters

Figure 11.
:::::::::
Comparison

::
of

:::::::
different

::::::
numbers

::
of

:::::
cluster

:::::::
centroids

::::
used

::
in

:::::::
K-Means

::::::::
clustering

::
of

::
the

::::::
Kalman

::::::::
smoothed

:::
time

:::::
series

::::::
(Model

::
of

::::
order

::
1,

:::::
σ=0.02

::::::
m/day).

::::
The

:::::
clusters

:::
are

::::::
ordered

::
by

:::
the

::::::
number

::
of

:::::
points

:::
they

::::::
contain,

:::::
which

:::::
results

::
in

:::
the

:::::
largest

::::
class

:::::
always

::::::::
appearing

::
in

::::
subtle

::::::::
off-white.

::::
With

:::
the

::::::
addition

::
of

::::
more

::::::
clusters,

:::::::
patterns

::::::
emerge,

:::
e.g.,

::
in

:::
the

:::
case

::
of
:::
10

::::::
clusters

::
(c),

:::
the

::::::::::::::
avalanche-affected

::::
area

::::::
(bottom

::::
right,

::::
blue)

::
is

:::
split

::::
into

:::
two

::::::
separate

::::::::
segments.

:::
One

::
of

::::
these

:::::::
segments

:::::
(light

::::
blue)

:::
has

:
a
::::
mean

::::::::
amplitude

::
of

:::::
around

:::
0.5

:::
m,

::::::
whereas

:::
the

::::
more

:::::
central

:::
one

::::
(dark

::::
blue)

:::
has

:
a
:::::
mean

:::::::
amplitude

::
of
:::
1.2

::
m

::
in

::
the

:::::::
Kalman

::::
filter.

:::
The

::::::::::
segmentation

:::::
further

:::::::
increases

::::
with

::
12

::::::
clusters

:::
(d).
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Clustering for k=150 clusters using Gaussian mixed models on different subsets of the features: a) final state of the time series (cf.

Table ??), b) full time series (cf. Table ??), c) timing of the most prominent event (cf. Table ??) and d) the magnitude of the most prominent

event (cf. Table ??). Randomized single colours refer to individual clusters.
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Figure 12.
:::::::::
Comparison

::
of
::::::::
clustering

:::::
results

::::
from

::::
time

:::::
series

:::::::
estimated

:::::
using

::::::
different

:::::::
methods.

::
a)
::::::::::::::

Kalman-smoothed
::::
time

:::::
series

:::
with

:::
an

::::
order

:
0
::::::
model,

::
b)

:::::::::::::
Kalman-smoothed

::::
time

:::::
series

:::
with

::
an

:::::
order

:
2
:::::
model,

::
c)
::::::::
Temporal

:::::
median

:::::
model

:::::::
(window

:::
size

::
of
:::
96

:::::
hours),

:::
and

::
d)

:::::
linear

::::::::::
interpolation.

:::
The

:::::
cluster

:::::::
numbers

::
are

:::::::
assigned

::
by

::::
point

:::::
count,

::::::
cluster

::
10

::::
being

:::
the

:::::
largest

::::::
cluster.
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differences and similarities, Fig. ?? depicts a bird’s-eye view on the lower part of the slope, where most anthropogenic change

has occurred (marked "II" in Fig. 1). Figure ??a ) showcases very distinct features in the affected area, but lacks some clear

patterns just above ("VI") . Figure ??b), resulting from the RTS smoother change estimates, clusters areas where erosion625

processes seem to have acted on the topography of the rockfall surface: the light pink cluster ("VII") is aligned with the local

gradient (indicated by the black arrow). Similar results, yet only for a subset of the points, are yielded by clustering on the raw

time series information (Fig. ??c) . The 4D-OBCs follow a completely different approach, and therefore also require a different

visualisation strategy. As, by design, multiple objects can overlap spatially if their change histories allow to separate them, we

display the outlines of segmented objects here.Accordingly, similar objects are recovered by all methods.630

Visualization of selected time series parameters furthermore allows the exploration of the dataset. In Appendix A, we present

a few hand-picked features, including FFT components, which allow the detection of periodic change patterns.

