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Abstract. Estimation of erosion rate is an important component of landscape evolution studies, particularly in settings where 

transience or spatial variability in uplift or erosion generates diverse landform morphologies. While bedrock rivers are often 

used to constrain the timing and magnitude of changes in baselevel lowering, hilltop curvature (or convexity), CHT, provides 

an additional opportunity to map variations in erosion rate given that average slope angle becomes insensitive to erosion rate 10 

owing to threshold slope processes. CHT measurement techniques applied in prior studies (e.g. polynomial functions), 

however, tend to be computationally expensive when they rely on high resolution topographic data such as lidar, limiting the 

spatial extent of hillslope geomorphic studies to small study regions. Alternative techniques such as spectral tools like 

continuous wavelet transforms present an opportunity to rapidly document trends in hilltop convexity across expansive areas. 

Here, we demonstrate how continuous wavelet transforms (CWTs) can be used to calculate the Laplacian of elevation, which 15 

we utilize to estimate erosion rate in three catchments of the Oregon Coast Range that exhibit varying slope angle, slope 

length, and hilltop convexity, implying differential erosion. We observe that CHT values calculated with the CWT are similar 

to those obtained from 2D polynomial functions. Consistent with recent studies, we find that erosion rates estimated with 

CHT from both CWTs and 2D polynomial functions are consistent with erosion rates constrained with cosmogenic 

radionuclides from stream sediments. Importantly, our CWT approach calculates curvature at least 102-103 times more 20 

quickly than 2D polynomials. This efficiency advantage of the CWT increases with domain size. As such, continuous 

wavelet transforms provide a compelling approach to rapidly quantify regional variations in erosion rate as well as lithology, 

structure, and hillslope sediment transport processes, which are encoded in hillslope morphology. Finally, we test the 

accuracy of CWT and 2D polynomial techniques by constructing a series of synthetic hillslopes generated by a theoretical 

nonlinear transport model that exhibit a range of erosion rates and topographic noise characteristics. Notably, we find that 25 
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neither CWTs nor 2D polynomials reproduce the theoretically prescribed CHT value for hillslopes experiencing moderate to 

fast erosion rates, even when no topographic noise is added. Rather, CHT is systematically underestimated, producing a 

power law relationship between erosion rate and CHT that can be attributed to artifacts from the increasing prominence of 

planar hillslopes that narrow the zone of hilltop convexity as erosion rate increases. As such, we recommend careful 

consideration of measurement length scale when applying CHT to estimate erosion rate in moderate to fast-eroding 30 

landscapes, where curvature measurement techniques may be prone to systematic underestimation.     

1 Introduction 

The morphology of landscapes , including river channels and hillslopes, adjusts to conform to exogenic perturbations 

such as uplift and climate as well as spatial variations in lithology, geologic structure, and biology. As such, numerous studies 

have taken advantage of landscape morphology to estimate rates and timing of perturbations to these  landscape 35 

propertiesboundary conditions. In bedrock rivers, for instance, geomorphic transport laws have been formulated to allow for 

linkages between landscape form and process, including from measurements such as channel steepness and χ, a metric that 

integrates drainage area along a channel profile (Kirby and Whipple, 2001; Perron and Royden, 2013; Royden and Perron, 

2013). These tools have been effectively utilized to estimate and map spatial variations in uplift, quantify the timing and rates 

of landscape transience and uplift history, and predict drainage basin reorganization (e.g. Barnhart et al., 2020; Dietrich et al., 40 

2003; Fox, 2019; Kirby and Whipple, 2001, 2012; Roberts and White, 2010; Willett et al., 2014; Wobus et al., 2006).  

Similarly, hillslope geomorphic transport laws formulated for soil mantled landscapes allow for estimation of uplift 

and erosion rates as well as prediction of the migration of hillcrests in response to landscape transience (Forte and Whipple, 

2018; Mohren et al., 2020; Mudd, 2017; Mudd and Furbish, 2007, 2005; Roering, 2008; Roering et al., 2007, 2001, 1999). 

Over 100 years ago, it was proposed that hillslope form, specifically slope and curvature, may be an effective predictor of 45 

erosion rate, as hillslopes steepen and lengthen to accommodate increases in baselevel lowering (Gilbert, 1909, 1877). 

However, hillslopes do not continue to steepen as baselevel lowering progressively increases to faster and faster rates (e.g. 

Howard, 1994; Penck, 1953; Schumm, 1967; Strahler, 1950). Rather, hillslope gradients approach a threshold value as erosion 

rate increases, such that gradient becomes invariant and insensitive to further increases in baselevel lowering (Andrews and 

Bucknam, 1987; Burbank et al., 1996; DiBiase et al., 2012; Larsen and Montgomery, 2012; Montgomery, 2001; Roering et 50 

al., 1999). In such cases, a nonlinear formulation is implied such that sediment flux varies nonlinearly with slope due to This 

‘nonlinear’ formulation, such that sediment flux varies nonlinearly with slope, implies that slope angle becomes insensitive to 

baselevel lowering due to threshold-dependent processes such as landsliding as well as granular creep (BenDror and Goren, 

2018; Deshpande et al., 2021; DiBiase et al., 2012; Ferdowsi et al., 2018; Gabet, 2000; Larsen and Montgomery, 2012; 

Montgomery, 2001; Ouimet et al., 2009; Roering et al., 2001). 55 
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Despite the insensitivity of hillslope gradient in rapidly eroding landscapes, soil mantled hillslopes remain an effective 

recorder record of landscape transience and uplift. Specifically, hilltop curvature continues to respond to baselevel lowering 

when uplift and erosion rates are high, even as slope becomes insensitive to ever-increasing erosion rate (Hurst et al., 2012; 

Mohren et al., 2020; Roering et al., 2007). For a one-dimensional hillslope at steady state, erosion rate, E, can be estimated as  

