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S1: Automated system for measuring contact migration rates 

To track the movement of specific contacts in our numerical models, there must be a system for 

determining if each contact was observed in the last time step evaluated or if it is a new contact. Our 

approach for this involves assigning each contact a designation (e.g., contact #1, #2, etc.). When our 

automated system proceeds to the next time step, it then determines if the first contact (contact with the 

lowest elevation) is the same as the first contact from the last time step. This comparison considers which 

units are above and below the contact; if the first contact in the previous time step had the weak unit 

beneath it, but the first contact now has the strong contact beneath it, then this first contact is a new 

contact (i.e., the first contact from the previous time step has migrated further upstream, and the newly 

identified contact has only just entered the region where we record contact migration rates). We also use 

the recorded χ values at each contact. Consider, for example, if the first contact encountered sits over the 

same rock type as the first contact encountered in the previous time step but the χ value of the newly 

encountered contact is higher. In that scenario, two new contacts have just entered the region where 

contact migration is recorded. Note that this approach requires that contacts cannot migrate too fast 

relative to the time interval over which contacts are tracked (every 25 ka, larger than model timestep dt = 

25 a). For example, a contact cannot migrate so fast that it crosses the entire profile over the 25 ka 

interval. 

Because of the change in contact migration direction when contacts dip downstream (ϕ > 0), the 

position where χ equals the damping length scale λ (Eq. 12) is not always appropriate place to set the 

starting position for tracking contact migration. To define an appropriate starting position, we run the 

simulation for 50 My (so that a dynamic equilibrium is achieved) and find the lowest position where the 

absolute value of average channel slope exceeds contact dip. Because there are variations in slope within 

each rock type, we use the average steepness of the profile to find where the average slope exceeds 

contact dip. We used the average steepness because it will not change significantly over time, once a 

dynamic equilibrium is achieved. Instead of using the point where average channel slope equals the 

contact slope as a starting position, however, we advance the starting position further upstream. We made 

this decision because the exact area where a new unit is exposed varies slightly, which can be problematic 

for our contact tracking approach. To avoid such complications near the point where new units are 

exposed, we advance the starting position upstream by the expected χ-distance a reach extending across 

both the strong unit and a weak unit would span if the dip was zero (ϕ = 0°). The distance of a reach 

extending across one rock type Δχ can be solved using the theory developed by Perne et al. (2017): 
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where ΔχS is the χ-distance required for a reach spanning the strong unit when ϕ = 0°. Erosion rate ES can 

be solved with Eq. 12. To solve for ΔχW with Eq. S1, the variables HS, ES and KS would simply have to be 

changed to HW, EW, and KS. The length scale we use to adjust the starting position is then ΔχS + ΔχW. This 

distance was chosen because it varies with simulation input such that it is never too large or small relative 



to the profile’s elevation range (e.g., one fixed distance would not be applicable across the full range of 

simulations). 

Through a process of trial and error, we found that simulations using lower reference weak 

erodibilities (KW) require a larger distance between the point where new units are exposed and the starting 

position for contact tracking. With lower KW, there is more variability in the locations where new units are 

exposed. When the starting position for contact tracking is too close to areas where new units are 

exposed, the variations in erosion rate can cause Eqs. 14 and 15 (Fig. 10) to become less accurate. To 

avoid such issues, we define the starting position for contact tracking when ϕ > 0° as follows: 

𝜁 =  𝜒𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 +  𝐹(𝛥𝜒𝑆  +  𝛥𝜒𝑊)      (S2) 

where ζ is the χ value defining the starting position for contact tracking, χexposure is the χ value closest to 

the point where average channel slope is equal to the contact slope (where new units will likely be 

exposed), and F is a factor set by the user through trial and error. In simulations with the low, medium, 

and high KW, we use F values of one, three, and four, respectively. These F values allowed for accurate 

estimations of kinematic wave speed using Eqs. 14 and 15 (Fig. 10). 