In contrast to the method presented by Kuschnerus et al. (2021), we can cluster every core point as missing data is inter- or

even extrapolated.Furthermore, using the result of the RTS smoother, measurement errors have largely been reduced or even

eliminated, making a comparison of resulting surface changes easier and more successful. k-Means requires the definition of635

a number of clusters, which we set to 150. As presented in Sect. 2.1, a large amount of clusters forms in the forested parts of

the dataset

5
:::::::::
Discussion

::::::
Kalman

:::::::
filtering

:::
is

::
an

::::::::::
alternative

::::::
method

::::
for

::::
time

:::::
series

::::::::
analysis

::
of

:::
3D

:::::
point

:::::::
clouds,

::::::
which,

:::::::::
compared

::
to

::::::
simple

::::::
linear

::::::::::
interpolation

::
or
:::::::

moving
:::::::
median

::::::::
windows,

:::::::::
rigorously

::::::::
considers

:::::::::::
uncertainties.

:::
As

:::::
such,

::::
each

::::::::::
observation

:::::
input

::
to

:::
the

:::::::
Kalman640

::::
filter

:
is
::::::::
attributed

::::
with

:::
an

:::::::::
uncertainty,

::::
e.g.,

::::::::
stemming

:::::
from

:::::::::
bitemporal

::::::
change

:::::::::::
quantification

:::::
using

:::::
M3C2

::::
with

:::::
error

::::::::::
propagation.

::::
This

:::::::::
uncertainty

::
is

::::
then

::::::::
combined

::::
with

::
a

::::::
system

::::
state

:::::::
variance,

::
a
:::::::
measure

::
of

::::
how

:::::
much

::::::
change

::
is

:::::::
expected

::
in

::::::::::
subsequent

::::
time

::::::
periods.

::::
The

:::::
result

::
is

::
(a)

::
a

::::::::
smoothed

::::
time

:::::
series

:::
and

:::
(b)

:::::::::
associated

:::::::::::
uncertainties.

:::::
These

:::::::::::
uncertainties

:::
are

:::
not

::::
only

::::::::
quantified

:::
for

::
the

::::::::::
observation

::::::
points,

:::
but

::::
also

:::
for

::::::::::
interpolated

:::::::::::
displacement

::::::
values.

::::::::::::
Quantification

::
of

:::::::::::
uncertainties

::::::
allows

:::
for

::::::::
statistical

::::
tests

::
of

::::::::::
significance,

::
in

::::
turn

::::
used

::
to

:::::::
separate

::::::
change

:::::
from

:::::
noise.

:::
By

::::::::
analyzing

:::
the

:::
full

:::::
time

:::::
series

::::::
instead

::
of

::::::::::
epoch-wise

:::::::::
bitemporal645

:::::::
analyses,

:::
we

:::::
were

::::
able

::
to

:::::::
increase

:::
the

:::::::
number

::
of

:::::
points

::::::
where

::::::
change

::::
was

:::::::
detected

:::::::::
confidently

::
at
::
a
:::::
given

::::
point

:::
in

::::
time,

::::
e.g.

:
at
:::
the

::::
end

::
of

:::
the

::::
time

:::::
series.

:::
In

:::
our

:::::
study

:::
site,

:::
the

:::::::
number

::
of

::::
core

:::::
points

::::::::
attributed

::::
with

:::::::::
significant

::::::
change

::::
was

::::::
almost

:::::::
doubled

(cf. Fig. ??, areas marked with "V"), where change information is not representative of surface topography. The choice of 150,

therefore, allows enough clusters to form so that dominant change forms were also shown outside of this forest area.
::
7).

::::
The

::::
result

::
is
:::::::::
confirmed

:::
by

:::
the

:::::::
analysis

::
of

:
a
::::::::
synthetic

:::::
scene

:::
(cf.

:::
Fig

::::
10).