𝐸 =  −
𝜌𝑠

𝜌𝑟
𝐷𝐶𝐻𝑇 ,                                                                                                                                                       (1) 60 

where s and r are the density of soil and bedrock, respectively, D is the soil transport coefficient or diffusivity, and CHT is 

curvature at the hilltop (Roering et al., 2007). Using this formulation, Hurst et al. (2012) demonstrated in the Sierra Nevada, 

California, that CHT records erosion rate in both low-relief, low-slope headwater catchments of the Feather River as well as in 

high-relief catchments that have already adjusted to a faster baselevel lowering rate where hillslopes approach a threshold 

angle. Similarly, Hurst et al. (2013) observed that hillslopes that are translating through an uplift gradient along the San 65 

Andreas Fault actively steepen and become sharper (CHT becomes more negative) as they traverse the zone of high uplift and 

hillslope gradients become invariant. The hillslopes then decay, that is slopes become gentler and curvatures become less 

sharp, as they reenter the region of low background uplift (Hurst et al., 2013). Similarly, Clubb et al. (2020) observed that 

steep channels and sharp hilltops record uplift along the Mendocino Triple Junction in northern California, and they note that 

the lag in hillslope response time relative to the bedrock channels records the northward migration of the Mendocino Triple 70 

Junction. 

Past studies that couple geomorphic transport laws and hilltop curvature have typically relied on curvature calculated 

from 2D polynomial functions fit to the topographic surface (PFTs (i.e. polynomials fit to topography); e.g. Roering et al., 

1999). While a variety of polynomial forms and types of curvature (i.e. tangential, planform, Laplacian, etc.)  definitions have 

been utilized (e.g. Minár et al., 2020; Moore et al., 1991), Hurst et al. (2012) found that 6 term functions were sufficient for 75 

measuring curvature to estimate erosion rate. Specifically, Hurst et al. (2012) used least squared regression to fit a surface, z, 

to topography, such that,  

𝑧 = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 ,           (2) 

where curvature, or more specifically the Laplacian of elevation, ∇2𝑧, is denoted as 

∇2𝑧 = 2𝑎 + 2𝑏.            (3) 80 

To reduce the impact of topographic roughness due to stochastic sediment transport and surface perturbations such as boulders 

and tree throw pits as well as noise in the digital topographic data, they applied the PFT over a scale, λ (L in Hurst et al., 

(2012)), which defines the size of the square polynomial kernel that is fit to the surface. The value of λ can be obtained by 

analysis of the scale dependency of roughness metrics (e.g. Hurst et al., 2012; Roering et al., 2010). As elaborated in the 

methodology proposed by Hurst et al. (2012), the PFT is not required to pass through each any digital elevation model (DEM) 85 

nodes; hence, λ can be understood as a smoothing scale, thus measuring the background CHT and removing topographic noise.  
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While the application of PFTs has proven useful for calculating curvature to estimate erosion rate and predict spatial 

and temporal variations in uplift (e.g. Clubb et al., 2020; Godard et al., 2020; Hurst et al., 2019, 2013, 2012; Mohren et al., 

2020; Roering et al., 2007), PFTs are computationally cumbersome, hindering large-scale exploitation of high-resolution 

topographic datasets that have become increasingly available. Here, we demonstrate that 2D continuous wavelet transforms 90 

(CWTs) provide an alternative and computationally efficient approach to calculating hilltop curvature, operating at least 102 

to >103 times faster than PFTs, with the relative efficiency advantage of CWTs increasing with the size of digital elevation 

models. We establish the similarity of the output CWT CHT values to those produced by PFTs, and we compare estimated 

erosion rates calculated from CHT values to erosion rates measured with cosmogenic radionuclides (CRN) in catchments in the 

Oregon Coast Range. In addition, we test the relative accuracy of the CWT and PFT approaches by applying them to synthetic 95 

hillslopes with known erosion rates generated by a nonlinear transport model and superimposed topographic noise. We find 

that both techniques systematically underestimate CHT at moderate to high erosion rates and appear to approximate a square 

root relationship between CHT and erosion rate as erosion rate increases, consistent with a recent study (Gabet et al., 2021). 

2 Study Site: Oregon Coast Range 

We selected the Oregon Coast Range (OCR) to compare CWTs and PFTs as hilltop curvature measurement 100 

techniques, as it is a region that has been extensively studied in the geomorphic literature, exhibits relatively uniform 

topography over intra-catchment scales while exhibiting diversity in hillslope form and erosion rate across the axis of the 

range, and has negligible spatial variability in climate. The OCR is an unglaciated humid landscape that parallels the Cascadia 

Subduction Zone and is characterized by cool, wet winters when the majority of the annual 1-2 m of precipitation falls, and 

warm dry summers (PRISM Climate Group, 2016). The dominant tree populations are composed of Douglas-fir (Pseudotsuga 105 

menziesii) and western hemlock (Tsuga heterophylla) that reside on hillslopes that are soil-mantled throughout the range. Soils 

are thickest in colluvial hollows and unchannelized valleys (~1-2 m), thinnest (~0.5 m) on planar hillslopes and hilltops, and 

are primarily produced stochastically through tree throw and bioturbation (Dietrich and Dunne, 1978). Colluvial hollows are 

periodically evacuated by shallow landslides that mobilize into debris flows (Benda and Dunne, 1997; Dietrich and Dunne, 

1978; Penserini et al., 2017; Stock and Dietrich, 2003). Erosion rate, measured using techniques including CRNs, 14C dating, 110 

and fluvial and colluvial sediment flux, usually cluster at approximately 0.1 mm yr-1 (Balco et al., 2013; Bierman et al., 2001; 

Heimsath et al., 2001; Penserini et al., 2017; Reneau and Dietrich, 1991), though these rates can temporally and spatially vary 

dramatically (Almond et al., 2007; Marshall et al., 2015; Sweeney et al., 2012). Average OCR erosion rates approximately 

correspond with uplift rates calculated from abandoned marine terraces, ranging from <0.05 to >0.4 mm yr-1 (Kelsey et al., 

