

1 **Stochastic alluvial fan and terrace formation triggered by a**
2 **high-magnitude Holocene landslide in the Klados Gorge, Crete**

3 Elena T. Bruni¹, Richard F. Ott¹, Vincenzo Picotti¹, Negar Haghipour^{1, 2}, Karl W. Wegmann³,
4 Sean F. Gallen^{5*}

5 ¹ Department of Earth Sciences, ETH Zürich, Switzerland

6 ² Laboratory of Ion Beam Physics, ETH Zürich, 8092 Zurich, Switzerland

7 ³ Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA

8 ⁴ Centre for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA

9 ⁵ Department of Geosciences, Colorado State University, Colorado, USA

10 *Correspondence to: Sean F. Gallen (sean.gallen@colostate.edu)

11 Elena T. Bruni (elena.bruni@erdw.ethz.ch)

12 **Abstract**

13 Alluvial fan and terrace formation are traditionally interpreted as a fluvial system response to Quaternary climate
14 oscillations under the backdrop of slow and steady tectonic activity. However, several recent studies challenge
15 this conventional wisdom, showing that such landforms can evolve rapidly as a geomorphic system responds to
16 catastrophic and stochastic events, like large magnitude mass-wasting. Here, we contribute to this topic through
17 a detailed field, geochronological and numerical modelling investigation of thick (> 50 m) alluvial sequences in
18 the Klados catchment in southwestern Crete, Greece. The Klados River catchment lies in a Mediterranean climate,
19 is largely floored by carbonate bedrock, and is characterised by well-preserved, alluvial terraces and inset fans at
20 the river mouth that exceed the volumes of alluvial deposits in neighbouring catchments of similar size. Previous
21 studies interpreted the genesis and evolution of these deposits to result from a combination of Pleistocene sea-
22 level variation and the region's long-term tectonic activity. We show that the > 20 m thick lower fan unit,
23 previously thought to be late Pleistocene in age, unconformably buries a paleoshoreline uplifted in the first
24 centuries AD, placing the depositional age of this unit firmly into the Late Holocene. The depositional timing is
25 supported by seven new radiocarbon dates that indicate mid to late Holocene ages for the entire fan and terrace
26 sequence. Furthermore, we report new evidence of a previously unidentified valley-filling landslide deposit that
27 is locally 100 m above the modern stream elevation, and based on cross-cutting relationships, pre-dates the alluvial
28 sequence. Observations indicate the highly-erodible landslide deposit as the source of the alluvial fill sediment.
29 We identify the likely landslide detachment area as a large rockfall scar at the steepened head of the catchment.
30 A landslide volume of $9.08 \times 10^7 \text{ m}^3$ is estimated based on volume reconstructions of the mapped landslide deposit
31 and the inferred scar location. We utilise landslide runout modelling to validate the hypothesis that a high
32 magnitude rockfall would pulverize and send material downstream, filling the valley up to ~ 100 m. This partial
33 liquefaction is required for the rockfall to form a landslide body of the extent observed in the valley and is
34 consistent with the sedimentological characteristics of the landslide deposit. Based on the new age control, and
35 the identification of the landslide deposit, we hypothesise that the rapid post-landslide aggradation and incision
36 cycles of the alluvial deposits are not linked to long-term tectonic uplift or climate variations but rather stochastic
37 events such as mobilisation of sediment in large earthquakes, storm events, or ephemeral blockage in the valley's
38 narrow reaches. The Klados case study represents a model-environment for how stochastically-driven events can
39 mimic climate-induced sedimentary archives, lead to deposition of thick alluvial sequences within hundreds to
40 thousands of years, and illustrates the ultrasensitivity of mountainous catchments to external perturbations after
41 catastrophic events.

42 **1 Introduction**

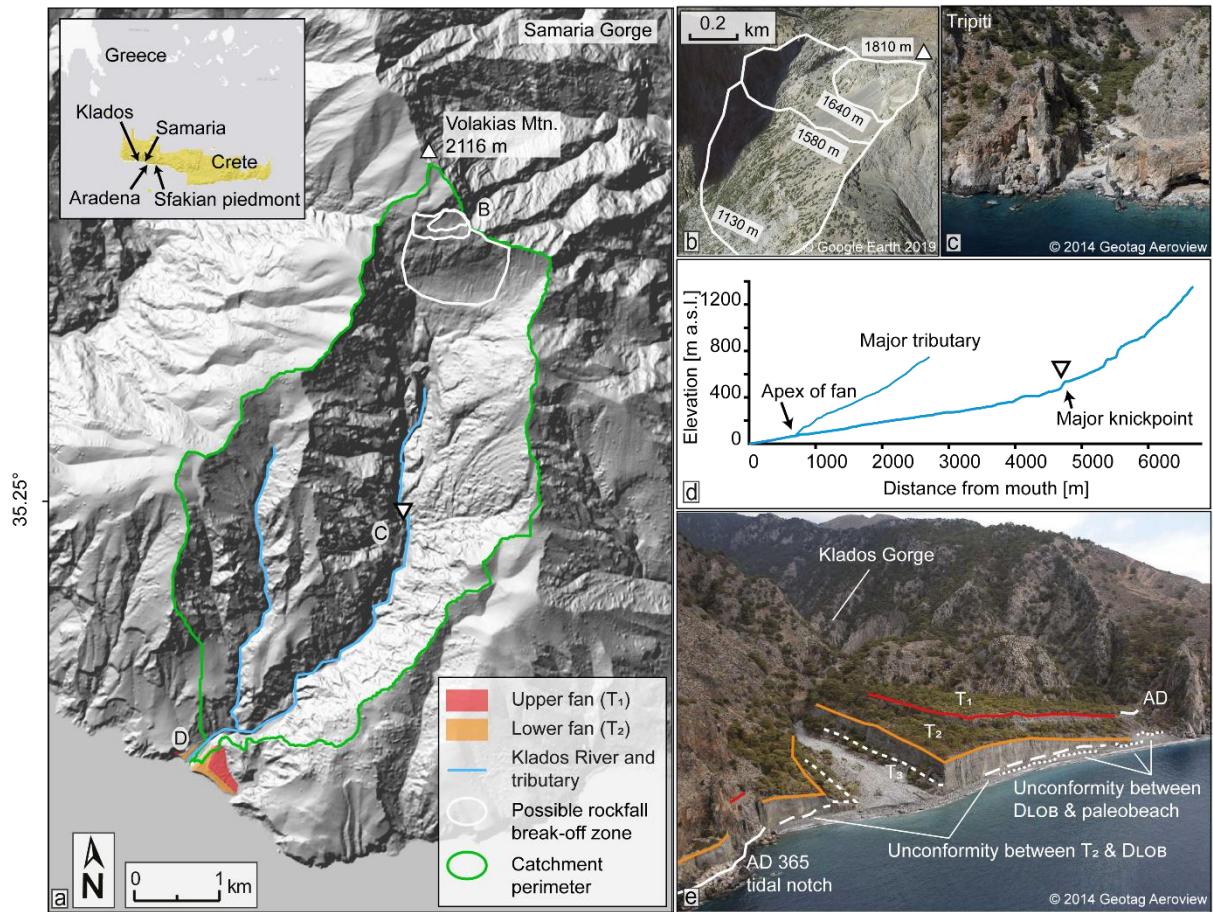
43 Alluvial fans and terraces are traditionally used as proxies for climate variations and tectonic activity. Within this
44 view, their formation depends on climate-driven changes in the ratio of sediment supply and transport capacity
45 superimposed on the long-term tectonic activity of the region (Bridgland et al., 2004; Bull, 1991; Merritts et al.,
46 1994; Pazzaglia, 2013; Schumm, 1973). However, an increasing number of studies report that stochastic
47 mechanisms such as landslides and autogenic fluctuation in river channel positions can also generate these
48 landforms (Finnegan et al., 2014; Korup et al., 2006; Limaye and Lamb, 2016; Scherler et al., 2016). Such
49 stochastically-generated deposits can resemble climate-forced alluvial terraces and fans in structure and
50 sedimentology, possibly leading to erroneous interpretations of the processes responsible for their genesis.
51 However, it is possible to distinguish between climatic and stochastic mechanisms for fluvial terrace and fan
52 formation through careful field observation, precise geochronology, and comparisons to regional climate records
53 (c.f., Scherler et al., 2016). Nevertheless, it remains unclear how rivers and river catchment systems react and
54 recover from the high-magnitude stochastic perturbations (i.e., a large landslide) that can rapidly build thick
55 alluvial sequences. However, modelling studies may provide a basis for interpretation(i.e., Hungr and Evans,
56 2004). Furthermore, little is known about how such catastrophic events alter earth surface dynamics, which might
57 generate different responses to superimposed variations in climate and tectonics in affected and unaffected
58 catchments. Here we contribute to the growing body of literature on the role of climatic versus stochastic
59 mechanisms as a driver of rapid emplacement of fluvial landforms and the impacts of stochastic forcing on
60 catchment-scale earth surface dynamics through the investigation of an exemplary fill sequence of thick (> 50 m)
61 alluvial fan delta and terrace deposits, in a small, steep, mountainous catchment on the southern coast of Crete,
62 Greece (Fig. 1a).

63

64 Previous studies on Crete and elsewhere in the Mediterranean show that the construction of Quaternary alluvial
65 terraces and fans is generally linked with climate fluctuations (Gallen et al., 2014; Macklin et al., 2010; Nemec
66 and Postma, 1993; Pope et al., 2008; Wegmann, 2008). Also, human land use and vegetation cover have been
67 shown to influence sediment dynamics and alluviation patterns, and the Eastern Mediterranean has been central
68 to the investigation of the interplay between climate fluctuations, long-term tectonics, and anthropogenic
69 disturbances (Atherden and Hall, 1999; Benito et al., 2015; Dusar et al., 2011; Thorndycraft and Benito, 2006;
70 Vita-Finzi, 1969). A key study site is the large Bajada-type alluvial fan system on the Sfakian piedmont of
71 southern Crete ~30 km east of the Klados catchment. The Sfakia fan sequence was initially mapped and described
72 by Nemec and Postma (1993) with subsequent detailed chronology developed by Pope et al. (2008), Ferrier and
73 Pope (2012), and Pope et al. (2016) using luminescence dating and soil chronostratigraphy. From sedimentology,
74 topographic surveys, soil redness indices, and chronometric dating, the Sfakian fans are interpreted as recording
75 sediment deposition during colder and wetter glacial stages with little to no fan deposition during the intervening
76 warm interglacial or interstadial periods (Pope et al., 2008, 2016). This result agrees with Gallen et al. (2014),
77 who found that alluvial fans on the south-central coastline of Crete aggraded and prograded in response to
78 increased catchment delivery of sediment and the lowering of the sea level (base level) during cold climate
79 intervals. Similar conclusions were drawn by Wegmann (2008) and Macklin (2010), who found that active fan
80 aggradation on Crete generally occurred during glacial stages. These examples illustrate that fan sedimentation
81 occurred more or less in concert with Quaternary climate variability across western and southern Crete, similar to

82 elsewhere in the Mediterranean (Benito et al., 2015; Macklin and Woodward, 2009; Thorndycraft and Benito,
83 2006; Zielhofer et al., 2008).

84


85 Most Cretan alluvial deposits share commonalities in stratigraphy, sedimentology, pedogenesis, and aggradational
86 chronology. However, the thick sequence of several > 20 m thick alluvial fan and terrace deposits preserved in
87 the Klados catchment is anomalous compared to nearby catchments with larger drainage areas (i.e., Samaria) that
88 preserve only minor alluvial deposits. The Klados River catchment drains the south flank of Volakis Mountain
89 (2,116 m), which features a steep, 42° planar slope that dips southward off the mountain's upper flank (Fig. 1b),
90 and is surrounded by steep, 2 km high mountains, which has kept human influence minimal. The stream incises
91 metamorphosed Jurassic to Eocene Plattenkalk limestone (Creutzburg, 1977). Two large inset fans are present at
92 the catchment mouth; they extend ~650 m along the beach between adjacent bedrock promontories (Fig. 1e).
93 Wave action eroded the fan deposit toes, forming sea cliffs up to 30 m high (Fig. 1e). Each fan grades upstream
94 into thick (> 20 m), well-preserved paired (valley-spanning) fill terraces. Consequently, Klados fan terrace deposit
95 volumes are oversized relative to the relatively small catchment area (11.5 km²), which is particularly evident
96 when compared to deposits in the adjacent gorges with larger drainage areas. Furthermore, the alluvial fan-terrace
97 deposits display little weathering and immature soil development, especially relative to the well-studied Late
98 Pleistocene alluvial fan sequences preserved along the south coast of Crete (Gallen et al., 2014; Macklin et al.,
99 2010; Nemec and Postma, 1993; Pope et al., 2008; Wegmann, 2008).

100

101 Previous research on the Klados alluvial sequence focused on the deposits in proximity to the sea at the stream
102 mouth. One study argues that these deposits aggraded in the Holocene due to short-term climate fluctuations,
103 rapid uplift rate, and variations in sediment supply (Booth, 2010). In contrast, another study suggests that the fans
104 are associated with Late Pleistocene climate-eustatic fluctuations and long-term tectonic uplift based on field
105 observations and luminescence dating (Mouslopoulou et al., 2017). The correct interpretation of these exceptional
106 deposits has important implications for understanding the role of climatic versus stochastic mechanisms on
107 catchment-scale sediment transport, alluvial fan and terrace development, and the use of alluvial deposits as
108 environmental archives in Crete and elsewhere.

109

110 Due to the unique appearance of the Klados sedimentary deposits, conflicting interpretations of their timing and
111 genesis, and ambiguous geochronology, this study revisits the origin and evolution of alluvial deposits within and
112 at the mouth of the Klados Gorge. The volumes of these deposits are substantially larger than alluvial deposits in
113 larger neighbouring catchments and therefore require an unusually high sediment input. Through mapping and
114 cross-cutting relationships, we show that a previously unidentified valley-filling landslide deposit - locally more
115 than 100 m thick and in many locations covering paleo-bedrock topography - is the source of sediment feeding
116 the Klados alluvial fan delta. Relative and absolute geochronology places the landslide deposit and the
117 construction of the alluvial fans and terraces firmly in the Holocene, contrary to previous luminescence ages. Our
118 mapping, coupled with landslide runout modelling, suggests that a high-magnitude, catastrophic mass-wasting
119 event in the catchment headwaters backfilled the valley. The rapid input of large quantities of sediment into the
120 catchment provides an excellent opportunity to investigate how rivers respond to such catastrophic events.

121

122 **Figure 1:** Overview of the Klados catchment and fan. (a) Hillshade of the Klados river catchment with the alluvial fan delta
 123 at its mouth (coloured). Note the steep planar surface at the head of the catchment, which we interpret as a rockfall failure
 124 plane. The extents of the minimum, intermediate, and maximum rockfall areas are outlined in white as used in the landslide
 125 modelling (Sect. 5.3). Inset overview of Klados catchment location on Crete, Greece, with the study area and other relevant
 126 locations indicated (ESRI, 2011). The hillshade was generated from the 5 m DEM of the Hellenic Cadastre SA. (b) Oblique
 127 perspective Google Earth view of the hypothesised failure plane(s) at the head of the catchment (outlined as in a). (c) The
 128 Tripiti catchment outlet < 5 km to the west of the Klados fan sequence. Note the absence of large alluvial deposits, typical for
 129 the rivers draining the Levka Ori Mountains, highlighting the uniqueness of the deposits at Klados. (d) River longitudinal
 130 profiles of the Klados River and its major tributary. (e) Oblique aerial photograph of the alluvial fans delta at the Klados
 131 catchment outlet. Highlighted are the different surfaces and unconformities discussed in the text.