::::
The

:::::
value

::
of

::::::
4.26%

::
of

::::::::
locations

:::
that

:::::
were

:::::::
detected

:::::
using650

::
the

::::::::::
bitemporal

::::::::
M3C2-EP

:::::::
method,

::::
but

:::
not

:::::
when

::::
using

:::
the

::::::::::::
multitemporal

:::::::::
approach,

::
is

::::
close

::
to
:::

the
:::::::::

theoretical
:::::::

number
::
of

:::::
false

:::::::
positives

::::
(5%

:::::
when

::::
using

::
a
::::
level

::
of

::::::::::
significance

::
of

::::::
95%),

::::
when

::::::::::
considering

::::
that

::
of

::::
these

:::
5%

:::
of

::::
false

::::::::
positives,

::::
some

::::
will

:::::
again

::
be

:::::::::
incorrectly

::::::::
identified

::
as

:::::
false

:::::::
positives

:::
by

:::
the

:::::::::::
multitemporal

:::::::
method

:::::
using

:::
the

::::
same

:::::
level

::
of

::::::::::
significance.

:

Bird’s-eye view of a) GMM clustering for k=150 clusters on the time series characteristic features extracted using tsfresh,

and b) using 4D-Objects-By-Change (Anders et al., 2020). Individual colours refer to individual clusters. In the case of the655
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4D-Objects-By-Change (b), only outlines are given, as spatiotemporal clusters are also allowed to overlap.
:::
We

::::::::
compare

:::::::
different

::::::
models

::
by

:::::::
visually

:::::::::
inspecting

:::
the

::::::::
estimated

:::::::::
trajectories

::
at

::::::
sample

::::::::
locations

:::::
(Figs.

:
4
::::
and

::
5).

::
In

:::
the

::::
case

::
of

:::
the

::::::::
synthetic

::::::
dataset,

:::
we

:::
can

:::::::
quantify

::
a

:::::::
residual,

::
as

:::
the

:::::
actual

::::::
change

::
is

::::::
known,

::::
and

:::
use

:::
this

::
to

:::::
select

::
a

:::::
model

:::::
order

:::
and

::::
state

:::::::
variance

::::::
value.

::::
Here,

:::
we

::::
also

:::::::
showed

::::
that

:
a
::::::::
properly

::::::
chosen

:::::::
Kalman

::::::
model

::::::
results

::
in

:
a
::::::

lower
::::
sum

::
of

:::::::
squared

::::::::
residuals

::::
than

:::
the

::::::::
temporal

::::::
median

:::::
model

::::
(cf.

::::
Tab.

::
1).

:::::
Note,

::::::::
however,

:::
that

:::
the

::::::::
synthetic

::::::
change

::::
used

::
a
::::::::
sinusoidal

::::::::
function

::
as

:
a
::::::
model,

::::::
which

::::::
ensures

::::
that660

::
the

:::::::
changes

::::
and

::::
their

:::::::::
derivatives

::
in

::::
time

:::
are

::::::::::
continuous.

::::
The

::::::
Kalman

:::::
filter

:
is
::::::::
ill-suited

::
to

::::::::
represent

::::::
sudden

::::::::
changes,

::
as

::::::
caused

::
by

:::::::
discrete

:::::
events

::
of

:::::
mass

:::::::::
movement.

::::::::
However,

::::::
gradual

:::::::
motions

::::
such

:::
as

::::::
rockfall

:::::::::
precursors

::
as

::::::
studied

:::
by

:::::::::::::::::
Abellán et al. (2009)

:
,
:::::
could

::
be

:::::::
detected

::::
well

:::::
even

::::::
without

:::
the

:::::::::
backward

::::
pass

::
of

:::
the

::::
RTS

:::::::::
smoother,

:::::
given

:::
that

::::::::
repeated

::::::::::
observations

:::::
show

::::
such

::
a

:::::
trend.

::
In

::::
such

:::
use

:::::
cases,

:::
the

::::::::
reduction

::
in
:::
the

:::::
Level

::
of
:::::::::
Detection

::
is

::::::::
especially

:::::::
crucial.