1996), as well as from fluvial strath terraces which range from 0.1 to 0.3 mm yr-1 (Personius, 1995), which has led to 115 

suggestions that the OCR may approximate steady state. Nonetheless, deviations from uniform erosion have been noted based 

on morphologic trends as well as soil properties (Almond et al., 2007; Sweeney, et al., 2012).  
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We pinpointed catchments in the OCR that exhibit a range of hilltop curvatures for analysis. Specifically, we focus 

on Hadsall Creek (43.983° N, -123.823° W), the North Fork Smith River (NFSR; 43.963° N, -123.811° W), and Bear Creek 

(44.181° N, -123.371° W). Hadsall Creek and the NFSR are catchments in the central OCR that share a drainage divide (Fig. 120 

1A). Hadsall Creek is characterised by steep channels and hillslopes with evenly spaced ridges and valleys where incision is 

dominated by debris flows (Penserini et al., 2017; Fig. 2A). Contrastingly, the NFSR, which is erosionally isolated from 

baselevel by an Oligocene-age gabbroic dike that has pinned the fluvial channel, exhibits comparatively gentle channel and 

hillslope angles as well as longer soil residence times (Sweeney et al., 2012; Fig. 2B). CRN measurements have recorded 

catchment-averaged erosion rates at Hadsall Creek and the NFSR of 0.113±0.018 mm yr-1 and 0.058±0.0054 mm yr-1, 125 

respectively (recalculated from Penserini et al., 2017; Table 1). We also utilize hillslopes within three small sub-catchments 

that drain to Bear Creek (Fig. 1B), a tributary to the Long Tom River on the eastern margin of the OCR in the southwestern 

Willamette Valley (WV). Hillslopes within Bear Creek and the western margin of the WV exhibit gentle slopes, weathered 

soils with long residence times >150 kyr (Almond et al., 2007), and are bounded by broad alluviated valleys (Fig. 2C). We 

additionally report a newly collected CRN-derived catchment-averaged erosion rate for the northern Bear Creek subcatchment 130 

that we study here (Fig. 1B). 

The spatial proximity of Bear Creek, Hadsall Creek, and the NFSR make them well-suited to compare CHT 

measurement techniques, as other factors that may influence morphology, such as climate and lithology, remain relatively 

invariant. All three catchments are within the Tyee Formation, a ~3 km thick sequence of gently dipping Eocene turbidite 

deposits characterized by a sequence of sandstone and siltstone interbeds (Baldwin, 1956; Heller and Dickinson, 1985; Lovell, 135 

1969). While variability in sandstone-siltstone ratios in the Tyee Formation result in latitudinal north-south variations in deep-

seated landsliding (Roering et al., 2005), our three study sites are within sufficient proximity to each other such that lithologic 

variability in setting hillslope morphology should be limited. In addition, while common elsewhere in the OCR (Franczyk et 

al., 2019; LaHusen et al., 2020; Roering et al., 2005), the sites we have selected for analysis do not exhibit pronounced evidence 

of deep-seated landslides, which may bias CHT values, complicating comparison to known erosion rates from CRN analysis. 140 

As such, Hadsall Creek, the NFSR, and Bear Creek provide an ideal spectrum of hillslopes that allows for assessment of CHT 

measurement techniques (Figure 2).  

3 Methods 

3.1 Curvature calculation: polynomial fit and continuous wavelet transform 

We used PFTs to calculate curvature of the Hadsall and Bear Creeks and NFSR lidar DEMs as enumerated in 145 

Equations 2 and 3. Each DEM has a ( grid spacing of 0.9144 m), as enumerated in Equations 2 and 3. The lidar for Bear Creek 

was collected in 2009 (average point density: 8.14 pulses m-2, ground density: 1.36 pulses m-2), and the lidar at Hadsall Creek 

and NFSR was collected in 2014 (average point density: 10.41 pulses m-2, ground density 0.54 pulses m-2). (See Code and 

Data Availability for access information to lidar data). In order to identify and remove the topographic impact of stochastic 
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sediment transport processes such as tree throw, we calculated PFT curvature rasters using variable kernel sizes, corresponding 150 

to a range of smoothing scales, specifically for λ=5-141 m (the diameter of the polynomial kernel requires odd dimensions).  

In contrast to PFTs, CWTs are computationally efficient and can provide a variety of outputs depending on the 

analysis and type of wavelet used (e.g. Foufoula-Georgiou and Kumar, 1994 and references therein). Here, we applied a 2D 

CWT using the Ricker wavelet (often known as the Mexican Hat wavelet). The Ricker wavelet has been used in 

geomorphology to map and estimate landslide ages based on surface roughness (Booth et al., 2009; LaHusen et al., 2020), 155 

identify dominant landforms at particular wavelengths (Struble et al., 2021), extract channel heads and drainage networks 

(Lashermes et al., 2007; Passalacqua et al., 2010), and other topographic spectral analyses including mapping faults and 

predicting lithospheric thickness (e.g. Audet, 2014; Jordan and Schott, 2005; Malamud and Turcotte, 2001). The Ricker 

wavelet is the negative second derivative of a 2D Gaussian function, which is given as 

𝑔(𝑥, 𝑦) =
1

2𝜋𝑠2 exp [−
(𝑢−𝑥)2+(𝑣−𝑦)2

2𝑠2 ] ,                     (4) 160 

where (u,v) and s (σ in Lashermes et al., 2007) defines the location and size, specifically the standard deviation, of the Gaussian 

function, respectively (Derivative of a Gaussian (DoG) wavelets constitute a wavelet family). The Ricker wavelet has been 

used in geomorphology to map and estimate landslide ages based on surface roughness (Booth et al., 2009; LaHusen et al., 

2020), identify dominant landforms at particular wavelengths (Struble et al., 2021), extract channel networks (Lashermes et 

al., 2007; Passalacqua et al., 2010), and other topographic spectral analyses including mapping faults and predicting 165 

lithospheric thickness (e.g. Audet, 2014; Jordan and Schott, 2005; Malamud and Turcotte, 2001). The Ricker wavelet, ψ, asis 

the negative, second derivative of Equation 4, then, derivative of a 2D Gaussian function (Derivative of a Gaussian (DoG) 

wavelets constitute a wavelet family), and is defined as 

𝜓(𝑥, 𝑦) =
1

𝜋𝑠4 (1 −
1

2
(

(𝑢−𝑥)2+(𝑣−𝑦)2

𝑠2 )) exp [−
((𝑢−𝑥)2+(𝑣−𝑦)2)

2𝑠2 ] exp (2 − 𝑥2 − 𝑦2) exp [−
1

2
(𝑥2 + 𝑦2)] ..  