When the contact dip is low enough (or the erodibility values are high enough), however, there 

will be no inflection point (χexposure = 0 m) and all contacts will migrate upstream. To address such 

situations, we evaluate the starting positions described by both λ (Eq. 7) and ζ (Eq. S2) and use whichever 

starting position is farther upstream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figures 

 

Figure S1. Maximum elevations (zmax) over time t normalized by the final maximum elevation (zmax(tmax)) 

for all simulations assessed in scenario 1 (two layers with contact dip ϕ = 0°; Table 1). Although there are 

variations in maximum elevation, the range of elevations is constant over time (after the 50 Myr periods 

of initialization, which are not shown here). These data show that all simulations assessed in scenario 1 

had achieved a dynamic equilibrium such that the range of elevations was constant with time. Larger 

variations in maximum elevation occur for larger contrasts in erodibility. 

 

 

 

 

 

 

 

 

 

 



 

Figure S2. Maximum elevations (zmax) over time t normalized by the final maximum elevation (zmax(tmax)) 

for all simulations assessed in scenario 2 (three layers with contact dip ϕ = 0°; Table 1). Although there 

are variations in maximum elevation, the range of elevations is constant over time (after the 50 Myr 

periods of initialization, which are not shown here). These data show that all simulations assessed in 

scenario 2 had achieved a dynamic equilibrium such that the range of elevations was constant with time. 

Larger variations in maximum elevation occur for larger contrasts in erodibility. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S3. Maximum elevations (zmax) over time t normalized by the final maximum elevation (zmax(tmax)) 

for all simulations assessed in scenario 3 (two layers with contact dip ϕ < 0°; Table 1). Although there are 

variations in maximum elevation, the range of elevations is constant over time (after the 100 Myr periods 

of initialization, which are not shown here). These data show that all simulations assessed in scenario 3 

had achieved a dynamic equilibrium such that the range of elevations was constant with time. Larger 

variations in maximum elevation occur for larger contrasts in erodibility. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S4. Maximum elevations (zmax) over time t normalized by the final maximum elevation (zmax(tmax)) 

for all simulations assessed in scenario 4 (two layers with contact dip ϕ > 0°; Table 1). Although there are 

variations in maximum elevation, the range of elevations is constant over time (after the 50 Myr periods 

of initialization, which are not shown here). These data show that all simulations assessed in scenario 4 

had achieved a dynamic equilibrium such that the range of elevations was constant with time. Larger 

variations in maximum elevation occur for larger contrasts in erodibility. 

 

 

 

 

 

 

 

 

 

 

 



Figure S5. Longitudinal profile for a simulation using n = 1. Here, the strong layer (dark gray) has 

erodibility KS = 5×10-7 a-1, while the weak layer (light gray) has KW = 10-6 a-1. Here, the rock-uplift rate U 

is 0.15 mm a-1, and the layer thickness H is 100 m. At a distance upstream of the outlet sufficient to 

obscure the influence of base-level effects, the stream’s slopes are either zero or infinite (zero in the flat 

reaches, infinite at the steps). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S6. (a) Contact migration rates (dxcontact / dt) vs drainage area (A) for the simulation shown in Fig. 

6a. (b) Contact migration rates vs drainage area for the simulation shown in Fig. 6b. The slope exponent 

(n) and weak, medium, and strong erodibilities (KW, KM, and KS) are shown in the upper left of each 

subplot. Note that contact dip (ϕ) here is 0°. Each subplot has dotted, dash-dot, and dashed lines for the 

kinematic wave speeds estimated for the weak, medium, and and strong layers, respectively, if the erosion 

rate (E) was equal to rock-uplift rate (U). The erosion rates in each layer do not conform to this 

assumption, however, and instead vary so that kinematic wave speed is maintained at a moderate value 

between these different lines. 