6 Discussion665

Kalman filtering provides some compelling advantages over established methods of point cloud-based change analysis. These

include the informed smoothing of the time series, reducing effects from measurement noise, and enabling temporal resampling

and interpolation over missing epochs, and the option to predict future states. For example, k-Means clustering requires

regularly sampled and complete data (cf. Kuschnerus et al., 2021), which is provided by the Kalman filter. This improvement

through our approach is illustrated by Fig. ??, where the whole scene can be clustered using the Kalman filter-interpolated670

data. In contrast, when using the change values themselves, only a small area in the bottom of the valley can be assigned

to clusters. The practical implications are that the erosion rills (marked "III") are not visible when applying simple k-Means

clustering, because of missing data. While a simple (e.g., linear) interpolation would also solve this issue, the Kalman filter

considers the estimated velocity and acceleration for interpolation. An alternative approach of 4D point cloud analysis is the

extraction of 4D-OBCs as presented by Anders et al. (2020). Though our approach does not identify objects or clusters with675

spatial overlap, outlines of
:
A
::::::
major

::::::::
challenge

::
in

:::
the

:::::::::
application

:::
of

:::
our

:::::::
method

::
for

::::::::
different

:::::::::
geographic

:::::::
settings

::
is

:::
the

::::::
choice

::
of

:::
the

:::::
model

:::::
order

::::
(i.e., the 4D-OBCs however show close agreement with the clusters that are resulting from the point cloud.

Moreover, the clusters derived from the different feature sets (cf.
::::::
physical

::::::
basis)

:::
and

:::
the

:::::
state

::::::::
variance.

:::
As

::
no

:::::::
control

::::
data

::::
were

::::::::
available

::
for

:::
the

::::
real

:::::::
dataset,

::
we

:::::
chose

:::::::
models

::
by

::::::
visual

:::::::::::
interpretation.

::::
We

:::::::
selected

::::::
models

:::
that

:::::::::
effectively

::::::
reduce

:::::
daily

:::::::
patterns,

:::::
which

::
in

::::
our

:::
data

::::
can

::
be

::::::::
attributed

::
to
:::::::::
remaining

::::::::::
atmospheric

:::::::
effects,

:::
yet

::
do

:::
not

:::::::
smooth

:::
out

:::
real

:::::::
surface

:::::::
changes

:::
too680

:::::
much.

::
In

::::
this

::::
study

:::::
area,

:::
we

:::::
select

:
a
::::::
model

::
of

:::::
order

:
1
:::
for

::::::
further

::::::::::::
investigations.

::::
The

::::
exact

::::::
choice

::
of

::::::
model

:::
and

::::
state

::::::::
variance

:::::::
depends

::
on

:::
the

:::::
types

::
of

:::::::
change

::::::::
processes

:::
that

:::
are

::::::
being

::::::::::
investigated.

:::::
Even

:
a
::::::::
spatially

:::
and

:::::::::
temporally

:::::::
varying

::::
state

::::::::
variance

::::
could

:::
be

:::::::::
applicable

:::
and

::
is

:::::::
possible

::::
with

:::
the

:::::::
existing

:::::::::::
mathematical

::::::
model.

::::
This

::::::
would,

::::::::
however,

::::::
require

::::::
a-priori

::::::::::
knowledge

::
of

::
the

:::::::::
processes

:::::
acting

::
on

:::
the

:::::::
surface.

:

::
In

:::::::::
comparing

:::
the

:::::::::
estimated

::::::::::
trajectories

::
to

:::::
ones

:::::::
obtained

:::::
from

::::::::
temporal

:::::::
median

:::::::::
smoothing

:::
or

:::::
linear

::::::::::::
interpolation,

:::
we685

::::::::::
demonstrate

:::
that

:::::::::
especially

::::
with

::::
data

:::::
gaps,

:::
the

:::::::
Kalman

::::
filter

::::::::
estimates

:::::
often

:::::::
provide

:
a
:::::
more

:::::::
realistic

::::::::::
interpolation

:::::::::
trajectory

::::
(e.g. Fig. ??)suggest that overlapping objects may be extracted from the time series using these multiple layers of information.
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As our method assigns every core point to acluster, similar locations can be identified even if no 4D-OBC of a minimum size

could be extracted, complementing the state-of-the-art.

Recovered velocities and accelerations for each point can be used in combination with the change values to derive features690

describing the time series. By grouping a selection of features by their dependence on the time series values, we obtain four

different cluster results. For example, a clustering that is based solely on the
::
6c

:::
on

:::::::::::
2021-09-18).

