Supplementary Information

Sand mining far outpaces natural supply in a large alluvial river

Christopher R. Hackney, School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, UK, NE1 7RU*
Grigoris Vasilopoulos, Energy and Environment Institute, University of Hull, Hull, UK, HU6 7RX
Sokchhay Heng, Institute of Technology of Cambodia, Phnom Penh, Cambodia
Vasudha Darbari, Energy and Environment Institute, University of Hull, Hull, UK, HU6 7RX
Samuel Walker, Energy and Environment Institute, University of Hull, Hull, UK, HU6 7RX
Daniel R. Parsons, Energy and Environment Institute, University of Hull, Hull, UK, HU6 7RX

*corresponding author’s email address: christopher.hackney@ncl.ac.uk
SI Figure 1: Annual heat maps for January for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 2: Annual heat maps for February for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 3: Annual heat maps for March for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 4: Annual heat maps for April for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 5: Annual heat maps for May for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 6: Annual heat maps for June for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 7: Annual heat maps for July for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 8: Annual heat maps for August for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 9: Annual heat maps for September for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 10: Annual heat maps for October for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 11: Annual heat maps for November for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.
SI Figure 12: Annual heat maps for December for the period 2016 - 2020 of the Mekong River around Phnom Penh showing the locations of mining activity and the density of boats (boats per km²) showing changes in the spatial distribution of mining activity over the five year period.