132

133 **2 Regional setting**

134 Crete is in the forearc of the Hellenic subduction zone, where the African plate subducts beneath the Aegean
135 microplate at a rate of ~ 35 mm a $^{-1}$ (McClusky et al., 2000; Reilinger et al., 2006). The crust beneath Crete consists
136 of a compressional nappe pile built during subduction in the mid-Cenozoic and exhumed in the Late Cenozoic
137 (Fassoulas et al., 1994; van Hinsbergen and Meulenkamp, 2006). Miocene to Pliocene marine sediments in-filled
138 extensional basins. These basins subsequently uplifted several 100s of meters and are now exposed above sea
139 level on Crete (van Hinsbergen and Meulenkamp, 2006; Meulenkamp et al., 1994; Zachariasse et al., 2011).
140 Quaternary paleoshorelines document ongoing uplift; some are now hundreds of meters above sea level (a.s.l.)
141 (Angelier et al., 1982; Gallen et al., 2014; Ott et al., 2019b; Robertson et al., 2019). Craggy cliffs interrupted by
142 deeply-incised valleys and bedrock gorges characterise southwest Crete's coastal topography, where basin-
143 average erosion rates are ~ 0.1 mm/a (Ott et al., 2019a).

144

145 The island lies above the most active seismic zone in the Mediterranean, and episodic Holocene uplift in western
146 Crete associated with earthquakes occurs under the backdrop of slower steady rock uplift driven by deeper crustal
147 processes (Gallen et al., 2014; Ott et al., 2019b; Pirazzoli et al., 1982; Shaw et al., 2008; Stiros, 2001). Evidence
148 of large earthquakes comes from historical reports, archaeological excavations, tsunami deposits, and uplifted
149 Holocene paleoshorelines (Ambraseys, 2009; Dominey-Howes et al., 1999; Pirazzoli et al., 1996; Shaw et al.,
150 2008). These paleoshorelines delineate the temporal position of sea level through tidal or bioerosional notches,
151 cemented beachrock, topographic benches, and shore platforms (Chappell, 2009). The uplift of a Holocene
152 paleoshoreline by as much as 9 m a.s.l. on the southwestern coast of Crete is often attributed to an unusually large
153 earthquake (M_w 8.3–8.5) in AD 365 (Mouslopoulou et al., 2015; Shaw et al., 2008), but a more recent study
154 suggests that uplift occurred through a series of earthquakes with $M_w < 7.9$ in the first centuries AD (Ott et al.,
155 2021). Regardless of conflicting interpretations, this prominent paleoshoreline is observable along > 200 km of
156 coastline in western Crete and provides a robust Late Holocene time marker. Following Ott et al. (2021), we refer
157 to this Late Holocene coastal feature as the Krios paleoshoreline, based on its maximum elevation at Cape Krios
158 in southwestern Crete. At the mouth of the Klados catchment, the Krios paleoshoreline is preserved as a tidal
159 notch and beach deposit at 6 m a.s.l. We use contact relationships between the Krios paleoshoreline and alluvial
160 deposits as a relative age marker.

161

162 **3 Field and laboratory methods**

163 **3.1 Field observations and spatial analysis**

164 Field mapping was complemented by spatial analysis of digital elevation models (DEM) using ArcGIS v10.2 and
165 TopoToolbox v2 (ESRI, 2011; Schwanghart and Scherler, 2014). The field mapping focused on stratigraphic and
166 sedimentological characteristics of the Late Quaternary deposits, cross-cutting relationships, and the degree of
167 soil formation that allowed for the classification of distinct geomorphic units (IUSS Working Group WRB, 2015).
168 A 5 m DEM of the catchment, provided by the Hellenic Cadastre SA, was used to determine the longitudinal river
169 profile and the heights of the terraces above the modern channel elevation. The DEM was also used to reconstruct
170 the extent and volume of eroded Quaternary alluvial fill deposits. While a higher-resolution DEM was produced
171 by a photogrammetric analysis of drone imagery (AgiSoft, 15 cm resolution) and was subsequently used for the
172 diffusion modelling (Supplement sect. 7; Fig. S6), we did not use it for volume estimations because of vegetation
173 coverage. We used elevation data from mapped geomorphic units that exhibited little erosion to model a given
174 deposit's pre-incision surface for the volume reconstruction. These pre-incision surfaces were constructed via
175 spline (regularised, weight = 0.1) interpolation in ArcGIS. To determine eroded volumes and the original extent
176 of the deposits, we subtracted the modern DEM from the interpolated pre-incision surfaces. Subsequently, a
177 reconstruction of the pre-deposition valley bedrock morphology was created by subtracting the mapped
178 thicknesses of individual deposits from the modern DEM.

179 **3.2 Radiocarbon dating**

180 **3.2.1 Fossil dating**

181 Two in-situ Vermetid (sessile marine gastropod) shells were sampled from the uplifted Late Holocene Krios
182 paleoshoreline at 5 and 6 m a.s.l. These data were used to locally constrain the age of the uplifted Krios
183 paleoshoreline, presumed to be upheaved in the first centuries AD, and provide a maximum depositional age for
184 the younger alluvial fan delta. The samples were crushed, washed in 0.06% HCl, and infused with 85% phosphoric
185 acid. After graphitisation of the released CO₂ in an AGE3 system (Wacker et al., 2010), the resulting ~ 1 mg of
186 graphite was analysed by an Accelerator Mass Spectrometer (AMS). The standards used in the graphitisation step
187 are 8.55–9.12 mg IAEA-C1 carbonate and 9.97–10.54 mg IAEA-C2 I Travertine carbonate. We also collected a
188 terrestrial gastropod shell from the upper fan surface in reddish silt to constrain the minimum age of fan surface
189 abandonment. The radiocarbon ages are reported in fraction modern (fm) values and radiocarbon years (yr) with
190 a 1 σ range. The fossil radiocarbon ages were calibrated using OxCal (Bronk Ramsey, 2009) to compare the
191 inferred Krios paleoshoreline emergence in the first centuries AD. The Marine13 calibration curve was used for
192 calibration (Reimer et al., 2013) with a marine reservoir effect of 58 +/- 85 years as suggested by Reimer and
193 Reimer (2001). We report the 2- σ ranges of calibrated years before the present (1950 AD, calBP.).

194 **3.2.2 Bulk sediment dating**

195 To constrain the timing of aggradation and incision of the deposits, we radiocarbon-dated bulk organic matter
196 collected from six fine-grained lenses within the deposits. While bulk radiocarbon dating of alluvial sediments
197 will result in larger uncertainties, in this case, it is the only available geochronometric technique given the
198 mineralogy of the sediments and lack of macro-organic material for traditional AMS radiocarbon dating.

199 Additionally, despite uncertainties associated with bulk radiocarbon dating, it is appropriate for discriminating
200 whether or not the sediments are late Pleistocene or Holocene, one of the hypotheses tested with this study. We
201 decided against using luminescence dating because of the sparsity of quartz and feldspar in the local carbonate
202 bedrock and the turbulent mode, and the short transport distance likely resulting in incomplete bleaching,
203 especially of feldspar grains (Rhodes, 2011). A detailed discussion of uncertainties associated with this method is
204 provided in sect. 5.1.

205

206 The samples consist of 0.02 to 0.03 wt. % of total organic carbon. These samples were extracted, fumigated with
207 HCl at 70 °C for three days, and neutralised using NaOH (McIntyre et al., 2017). Due to low TOC, we measured
208 two gas target runs with ~ 80 mg of sample in the first and ~ 120 mg in the second. The samples have been
209 corrected for constant contamination correction using shale ($fm=0.018$ and Swiss soil $fm=1.06$) with a Matlab
210 code described in Haghipour et al. (2019). The radiocarbon ages are reported in fraction modern (fm) values and
211 years (yrs.) with a $1-\sigma$ range.

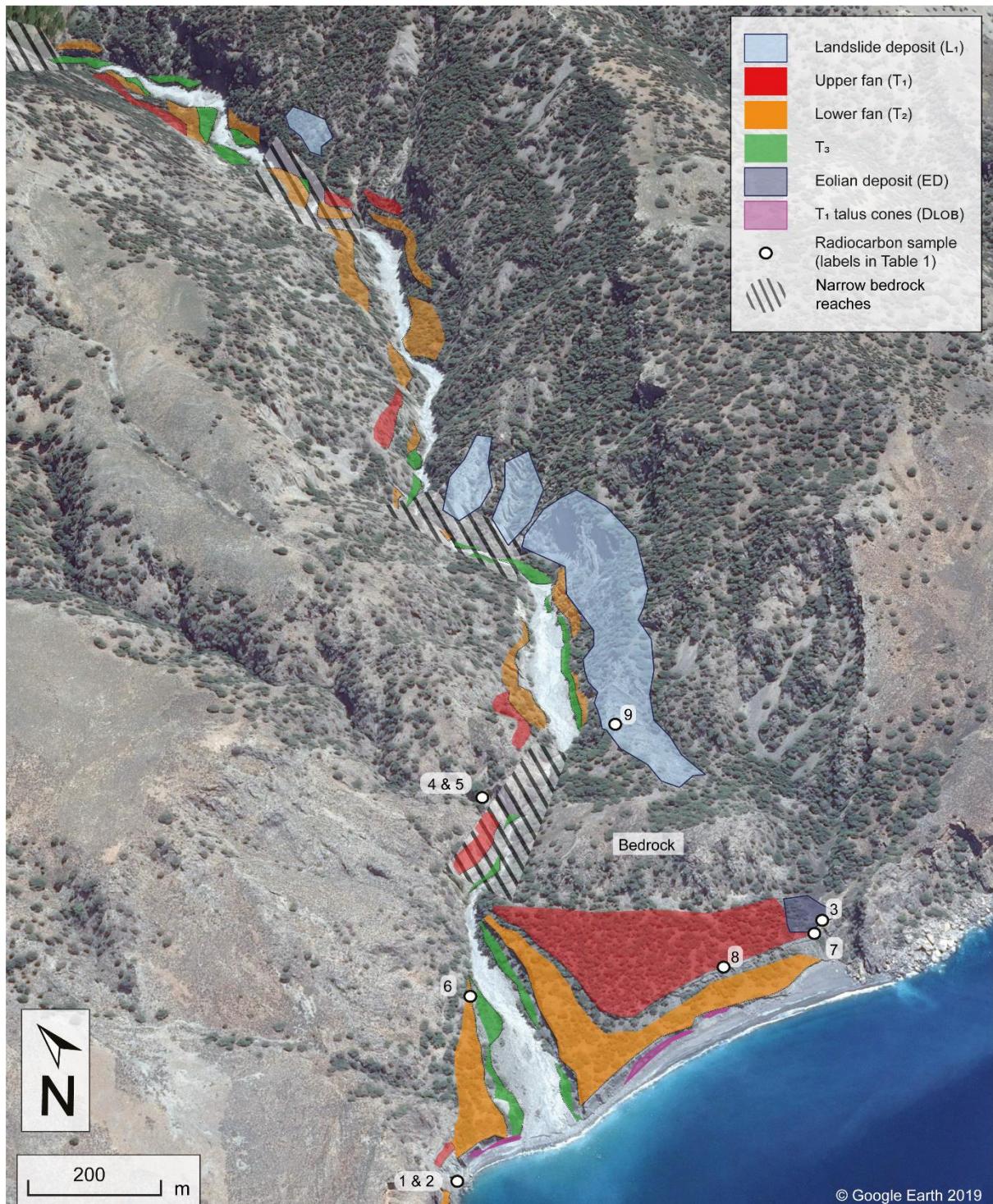
212 **3.3 Parameters used in the landslide modelling**

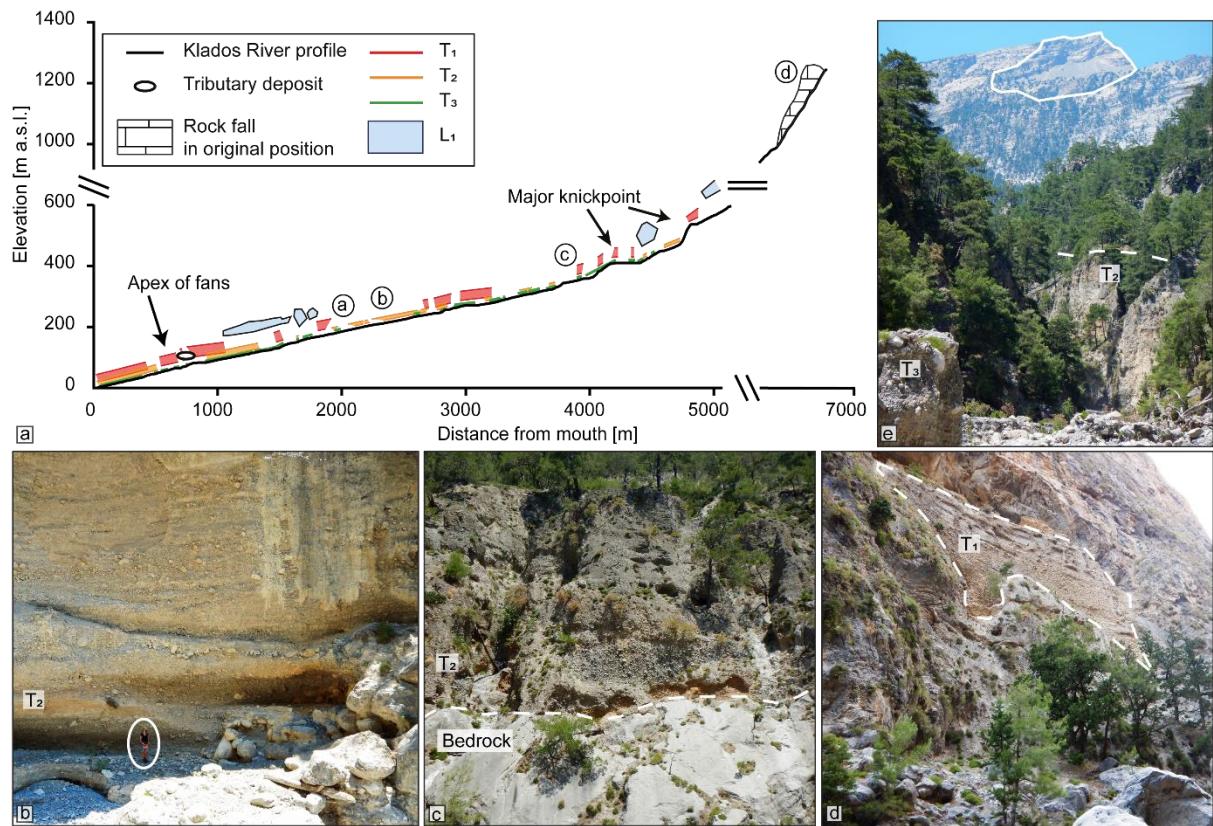
213 To test the feasibility of the hypothesis that a rockfall turned landslide provided the necessary material to form
214 the large sedimentary deposits throughout the valley, we utilised the DAN3D-Flex dynamic landslide runout
215 model that allows an initial coherent phase of motion followed by the flow-like movement of the rock mass (Aaron
216 et al., 2017). Several studies report successful model results for landslides when a Voellmy or frictional rheology
217 is used as the basal rheology, and several back-analysed historical events are available using these rheologies
218 (Aaron and Hungr, 2016; Grämiger et al., 2016; Hungr, 1995; Nagelisen et al., 2015). Voellmy rheology adds a
219 “turbulent term” to the basic frictional rheology equation, which is dependent on flow velocity and the density of
220 the material and summarises the velocity-dependent factors of flow resistance (Hungr and Evans, 1996).
221 Moreover, the model requires input files containing the pre-failure surface combined with the topography of the
222 sliding surface over which the slide flows (“path topography”) and the vertical depth of the sliding mass at the
223 initial position represented by the source material isolated from its surrounding (“source depth”).