::::
The

:::::::
Kalman

::::
filter

::::::
works

::::::::
especially

::::
well

:::
for

::::::::::
continuous

:::::::
changes,

::::
and

:::
less

:::
so

:::
for

:::::::
discrete

::::::
events.

:::
For

::::::::
example,

::
in

::::
Fig.

:::
6a,

::
d,
::::

and
::
e,

::
a

::::::
discrete

:::::::
change

:::::
occurs

:::
on

::::::::::
2021-10-05.

::::
The

:::::
onset

::
of

::::
this

::::::
change

::
is

::::::
shifted

::
to

:::::::
approx.

::::::::::
2021-10-03,

:::
and

::::
the

:::::
target

::::::::
amplitude

::
is
::::
only

:::::::::
recovered

::
on

::::::::::
2021-10-06

::
in

:::
the

:::::::
selected

:::::::
Kalman

::::::
model.

::::
The

::::::::
temporal

::::::
median

::::::
models

:::::::
recover

:::
the

::::
step

:::::::
function

:::::
much

:::::
more

:::::::::
accurately695

::::
here.

:::::::::::
Nevertheless,

:::
for

:::
an

::::
exact

::::::::::
localization

::
in

:::::
time,

:::
the

::::::
change

::
of

::::::::
curvature

::
of
:::

the
:::::::::

smoothed
:::::::
Kalman

::::::::
trajectory

::
is

:::
still

::::::
useful

:
–
::
in

::::
fact,

::::::::::
irrespective

::
of

:::
the

::::::
choice

::
of

::::
state

::::::::
variance.

::::
This

:::
can

:::
be

::::
seen

::
in

::::::
Figure

::
4,

:::::
where

:::
all

::::::::
estimated

:::::::::
trajectories

::::::::
intersect

::
at

:::
this point in timewhere an event was most prominent gives insights into events that co-occur temporally and that may therefore

have a common external cause, such as rainfall. A clustering based on the final state of displacement magnitude, velocity and

acceleration separates processes that have terminated (i.e., velocity and acceleration are close to zero)from ones that are still700

active, either decreasing or increasing in amplitude. A human interpreter may overlay and analyze these clusters with respect to

the extracted parameters and the time series itself, to gain further insights on the Earth surface processes driving the observed

surface changes. In .
:

::::::
Higher

::::
order

:::::::
models,

:::::::::
especially

:::
the

::::
order

::
2
::::::
model,

::::
tend

::
to

::::::
overfit

::
on

::::
step

:::::::::
functions,

:::::::
resulting

::
in

:::::::
ringing

:::::::
artifacts

::::
(blue

::::
line

::
in

:::
Fig.

::::
4c).

::::
The

:::::::::
assumption

:::
for

:::
the

:::::
order

:::
two

::::::
model

::
is

:::
that

:::
the

::::::::::
acceleration

:::::
value

:::::::
changes

:::::::::::
continuously,

::::::
which

::
is

:::
not

:::::::
fulfilled705

::
in

:::
the

::::
case

::
of

:::::::
sudden,

::::::
discrete

:::::::
change

::::::
events.

::
In

:::
the

::::
case

::
of

:::
the

:::::
order

::
0
::::::
model,

:::
too

:::::
large

::::::
choices

:::
for

:::
the

::::
state

::::::::
variance

:::::
result

::
in

:::
the

:::::
model

:::::::::
replicating

:::
the

::::::::::::
measurement

::::
noise

:::::
(blue

::::
line

::
in Fig. ?? and ??, we see that the extracted features form spatially

contiguous clusters, even though no spatial information was included. This supports the validity of
:::
4a).

:::::::::::
Additionally,

:::::
with

:::::
larger

::::::
choices

:::
for

:::
the

::::
state

::::::::
variance,

:
the extracted information

::::::::
associated

:::::::::::
uncertainties

:::::::
increase.

::
A
::::::::
smoother

::::::
model,

:::::::::
therefore,

::::::::::
corresponds

::
to

:
a
::::::

lower
::::
level

::
of
:::::::::

detection.
::::::::
Changes

:::
that

:::::
result

:::::
from

:::::::::
continuous

:::::::::
processes

:::::
acting

:::
on

:::
the

:::::::
surface

:::
can

::::
then

:::
be710

:::::::
detected

:::::
earlier.