 

 



Figure S7. Contact migration rates measured in our models (dxcontact/dt) vs. kinematic wave speeds (CH) 

estimated using Eq. 15. Note that this is a version of Fig. 10 that uses all ksn measured over the 10 Myr 

duration for each simulation (instead of only the final model timestep). Subplot (a) shows results for 

scenario 3 (contacts dipping upstream, ϕ < 0°) and subplot (c) shows results for scenario 4 (contacts 

dipping downstream, ϕ > 0°). Red dashed and dotted lines are linear regressions for results with n values 

of 0.67 and 1.5, respectively. Dashed lines show the minimum and maximum values for most values in 

each subplot, with labels denoting the corresponding relationships between observed contact migration 

rate and estimated kinematic wave speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S8. Residuals for the three-dimensional regression of EW / U shown in Fig. 11 (n = 1.5, contacts 

dipping upstream). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S9. Variations in the average erosion rate in the weak layer (EW) normalized by rock-uplift rate 

(U) with both the logarithm of the absolute contact dip in χ-space (log(|ϕχ|)) and the enforced K* (Eq. 9c) 

for simulations with n = 0.67 and contacts dipping upstream (ϕ < 0º). Note that points are colored by ϕ 

and have shadows directly beneath them. A gray plane is situated at EW / U values of one to highlight that 

points at high log(|ϕχ|) values (> -2) generally have EW / U values of about one. A regression is fit to all 

data (R2 = 0.64): EW / U = (1.4×10-3 ln(|ϕχ|)5) + (-2.9×10-3 ln(|ϕχ|)4 K*)  + (1.3×10-2 ln(|ϕχ|)4) + (9.7×10-4 

ln(|ϕχ|)3 K* 2)  + (-3.0×10-2 ln(|ϕχ|)3 K*)  + (4.8×10-2 ln(|ϕχ|)3) + (-6.1×10-4 ln(|ϕχ|)2 K* 3) + (1.3×10-2 ln(|ϕχ|)2 

K* 2) + (-8.2×10-2 ln(|ϕχ|)2 K*) + (1.2×10-1 ln(|ϕχ|)2) + (-5.9×10-3 ln(|ϕχ|) K
* 3) + (9.1×10-2 ln(|ϕχ|) K

* 2) + (-

3.4×10-1 ln(|ϕχ|) K
*) + (4.3×10-1 ln(|ϕχ|)) + (-2.4×10-3 K* 3) + (3.5×10-2 K* 2) + (-1.4×10-1 K*) + 1.1×100. 

Note that points are colored by ϕ and have shadows directly beneath them. The red dashed line represents 

the erosion rates expected if the contact dip was 0° (Eqs. 8 and 12). 

 

 

 

 

 

 

 



Figure S10. Residuals for the three-dimensional regression of EW / U shown in Fig. S9 (n = 0.67, contacts 

dipping upstream). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S11. Variations in the average erosion rate in the weak layer (EW) normalized by rock-uplift rate 

(U) with both the logarithm of the absolute contact dip in χ-space (log(|ϕχ|)) and the enforced K* (Eq. 6) 

for simulations with n = 1.5 and contacts dipping downstream (ϕ > 0º). A regression is fit to all data (R2 = 

0.32): EW / U = (-6.0×10-3 ln(|ϕχ|)4) + (-5.6×10-1 ln(|ϕχ|)3 K*) + (1.9×10-1 ln(|ϕχ|)3) + (3.7×100 ln(|ϕχ|)2 K*2) + 

(-9.9×100 ln(|ϕχ|)2 K*) + (3.6×100 ln(|ϕχ|)2) + (3.0×101 ln(|ϕχ|) K
*2) + (5.9×101 K*2) + (-5.3×101 ln(|ϕχ|) K

*) + 

(1.8×101 ln(|ϕχ|)) + (-8.6×101 K*) + 2.8×101. Note that points are colored by ϕ and have shadows directly 

beneath them. The red dashed line represents the erosion rates expected if the contact dip was 0° (Eq. 12). 