       (45) 170 

As the negative second DoG, Tthe output wavelet coefficients of the Ricker wavelet provide a measure of the Laplacian over 

the input scale of interest (Foufoula-Georgiou and Kumar, 1994; Lashermes et al., 2007). The generalized 2D CWT of 

topography, z, at location (u,v), then is given as  

𝐶(𝑠, 𝑢, 𝑣) =
1

𝑠 ∫ ∫ 𝑧(𝑥, 𝑦)𝜓 (
𝑥−𝑢

𝑠
,

𝑦−𝑣

𝑠
) 𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
,          (56) 

where s (σ in Lashermes et al., 2007) is a parameter that sets the size of the wavelet kernel, specifically the standard 175 

deviation of the DoG. Equation 56, notably, is a convolution of z and 𝜓, expressed as  

𝐶(𝑠, 𝑢, 𝑣) = 𝑧(𝑥, 𝑦) ∗ 𝜓 (
𝑥−𝑢

𝑠
,

𝑦−𝑣

𝑠
),           (67) 
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where ∗  represents the convolution. A useful property of convolutions allows for simultaneous low pass filtering and 

measurement of curvature. Specifically, 

𝜕

𝜕𝑥
(𝑓 ∗ ℎ) =

𝜕𝑓

𝜕𝑥
∗ ℎ = 𝑓 ∗

𝜕ℎ

𝜕𝑥
,            (8) 180 

where f is some function (topography in our case) and h is a smoothing function (the 2D Gaussian in Equation 4, for instance). 

Hence, for the case of calculating landscape curvature, Equation 8 implies that applying a low-pass filter (Equation 4) to 

topography and then taking the derivative (i.e. calculating curvature; left term) is identical to taking the derivative of 

topography and smoothing the outputs (middle term) or taking the derivative of the function (i.e. Equation 5) and using that 

function to smooth topography (right term; Lashermes et al., 2007). Thus, Tthe output scaled  wavelet coefficients, C, from 185 

Equation 7 are the low pass filtered Laplacian values that we use  to extract for curvature of extracted hilltops (CHT), which we 

elaborate on below. 

Similar to the application of PFTs to estimate erosion rate, it is necessary to select a measurement scale that effectively 

smooths over stochastic sediment transport perturbations and noise that is inherent to topographic datasets and DEMs and does 

not represent long-term morphology reflective of baselevel lowering (Hurst et al., 2012; Roering et al., 2010). Thus, it is 190 

important to utilize an appropriately scaled wavelet, s, (akin to a kernel size) to generate curvature values that are appropriate 

to represent CHT. Several definitions for the smoothing scale of a DoG wavelet exist. Torrence and Compo (1998) define the 

smoothing scale, λ, for an mth DoG as 

𝜆 =
2πs

√m+
1

2

 .            (79) 

For the Ricker wavelet, m=2. Alternatively, Lashermes et al. (2007) define the Ricker wavelet smoothing scale as  195 

𝜆 = √2𝜋𝑠 .            (810) 

To clarify, while λ represents the physical scale at which topography is smoothed, s specifically defines the scale of the wavelet 

function and is only related to the physical smoothing scale through does not have a specific physical interpretation beyond its 

relationship with λ in Equations 7 9 and 8 10 and is not interchangeable with λ. While the Torrence and Compo (1998; TC98) 

and Lashermes et al. (2007; L07) λ definitions generate similar smoothing scales, the output Laplacian values may be 200 

sufficiently diverse to produce significantly different erosion rate estimates depending on the choice. Thus, we utilize both 

definitions by selecting a range of λ and solving for s in order to apply the CWT, which we thenfor compareison to the curvature 

values produced from the PFT. 

 We applied the CWT and PFT for λ values that correspond to the scales at which topographic noise manifests in 

topographic data. The CWT can only be applied for s>1, which for DEMs with a grid spacing of ~1 m with the odd-dimensions 205 

constraint of the PFT, places a lower λ limit of 5 m. We additionally tested larger λ (up to 141 m) to isolate the consistency 

between the CWT and PFT. For each smoothing scale, λ, for which we calculated curvature, we solved for s in Equations 7 9 

and 8 10 to construct the appropriately sized Ricker wavelet (Equation 45). We then applied the CWT to the OCR lidar DEMs 

Formatted: Indent: First line:  0"
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for smoothing scales of 5-141 m (same as PFT) and produced CHT values for the CWT and PFT methods, denoted as CHT-W 

and CHT-P, respectively.   210 

 

3.2 Computational efficiency of curvature values 

We compared the efficiency of calculating curvature with a PFT to the CWT, including both definitions of wavelet 

smoothing scale, λ (TC98 and L07; Equations 79, 810). We measured curvature for λ=5-197 m in MATLAB on a personal 

laptop with 16 GB of RAM (2.60 GHz CPU). To account for potential variations in calculation time that may result from 215 

variable landscape morphology, we utilized sample regions of the Hadsall Creek and Bear Creek DEMs, as they represent the 

high and low erosion rate end members of our test sites. Each DEM was a 513x513 single precision grid (32-bit float) with a 

cell size of 0.9144 m. 