224

225 Input parameters of topography, sliding surface, and volume were estimated and calculated based on the modern
226 topography. We produced a DEM of the modern landscape without the Holocene deposits mapped in this study
227 as the pre-landslide topography (DEMpre). For this, the thicknesses of all deposits were subtracted from the
228 present-day topography (Fig. S2). The pre-failure surface for the source area was reconstructed using the
229 thicknesses of the reconstructed rockfall wedges creating a rough minimum estimate of the mountain face’s
230 bedrock topography before the landslide event. The thicknesses were assumed to correspond to the elevations of
231 the terraces from the modern river bed. DEMpre was also used to estimate the volume of the initial landslide
232 valley infill. We interpolated a horizontal plane of constant elevation at the maximal elevation of the landslide
233 deposit at 100 m and subsequently measured the vertical distance from this plane to the pre-landslide topography
234 (DEMpre). This calculation provides an estimate of the volume necessary to reach the given plane of elevation,
235 even though it neglects the effects of topographic obstruction by the narrow valley reaches. Additionally, we
236 approximated the possible maximum and minimum volumes for the valley infill by varying the landslide deposit
237 elevation by 20 m.

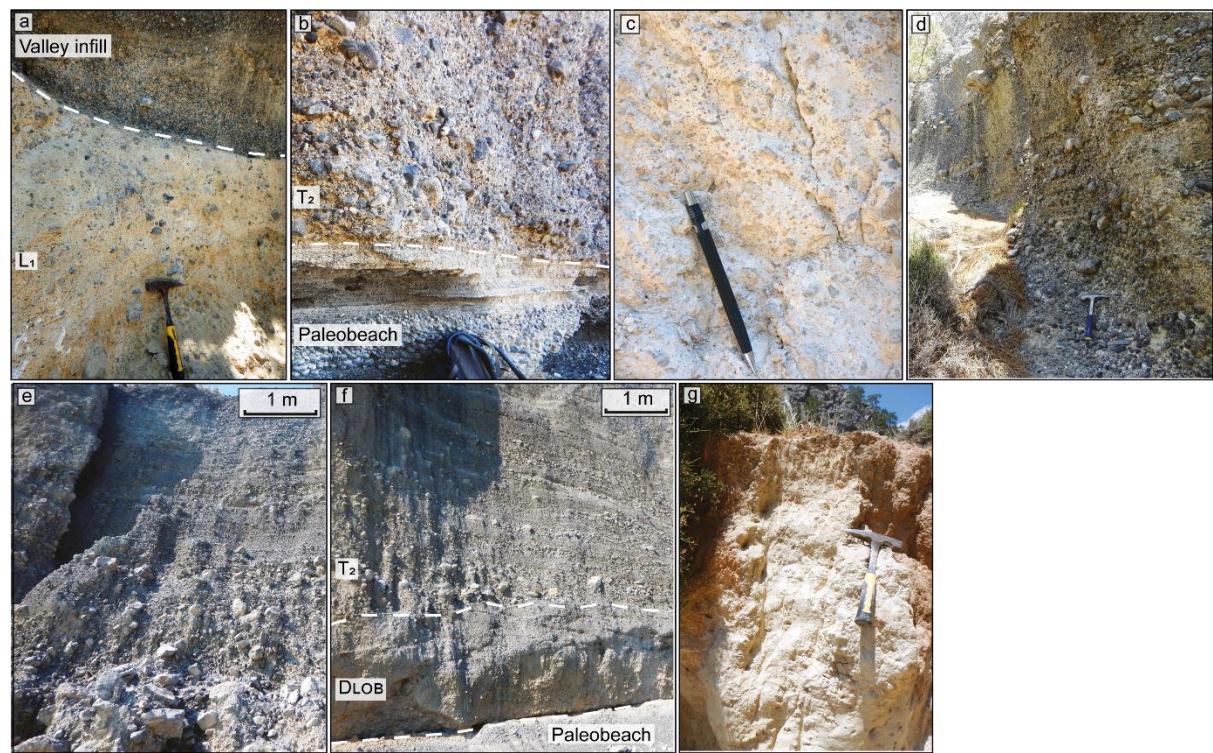
238 We calculated several scenarios for the initial amount of material detached from the mountain face and compared
239 them to the volumes of the valley infills produced as described above. For the calculations in ArcGIS, we
240 constructed a point cloud on the source area which was then transferred to a multipatch feature that fully encloses
241 the input data and thus, visualises the volume of the missing material (Fig. S3). The thickness of the pre-failure
242 rock slab on the mountain-face scarp was estimated based on a critical friction angle (30°) and the extent of the
243 modern planar surfaces (Figs. 1b; S3). The best-fitting volumes between the valley infills and the wedges were
244 subsequently used to approximate the rock fall's initial size and model the landslide runout.

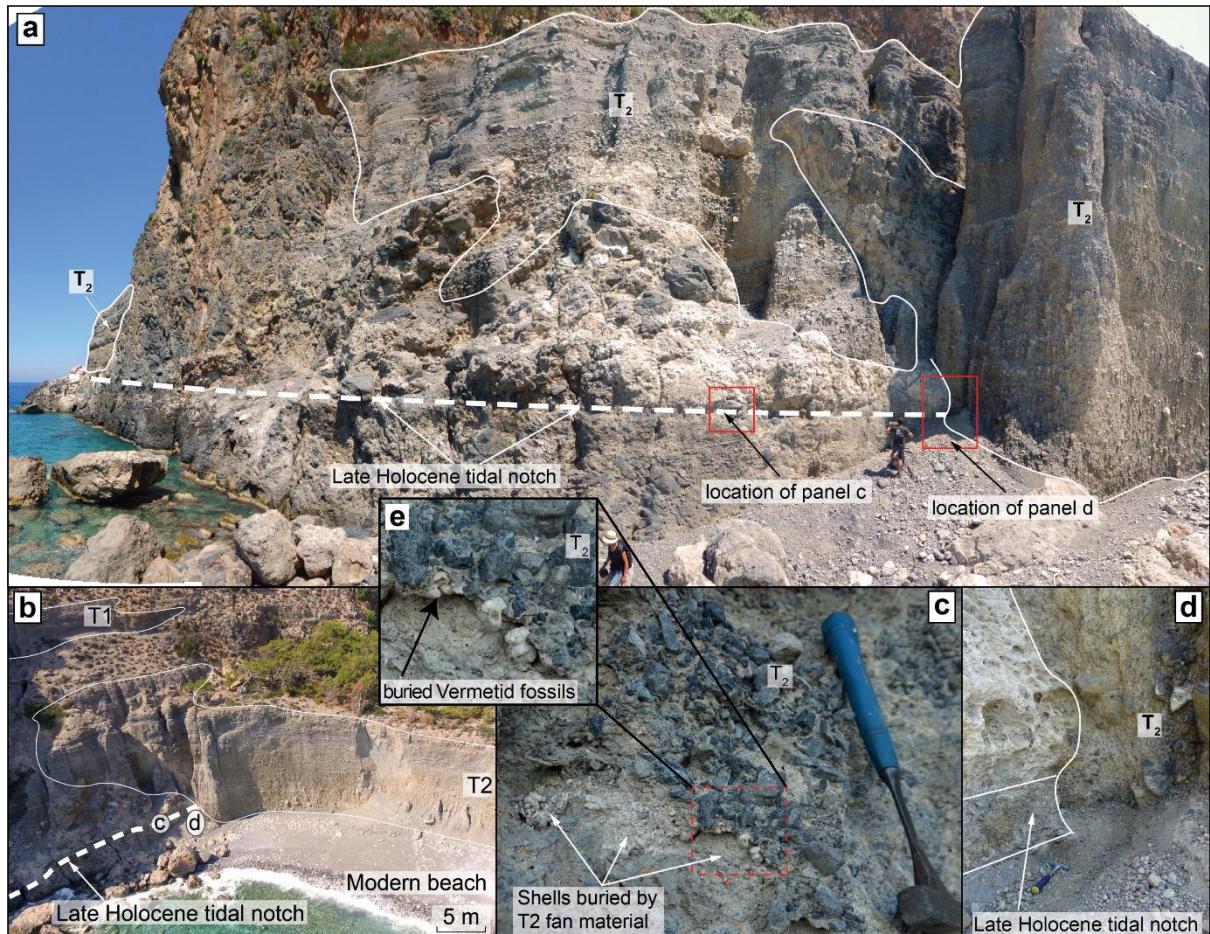

245


246 **4 Results**

247 The Klados catchment contains three generations of alluvial infill units (denoted as T₁, T₂, and T₃, from highest
248 to lowest, respectively) extending from the river headwaters to the beach, where they terminate in large telescopic
249 fans (Figs. 2; 3a). The two upper alluvial infills (T₁ and T₂) form steep coastal cliffs separated from the sea by a
250 2-10 m wide cobble-pebble beach while the lower fill (T₃) grades to more recent fluvial gravels downstream. The
251 Klados River incised into each of the alluvial deposits, forming terrace treads at ~ 50, 20, and 5 m above the
252 modern channel, respectively. An additional deposit (L₁) is found as high as 100 m above the channel and has an
253 irregular basal contact that fills in a paleo-bedrock topography. It does not grade into a fan, and its sedimentology
254 is distinct from the alluvial deposits, suggesting formation by a different process.

255


256 Deposits T₁ and T₂ cut and form buttress unconformities in various locations against the L₁ deposit (Fig. 4a),
257 indicating that the alluvial deposits were emplaced after the deposition of L₁. Basal unconformities (i.e., straths)
258 of the alluvial and L₁ deposits rarely crop out in the lower reaches but are increasingly visible upstream (Fig. 3a).
259 Nevertheless, we identified that T₂ unconformably overlies a paleo-beach deposit (Fig. 4b). T₂ gravels also cover
260 Vermetid shells growing in the tidal notch (i.e., the Krios paleoshoreline) that lies at the same elevation as the
261 paleobeach deposit demonstrating that the T₂ unit post-dates the Late Holocene paleoshoreline features (Fig. 5c).
262 An eolian deposit locally tops the T₁ surface proximal to the seaward cliff. In addition to these prominent deposits,
263 we identified several smaller, more recent infills distributed over the catchment's lower reaches.


267

268 **Figure 3:** (a) Klados River longitudinal profile. Both the top tread and the bottom contacts of the mapped infills can be traced
 269 from the headwaters to the sea, where they form the massive alluvial fans. The hypothesised position of the initial rockfall is
 270 indicated. (b) The valley is filled with thick (> 30 m) terraces (person for scale). (c) Contact between bedrock and T₂ valley
 271 infill. (d) The T₁ valley infill deposits are found up to 60 m above the modern river channel. (e) Distant view of the potential
 272 rockfall source on Volakias Mtn. (highlighted).

273

274 **Figure 4:** Images of the main deposits and their unconformities. (a) Unconformity between the landslide deposit (L_1) and one
 275 of the valley infills. (b) Paleobeach buried by D_{LOB} and T_2 close to the modern river channel. (c) Typical appearance of the
 276 landslide deposit characterised by angular clasts floating in a fine matrix. (d) The top section of the upper fan (T_1) is
 277 characterised by cobble to pebble-dominated planar beds typical of flow in shallow channels. (e) T_2 . Note upward grading
 278 from unsorted, subangular boulders and cobbles to a laminar deposit similar to (d). (f) Paleobeach buried by D_{LOB} and T_2 close
 279 to the modern river channel. (g) Eolian deposit from the eastern fan (T_1) surface (ED).

280 **Figure 5:** The contacts between the tidal notch, T_2 , and the paleobeach are illustrated by photographs from the west side of
 281 the study area. (a) Overview showing the unconformable relationship of the Late Holocene tidal notch and the T_2 fan
 282 highlighting the location of figures in other panels. (b) Oblique aerial perspective view of the outcrop with the major features
 283 highlighted. (c) Detail of the Vermetid extraction site shows how gravels of T_2 overlie a Vermetid shell pocket in the tidal
 284 notch. (d) Detail of the contact zone between the carbonaceous bedrock, T_2 , and the tidal notch (partly buried by colluvium).
 285 (e) The Vermetid fossil pocket is covered by T_2 fan material (detail of (c)).

287 **4.1. The Klados catchment infill units**

288 At ~100 m above the modern channel, a light-coloured, unsorted, and unconsolidated deposit (L_1) with matrix-
 289 supported, subangular clasts crops out (Fig. 4c). No bedding or other flow indications, such as imbrication,
 290 sigmoidal structures, or layering, are preserved within the deposit. The L_1 deposit shares many similarities with
 291 rock avalanche deposits described elsewhere by Dufresne (2017), which is why we interpret the deposit's
 292 observable parts as the body facies of a landslide. The carapace and basal facies are not observable and may have
 293 been locally eroded or buried by stream and hillslope geomorphic processes following landslide deposition. The

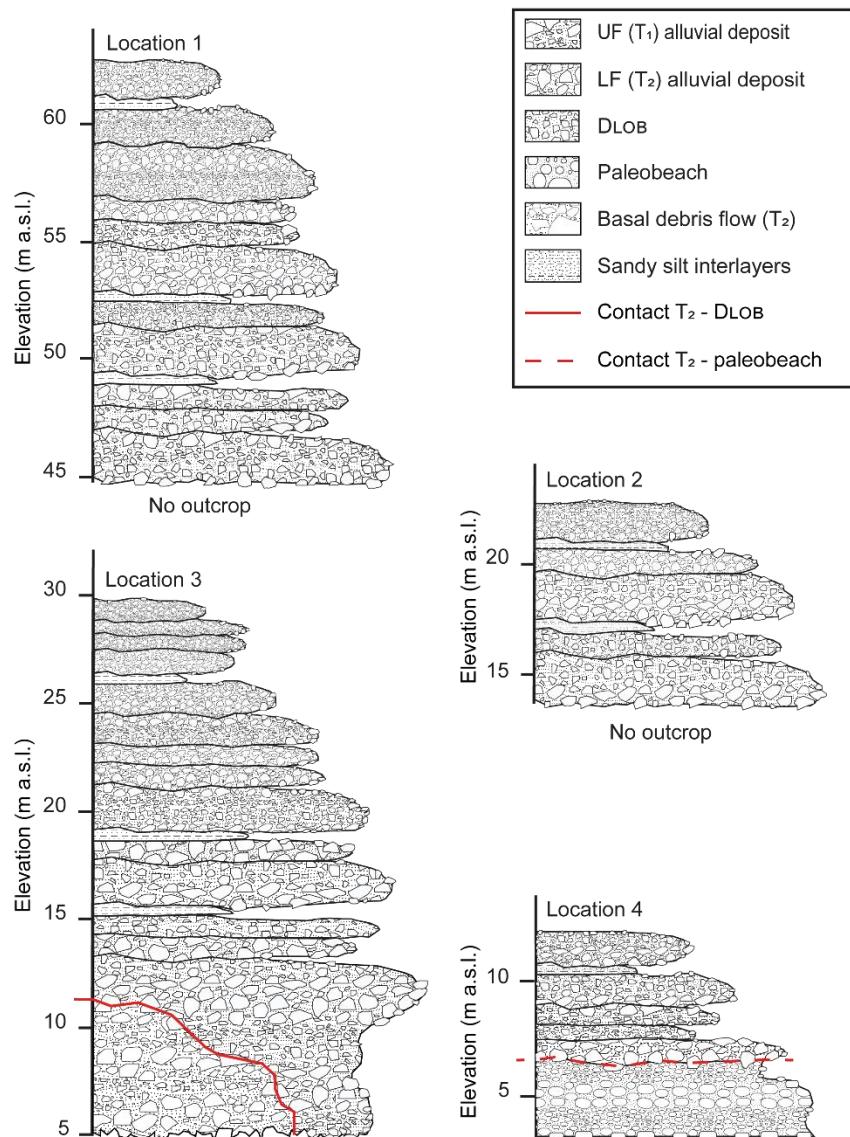
294 deposit is present along the gorge's walls up to the headwaters, where it locally backfills the pre-existing bedrock
295 topography in paleo-tributaries.