Deriving the epoch-wise point cloud change values with M3C2-EP allowed us to incorporate uncertainty information into the

time series smoothing. This becomes especially important when data from multiple sensors, with different levels of uncertainty,

are combined. The Kalman filter ensures that a new measurement cannot make the estimated parameters less certain. In the

clusteringstep, this parameter uncertainty was not included in any of the feature vectors, to avoid an influence of the threshold715

value (typically 95%)on the results. However, areas with no significant change are clustered separately from ones where change

is significant. This becomes apparent when, e.g., comparing the points with significant change displayed in Fig. ??a with the

clustersin Fig. ??a, where most of the points without significant change are represented by
::
As

::
an

::::::::::
application

::::::::
example,

:::
we

::::::
showed

::::
how

:::
the

:::::::::
smoothed

:::::::
Kalman

::::
time

:::::
series

::::
can

::
be

:::::
used

::
in

::::::::
K-Means

:::::::::
clustering

::
as

::::::::
presented

:::
on

::::::::::
topographic

::::
time

::::::
series

::
by

::::::::::::::::::::
Kuschnerus et al. (2021)

:
.
:::::
While

:::::
there

:::
are

:::::
slight

::::::::::
differences

::
in

:::
the

::::::
results

:::
for

::::::::
different

::::::
inputs,

:::
the

:::::
main

::::::
clusters

::::
are

::::
very720

::::::
similar

:::
for

:::
the

:::::::
Kalman

::::
filter

::::::::
methods

:::
and

:::
the

::::::::
temporal

:::::::
median

:::::::::
smoothing.

::::
The

:::::
linear

:::::::::::
interpolation

::::::
model,

::::::::
however,

::::::
shows

:
a
:::
lot

::::
more

:::::
noise

::
in

:::
the

:::::::::
clustering,

:::::::::
exhibiting

::::
less

::::::::::
pronounced

:::::::
spatially

:::::::::
contiguous

:::::::
clusters.

::::
We

:::::::
conclude

::::
that

:::::
while

:::::
there

:::
are
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::::::
discrete

:::::::
changes

::::::::
occurring

::
in

:
the large green cluster. Subsequent analyses of the results, where a single cluster is examined for

its properties, may however again take advantage of the available uncertainty measures.
::::
scene

:::::::::
(snowfall,

:::::::::
avalanche),

::::::
which

:::
are

:::
not

:::
well

::::::::::
represented

:::
by

:::
the

::::::
Kalman

:::::
filter

::::::::
trajectory,

::::
this

::::
does

:::
not

:::::::::
necessarily

:::::
affect

:::
the

::::::::
resulting

:::::::
clusters.725

The manually extracted features and clusters presented here only represent one of many applications of Kalman-filtered

and RTS-smoothed surface change time series. The overall concept of exploiting spatial and temporal autocorrelation allows

an optimal consideration of uncertainty present in the data. The option of predicting future change values and associated

uncertainty opens a broad new field of adapting subsequent (future) measurements to the existing time seriesand the already

observed data. Currently, applications are still limited by the manual definition of
:::::
Future

::::::::
research

::::
could

:::::::::
investigate

::::
how

:::::::
discrete730

::::::
change

:::::
events

::::
can

::
be

::::::::
identified

::::
and

:::::::
modeled

::::::::::::
appropriately

::
by

::::::::::::
re-initializing

:::
the

:::::::
Kalman

::::
filter

::::
just

::::
after

::::
such

:::
an

:::::
event.

:::::
Such

:
a
:::::::::::::
re-initialization

:::::
resets

:::
the

::::::::
estimated

::::::::::::
displacement,

:::::::
velocity,

::::
and

::::::::::
acceleration

:::::::::
(depending

:::
on

:::
the

::::::
chosen

:::::
order

::
of

:::
the

:::::::
model),

:::::
which

::::::::
increases

:::
the

::::::::::
uncertainty

::::
until

:::::
more

:::::::::::
observations

:::::::
become

::::::::
available

::::
and

:::
the

::::
filter

:::::::::
converges

::::::
again.

::
In

::::
line

::::
with

::::
this

:::::::::::
consideration

::
is

:::
the

::::::
choice

::
of

::::::::::
uncertainty

::
at

:::
the

:::::::::
beginning

::
of

:::
the

::::::::
process.