 We also tested how DEM size affects the relative speed of the CWT and PFT algorithms. We selected a DEM of size 

682x682 pixels from the Hadsall Creek catchment and measured curvature for λ=5-101 m. We then calculated curvature for 220 

the same λ on the northwest quadrant of the 682x682 pixel DEM, corresponding to a 341x341 pixel medium-sized grid. Finally, 

we calculated curvature for λ=5-101 m on the northwest quadrant of the medium-sized DEM, corresponding to a 171x171 

pixel grid.   

 

3.3 Hilltop curvature calculation: extraction Hilltop extractionof hilltops 225 

We calculated curvature at every pixel of our DEMs, but CHT requires limiting curvature values to hilltop pixels. 

Therefore, we extracted hilltop masks in MATLAB with using the DIVIDEobj function of TopoToolbox (Scherler and 

Schwanghart, 2014), restricting extracted first-order divides to those with lengths exceeding 800 m2020; (Schwanghart and 

Scherler, 20202014)., and wWe further refined the hilltop masks by only considering locations where CHT is negative (convex) 

and where local hillslope gradient is less than 0.4, above which a greater proportion of hillslope sediment transport can be 230 

classified as nonlinear. We manually removed drainage divides mapped in low-relief valley bottoms and where flow routing 

is interrupted by roads, which are common in the OCR and introduce noisy high-magnitude curvatures. While the signature of 

deep-seated landslides is generally absent from our study catchments, if it appeared in the DEM that there has been a history 

of bedrock slope instability, we filtered hilltops proximal to mapped landslides. We also did not consider hilltops that may 

exhibit prominent asymmetry due to disequilibrium with neighboring drainage basins. Thus, at Hadsall Creek and NFSR, we 235 

neglected all hilltops at the main drainage divide (Fig. 1A). At the Bear Creek catchments, we similarly removed all hilltops 

at the main drainage divide (the northeast divide in Fig. 1B) except for those that border adjacent catchments that are likely 

experiencing the same baselevel imposed by Bear Creek (southwest divide in Fig. 1B). Finally, to visualize the scale-

dependency of CHT and reduce potential noise in CHT measurements for full catchments obscuring curvature scaling breaks 

(Hurst et al., 2012; Roering et al., 2010), we selected a single representative hilltop in each catchment (~100-200 m long; Fig. 240 

1, 2), chosen such that it approximates the average curvature for the catchment when compared to curvature measurements 
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taken for all hilltops (Fig. 23). The selected representative hilltop was 234 m long at Hadsall Creek (average gradient 0.23), 

149 m at NFSR (average gradient 0.14), and 274 m long at Bear Creek (average gradient 0.11).  

 

3.4.1 Erosion rates estimated from hilltop curvature 245 

We applied the CWT and PFT to the Hadsall Creek, NFSR, and Bear Creek lidar DEMs, and estimated erosion 

ratescalculated curvature. We utilized the hilltop masks to extract curvature at the hilltops (CHT). In the OCR, Roering et al. 

(2010) observed a scaling break in curvature at 15 m, corresponding to the length scale at below which pit and mound 

topography dominate the surface morphologyfrom tree throw pits is removed. We observe similar scaling breaks in hilltop 

curvature for selected hilltops at λ≈15-20 m (Fig. 23), though we note that the clarity of this scaling break depends on the size 250 

of the study area and consistency or lack thereof of small pit and mound topography in a landscape. Thus, while the scaling 

break that distinguishes the effective scale at which topographic noise is filtered out may differ between the DEMs and 

catchments we analyse here, we find that the scaling breaks do not clearly or systematically differ from those observed by 

Hurst et al., (2012) and Roering et al. (2010; Fig. 23). Thus, we used a smoothing scale of λ=15 m for the PFT and CWT in 

each OCR catchment to estimate erosion rate as enumerated in Equation 1. We assumed that 
𝜌𝑠

𝜌𝑟
 = 0.5 and D=0.003 m2 yr-1, a 255 

hillslope diffusivity estimated for the OCR (Roering et al., 1999, 2007). We compared the mean and variance of these estimated 

erosion rates to CRN-derived erosion rates in each OCR study catchment.   

 

3.4.2 Erosion rates from cosmogenic radionuclides 

To test the efficacy of CHT as a proxy for erosion rate, we compare erosion rates estimated from CHT to those estimated 260 

from CRNs in stream sediments. We collected stream sediments from the western tributary to Bear Creek that we study here 

(Fig. 1B; 44.186 °N, -123.375° W) to estimate erosion rate with cosmogenic 10Be (Balco et al., 2013; Heimsath et al., 2001). 

We used the online calculator CRONUS (Balco et al., 2008) to calculate erosion rate for the sample, which incorporates the 

material from the upstream drainage area and assumes steady erosion over the CRN integration timescale (Table 3, 4). We 

additionally recalculate the erosion rates for Hadsall Creek and NFSR from the CRN data previously reported by Penserini et 265 

al. (2017; Table 2, 3). 

 

3.5 Construction of synthetic hillslopes to test CHT measurements 

 We utilized synthetic hillslopes generated from a theoretical model to compare the accuracy of hilltop curvature 

calculated using the PFT and CWT as well as test how well these approaches can predict erosion rate. We used the functional 270 

form for a 1D hillslope experiencing nonlinear diffusion given as  

𝑧 =
𝐷𝑆𝑐

2

2(𝜌𝑟/𝜌𝑠)𝐸
[ln (

1

2
(√1 + (

2(
𝜌𝑟
𝜌𝑠

)𝐸𝑥

𝐷𝑆𝑐
)

2

+ 1)) − √1 + (
2(

𝜌𝑟
𝜌𝑠

)𝐸𝑥

𝐷𝑆𝑐
)

2

+ 1] ,      (911) 
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where E is the erosion rate calculated using Equation 1, Sc is the threshold, or critical, slope angle, and x is distance along the 

hillslope profile (Roering et al., 2007). We extended the hillslope profile solution perpendicular to the x-axis to construct a 2D 

synthetic hillslope on a 201x201 m grid (Fig. 78, 89, S2). Odd hillslope dimensions ensure the existence of a hilltop pixel in 275 

the middle of the domain. We utilized the PFT and CWT, including both CWT definitions for the wavelet scale λ (Equations 