296

297 The alluvial fill units (T_1 , T_2 , and T_3) each consist of a coastal fan delta and its equivalent terrace upstream in the
298 gorge. These units consist of unconsolidated, matrix-rich but grain-supported, subangular to subrounded carbonate
299 boulder- to silt-sized clasts (Fig. 4d, e). At the outcrop-scale, the clasts exhibit a crude fining upward trend from
300 a coarse, unsorted, angular to subangular, matrix-rich basal association of boulders, cobbles, and pebbles to meter-
301 scale beds of moderately sorted cobbles, pebbles, and sand. This vertical variability is consistent for all the
302 significant terraces such that the mean grain size and structure do not change between the infill deposits, except
303 for occasional fine-grained lenses towards the top of the two highest coastal units (T_1 and T_2) (Fig. 6). The upper
304 portions of the alluvial fill units are always layered and fluvially reworked, resembling the planar beds typical of
305 flow in shallow channels (Fig. 4d, e; c.f., Blair and McPherson (2015)). Soils are weakly developed on all three
306 alluvial fill units based on soil redness (or lack thereof), depth, density, and vegetation cover (Fig. S5). Moreover,
307 there are no discernable secondary carbonates or other mineral diagnostic horizons related to migration processes,
308 and pedogenic clay formation is insignificant. The soils lack fluvic properties and are well-drained, which is why
309 the best categorisation appears to be a calcareous, skeletal Regosol (IUSS Working Group WRB, 2015).

310

311 The T_1 basal layer is not exposed near the coast; however, the T_2 basal layers exposed adjacent to the modern
312 channel show laterally changing grain sizes and structure. With increasing vertical distance to the channel thalweg,
313 T_2 grades from a matrix-rich, unsorted association containing various grain sizes (boulders to sand) to layers
314 dominated by smaller clasts and increased sorting (Fig. 6). The grain size distribution and structural observations
315 suggest that the units' stratigraphically-lowest deposits correspond to debris flows buried by an increasing amount
316 of braided river deposits.


317

318 The paleo-beach deposit at 6 m a.s.l. has similar sedimentology to the modern beach and consists of cemented,
319 clast-supported layers of rounded, discoidal carbonate sand, pebbles, and small cobbles (Fig. 4b). Two units
320 overlie the paleobeach, the T_2 basal debris flow crops out to the west, and an intermediate deposit characterised
321 by smaller grain sizes and lobate structures (D_{LOB}) in the east (Fig. 4f). D_{LOB} most likely consists of the talus cones
322 formed during the erosion of the T_1 cliff before T_2 deposition.

323

324 The T_1 fan is locally topped by a discontinuously laminated, homogeneously reddish silty clay (unit ED; Figs. 2;
325 4g). It contains a few angular pebbles (~1 cm) and terrestrial snail shells. The material is interpreted as wind-
326 transported sediment commonly found in the coastal areas of Crete (Ott et al., 2019b). Deposition and preservation
327 of this eolian deposit commenced after the abandonment of the T_1 surface during the incision phase. Thus, the T_1 -
328 ED unconformity combined with the radiocarbon measurements of the shells in the ED deposit constrains the
329 onset of incision into the T_1 deposit.

330

331

332 **Figure 6:** Stratigraphic sections of the alluvial fans. The section locations are highlighted in the top panel.

333 **4.2. Cross-cutting stratigraphic relationships reveal the relative sequence of events**

334 Stratigraphic contacts between units provide us with a relative sequence of events and a possible timeframe for
 335 the individual aggradation and incision phases. Inset relationships and buttress unconformities allow for a relative
 336 chronology for L_1 and the alluvial deposits (T_1 , T_2 , and T_3). T_1 is inset into and forms a buttress unconformity
 337 with L_1 (Fig. 4a), and the same relationship exists between T_1 and T_2 , and T_2 and T_3 (Figs. 2; 5a). These cross-
 338 cutting relationships show that the valley-filling units, arranged in age from oldest to youngest, are L_1 , T_1 , T_2 , and

339 T₃. Note that this sequence requires repeating episodes of valley-wide aggradation and incision. In the lower parts
340 of the valley, incision cuts into pre-existing fill forming a buttress unconformity, while farther up the valley,
341 incision persists through the pre-existing fill and into bedrock, generating bedrock straths. We also note that L1
342 fills in a pre-existing bedrock paleo-topography.

343
344 The most important cross-cutting relationship observed in the field was a buttress unconformity between the T₂
345 alluvial fan delta and Late Holocene bio-erosional notch, which we refer to as the Krios notch due to its association
346 with the Krios paleoshoreline (Fig. 5a-d). Along the western end of the study area, the T₂ fan buries the Krios
347 notch (Fig. 5a, c, d). Furthermore, we observed that angular T₂ gravels locally buried Vermetid and sea urchin
348 fossils adhered to the notch and we sampled them for radiocarbon dating (see below) (Fig. 5c). This observation
349 demands that the paleo-sea level marker was carved before T₂ deposition. Finally, the paleobeach deposit is
350 horizontally aligned with the tidal notch, and while T₂ unconformably overlies both, the paleobeach also shows
351 an unconformable contact to D_{LOB} (Fig. 4f). This observation suggests that the tidal notch represents different
352 facies of the same Holocene shoreline and that both are buried by T₂ (Fig. 4b, f). Collectively, these observations
353 indicate the notch and paleo-beach deposit at the Krios paleoshoreline and conclusively demonstrate that the T₂
354 deposit was emplaced in the Holocene.

355
356 Another important cross-cutting relationship is the contact between T₁ and the eolian deposit (ED) because this
357 represents a minimum age for the end of the T₁ aggradation phase. The sharp, undisturbed contact points to a rapid
358 shift from aggradation to T₁ surface abandonment. The radiocarbon ages of terrestrial snail shells from the eolian
359 deposit provide a minimum age for this fan surface abandonment.

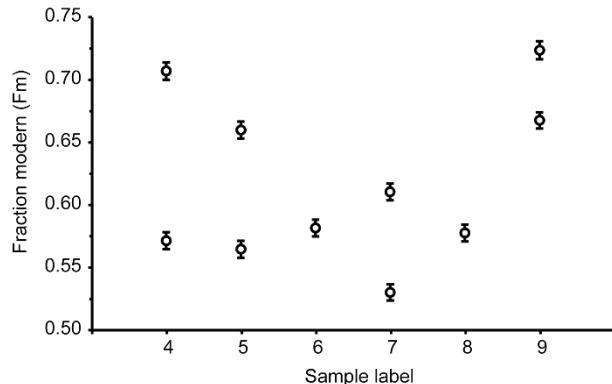
360 **4.3. Upvalley trends of the alluvial infill deposits**

361 The mapped unconformities between alluvial units indicate that each valley infill was deposited in a separate
362 aggradation event, followed by a phase of incision during which the river adjusted its slope, eventually reaching
363 and incising the bedrock in the valley's narrow reaches. The structure and sedimentology of the infill terrace
364 deposits change vertically from unsorted debris flow deposits at the bottom to layered planar beds and regular
365 riverine deposits at the terrace tread (Fig. 6). These trends are consistent along the river channel from the mouth
366 to the headwaters. Thus, the initiation (trigger), transport, and deposition processes were very similar during each
367 aggradation phase, while the onset of incision between aggradation intervals acted as the turning point that allowed
368 the system to repeat the cycle. However, the elevation at which we find the terraces increases upstream because
369 we find straths and the bottom contacts of the infills in the headwaters, both of which are generally absent in the
370 lower reaches. We can utilise these bottom contacts to reconstruct the then-active river channel, which steepened
371 upstream faster relative to the modern profile (Fig. 3). The steeper paleochannel gradient illustrates that the
372 headwater reaches were subjected to greater incision relative to the outlet due to sediment overload. The
373 subsequent aggradation events were fed from the landslide deposits upstream, resulting in the headwater transfer
374 of sediment and channel slope adjustment.

375 **4.4. Radiocarbon dating of shells**

376 The radiocarbon dating of Vermetid shells constrains the timing of uplift for the Krios paleobeach and notch. The
 377 ages are reported in radiocarbon years (yr) and fraction modern (fm) (Table 1). The samples, collected at and
 378 below the notch (Fig. 2), yielded radiocarbon ages of $2,672 \pm 24$ ^{14}C yr BP (2,844–2,300 cal yr BP) and $2,397 \pm$
 379 25 ^{14}C yr BP (2,116 – 1,941 cal yr BP) for the uplift, respectively. These ages are slightly older than the inferred
 380 age of uplift in the first centuries AD. The difference might be caused by the organisms' death before the uplift
 381 due to natural causes or burial by the prograding fans. A terrestrial gastropod shell collected from the ED deposit
 382 capping T_1 yielded an age of $3,952 \pm 24$ ^{14}C yr BP (4,407–4,157 cal yr BP), thereby constraining the cessation of
 383 T_1 aggradation.

384

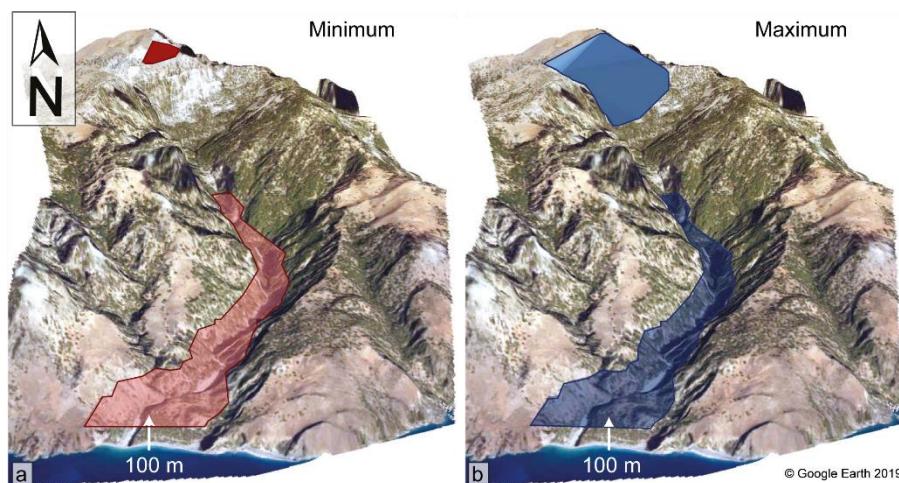

385 **Table 1:** Radiocarbon measurements from the Klados catchment. Results are reported in fraction modern (fm) and radiocarbon
 386 years (yr). All samples were analysed at the ETH radiocarbon lab except for #3, was analysed by Direct AMS, Bothel, WA,
 387 USA.

Label	Lab ID	Deposit	Sample type	Coordinates	Fraction modern \pm error absolute	^{14}C age (1 σ) \pm error (yr)
1	82442.1.1	Tidal notch	Vermetid carbonate shells	35.2295 N 23.9093 E	0.717 ± 0.00213	$2,672 \pm 24$
2	85020.1.1	Tidal notch			0.742 ± 0.00234	$2,397 \pm 25$
3	D-AMS 011054	Eolian deposit (ED)	Terrestrial snail	35.2366 N 23.9159 E	0.6114 ± 0.0018	$3,952 \pm 24$
4	94494.1.1	Tributary (TD ₁)	Bulk sediment	35.2320 N 23.9155 E	0.573 ± 0.00690 0.711 ± 0.00695	$4,820 \pm 556$ $2,696 \pm 369$
5	94495.1.1	Tributary (TD ₂)	Bulk sediment	35.2320 N 23.9155 E	0.566 ± 0.00690 0.663 ± 0.00657	$4,820 \pm 379$ $3,389 \pm 587$
6	94493.1.1	Lower fan (T ₂)	Bulk sediment	35.2308 N 23.9125 E	0.583 ± 0.00680	$4,793 \pm 826$
7	94491.1.1	Upper fan (T ₁)	Bulk sediment	35.2266 N 23.9156 E	0.531 ± 0.00650 0.613 ± 0.00714	$5,788 \pm 874$ 4304 ± 903
8	87103.1.1	Upper fan (T ₁)	Bulk sediment	35.2275 N 23.9140 E	0.579 ± 0.00602	$5,131 \pm 1,342$
9	94496.1.1	Landslide (L ₁)	Bulk sediment	35.2309 N 23.9186 E	0.728 ± 0.00740 0.671 ± 0.00737	$2,476 \pm 351$ $3,294 \pm 831$

388 **4.5. Radiocarbon dating of alluvial infill deposits**

389 Sedimentation ages were constrained by bulk radiocarbon dating, and are reported as radiocarbon ages (^{14}C yr
 390 BP). The corresponding fraction modern (fm) values are specified in Table 1 and Fig. 7. For the alluvial deposits,
 391 samples were collected from fine-grained slack-water lenses at the top of each deposit (Fig. 2; 6). The T_1 samples
 392 returned ages of $5,788 \pm 874$, $4,304 \pm 903$, and $5,131 \pm 1,342$ ^{14}C yr BP. The low carbon content causes age
 393 uncertainty in the samples, and thus, the ages need to be interpreted with care. Due to the inaccessibility of fine-
 394 grained lenses on the seaward cliff of the T_2 deposit, no samples were collected. However, a sample collected
 395 from just below the tread and close to the apex of the T_2 fan yielded an age $4,793 \pm 826$ ^{14}C yr BP ^{14}C yr BP,
 396 respectively. Two samples (TD₁ & 2) from a fine-grained deposit at the confluence of the major tributary and the
 397 Klados River yielded ages of $4,820 \pm 556$ and $2,696 \pm 369$ (TD₁), and $4,820 \pm 379$ and $3,389 \pm 587$ (TD₂),
 398 respectively. These ages confirm that at least one of the valley infills reached 40 m elevation upstream of the fan

399 apex and blocked the tributary channel. The landslide deposit (L_1) returned ages of $2,476 \pm 351$ and $3,294 \pm 831$
400 ^{14}C yr BP.


401

402 **Figure 7:** Fraction modern (fm) radiocarbon data of bulk sediment samples from the major deposits. Detailed information on
403 the measurement is reported in Table 1. The data are presented with an absolute error. Sample labels 4 & 5 = $TD_1 \& 2$, 6 = T_2 ,
404 7 & 8 = T_1 , 9 = L_1 .

405 The radiocarbon data presented here demonstrate that the deposition of the Klados sedimentary deposits occurred
406 during the mid-to-late Holocene. However, the order of some of the resulting ages is inconsistent with the relative
407 sequence of events demanded by observed cross-cutting relationships. This mismatch is likely due to the
408 admixture of organic carbon from different sources and the finite amount of measurable material recoverable from
409 the samples. We discuss these sources of uncertainty in detail in the discussion below and base our further
410 interpretations on the $1-\sigma$ uncalibrated radiocarbon ages.