 

 

 

 

 

 

 

 

 

 

 



Figure S12. Residuals for the three-dimensional regression of EW / U shown in Fig. S11 (n = 1.5, contacts 

dipping downstream). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S13. Variations in the average erosion rate in the weak layer (EW) normalized by rock-uplift rate 

(U) with both the logarithm of the absolute contact dip in χ-space (log(|ϕχ|)) and the enforced K* (Eq. 9c) 

for simulations with n = 0.67 and contacts dipping downstream (ϕ > 0º). A regression is fit to all data (R2 

= 0.92): EW / U = (3.3×10-2 ln(|ϕχ|)3) + (-2.6×10-2 ln(|ϕχ|)2 K*) + (4.5×10-1 ln(|ϕχ|)2) + (-2.5×10-1 ln(|ϕχ|) K
*) 

+ (2.0×100 ln(|ϕχ|)) + (-2.7×10-1 K*) + 3.6×100. Note that points are colored by ϕ and have shadows 

directly beneath them. The red dashed line represents the erosion rates expected if the contact dip was 0°. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S14. Residuals for the three-dimensional regression of EW / U shown in Fig. S13 (n = 0.67, 

contacts dipping downstream). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S15. Variations in the average erosion rate in the strong layer (ES) normalized by rock-uplift rate 

(U) with both the logarithm of the absolute contact dip in χ-space (ln(|ϕχ|)) and the enforced K* (Eq. 9c) 

for simulations with n = 1.5 and contacts dipping upstream (ϕ < 0º). Note that symbol size represents the 

reference weak erodibility (KW), with smaller points corresponding with higher KW values. Also note that 

the ES / U and ln(|ϕχ|) values here are the mean values taken within logarithmically spaced drainage area 

bins (e.g., Fig. 9). Points are colored by ϕ and have shadows directly beneath them. The red dashed line 

represents the erosion rates expected if the contact dip was 0° (Eq. 12). A gray plane is situated at ES / U 

values of one. 

 

 

 

 

 

 

 

 

 



Figure S16. Variations in the average erosion rate in the strong layer (ES) normalized by rock-uplift rate 

(U) with both the logarithm of the absolute contact dip in χ-space (log(|ϕχ|)) and the enforced K* (Eq. 9c) 

for simulations with n = 0.67 and contacts dipping upstream (ϕ < 0º). Note that points are colored by ϕ 

and have shadows directly beneath them. The red dashed line represents the erosion rates expected if the 

contact dip was 0° (Eq. 12). The positions of maximum and minimum ES / U values change with the 

reference weak erodibility (KW). 

Explanation of Figure S16: 

The complex patterns in Fig. S16 occur because stretch zones (Royden and Perron, 2013) form 

when n < 1 and contacts dip upstream. A stretch zone is a gap between slope patches; an example of a 

stretch zone that many would recognize is the broad, convex-upwards knickzone that sometimes occurs 

along transient bedrock rivers. Gaps between slope patches occur when n < 1 because the slope patches 

for higher rates of base level fall (“high-E” slope patches) migrate upstream at a slower rate than the slope 

patches for lower rates of base level fall (“low-E” slope patches). Higher erosion rates within a weak unit 

can undercut the strong unit, generating high-E slope patches and a stretch zone. Examples of these 

dynamics are in Fig. 7c. Near the basin outlet, the strong unit has a high steepness and the weak unit has a 

low steepness. Moving upstream, a steep reach begins to form at the top of each reach within the weak 

unit, and reaches within the strong unit have a curved, convex-upwards morphology. These convex 

reaches are the stretch zones. Moving further upstream, eventually each reach within the weak unit has a 

high steepness, while each reach within the strong has a low steepness (approaching the behavior for a 

contact dip of 0°). These longitudinal changes in stream morphology are the physical representation of the 

trends in Fig. S16; the maximum erosion rates in Fig. S16 (ES / U) occur right before the reaches within 

the strong unit begin to be dominated by convex stretch zones. The erosion rates decrease with ln(|ϕχ|) 

past this point because the influence of contact migration becomes less significant at higher contact dips. 



The reason the positions of maximum and minimum erosion rates change with the reference weak 

erodibility (KW) in Fig. S16 is because erodibility influences the turning point at which stretch zones 

begin to dominate each reach within the strong unit (also the point at which the weak unit begins to have a 

pronounced section with high steepness). 