79, 810; TC98, L07), to calculate CHT-W and CHT-P of the synthetic hillslopes for several different scenarios. Specifically, we 

considered various dimensionless erosion rates, E*, given by: 

𝐸∗ =
2𝐸(

𝜌𝑟
𝜌𝑠

)𝐿𝐻

𝐷𝑆𝑐
=

2𝐶𝐻𝑇𝐿𝐻

𝑆𝑐
,           (1012) 

where LH is hillslope length (Roering et al., 2007). In testing the ability of the CWT and PFT to predict hilltop curvature, we 280 

generate hillslopes with a range of E* values that can account for variations in E, CHT, LH, and Sc. For instance, low (high) E* 

values may correspond to low (high) E, CHT, or LH as well as high (low) Sc, or some combination thereof. We specifically 

tested E* values of 1, 10, 30, and 100. While E*=100 is an extreme case and may only be rarely observed in natural landscapes 

that are eroding rapidly and also manage to maintain a soil mantle, such as badlands, E* values of 1, 10, and 30 have been 

readily observed in multiple landscapes (Clubb et al., 2020; Hurst et al., 2019, 2013; Marshall and Roering, 2014; Roering et 285 

al., 2007). 

In addition, to account for natural topographic roughness that the CWT and PFT smooth over to estimate CHT, we 

introduce noise to the synthetic hillslopes in the form of white (β=0), pink (β=-1), and red, or Brownian, (β=-2) noise, where 

β is spectral slope. White noise denotes a random surface where all wavenumbers (frequencies) have equal amplitude, or 

spectral power. Conversely, spectral power density varies inversely (β=-1) with wavenumber for pink noise, such that low 290 

wavenumbers have higher intensity. Similarly, red noise exhibits higher spectral power at low wavenumbers, but more 

dramatically than for pink noise. While hillslope spectra will vary between landscapes and likely exhibit a combination of 

different spectral slopes depending on the scale of analysis, red noise surfaces generally best describe topographic noise in 

natural landscapes while white noise surfaces are comparatively the least likely (e.g. Booth et al., 2009; García-Serrana et al., 

2018; Marshall and Roering, 2014; Pelletier and Field, 2016; Perron et al., 2008). We generated each noisy surface of values 295 

normally distributed about 0 with the standard deviation ranging from -1 m (pits) to 1 m (mounds; Konowalczyk, 2021). For 

each type of noise, we tested how the amplitude of the noise affects calculated CHT by scaling the noise distributions (±1 m) 

by 0.1%, 0.5%, and 5% of hillslope length (LH=100 m). In other words, we test cases where the standard deviation of the noise, 

σ, is σ=0.001LH, σ=0.005LH, and σ=0.05LH, corresponding to 1σ values of 10 cm, 50 cm, and 5 m, respectively. While 

topographic noise with a distribution of amplitudes with a standard deviation of 5 m is likely unphysical for soil mantled 300 

landscapes, this extreme case allows us to clearly test how different topographic parameters affect calculated values of E* and 

how well each measurement technique can filter out noise.  

 

 

 305 
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4 Results 

4.1 Computational efficiency of CWT and PFT curvature calculation 

We find that the CWT is dramatically more efficient at calculating hilltop curvature than the PFT. Curvature 

calculation time depends on smoothing scale, λ, with large kernel sizes taking longest for both the PFT and CWT. Specifically, 

we compared curvature calculation times for the PFT and CWT in selected portions of the Hadsall Creek and Bear Creek 310 

catchments for λ=5-197 m. We find that for the 513x513 single precision grid, the PFT takes ~4-4.5 seconds to calculate 

curvature at the smallest scales and ~30 seconds to calculate curvature at larger scales (Fig. 3A, B). Measurement time does 

not vary greatly between the fast and slowly eroding landscape DEMs. By comparison, for λ=5-200m, both the CWT L07 and 

TC98 definitions for λ calculate curvature at the smallest scales in ~0.0039-0.004 seconds while at larger scales they calculate 

curvature in ~2.2-2.3 seconds (Fig. 3A, B). Comparing the two techniques, we find that at the smallest smoothing scales 315 

(λ=5m) the CWT operates >103 times faster than the PFT, while at larger scales where λ approaches 200 m, the CWT still 

outpaces the PFT by over an order of magnitude (Fig.  3C4A, DB). 

In addition to the CWT outpacing the PFT at a large range of λ in two landscapes exhibiting contrasting morphology, 

we observe that the relative speed of the CWT to the PFT increases with DEM size. Specifically, we find that for the smallest 

DEM for which we calculated curvature (171x171 grid), the CWT is ~500 times faster than the PFT when λ=5 m and is ~10 320 

times faster than the PFT when λ=101 m (Fig. 4C). As DEM size increases, the computational advantage of the CWT increases, 

such that for the large DEM (682x692 grid), the CWT operates >103 times faster than the PFT when λ=5 m and ~30 times 

faster when λ=101 m (Fig. 4C).   

 

4.2 Similarity of CHT-P and CHT-W 325 

We utilized 2D CWTs and PFTs to calculate CHT-W and CHT-P for a range of λ in the OCR catchments of Hadsall 

Creek, NFSR, and Bear Creek. We find that CHT-W and CHT-P are similar when using λ values of 5-30 m. Specifically, Fig. 2 3 

compares output CHT-W using both λ length scale definitions (Equations 79, 810) and CHT-P for the representative hilltop in each 

catchment. Mean measured CHT-W and CHT-P values differ the most at small smoothing scales, where signal to noise ratio 

(topographic noise to underlying CHT) is highest (Fig. 2A3A, D, G). At these small smoothing scales, the standard deviation 330 

of CHT-P is larger than that of CHT-W (Fig. 2B3B, E, H). Mean CHT-W for both L07 and TC98 λ definitions are similar, as are the 

output standard deviations (Fig. 23). However, we observe that mean CHT-W calculated using the TC98 definition of λ is lower 

in magnitude than that of L07 (Fig. 23; Table 1). This is not unexpected, however, since λ, as defined by TC98 in Equation 