411 **4.6. Volumes of rockfall and valley infill**

412 The thicknesses of the potential source area rockfall slabs were estimated based on friction angles and the extent
413 of the planar surfaces on Volakias Mtn. at the head of the Klados catchment (visualised in Figs. 8; S3). The
414 calculation resulted in six downward converging wedges between $2.8 \times 10^5 \text{ m}^3$ and $3.82 \times 10^9 \text{ m}^3$ (Table 2). The
415 estimated volume of the valley infill, calculated as described above, is between $9.37 \times 10^6 \text{ m}^3$ and $3.05 \times 10^7 \text{ m}^3$.
416 (Fig. 8). These volumes lie within the range of our upper-intermediate wedge volumes and values reported for
417 similar size events in previous studies (USGS, 2016). Thus, we expect volume estimates to be relatively robust.

419 **Figure 8:** Visualisation of the minimum (a) and maximum (b) rockfall volume as calculated for the dynamic landslide runout
420 model, and the highest possible reference plane inferred from the location of the highest mapped deposits (100 m above the
421 modern river channel; Fig. 3a).

422 **Table 2:** The maximum and minimum volume estimations for the rockfall, the valley infill, and the fan material. We calculated
423 six downward-converging wedges of different volumes for the initial rockfall volume. The intermediate wedge volume was
424 used for the landslide runout modelling.

	Minimum [m ³]	Maximum [m ³]	Intermediate [m ³]
Rock fall (wedges)	2.80 x 10 ⁵	3.82 x 10 ⁹	8.34 x 10 ⁸
			2.23 x 10 ⁷
			9.08 x 10 ⁶
			9.18 x 10 ⁵
Valley infill (landslide)	9.37 x 10 ⁶	3.05 x 10 ⁷	
Fans alone	5.30 x 10 ⁵	1.15 x 10 ⁶	

425 **5. Discussion**

426 **5.1. Timing of the Klados catchment stratigraphy from relative and absolute dating**

427 The agreement between our field observations and radiocarbon geochronology strongly supports a Holocene age
428 for the alluvial infills in the Klados catchment. Despite their large uncertainties, all the radiocarbon measurements
429 are Holocene and are mostly consistent with the observed cross-cutting field relationships. Even without the
430 radiocarbon data, the following series of observations indicate geologically recent emplacement of the Klados
431 alluvial fill units. Firstly, the buttress unconformity between the T₂ and the late Holocene Krios paleoshoreline
432 requires a post-late Holocene deposition of T₂. Secondly, the immature soils developed on T₁ and T₂ surfaces are
433 inconsistent with the well-developed Bk and Bt horizons on Pleistocene alluvial fans with similar parent rock
434 source areas (Fig. S5; Gallen et al., 2014; Pope et al., 2008). Thirdly, the slopes of the T₁ and T₂ surfaces match
435 the modern channel slope in the lower reaches, suggesting that the paleoriver prograded to a base level similar to
436 the modern sea level. Finally, the morphology of the coastal cliff on T₁ and T₂ is similarly (Fig. 1e; also Fig. 4a
437 of Mouslopoulou et al., 2017)). Given that both infills are unconsolidated sediment, one would expect relatively
438 rapid slope degradation (diffusion) of the paleo-sea cliff as noted along scarps produced by fault rupture (Nash,
439 1980) in similar sedimentary deposits. Indeed, scarp diffusion modelling suggests that a Holocene age of the T₁
440 paleo-sea cliff provides a more reasonable approximation of the diffusion coefficient, considering climate and
441 material properties than a Pleistocene age based on a comparison with a recent global compilation of diffusion
442 coefficients (Fig. S6; Richardson et al., 2019).

443

444 The relative age control on the landslide deposit (L₁) does not require a Holocene emplacement. However, due to
445 this deposit's high erodibility, it is unlikely to persist in this landscape for an extended period, and soil development
446 on this deposit is relatively immature. These findings, coupled with the Holocene bulk radiocarbon ages from the
447 L₁ deposit, lead us to conclude that the landslide deposit is also Holocene.

448

449 Our radiocarbon ages are exclusively Holocene, but bulk radiocarbon measurements will introduce uncertainties
450 to the chronology. Sources of error are diverse and closely related to environmental variables. At Klados, a
451 decrease in measured age relative to real age most likely originates from the secondary incorporation of recent
452 organic matter, while the inclusion of radiocarbon-dead bedrock carbonates causes an overestimation. Both of

453 these sources of error are minimised in our approach. On the one hand, recent organic matter is often associated
454 with large grain size fractions (c.f., Rothacker et al., 2013) and is easily avoided during sample collection and
455 preparation. Conversely, the potential of sample age overestimation is minimised by fumigating the samples
456 before measurement. This step ensures the substantial removal of inorganic carbonate. An uncertainty unrelated
457 to the environment is introduced by the low TOC and can result in smaller sample sizes prepared for the bulk
458 radiocarbon measurement, which were affected with larger uncertainties after corrections for processing blanks
459 and standards (Ruff et al., 2010). Nevertheless, empirical studies show that samples that contain a mixture of
460 young and old carbon may overestimate the age of a deposit by 500–2000 years (Grimm et al., 2009; Rothacker
461 et al., 2013). We recognise that the bulk sediment dating results contain inherent uncertainties and express
462 reference timeframes rather than absolute ages for the processes due to a possible overestimation of the age.

463

464 Our Holocene radiocarbon ages complement field observations and provide additional age control. Except for one
465 outlier, the deposition order obtained from the radiocarbon dating agrees with the sequence of events established
466 in the field. The valley infill T₁ predates T₂, which is approximately the same age as the main tributary's slack-
467 water deposits. The only outlier to the sequence is L₁. However, the clear stratigraphic relationship between L₁
468 and the other deposits overrules the radiocarbon dating. The most likely cause for the radiocarbon age discrepancy
469 is the introduction of younger organic matter after L₁ deposition by erosional processes, water movement, or
470 bacterial activity. Consequently, both radiocarbon age dating and field observations imply the geologically recent
471 deposition of the Klados stratigraphic sequence. Both the bulk sediment radiocarbon ages and the radiocarbon
472 ages from shells are consistent with a Holocene age for all deposits. The cross-cutting relationships allow for a
473 precise relative chronology of events during a relatively short amount of time.

474

475 The Holocene age for the Klados alluvial deposit sequence proposed here differs significantly from previous
476 dating results by infrared stimulated luminescence (IRSL) on feldspar (Mouslopoulou et al., 2017), which resulted
477 in Pleistocene ages for the infills (29-50 kyrs BP). However, the field observations and cross-cutting relationships
478 demonstrate that these deposits are Holocene, supported by our radiocarbon analyses. Luminescence burial dating
479 of deposits exploits the assumption that charge is gradually built up in feldspar or quartz grains due to radiation
480 from radiogenic decay of radioactive elements and cosmic rays. To relate the amount of charge a grain releases
481 as luminescence signal to the duration of sediment burial (depositional time of unit), all charge within the crystal
482 lattice needs to be fully released by sun bleaching before deposition; a process that requires seconds of full sun
483 exposure for quartz and minutes for feldspar (Rhodes, 2011). Alluvial fans, especially in small catchments with
484 short transport and a significant portion of debris flow deposits, are therefore prone to biases in luminescence
485 measurements because the short transport in sediment-rich flows usually does not allow for a complete bleaching
486 of the mineral grains, and especially not feldspar (Rhodes, 2011). This effect is enhanced because minerals freshly
487 released from the bedrock have worse luminescence characteristics and take longer to bleach (Rhodes, 2011).

488

489 The anomalously old luminescence ages reported by Mouslopoulou et al. (2017) are likely biased due to
490 incomplete bleaching caused by the turbulent mode of transport (Rhodes, 2011). The broad positively skewed age
491 distributions of measured equivalent dose measurements (the amount of charge released from the grains) in
492 Mouslopoulou et al. (2017) from feldspar IRSL indicate a mix of bleached and unbleached grains resulting in late

493 Pleistocene ages for both fan units. The mixture of bleached and unbleached grains is especially evident because
494 Mouslopoulou et al. (2017) also measured the quartz OSL signal, and found the same positively skewed age
495 distributions but with younger ages. The discrepancy between the younger quartz OSL and older feldspar IRSL
496 measurements can be explained by the more rapid bleaching of quartz grains; however, these authors discarded
497 and did not report the OSL ages choosing instead to construct their interpretation on the IRSL measurements
498 alone. Furthermore, the Pleistocene luminescence ages are difficult to reconcile in the context of similarly
499 immature soil development and similarly crisp cliff morphology among deposits that are reported as greater than
500 30 ka with ~10 kyrs separating the emplacement of each unit. For these reasons, we consider the IRSL dates from
501 Klados as biased and not representative of the accurate depositional ages of the alluvial fans. Instead, our data and
502 field observations are only consistent with a Holocene age of the Klados alluvial fill deposits.

503

504 An important implication of the finding of Holocene ages for the stratigraphic units in the Klados catchment is
505 that within short periods, the catchment alternates between phases of valley-wide aggradation followed by
506 intervals of rapid incision through the valley fill and into the bedrock in the upper portions of the catchment. This
507 stratigraphic history is distinct relative to adjacent catchments that record slower and steadier aggradation and
508 incision histories (Pope et al., 2008, 2016). This evidence indicates that local and unique processes in Klados are
509 responsible for high-frequency pulses of aggradation and incision. We hypothesise that the large landslide deposit
510 (L₁), the oldest unit identified in the catchment, is the sediment source for the younger, inset alluvial fans. This
511 inference is supported by our volume reconstructions and is in large part responsible for the unique stratigraphy
512 and geomorphic evolution of Klados. We explore this hypothesis in detail below.

513 **5.2. A rockfall source for Holocene deposits in the Klados catchment**

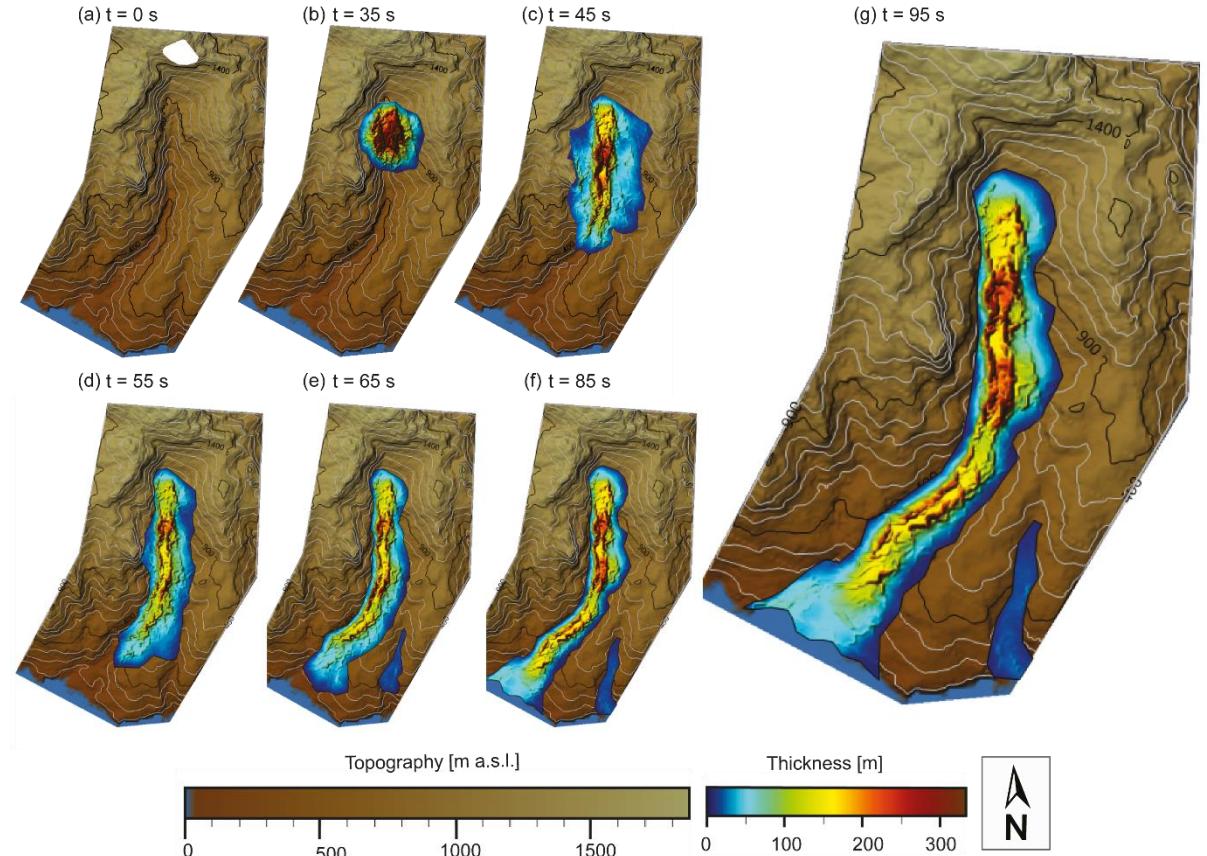
514 Most of the adjacent gorges have alluvial infills, but these do not reach the thickness of the Klados deposits, and
515 to date, only one other case study shows thick Holocene deposits. These are reported in the Aradena Gorge 10 km
516 west of Hora Sfakia, where alluvial terraces up to 14 m above the modern channel bed are preserved (Maas and
517 Macklin, 2002). They aggraded upstream from channel reaches temporarily blocked by landslide deposits and
518 were incised in the next high-intensity discharge event. The authors dated the deposits to the last 200 years using
519 lichenometry and dendrochronology (Maas and Macklin, 2002). Even though the Aradena Gorge's deposits only
520 span the last 200 yrs., the over-proportionate amount of sediment in the system and the rapid aggradation and
521 incision rates recall the situation in the Klados Gorge where the large amounts of sediment are without an apparent
522 source, and up to 30 m thick deposits of T₂ aggraded after the first centuries AD. Moreover, the alternating narrow
523 and wide sections in the Klados Gorge (Fig. 2) are prone to blockage, which may control sediment distribution
524 and terrace genesis in a fashion similar to that reported by Maas and Macklin (Maas and Macklin, 2002). Both the
525 Klados and the Aradena River deposits require rapid sedimentation rates beyond what is commonly reported, and
526 the only possible explanations require local, isolated sources of sediment.

527

528 To elevate the sedimentation rates in the Klados Gorge, but not in adjacent gorges, and to enable the aggradation
529 of such large volumes so quickly, an extraordinary but spatially limited sediment input is required. We hypothesise
530 that a massive rockfall in the headwaters of the Klados River provided the necessary amount of loose sediment
531 and the impetus for aggradation and incision. The rockfall hypothesis is the most straightforward option because

532 the Klados catchment's hillslopes are supply-limited, mantled by only a thin layer of regolith. Furthermore,
533 cosmogenically-derived erosion rates from nearby catchments with comparable rock-types suggest erosion rates
534 on the order of $\sim 0.1 \text{ mm yr}^{-1}$ (Ott et al., 2019a), which is too low to generate the observed volume of detritus over
535 Holocene timescales. Moreover, its unconsolidated state makes a landslide the ideal source material.