 

Figure S17. Variations in the average erosion rate in the strong layer (ES) normalized by rock-uplift rate 

(U) with both the logarithm of the absolute contact dip in χ-space (ln(|ϕχ|)) and the enforced K* (Eq. 9c) 

for simulations with n = 1.5 and contacts dipping downstream (ϕ > 0º). Note that symbol size represents 

the reference weak erodibility (KW), with smaller points corresponding with higher KW values. Also note 

that the ES / U and ln(|ϕχ|) values here are the mean values taken within logarithmically spaced drainage 

area bins (e.g., Fig. 9). Points are colored by ϕ and have shadows directly beneath them. The red dashed 

line represents the erosion rates expected if the contact dip was 0° (Eq. 12). A gray plane is situated at ES / 

U values of one. 

 

 

 

 

 

 



Figure S18. Variations in the average erosion rate in the strong layer (ES) normalized by rock-uplift rate 

(U) with both the logarithm of the absolute contact dip in χ-space (ln(|ϕχ|)) and the enforced K* (Eq. 9c) 

for simulations with n = 0.67 and contacts dipping downstream (ϕ > 0º). Note that symbol size represents 

the reference weak erodibility (KW), with smaller points corresponding with higher KW values. Also note 

that the ES / U and ln(|ϕχ|) values here are the mean values taken within logarithmically spaced drainage 

area bins (e.g., Fig. 9). Points are colored by ϕ and have shadows directly beneath them. The red dashed 

line represents the erosion rates expected if the contact dip was 0° (Eq. 12). A regression is fit to all data 

(R2 = 0.91): ES / U = (-3.7×10-4 ln(|ϕχ|)3) + (3.4×10-4 ln(|ϕχ|)2 K*) + (7.1×10-4 ln(|ϕχ|)2) + (-1.4×10-3 ln(|ϕχ|) 

K* 2) + (1.9×10-2 ln(|ϕχ|) K
*) + (3.7×10-3 ln(|ϕχ|))  + (1.8×10-3 K* 2) + (-4.0×10-2 K*) + 9.7×10-1. 

 

 

 

 

 

 

 

 

 

 



Figure S19. Residuals for the three-dimensional regression of ES / U shown in Fig. S18 (n = 0.67, 

contacts dipping downstream). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S20. Comparison of best-fit K values in our numerical models to the weak erodibility (KW) used in 

each simulation. Note that this is a version of Fig. 12 where we calculate Eq. 15 estimates of kinematic 

wave speed using all ksn values recorded over the entire 10 Myr duration for each simulation (rather than 

only the final timestep). (a-b) Χ2 Misfit Function values for kinematic wave speeds (CH) estimated using 

Eq. 14, the enforced contact dip (ϕ), and a wide range of K values (200 points spaced logarithmically 

from 10-9 to 10-4 m1-2nθ a-1, where θ = 0.5) relative to the Eq. 15 estimates of CH. (c-d) Comparison 

between the best-fit K and the KW enforced in the simulations. Subplots (a) and (c) show results for n = 

0.67, while subplots (b) and (d) show results for n = 1.5. 

 

 

 

 

 



Figure S21. Comparison of best-fit K values in our numerical models to the strong erodibility (KS) used 

in each simulation. Note that this is a version of Fig. 13 where we calculate Eq. 15 estimates of kinematic 

wave speed using all ksn values recorded over the entire 10 Myr duration for each simulation (rather than 

only the final timestep). (a-b) Χ2 Misfit Function values for kinematic wave speeds (CH) estimated using 

Eq. 14, the enforced contact dip (ϕ), and a wide range of K values (200 points spaced logarithmically 

from 10-9 to 10-4 m1-2nθ a-1, where θ = 0.5) relative to the Eq. 15 estimates of CH. (c-d) Comparison 

between the best-fit K and the KS enforced in the simulations. Subplots (a) and (c) show results for n = 

0.67, while subplots (b) and (d) show results for n = 1.5. 

 