::
At

::::
the

::::
start

::
of

:
the state variance (σ) and by the

linearization in the Kalman filter equations. More elaborate algorithms, such as the Extended Kalman Filter or the Unscented735

Kalman Filter may overcome these limitations in the future (Labbe, 2014)
::::
time

:::::
series,

:::
the

:::::::::::
displacement

::::
must

:::
be

:
–
::
by

::::::::
definition

::
–

::::
zero,

:::
and

::::
we,

::::::::
therefore,

:::::
assign

::
an

::::::::::
uncertainty

::
of

::::
zero

::
to

:::
this

:::::::::::
initialization.

::::
This

::::
also

::::::
ensures

::::
that

::
all

:::::::::
trajectories

::::
pass

:::::::
through

:::
the

::::
point

::
at

:
0
::
at
:::
the

:::::::::
beginning

::
of

:::
the

::::::::
timespan.

:::
For

::::::::::
subsequent

:::::::::::
initializations,

::::
this

::::::::
argument

::::
does

:::
not

::::
hold,

::::
and

:
a
:::::
larger

::::::::::
uncertainty

::::
(e.g.,

::::::
derived

:::::
from

:::
the

:::::::::
bitemporal

::::::::::
comparison)

::::::
should

:::
be

:::::::
assumed.

6 Conclusions740

We presented a novel method for the analysis of 4D point clouds for monitoring of Earth
::::::
Earth’s surface dynamics. The ap-

plication of a Kalman filter allows informed temporal smoothing, which decreases uncertainty and enables interpolation as

well as extrapolation of the time series. As M3C2-EPis used as a point cloud distance metric, and it ,
::::::
which spatially aggre-

gates and smooths data,
:::::::
smoothes

:::::
data,

::
is

::::
used

::
to

:::::::
compute

:::::
point

:::::
cloud

::::::
change

::::::
values,

:
the full 4D domain is exploited to find

optimal estimates for change value, velocity and acceleration.
:::::
values,

:::::::::
velocities,

:::
and

::::::::::::
accelerations.

::::
Our

::::
work

::::
can

::
be

:::::
used

::
to745

:::::
detect

::::::::
locations

:::
and

::::::
points

::
in

::::
time

::::::
where

:::::::::
significant

::::::
change

::::::
occurs

::::::::::
throughout

:::
the

:::::::::::::
near-continuous

:::
3D

:::::::::::
observation,

:::
and

:::
to

:::::
group

::::
these

::::::::
locations

::::
into

::::
areas

:::
or

::::::
subsets

::::
with

::::::
similar

:::::::::
properties.

::::
The

::::::::
extraction

:::
of

:::
the

::::::::
smoothed

::::
time

:::::
series

::::
then

::::::
allows

:::
the

:::::::::::
interpretation

::
of

:::::::::
individual

:::::::::
trajectories

::::::
where

:::
the

:::::::
influence

:::
of

::::::
random

:::::
noise

::
is

::::::
largely

::::::::::
suppressed,

:::::
which

:::
in

:::
turn

::::::
allows

:::::
more

::::::
precise

:::::::::
statements

::::
about

:::
the

::::::::::
significance

:::
of

::::::::
quantified

::::::
change

::::::
values

:::
and

:::
the

::::::::
properties

::
of

::::
this

::::::
change.

:::
4D

:::::
point

:::::
cloud

:::::::
analysis

::::
using

::
a
:::::::
Kalman

::::
filter

:::
and

:::::::::
clustering

:::::::::
techniques

:::::::
facilitate

::::::::::::
interpretation

:::
and

::::::
allows

::::::::
extraction

::
of
:::

the
:::::::
relevant

::::::::::
information

:::::
from750

::
the

::::::::::
topographic

:::::
point

:::::
cloud

::::
time

::::::
series.

:::
The

:::::::
rigorous

:::::::::
treatment

::
of

::::::::::
uncertainty

::::::
follows

::
a
::::::::
statistical

::::::::
approach

::
to

:::::::
identify

:::::::::
significant

::::::
change

::::
and

::
to

:::::::
separate

::
it
:::::
from

::::
noise

::::::::
resulting

::::
from

:::::::
sensing

::::::::::
uncertainty

:::
and

:::::::::
processing

:::::
steps.