536 **5.3. Landslide runout modelling supports the hypothesis of landslide sediment origin**


537 Field observations document the presence of landslide deposits scattered throughout the valley. The spatial extent
538 and sedimentology of this the L1 deposit are consistent with the pulverised remnants of a high-magnitude rockfall.
539 The likely source for this rockfall is the cliff face at the headwaters of the Klados catchment, which has
540 overhanging rock bands that are diagnostic of recent rockfall events (Figs. 1b; 3e). Below these overhanging
541 features, a steep ($> 35^\circ$) planar bedrock slope abruptly terminates at the Klados catchment floor (Fig. 1a). We
542 hypothesise that a large rock mass detached from the upper portion of this mountainside, dropped to the catchment
543 floor, pulverising upon impact and backfilling the paleo-valley. We envision a process similar to large rock falls
544 with extended drop heights that have been observed in places like Yosemite Valley, CA (Wieczorek et al., 2000)
545 and the Swiss Alps (Mergili et al., 2020).

546

547 To evaluate a large valley-filling landslide hypothesis, we use the landslide runout model DAN3D-Flex (see
548 details in the supplement). DAN3D-Flex allows for an initial stage in which the rockfall slides as a single, coherent
549 mass to simulate a rockfall with minimal disruption (Aaron and Hungr, 2016). The flow behaviour of the landslide
550 is defined based on parameters from back-analyses, rock properties, and the input topography (in this case the 5
551 m DEM). We ran a suite of different parameter combinations to find the best-fit runout, as defined by the final
552 landslide extent and thickness compared to the mapped landslide deposit. Only the best-fit model is presented
553 here for brevity, but details on the model runs can be found in the supplement.

554

555 The best-fit simulated runout for the landslide was obtained after multiple runs using inputs as defined in Table
556 3. Static images extracted from the model runout show the landslide's position and extent at selected time intervals
557 (Fig. 9). We constrained the initial gravitational movement to 30 seconds, after which the rockfall reaches the
558 bottom of the sliding plane, hits the valley floor, and disintegrates (Fig. 9b). The rheology controlling flow
559 behaviour changes upon impact from rigid body frictional to Voellmy-rheology controlled granular flow,
560 consistent with our hypothesis that the rock mass pulverised upon impact with the valley floor. At about 45
561 seconds after initiation, the landslide reaches the sharp bend in the valley, slows down, and bulks up by the vertical
562 concentration of the mass in the head of the landslide (Fig. 9c). After 60 seconds, the landslide is obstructed by
563 the cliff in the centre of the modern fan structure (Fig. 9d). The modelled failure mass bulges up and overflows
564 the cliff (Fig. 9e, f). No high-resolution bathymetry data were available, which precluded offshore runout
565 modelling. The average deposit thickness is highest in the centre of the channel and decreases with distance to the
566 impact site because entrainment was forbidden while the loss of material by deposition was implemented in the
567 model. The averaged thicknesses at the final model time-step correspond well with the elevations of the landslide
568 deposit in the field of $\sim 100 \text{ m}$. The narrow sections of the valley did not obstruct the flow too much from the
569 model outputs, which suggests an even distribution of the landslide material.

570

571 **Figure 9:** Time slices from the landslide runout modelling with an intermediate rockfall volume ($9.08 \times 10^7 \text{ m}^3$). The rockfall
 572 moved as an intact block from the mountainside but partly pulverised and liquefied upon impact with the valley floor. It
 573 partially infilled the valley as a ground-based landslide and a cloud of dust. The landslide eventually reached the sea, leaving
 574 scattered deposits up to 200 m thick in the valley centre. No major blockage is shown in the narrow valley reaches. The model
 575 indicates that part of the landslide crossed into the adjacent valley, but this part of the coastline was not investigated during
 576 fieldwork.

577 **Table 3:** Parameters for the five best-fit landslide runout models. The quality of correlation between the model and field
 578 observations decreases with increasing numbering (1-5).

Quality of correlation	1	2	3	4	5
Rheology	Voellmy	Voellmy	Frictional	Frictional	Frictional
Input volume [km^3]	0.0908	0.8335	0.00908	0.8335	0.00908
No of particles	2000	2000	2000	2000	2000
Time steps [s]	0.1	0.1	0.1	0.1	0.1
Velocity smoothing coefficient	0.02	0.02	0.02	0.02	0.02
Stiffness coefficient	200	200	200	200	200
Rigid behaviour time [s]	30	30	10	10	30
Unit weight [kN m^{-3}]	21.5	21.5	20	20	20
Internal friction angle	35	35	15	15	20
Friction coefficient	0.2	0.2	0	0	0
Viscosity [kPa s]	0	0	—	—	-, 1000, -
Turbulence coefficient [m s^{-2}]	500	500	0	0	0, 500, 0
Internal friction angle	35	35	35	35	35

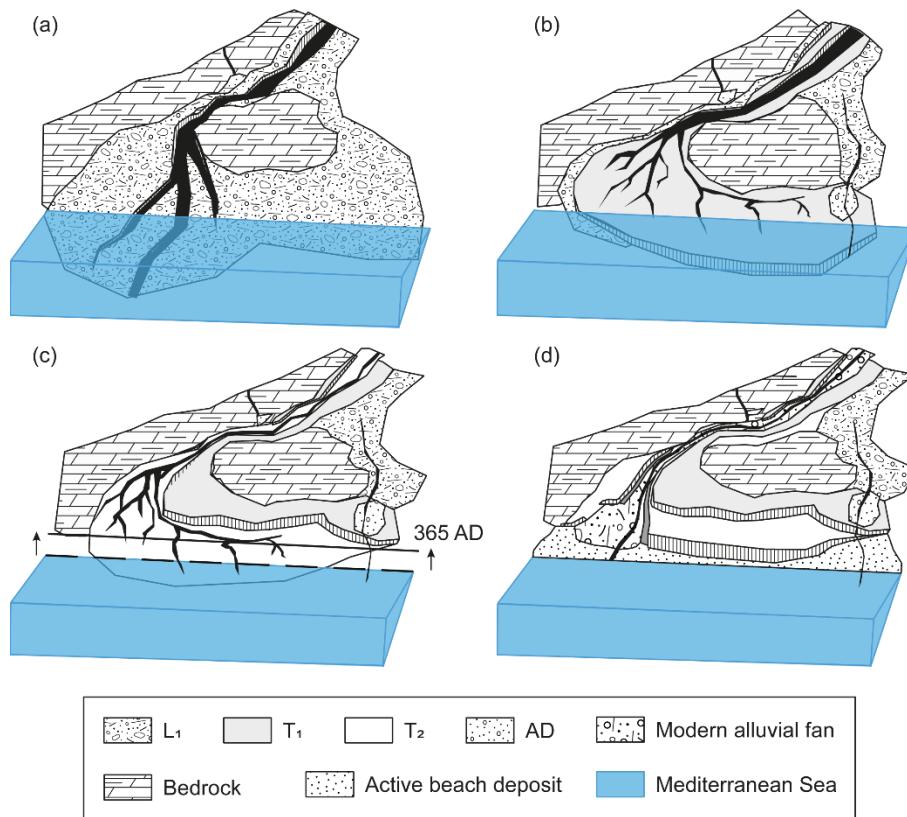
Maximum slide velocity [m s ⁻¹]	213.7	308.9	658.5	770.4	246.3
Travel time [s]	99.8	107.6	85.4	94.2	34.4

579 The best-fit runout model agrees particularly well with our field observations of landslide deposit thickness and
 580 the resulting valley infill's extent. Additionally, we discarded models with maximum slide velocities greater than
 581 the speed of sound, and travel times of less than 1 minute (Table 3). The model results show that the material
 582 moved through the valley and was deposited at a sufficient thickness and elevation above the paleochannel to
 583 explain the deposits we identified in the field. Furthermore, the modelled flow rheology is consistent with the
 584 observed deposit sedimentology. The dominance of fine grains can be explained by the initial rockfall evolving
 585 into two modes of transport upon impact with the valley floor. If correct, the impact with the valley floor
 586 transformed the rockfall into a partly "liquefied" landslide due to air inclusion and abrasive grain interaction, but
 587 also a wind-blast driven sand-cloud which reached several hundred meters elevation (c.f., Wieczorek et al., 2000).
 588 Fluvial reworking mainly affected the landslide's coarse-grained parts in the valley while the finer-grained portion
 589 remained on the catchment walls. Nevertheless, the two modes of transport might explain the high amount of fine
 590 material in the subsequent alluvial deposits, as they were sourced from both of the landslide deposit types. Our
 591 model offers a first insight into the initial rock fall's behaviour, the location of the material brought from the
 592 mountain face, and supports the initial hypothesis of a landslide as the source material for the younger deposits in
 593 the valley. We discuss further in-depth caveats on the modelling in the supplement sect. 2.

595 **5.4. Stochastic versus external forcing for aggradation-incision cycles**

596 The alluvial deposits in the Klados catchment are volumetrically oversized and immature in soil development
 597 compared to other catchments in southern Crete. We have demonstrated that the deposits preserved in the valley
 598 are Holocene in age and that following a massive landslide event, the catchment dynamics are best described by
 599 rapid and dramatic alternations between valley-wide aggradation and incision. These findings show that the
 600 emplacement of the landslide deposit altered catchment dynamics, making Klados more sensitive to external
 601 forcing. This change in sensitivity to external forcing makes the Klados fans distinct among the well-studied
 602 Pleistocene fans in Crete. While in each case, sediment transport events are likely associated with high-intensity
 603 rainstorms, as indicated by the high-energy depositional environments inferred from fan stratigraphy in Klados
 604 and Pleistocene fans elsewhere on Crete, the threshold magnitude for a sediment-generating event, whether a
 605 rainstorm or seismically-driven ground shaking, in Klados is likely much smaller relative to those that produced
 606 the Pleistocene fans. This difference in sensitivity to external forcing makes the Klados fans unique in the context
 607 of Pleistocene fans of Crete. Furthermore, as detailed below, the available evidence shows that alluvial fan and
 608 terrace development in Klados is a transport-limited process, whereas Pleistocene fan construction on Crete is
 609 commonly supply limited.

610
 611 Alluvial terrace and fan formation are fundamentally driven by variations in the ratio of sediment and water
 612 discharge rates. Studies of Pleistocene coastal alluvial fans sequences on Crete show that fan deposition is roughly
 613 coincident with cooler glacial or stadial periods or the timing of transitions in climate (e.g., cool to warm or vice
 614 versa) (Gallen et al., 2014; Pope et al., 2008, 2016; Runnels et al., 2014; Wegmann, 2008). Studies demonstrate
 615 that precipitation rates, and thus water supply, across the eastern Mediterranean basin apparently do not fluctuate


616 dramatically during late Quaternary glacial-interglacial cycles (Hijmans et al., 2005; Watkins et al., 2018);
617 although effective moisture and flashiness of precipitation-discharge events are likely different between stadials
618 and interstadials. This evidence implies that Pleistocene alluvial development on Crete is primarily a function of
619 climate-modulated variations in sediment supply rate; alluvial fans form when hillslope sediment production rates
620 are higher than the present, which is not surprising given that most hillslopes in Crete expose large amounts of
621 bare bedrock draped with thin patchy sediment suggesting supply-limited conditions. A reasonable interpretation
622 is that more active periglacial processes such as frost or subcritical cracking generate larger volumes of hillslope
623 sediment relative to contemporary conditions during cooler intervals. This interpretation is supported by
624 observations of active normal fault scarps throughout Crete; those with Holocene rupture expose steep, crisp,
625 polished fault scarps while higher, older positions of the fault plane exposed before the Holocene are more gently
626 sloping and degraded (Caputo et al., 2006; Mouslopoulou et al., 2014). Consistent with interpretations of causes
627 for similar active fault scarps observed in the Central Apennines, Italy, this morphology is interpreted as the result
628 of climate-related changes in physical weathering and hillslope sediment production rates (i.e., Tucker et al.,
629 2011). This interpretation suggests that typical Pleistocene fans in Crete are primarily a function of sediment
630 availability (e.g., supply limited) and consist of sediment largely derived from physical weathering. This process
631 helps explain the generally coarser grained detritus that comprises most Pleistocene alluvial fans in Crete relative
632 to those observed in Klados. We note that this inferred general climate-driven mechanism of Pleistocene alluvial
633 fan development on Crete is consistent with data and interpretations of many Pleistocene and Holocene alluvial
634 fans globally (Blair and McPherson, 1994; Bull, 1991; Orr et al., 2020; Schumm, 1973; Waters et al., 2010).

635

636 In contrast to the Pleistocene alluvial fans on Crete, the Holocene Klados alluvial fan deltas and fluvial terraces
637 result from a transport-limited process. This difference resulted from the unique conditions imposed by the
638 deposition of the valley-filling landslide sediment that fundamentally altered the catchment-scale geomorphology
639 and source-to-sink sediment dynamics of Klados relative to other coastal drainages in southern Crete. Before the
640 landslide event, water discharge outpaced sediment availability and cleared the valley of loose sediment, resulting
641 in bedrock incision; the catchment was in a sediment supply-limited state. Deposition of the highly-erodible,
642 unconsolidated, valley-filling landslide detritus pushed the catchment into a transport-limited state. The landslide
643 event and valley-filling sediment reduced the critical threshold for sediment mobility to the point where moderate
644 and average rain storms or moderate-to-large regional earthquakes turned into sediment generation events that
645 initiated sediment cascades. Due to the location of the highly-erodible landslide deposit within the valley, detritus
646 liberated by these sediment generation events is well-connected to the river system and easily transported by
647 subsequent rainstorms following a valley-wide triggering event. Later fluvial transport results in aggradation
648 throughout the valley and explains the deposition of the alluvial terraces and fan deltas. Once starved of sediment,
649 the river transport capacity increases and it is capable of incising through the alluvial fill and eventually into the
650 bedrock near the headwaters. The change from a system whose aggradation-incision cycles thus mainly depended
651 on sediment availability (i.e., supply limited) to a regime where sediment mobilization and transport capacity
652 became the controlling variable (i.e., transported limited) resulted in a locally-isolated, rapid build-up of alluvial
653 deposits.

654 **5.5. Holocene evolution of the Klados catchment**

655 Combining the relative and absolute chronology allows us to reconstruct the following history for the Holocene
 656 topographic evolution of the Klados catchment (Fig. 10). The backfilled paleo-topography preserved beneath the
 657 L₁ deposits indicates that the catchment was originally a bedrock-dominated channel similar to the adjacent
 658 catchments. Based on this unconformity and the sedimentology of L₁, the bedrock valley was instantaneously
 659 filled with unconsolidated L₁ sediment. The sedimentology and distribution of L₁ deposits are most consistent
 660 with a landslide following a large rockfall event in the catchment's headwaters. Our interpretation, reinforced by
 661 landslide runout modelling, is that the rockfall detached in the headwaters of the catchment, and upon impact with
 662 the valley floor partly liquefied and pulverised, sending debris downstream, eventually backfilling the valley up
 663 to 100 m locally, as is evidenced by preserved deposits in the high altitudes of the hillslopes surrounding the
 664 channel (L₁).

666 **Figure 10:** Summary of the evolution of the Holocene deposits at the outlet of the Klados catchment. Before the landslide, the
 667 valley was likely a sediment-limited, bedrock-dominated catchment similar to its modern neighbours. (a) The landslide filled
 668 the valley, which provided tools for the subsequent incision. (b) After having incised nearly to the bedrock, an unknown event
 669 caused sediment remobilisation and aggradation of T₁. (c) The earthquake in AD 365 uplifted the coastline by 6 m and triggered
 670 new debris flows that eventually formed T₂ and buried the uplifted paleobeach. (d) The modern configuration at the beach
 671 with two large inset fans burying the paleobeach.