79, is effectively smaller than that of L07 defined in Equation 108, for a given wavelet scale, s. Figure 4 compares the output 

CHT measurements from each technique by plotting CHT for individual DEM nodes for λ=15 m. If measurements from each 335 

technique are in agreement, their output CHT values should plot as a 1:1 line. Indeed, CHT-W for TC98 λ is lower than that of 

L07 for both the representative hilltop and all mapped hilltops, with the largest deviation occurring on the sharpest hilltops 

(Fig. 4C5C, F, I). Similarly, mean CHT-W (TC98 and L07) is lower than CHT-P, particularly for high magnitude curvatures. 
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Nevertheless, the output values from each definition do not vary dramatically, particularly when considering the CHT for DEM 

nodes corresponding to representative hilltops (Fig. 45). 340 

We additionally plot probability density functions (PDF) of measured CHT-W and CHT-P for each catchment (Fig. 56, 

S1). Notably, the shape of each PDF is similar between measurement techniques but is shifted along the x-axis due to the 

variable definitions of λ. This shift is further illustration of the deviation from a 1:1 relationship between each measurement 

technique as observed in Fig. 45. Similar to the greater deviation between calculated CHT at curvature extrema in Fig. 45, we 

observe greater offset between PDFs in the distribution tails, while the peaks remain similar. We observe this consistency 345 

between PDF peaks reflected in the mean CHT of the PDFs, which are similar regardless of measurement technique (Fig. 56; 

Table 1, 2). 

4.3 Erosion rate calculated with CHT and cosmogenic radionuclides 

We utilized CHT for λ=15 m to estimate erosion rate. Erosion rates calculated from CHT-P and CHT-W for all mapped 

hilltops and the representative hilltop in each catchment can be found in Table 2.  We observe that CHT-P and CHT-W produce 350 

expected relative pattern of erosion rate in our OCR catchments. That is, calculated erosion rate from CHT is fastest at Hadsall 

Creek and slowest at Bear Creek, as revealed by our cosmogenic erosion rate data (Fig. 56, Table 2). Notably, we observe that 

CHT-generated erosion rates (mean ± standard deviation) fall within or near the measurement uncertainty of the CRN erosion 

rate for both the representative hilltop and all hilltops (Table 2). For instance, CRN-measured erosion rates are 0.113±0.018 

mm yr-1 at Hadsall Creek, 0.058±0.0054 mm yr-1 for the NFSR, and 0.008±0.0007 mm yr-1 at Bear Creek (Table 3, 4). 355 

Similarly, for the case of the representative hilltop and using the TC98 λ definition, we find CHT-calculated erosion rates of 

0.178±0.030 mm yr-1 at Hadsall Creek, 0.088±0.025 mm yr-1 for the NFSR, and 0.007±0.005 mm yr-1 at Bear Creek. The rates 

calculated with the PFT and L07 λ definition are similar, whether considering the representative hilltop or all mapped hilltops 

in each catchment (Table 2; Fig. 56, 67, S1). Finally, we observe linear correlation between CHT-calculated and CRN-measured 

erosion rates at our OCR catchments (E=0.88CHT+0.002), consistent with the relationship between CHT and E expected in 360 

Equation 1 (Fig. 67). Furthermore, the diffusivity we infer from the slope of this relationship is 0.002±0.0004 m2 yr-1 (taking 

into account 
𝜌𝑠

𝜌𝑟
 = 0.5), a value consistent with diffusivities measured elsewhere in the OCR (Roering et al., 1999).  

 

4.4 Testing of CHT extraction with synthetic hillslopes  

We calculated CHT-P and CHT-W for a series of synthetic hillslopes with a range of dimensionless erosion rates, E*, and 365 

topographic noise (Fig. 78, 89). We observe that the ability of the CWT and PFT to reproduce the defined curvature at particular 

λ depends on the dimensionless erosion rate, E*, though the type and magnitude of added noise contributes to uncertainty in 

appropriate λ values to be used to calculate erosion rate. We focus on synthetic hillslopes where no noise has been added (i.e. 

σ=0 cm) as well as where noise amplitude σ=0.5% LH, as the magnitude of noise in this case (σ=50 cm) is a reasonable physical 

approximation of noise and surface roughness in natural landscapes (e.g. Marshall and Roering, 2014; Pelletier and Field, 370 
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2016; Roth et al., 2020). The cases where noise amplitude is defined by σ=0.1% LH (σ=10 cm) and σ=5% LH (σ=5 m) can be 

found in the Supplemental Information (Fig. S5-S10).  

 

4.4.1 Slowly eroding synthetic hillslopes, E*=1 

We observe that for E*=1, both the PFT and CWT reasonably predict the model-defined CHT (and thus E) at moderate 375 

smoothing scales. Specifically, when σ=0.5% LH, CHT-W and CHT-P converge on the defined CHT when λ>~9-11 m for white 

noise, λ>~15-19 m for pink noise, and λ>~13 m for red noise (Fig. 9B10B-D). At smaller λ, the signal to noise ratio is too high 

for noise be adequately filtered by either the PFT or CWT. This mirrors past results in natural landscapes, where a sufficiently 

large smoothing scale must be selected to smooth over topographic noise and recover an accurate CHT (Hurst et al., 2012; 

Roering et al., 2007). Notably, when E*=1, the hillslopes are not sufficiently steep to approach Sc (Fig. 78, 89). Thus, even at 380 

the largest smoothing scales, the CWT and PFT accurately record curvature (Fig. 9A10A-D). In natural landscapes, however, 

valley bottoms will introduce positive curvatures, which will cause an increase in curvature (i.e. become less negative), at 

smoothing scales that approach the hillslope length, which has also been utilized to constrain an optimal smoothing scale 

(Hurst et al., 2012), and which we observe in OCR catchments (Fig. 2A3A, D, G).  