::::
The

:::
use

:::
of

:::
the

:::::::
Kalman

::::
filter

::::::
allows

::::::::::
propagating

:::::::::::
uncertainties

::::
from

:::::::::
bitemporal

::::::::::
differencing

::::
into

:::
the

::::
time

:::::
series

:::
and

:::::::
reduces

:::
the

:::::::::
associated

:::::
Level

::
of

:::::::::
Detection.
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Many real-world time series datasets contain gaps or are (by design) irregular. With our approach, the time series can be755

both temporally resampled and interpolated
::::::::::
interpolated

:::
and

:::::::::
resampled. The regularity can subsequently be utilised

::::::
utilized

:
by

algorithms relying on a constant time step in the time series. We showed this by performing clustering of the spatial locations

using the estimated change values as a feature vector, yielding 2D maps, that show groups of similar surface change history.

In a second clustering approach, we used features extracted from the time series to segment the point cloud. By engineering

features that either depend on single events in the time series, or on the full change history at a location, we obtained multiple760

new information layers for interpretating physically meaningful properties of the surface changes.

Our approach further allows predicting of future states, e.g., in an online monitoring setup. This facilitates future adaptive

sensing strategies, where new measurements can be triggered by the estimated uncertainty crossing some pre-defined threshold

value. Such strategies would allow improved use of available resources (time, energy) for permanent remote sensing setups.

Overall, the combination of an unsupervised machine learning approach with smoothed time series and the automatic765

extraction of physically meaningful and interpretable parameters
::::::
Overall,

::::::::::
smoothing

::::
time

::::::
series

:::::
while

:::::
fully

::::::::::
considering

::::::::
associated

:::::::::::
uncertainties

:
is an important tool for the interpretation of topographic 4D point clouds. Our work can be used

to detect locations and points in time where significant change occurs, and to group these locations into areas or subsets that

have similar properties. The extraction of the smoothed time series then allows the interpretation of individual trajectories

where the influence of random noise is largely suppressed, which in turn allows more precise statements about the significance770

of quantified change values. 4D data analysis using a Kalman filter and clustering techniques facilitates easy interpretation and

allows to extract of the relevant information from the data stack. ,
:::::::::
especially

:::
for

::::::::::::::
small-magnitude

::::::::
changes.

:::::
Such

:::::::
changes

::::::
become

:::::::::::
increasingly

::::::::
important

:::::
with

:::::::::
increasing

::::::::::
observation

:::::::::::
frequencies,

:
a
::::::::

common
:::::

trend
:::

in
:::::
recent

::::::::::::::
near-continuous

:::::
laser

:::::::
scanning

::::::
survey

::::::
setups.

Code and data availability. The code used for processing the point clouds, including M3C2-EP and the Kalman filter, is available on GitHub775

(https://github.com/3dgeo-heidelberg/kalman4d, v0.0.3) and is indexed with Zenodo (cf. Winiwarter, 2021). The data of the Vals rockfall is

available upon reasonable request to Daniel Schröder at <daniel.schroeder@dmt-group.com>.

7 Selected time series characteristics

a) Amplitude of the fifth FFT coefficient (real part), extracted from the RTS-smoothed change time series using tsfresh. The

fifth coefficient corresponds to a period of about one day, as the full time series is just above 5 days. In combination with780

the other coefficients and the imaginary parts, the change signal can be reconstructed. b) Skew of the distribution of all FFT

coefficients. The positive skew shows that higher frequencies have a lower amplitude than lower ones, and therefore most of

the change signal can be reconstructed with the low frequencies. Thus us especially the case where large magnitude changes

prevail.
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a) Mean trend (slope) of a linear model fitted to 50 epochs á 6 minutes (5-hour intervals). The mean trend highlights785

the erosion rills (III) as well as different phases of the excavator work (II). b) Autoregression coefficient for lag 1 in an

autoregression model with a maximum lag of 1. This is a measure of how much an estimated value depends on the immediately

previous value and allows a very fine-grained segmentation of the excavator work areas.
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