672 The landslide debris deposit changed the channel's slope and altered the ratio of sediment supply and transport
 673 capacity of the Klados River by introducing vast quantities of highly erodible material throughout the valley (Fig.
 674 10a). The river channel established a steep slope capable of transporting the imposed sediment load. Once starved
 675 of hillslope sediment supply, could incise into and through the fill deposit and into bedrock rock farther upstream
 676 near the headwaters (Fig. 3d). This relaxation of the river profile suggests a different equilibrium gradient that we

677 interpret was partially facilitated by tool availability in the sediment-laden channel and the stream's carrying
678 capability. This channel relaxation period was interrupted by several episodes of valley aggradation and incision
679 that resulted in the construction of the alluvial fill deposits, T₁, T₂, and T₃ (Fig 10b, c, d). Consistent with the
680 above interpretation, field observations suggest the channel gradient steepened during the T1 and T2 aggradational
681 phases and relaxed during the intervening incisional periods as indicated by the exposure and increasing elevations
682 of basal strath surfaces progressively moving upstream.

683

684 Events capable of triggering debris flows and liberating vast quantities of material from L₁ are most likely rare,
685 large earthquakes or large precipitation events. There is not enough evidence to discriminate between these
686 triggering events for the T₁ and T₃ deposits. T₂ forms a buttress unconformity with the late Holocene sea-level
687 notch and the uplifted paleobeach (i.e., the Krios paleoshoreline; Figs. 4b; 5). This evidence suggests that
688 aggradation of T₂ may have initiated when late Holocene earthquakes, e.g., the AD 365 event, liberated sediment
689 (Fig. 10c).

690

691 If we assume that the other large-scale aggradation events resulting in the initial depositing of L1 and subsequent
692 T₁ were also caused by ground movement related to earthquake activity, we can provide a very crude estimate of
693 the frequency of large earthquakes in the region. Assuming an early to mid-Holocene age of ~10-5 kyrs for the
694 initial rockfall, three large events (initial landslide and two large aggradation events) took place within the last 5-
695 10 kyrs, suggesting a crude recurrence of about 1.5-3.5 kyrs. This estimate is in good agreement with regional and
696 more local recurrence interval estimates of great earthquakes of 800 to 4500 years (Mouslopoulou et al., 2015;
697 Shaw et al., 2008). Of course, this is a rough estimate resting on many untested assumptions. Nevertheless, it
698 illustrates how catchments that are sensitive to external perturbations can serve as exceptional archives, provided
699 the geochronology and causation between catchment and external events are well constrained and documented.

700

701 Our field observations and geochronology support an alluvial fan delta and terrace formation model with four
702 alternating phases of aggradation and incision over a geologically and geomorphically short duration (i.e., several
703 1000s of years). These phases are caused by the unsteady liberation of highly erodible landslide deposit material
704 that overwhelmed the catchment and resulted in thick fans and terraces (c.f., Maas and Macklin, 2002; Scherler
705 et al., 2016). Potential mechanisms driving the phases of aggradation and incision need to be quasi-instantaneous,
706 and earthquakes and extreme precipitation events are the most likely options. They are capable of liberating large
707 amounts of unconsolidated sediment in a short amount of time. However, the efficiency of erosion and transport
708 depends not solely on the intensity of precipitation but also on autogenic processes that arise due to highly variable
709 valley floor width in the Klados catchment. The confinement in the narrow gorge sections might have resulted in
710 sediment damming and redistribution of material independent of external forcing. The formation and breakage of
711 dams in the narrow bedrock reaches may have been facilitated by the random occurrence of large blocks and
712 fluctuations in surface discharge. These would have influenced river transport capacity and sediment transport or
713 deposition, leading to incision and aggradation by obstruction. Consequently, we argue that the substantial
714 sediment input changed the aggradation and incision cycles in the Klados River system from those dependent on
715 climate and sediment availability to those dependent on quasi-stochastic events such as seismicity, hillslope
716 failures, hydraulic and sediment damming upstream from narrow bedrock reaches.

717 **6. Summary and conclusions**

718 The Klados catchment of Crete, Greece, is located in a highly dynamic bedrock landscape and features prominent
719 inset fill terraces and associated coastal fan deltas. Our results show that the thick (> 50 m) stratigraphic sequence
720 in the Klados catchment is Holocene in age, and we propose that a rockfall from Volakias Mountain pulverized
721 upon impact with the valley floor and back filled a pre-existing bedrock topography with landslide debris. This
722 interpretation is supported by the cliff face morphology, sedimentological characteristics and mapped extent of
723 the deposit, and the results from dynamic runout modelling. The deposition of the landslide material provided a
724 supply of highly-erodible detritus that altered catchment dynamics, leading to alternating phases of rapid valley
725 aggregation and incision, apparently induced by seismic or high-intensity rainfall events that resulted in the
726 construction of the impressive alluvial fill deposits throughout the Klados valley. Stratigraphy and sedimentology
727 of the alluvial fill deposits indicate terrace and fan construction in a braided river environment. Importantly, the
728 exposed basal stratigraphy of the younger deposits suggests a debris flow origin. Cross-cutting relationships and
729 radiocarbon ages demonstrate that the alluvial terrace and fill sequences were emplaced in the mid-to-late
730 Holocene; a critical and conclusive observation is that the fan associated with the second aggregation cycle forms
731 a buttress unconformity with a Late Holocene Krios paleoshoreline 6 m above sea level typically interpreted to
732 have been uplifted co-seismically in 365 AD. The timing of the landslide is poorly constrained but cross-cutting
733 relationships and radiocarbon data are most consistent with deposition during the Holocene. Possible drivers for
734 aggradation and incision cycles are fluctuations in precipitation, which influenced river transport capacity, the
735 stochastic damming in the narrow bedrock reaches of the valley, and the increased remobilisation of sediment
736 caused by seismic ground accelerations. Our general interpretation is that after deposition of the landslide, the
737 catchment became ultrasensitive to external perturbations as the highly erodible landslide material lowered the
738 threshold for a sediment-generating event. Once a significant sediment mobilisation occurred, a sediment cascade
739 resulted in the build-up of each alluvial sequence. After the river was starved of excess hillslope sediment supply,
740 incision commenced before the catchment was perturbed by another sediment generating event and the cycle
741 repeated. The Klados catchment is an exceptional case study of how stochastic events can generate river terraces
742 and alluvial fans and how particular river catchments can become hyper-sensitive to external perturbations and
743 thereby offer the potential archiving of these external forces.

744 **7. Author contribution**

745 S.G. and K.W. planned this investigation. S.G., R.O., and E.B. are responsible for mapping and field observations.

746 N.H. assisted with radiocarbon analyses, K.W. provided radiocarbon measurements on terrestrial snails, E.B.

747 modelled the landslide runout, and V.P. advised on structure and sedimentology. E.B. prepared the samples,

748 analysed the results, and wrote the manuscript with contributions by all co-authors.

749 **8. Competing interests**

750 The authors declare that they have no conflict of interest.

751 **9. Acknowledgements**

752 We thank Hellenic Cadastre SA for DEM data. Sincere thanks to Christina Tsimi (NOA) for customising the 5-m

753 digital elevation models for the research area. We thank Jordan Aaron, who provided us with the DAN3D-Flex

754 software and valuable input on its usage. We thank Jonathan Booth, whose focus on the Klados catchment in his

755 Ph.D. thesis allowed for our accurate digital mapping.

756 **10. References**

757 Aaron, J. and Hungr, O.: Dynamic simulation of the motion of partially-coherent landslides, *Eng. Geol.*, 205, 1–

758 11, doi:10.1016/j.enggeo.2016.02.006, 2016.

759 Aaron, J., McDougall, S., Moore, J. R., Coe, J. A. and Hungr, O.: The role of initial coherence and path

760 materials in the dynamics of three rock avalanche case histories, *Geoenvironmental Disasters*, 4(1), 5,

761 doi:10.1186/s40677-017-0070-4, 2017.

762 Ambraseys, N. N.: Catalogue of Earthquakes 1900-1970, in *Earthquakes in the Mediterranean and Middle East: A multidisciplinary study of seismicity up to 1900*, pp. 60–795., 2009.

763 Angelier, J., Lybéris, N., Le Pichon, X., Barrier, E. and Huchon, P.: The tectonic development of the Hellenic

764 arc and the sea of Crete: A synthesis, *Tectonophysics*, 86(1–3), doi:10.1016/0040-1951(82)90066-X, 1982.

765 Atherden, M. A. and Hall, J. A.: Human impact on vegetation in the White Mountains of Crete since AD 500,

766 *The Holocene*, 9(2), 183–193, doi:10.1191/095968399673523574, 1999.

767 Benito, G., Macklin, M. G., Zielhofer, C., Jones, A. F. and Machado, M. J.: Holocene flooding and climate

768 change in the Mediterranean, *Catena*, 130, 13–33, doi:10.1016/j.catena.2014.11.014, 2015.

769 Blair, T. C. and McPherson, J. G.: Alluvial Fan Processes and Forms, in *Geomorphology of Desert*

770 Environments, pp. 354–402. [online] Available from:

771 <http://www.wou.edu/las/physci/taylor/geog522/blair94-1.pdf> (Accessed 27 March 2017), 1994.

772 Blair, T. C. and McPherson, J. G.: Processes and Forms of Alluvial Fans - *Geomorphology of Desert*

773 Environments, in *Geomorphology of Desert Environments*, edited by A. J. Parsons and A. D. Abrahams, pp.

774 413–467, Springer Science & Business Media., 2015.

775 Booth, J.: *The response of Mediterranean steepland coastal catchments to base level and climate change, southwestern Crete*, Aberystwyth University., 2010.

776 Bridgland, D., Maddy, D. and Bates, M.: River terrace sequences: Templates for Quaternary geochronology and

779 marine-terrestrial correlation, *J. Quat. Sci.*, 19(2), 203–218, doi:10.1002/jqs.819, 2004.

780 Bronk Ramsey, C.: Bayesian Analysis of Radiocarbon Dates, *Radiocarbon*, 51(01), 337–360,
781 doi:10.1017/S0033822200033865, 2009.

782 Bull, W. B.: Geomorphic responses to climatic change, Oxford University Press, New York., 1991.

783 Caputo, R., Monaco, C. and Tortorici, L.: Multiseismic cycle deformation rates from Holocene normal fault
784 scarps on Crete (Greece), *Terra Nov.*, 18(3), 181–190, doi:10.1111/j.1365-3121.2006.00678.x, 2006.

785 Chappell, J. M.: Sea level change, quaternary, in *Encyclopedia of Earth Sciences Series*, pp. 658–662, Springer
786 Netherlands., 2009.

787 Creutzborg, N.: General Geological Map of Greece, Crete Island., 1977.

788 Dominey-Howes, D., Dawson, A. and Smith, D.: Late Holocene coastal tectonics at Falasarna, western Crete: a
789 sedimentary study, *Geol. Soc. London, Spec. Publ.*, 146(1), 343–352, doi:10.1144/GSL.SP.1999.146.01.20,
790 1999.

791 Dufresne, A.: Rock Avalanche Sedimentology—Recent Progress, in *Advancing Culture of Living with
792 Landslides: Volume 2 Advances in Landslide Science*, pp. 117–122, Springer International Publishing,
793 Cham., 2017.

794 Dusar, B., Verstraeten, G., Notebaert, B. and Bakker, J.: Holocene environmental change and its impact on
795 sediment dynamics in the eastern Mediterranean, *Earth-Science Rev.*, 108(3–4), 137–157,
796 doi:10.1016/j.earscirev.2011.06.006, 2011.

797 ESRI: National Geographic World Map, digital topographic basemap of the world., *Natl. Geogr. Esri, DeLorme,
798 NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, IPC* [online] Available
799 from: <https://www.arcgis.com/home/item.html?id=b9b1b422198944fbbd5250b3241691b6#overview>
800 (Accessed 21 September 2017), 2011.

801 Fassoulas, C., Kilias, A. and Mountrakis, D.: Postnappe stacking extension and exhumation of high-
802 pressure/low-temperature rocks in the island of Crete, Greece, *Tectonics*, 13(1), 127–138,
803 doi:10.1029/93TC01955, 1994.

804 Ferrier, G. and Pope, R. J. J.: Quantitative mapping of alluvial fan evolution using ground-based reflectance
805 spectroscopy, *Geomorphology*, 175–176, 14–24, doi:10.1016/j.geomorph.2012.06.013, 2012.

806 Finnegan, N. J., Schumer, R. and Finnegan, S.: A signature of transience in bedrock river incision rates over
807 timescales of 10 (4) -10 (7) years, *Nature*, 505(7483), 391–394, doi:10.1038/nature12913, 2014.

808 Gallen, S. F., Wegmann, K. W., Bohnenstiehl, D. R., Pazzaglia, F. J., Brandon, M. T. and Fassoulas, C.: Active
809 simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece, *Earth Planet. Sci. Lett.*,
810 398, 11–24, doi:10.1016/j.epsl.2014.04.038, 2014.

811 Grämiger, L. M., Moore, J. R., Vockenhuber, C., Aaron, J., Hajdas, I. and Ivy-Ochs, S.: Two early Holocene
812 rock avalanches in the Bernese Alps (Rinderhorn, Switzerland), *Geomorphology*, 268, 207–221,
813 doi:10.1016/j.geomorph.2016.06.008, 2016.

814 Grimm, E. C., Maher, L. J. and Nelson, D. M.: The magnitude of error in conventional bulk-sediment
815 radiocarbon dates from central North America, *Quat. Res.*, 72(2), 301–308, doi:10.1016/j.yqres.2009.05.006,
816 2009.

817 Haghipour, N., Ausin, B., Usman, M. O., Ishikawa, N., Wacker, L., Welte, C., Ueda, K. and Eglinton, T. I.:
818 Compound-Specific Radiocarbon Analysis by Elemental Analyzer-Accelerator Mass Spectrometry:

819 Precision and Limitations, *Anal. Chem.*, 91(3), 2042–2049, doi:10.1021/acs.analchem.8b04491, 2019.

820 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A.: Very high resolution interpolated
821 climate surfaces for global land areas, *Int. J. Climatol.*, 25(15), 1965–1978, doi:10.1002/joc.1276, 2005.

822 van Hinsbergen, D. J. J. and Meulenkamp, J. E.: Neogene supradetachment basin development on Crete
823 (Greece) during exhumation of the South Aegean core complex, *Basin Res.*, 18(1), 103–124,
824 doi:10.1111/j.1365-2117.2005.00282.x, 2006.

825 Hungr, O.: A model for the runout analysis of rapid flow slides, debris flows, and avalanches, *Can. Geotech. J.*,
826 32(4), 610–623, doi:10.1139/t95-063, 1995.

827 Hungr, O. and Evans, S. G.: Rock avalanche runout prediction using a dynamic model, *Proc. 7th Int. Symp.*
828 *Landslides*, Trondheim, Norw., 17, 21 [online] Available from: <http://www.clara-w.com/DANWReference2.pdf>, 1996.

829 Hungr, O. and Evans, S. G.: Entrainment of debris in rock avalanches: An analysis of a long run-out
830 mechanism, *Bull. Geol. Soc. Am.*, 116(9–10), 1240–1252, doi:10.1130/B25362.1, 2004.

831 IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015: International soil
832 classification system for naming soils and creating legends for soil maps., Rome., 2015.

833 Korup, O., Strom, A. L. and Weidinger, J. T.: Fluvial response to large rock-slope failures: Examples from the
834 Himalayas, the Tien Shan, and the Southern Alps in New Zealand, *Geomorphology*, 78(1–2), 3–21,
835 doi:10.1016/j.geomorph.2006.01.020, 2006.

836 Limaye, A. B. S. and Lamb, M. P.: Numerical model predictions of autogenic fluvial terraces and comparison to
837 climate change expectations, *J. Geophys. Res. Earth Surf.*, 121(3), 512–544, doi:10.1002/2014JF003392,
838 2016.

839 Maas, G. S. and Macklin, M. G.: The impact of recent climate change on flooding and sediment supply within a
840 Mediterranean mountain catchment, southwestern Crete, Greece, *Earth Surf. Process. Landforms*, 27(10),
841 1087–1105, doi:10.1002/esp.398, 2002.

842 Macklin, M. G. and Woodward, J.: River systems and environmental change, in *The Physical Geography of the*
843 *Mediterranean*, edited by J. Woodward, pp. 319–352, Oxford University Press, Chichester., 2009.

844 Macklin, M. G., Tooth, S., Brewer, P. A., Noble, P. L. and Duller, G. A. T.: Holocene flooding and river
845 development in a Mediterranean steepland catchment: The Anapodaris Gorge, south central Crete, Greece,
846 *Glob. Planet. Change*, 70(1–4), 35–52, doi:10.1016/j.gloplacha.2009.11.006, 2010.

847 McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M.,
848 Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A.,
849 Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H.,
850 Tealeb, A., Toksöz, M. N. and Veis, G.: Global Positioning System constraints on plate kinematics and
851 dynamics in the eastern Mediterranean and Caucasus, *J. Geophys. Res.*, 105(B3), 5695,
852 doi:10.1029/1999JB900351, 2000.

853 McIntyre, C. P., Wacker, L., Haghipour, N., Blattmann, T. M., Fahrni, S., Usman, M., Eglinton, T. I. and Synal,
854 H.-A.: Online ^{13}C and ^{14}C Gas Measurements by EA-IRMS-AMS at ETH Zürich, *Radiocarbon*, 59(03),
855 893–903, doi:10.1017/RDC.2016.68, 2017.

856 Mergili, M., Mergili, M., Jaboyedoff, M., Pullarello, J. and Pudasaini, S. P.: Back calculation of the 2017 Piz
857 Cengalo-Bondo landslide cascade with r.avaflow: What we can do and what we can learn, *Nat. Hazards*
858

859 Earth Syst. Sci., 20(2), 505–520, doi:10.5194/nhess-20-505-2020, 2020.

860 Merritts, D. J., Vincent, K. R. and Wohl, E. E.: Long river profiles, tectonism, and eustasy: A guide to
861 interpreting fluvial terraces, Jounral Geophys. Res., 99(B7), 14031–14050, 1994.

862 Meulenkamp, J. E., van der Zwaan, G. J. and van Wamel, W. A.: On late Miocene to recent vertical motions in
863 the Cretan segment of the Hellenic arc, Tectonophysics, 234(1–2), 53–72, doi:10.1016/0040-1951(94)90204-
864 6, 1994.

865 Mouslopoulou, V., Moraetis, D., Benedetti, L., Guillou, V., Bellier, O. and Hristopulos, D.: Normal faulting in
866 the forearc of the Hellenic subduction margin: Paleoearthquake history and kinematics of the Spili Fault,
867 Crete, Greece, J. Struct. Geol., 66(September), 298–308, doi:10.1016/j.jsg.2014.05.017, 2014.

868 Mouslopoulou, V., Nicol, A., Begg, J., Oncken, O. and Moreno, M.: Clusters of megaearthquakes on upper
869 plate faults control the Eastern Mediterranean hazard, Geophys. Res. Lett., 42(23), 10282–10289,
870 doi:10.1002/2015GL066371, 2015.

871 Mouslopoulou, V., Begg, J., Fülling, A., Moraetis, D. and Partsinevelos, P.: Distinct phases of eustatic and
872 tectonic forcing for late Quaternary landscape evolution in southwest Crete , Greece, Earth Surf. Dyn., 5,
873 511–527, 2017.

874 Nagelisen, J., Moore, J. R., Vockenhuber, C. and Ivy-Ochs, S.: Post-glacial rock avalanches in the Obersee
875 Valley, Glarner Alps, Switzerland, Geomorphology, 238, 94–111, doi:10.1016/j.geomorph.2015.02.031,
876 2015.

877 Nash, D. B.: Morphologic dating of degraded normal fault scarps., J. Geol., 88(3), 353–360,
878 doi:10.1086/628513, 1980.

879 Nemec, W. and Postma, G.: Quaternary alluvial fans in southwestern Crete: sedimentation processes and
880 geomorphic evolution, in Alluvial Sedimentation, edited by M. Marzo and C. Puigdefábregas, pp. 235–276.,
881 1993.

882 Orr, E. N., Owen, L. A., Saha, S. and Caffee, M. W.: Climate-driven late Quaternary fan surface abandonment
883 in the NW Himalaya, in Untangling the Quaternary Period—A Legacy of Stephen C. Porter, vol. 548, edited
884 by R. B. Waitt, G. D. Thakray, and A. R. Gillespie, Geological Society of America., 2020.

885 Ott, R. F., Gallen, S. F., Caves Rugenstein, J. K., Ivy-Ochs, S., Helman, D., Fassoulas, C., Vockenhuber, C.,
886 Christl, M. and Willett, S. D.: Chemical Versus Mechanical Denudation in Meta-Clastic and Carbonate
887 Bedrock Catchments on Crete, Greece, and Mechanisms for Steep and High Carbonate Topography, J.
888 Geophys. Res. Earth Surf., 124(12), 2943–2961, doi:10.1029/2019JF005142, 2019a.

889 Ott, R. F., Gallen, S. F., Wegmann, K. W., Biswas, R. H., Herman, F. and Willett, S. D.: Pleistocene terrace
890 formation, Quaternary rock uplift rates and geodynamics of the Hellenic Subduction Zone revealed from
891 dating of paleoshorelines on Crete, Greece, Earth Planet. Sci. Lett., 525, 115757,
892 doi:10.1016/j.epsl.2019.115757, 2019b.

893 Ott, R. F., Wegmann, K. W., Gallen, S. F., Pazzaglia, F. J., Brandon, M. T., Ueda, K. and Fassoulas, C.:
894 Reassessing Eastern Mediterranean tectonics and earthquake hazard from the AD 365 earthquake, AGU
895 Adv., doi:10.31223/X5H036, 2021.

896 Pazzaglia, F. J.: Fluvial Terraces, in Treatise on Geomorphology, vol. 9, pp. 379–412, California Academic
897 Press, San Diego, California., 2013.

898 Pirazzoli, P. A., Thommeret, J., Laborel, J. and Montaggioni, L. F.: Crustal Block Movements from Holocene

899 Shorelines: Crete and Antikythira (Greece), *Tectonophysics*, 86, 27–43, 1982.

900 Pirazzoli, P. A., Laborel, J. and Stiros, S. C.: Coastal indicators of rapid uplift and subsidence: examples from
901 Crete and other eastern Mediterranean sites, *Zeitschrift Fur Geomorphol. Suppl.*, 102(1996), 21–35 [online]
902 Available from: <http://www.scopus.com/inward/record.url?eid=2-s2.0-0029732821%7B&%7DpartnerID=40%7B&%7Dmd5=4b91f23e3f100447fd0a5686efeb29da>, 1996.

903 Pope, R., Wilkinson, K., Skourtos, E., Trianaphyllou, M. and Ferrier, G.: Clarifying stages of alluvial fan
904 evolution along the Sfakian piedmont, southern Crete: New evidence from analysis of post-incisive soils and
905 OSL dating, *Geomorphology*, 94(1–2), 206–225, doi:10.1016/j.geomorph.2007.05.007, 2008.

906 Pope, R., Candy, I. and Skourtos, E.: A chronology of alluvial fan response to Late Quaternary sea level and
907 climate change, *Crete, Quat. Res. (United States)*, 86(2), 170–183, doi:10.1016/j.yqres.2016.06.003, 2016.

908 Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F.,
909 Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D.,
910 Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R.
911 and Karam, G.: GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental
912 collision zone and implications for the dynamics of plate interactions, *J. Geophys. Res. Solid Earth*, 111(5),
913 doi:10.1029/2005JB004051, 2006.

914 Reimer, P. J. and Reimer, R. W.: A Marine Reservoir Correction Database and On-Line Interface, *Radiocarbon*,
915 43(2A), 461–463, doi:10.1017/S0033822200038339, 2001.

916 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H.,
917 Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C.,
918 Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W.,
919 Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Sounthor, J. R., Staff, R. A., Turney, C. S. M. and van
920 der Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP,
921 *Radiocarbon*, 55(04), 1869–1887, doi:10.2458/azu_js_rc.55.16947, 2013.

922 Rhodes, E. J.: Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years, *Annu.
923 Rev. Earth Planet. Sci.*, 39(1), 461–488, doi:10.1146/annurev-earth-040610-133425, 2011.

924 Richardson, P. W., Perron, J. T. and Schurr, N. D.: Influences of climate and life on hillslope sediment transport,
925 *Geology*, 47(5), 423–426, doi:10.1130/G45305.1, 2019.

926 Robertson, J., Meschis, M., Roberts, G. P., Ganas, A. and Gheorghiu, D. M.: Temporally Constant Quaternary
927 Uplift Rates and Their Relationship With Extensional Upper-Plate Faults in South Crete (Greece),
928 Constrained With 36Cl Cosmogenic Exposure Dating, *Tectonics*, 38(4), 1189–1222,
929 doi:10.1029/2018TC005410, 2019.

930 Rothacker, L., Dreves, A., Sirocko, F., Grootes, P. M. and Nadeau, M.-J.: Dating Bulk Sediments from Limnic
931 Deposits Using a Grain Size Approach, in *Proceedings of the 21st International Radiocarbon Conference*,
932 vol. 55, edited by A. J. T. Jull and C. Hatté, pp. 943–950., 2013.

933 Ruff, M., Fahrni, S., Gäggeler, H. W., Hajdas, I., Suter, M., Synal, H. A., Szidat, S. and Wacker, L.: On-line
934 radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source,
935 *Radiocarbon*, 52(4), 1645–1656, doi:10.1017/S003382220005637X, 2010.

936 Runnels, C., DiGregorio, C., Wegmann, K., Gallen, S., Strasser, T. and Panagopoulou, E.: Lower Palaeolithic
937 artifacts from Plakias, Crete: implications for hominin dispersals, *Eurasian Prehistory*, 11(1–2), 129–152,
938

939 2014.

940 Scherler, D., Lamb, M. P., Rhodes, E. J. and Avouac, J. P.: Climate-change versus landslide origin of fill
941 terraces in a rapidly eroding bedrock landscape: San Gabriel River, California, *Bull. Geol. Soc. Am.*, 128(7),
942 1228–1248, doi:10.1130/B31356.1, 2016.

943 Schumm, S. A.: Geomorphic Thresholds and Complex Response of Drainage Systems, in *Fluvial
944 Geomorphology*, pp. 299–310, Colorado., 1973.

945 Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 - MATLAB-based software for
946 topographic analysis and modeling in Earth surface sciences, *Earth Surf. Dyn.*, 2(1), 1–7, doi:10.5194/esurf-
947 2-1-2014, 2014.

948 Shaw, B., Ambraseys, N. N., England, P. C., Floyd, M. A., Gorman, G. J., Higham, T. F. G., Jackson, J. A.,
949 Nocquet, J.-M., Pain, C. C. and Piggott, M. D.: Eastern Mediterranean tectonics and tsunami hazard inferred
950 from the AD 365 earthquake, *Nat. Geosci.*, 1(4), 268–276, doi:10.1038/ngeo151, 2008.

951 Stiros, S. C.: The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries
952 AD in the Eastern Mediterranean: A review of historical and archaeological data, *J. Struct. Geol.*, 23(2–3),
953 545–562, doi:10.1016/S0191-8141(00)00118-8, 2001.

954 Thorndycraft, V. R. and Benito, G.: Late Holocene fluvial chronology of Spain: The role of climatic variability
955 and human impact, *Catena*, 66(1–2), 34–41, doi:10.1016/j.catena.2005.07.007, 2006.

956 Tucker, G. E., McCoy, S. W., Whittaker, A. C., Roberts, G. P., Lancaster, S. T. and Phillips, R.: Geomorphic
957 significance of postglacial bedrock scarps on normal-fault footwalls, *J. Geophys. Res. Earth Surf.*, 116(1), 1–
958 14, doi:10.1029/2010JF001861, 2011.

959 USGS: Catastrophic Landslides of the 20th Century - Worldwide, USGS - Landslide Hazards [online] Available
960 from: https://www.usgs.gov/natural-hazards/landslide-hazards/science/catastrophic-landslides-20th-century-worldwide?qt-science_center_objects=0#qt-science_center_objects (Accessed 20 July 2018), 2016.

961 Vita-Finzi, C.: The Mediterranean valleys: geological changes in historical times, Cambridge University Press,
962 Cambridge., 1969.

963 Wacker, L., Němec, M. and Bourquin, J.: A revolutionary graphitisation system: Fully automated, compact and
964 simple, *Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms*, 268(7–8), 931–
965 934, doi:10.1016/j.nimb.2009.10.067, 2010.

966 Waters, J. V., Jones, S. J. and Armstrong, H. A.: Climatic controls on late Pleistocene alluvial fans, Cyprus,
967 Geomorphology, 115(3–4), 228–251, doi:10.1016/j.geomorph.2009.09.002, 2010.

968 Watkins, S. E., Whittaker, A. C., Bell, R. E., McNeill, L. C., Gawthorpe, R. L., Brooke, S. A. S. and Nixon, C.
969 W.: Are landscapes buffered to high-frequency climate change? A comparison of sediment fluxes and
970 depositional volumes in the Corinth Rift, central Greece, over the past 130 k.y., *Bull. Geol. Soc. Am.*,
971 131(3–4), 372–388, doi:10.1130/B31953.1, 2018.

972 Wegmann, K. W.: *Tectonic Geomorphology above Mediterranean Subduction Zones: Northeastern Apennines
973 of Italy and Crete*, Lehigh University., 2008.

974 Wieczorek, G. F., Snyder, J. B., Waitt, R. B., Morrissey, M. M., Uhrhammer, R. A., Harp, E. L., Norris, R. D.,
975 Bursik, M. I. and Finewood, L. G.: Unusual July 10, 1996, rock fall at Happy Isles, Yosemite National Park,
976 California, *Bull. Geol. Soc. Am.*, 112(1), 75–85, doi:10.1130/0016-7606(2000)112<75:UJRFAH>2.0.CO;2,
977 2000.

978

979 Zachariasse, W. J., van Hinsbergen, D. J. J. and Fortuin, A. R.: Formation and fragmentation of a late Miocene
980 supradetachment basin in central Crete: Implications for exhumation mechanisms of high-pressure rocks in
981 the Aegean forearc, *Basin Res.*, 23(6), 678–701, doi:10.1111/j.1365-2117.2011.00507.x, 2011.
982 Zielhofer, C., Faust, D. and Linstädter, J.: Late Pleistocene and Holocene alluvial archives in the Southwestern
983 Mediterranean: Changes in fluvial dynamics and past human response, *Quat. Int.*, 181(1), 39–54,
984 doi:10.1016/j.quaint.2007.09.016, 2008.
985