We observe that the uncertainty in CHT, which we define as the standard deviation of CHT along the hilltop, is highest 385 

at the smallest smoothing scales (Fig. S3, S4). Notably, we observe for all noise types that at small smoothing scales of λ=5-

~13m, CHT-P exhibits higher uncertainty than CHT-W. As λ increases, the uncertainty in CHT-P and CHT-W diminishes as 

topographic noise is progressively filtered. Because red noise includes higher spectral power at long wavelengths, we observe 

that the decrease in CHT uncertainty occurs at larger smoothing scales, converging towards 0 at scales of >17 m (Fig. S4). 

We find that when no noise is added to the synthetic hillslopes, CHT-P and CHT-W accurately predict CHT at all scales 390 

(Fig. 9A10A). While there is some deviation between measured and defined CHT at larger scales, this deviation is exceptionally 

small (<0.5%) and is primarily a result of edge effects that may not be fully clipped for both the CWT and PFT at the edge of 

the synthetic hillslope domain. Uncertainty in CHT-W and CHT-P is near 0 when no surface noise is added, with deviations again 

primarily due to the presence of edge effects that are not fully clipped off at the hillslope tips (Fig. S4). Finally, we observe 

that for a given style and amplitude of added topographic noise, the uncertainty in CHT does not vary with changes in E* (Fig. 395 

S4). We do not vary topographic noise as a function of E*, so equal uncertainty over a range of E* values indicates that variable 

hillslope form as defined by E* does not affect the uncertainty in CHT along the hilltop. Given the convolutional form of the 

CWT in Equation 6 7 and the distributive property of convolutions (i.e 𝑓 ∗ (𝑔 + ℎ) = (𝑓 ∗ 𝑔) + (𝑓 ∗ ℎ), where f is the wavelet, 

g is the synthetic hillslope, and h is surface noise),, given as 

𝑓 ∗ (ℎ + 𝑘) = (𝑓 ∗ ℎ) + (𝑓 ∗ 𝑘),            (13) 400 

where f is the wavelet, h is the synthetic hillslope, and k is surface noise,  the standard deviation of CHT remaining constant as 

a function of E* is not unexpected.  

  

4.4.2 Moderate to fast eroding synthetic hillslopes, E*≥10 
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We observe that both the CWT and PFT produce biased CHT as E* increases. The deviation between the model-405 

defined and measured CHT progressively grows for larger E*. Specifically, for the case of λ=15 m, when E*=10, we find that 

CHT-W and CHT-P are within ~10% of the defined CHT, with modest dependencies on the type of topographic noise (Fig. 9F10F, 

G, H). However, CHT-P and CHT-W are underestimated by >20% for E*=30 hillslopes and by 60% for E*=100 slopes when λ=15 

m. This deviation occurs for hillslopes constructed with topographic noise of all types as well as the synthetic hillslopes without 

added noise (Fig. 9I10I-L). Even for small λ, we observe that CHT is systematically underestimated. For the case of E*=30, we 410 

observe that CHT-W and CHT-P deviate by 10-25% for λ<15 m, with the smallest λ (~5-7 m) exhibiting the least deviation, with 

CHT-P and CHT-W falling within ~10% of the known CHT. CHT is reasonably recovered at λ=5 m for the red noise E*=30 hillslope, 

despite the noise dominating CHT-W and CHT-P when λ=5 m for the E*=1, 10 hillslopes. Given the added noise is constant 

between E* values, this accurate recovery of CHT for E*=30 when λ=5 m may indicate that planar hillslopes introduce curvature 

values sufficiently near-zero to cancel out the positive (concave) noise. For λ>15 m, we observe that CHT is underestimated by 415 

at least 25% for all E*=30 hillslopes and >60% for E*=100 hillslopes. As λ increases, this deviation systematically grows such 

that when λ=35, CHT is underestimated by half for E*=30 hillslopes and ~80% for exceptionally narrow hillslopes where 

E*=100 (Fig. 9I10I-P). Importantly, we observe these major deviations for the hillslopes with no added noise as well, indicating 

that topographic noise is not solely responsible for biased CHT.  

 420 

5 Discussion 

Application of CWTs and PFTs to measure CHT and estimate erosion rate in soil mantled landscapes such as the OCR 

produces erosion rate values that are in agreement with those collected from CRNs in stream sediments, though with 

dramatically disparate efficiencies. Yet, we also observe that while both techniques accurately reproduce hillslope morphology 

in synthetic landscapes experiencing modest dimensionless erosion rates, both techniques exhibit systematic bias where 425 

dimensionless erosion rate is moderate to high, calling into question the accuracy of past estimates of erosion rate in landscapes 

that are experiencing moderate to rapid erosion rates. Nevertheless, CWTs are an exciting tool to be added to hillslope 

geomorphometric analyses, particularly as high-resolution topographic datasets continue to grow and classification of 

topographic roughness, particularly on the hillslope scale, continues to improve.  

 430 

5.1 CHT measurement and erosion rate estimation in natural landscapes: Oregon Coast Range 

We utilized CWTs and PFTs to estimate erosion rate in a landscape that has been thoroughly studied in past 

geomorphology studies. Encouragingly, CHT-calculated erosion rate in Hadsall Creek, NFSR, and Bear Creek reproduce CRN-

measured erosion rates from each site. We also observe, however, that some variability in measured CHT reinforces the need 

to use caution when selecting hilltops at which curvature will be extracted, especially in landscapes where topographic noise, 435 

including from anthropogenic sources such as roads, as well as landslides and variable lithology, may introduce inaccurate 

measurements of curvature. Indeed, despite careful selection of hilltops, calculated CHT exhibit a wide range of values (Fig. 

45, 56, S1). Fortunately, the catchments we have sampled here exhibit few to no deep-seated landslides and are mapped entirely 
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within the Tyee Formation, which exhibits little variability over small spatial scales. Also, while there are numerous forest and 

logging roads throughout the OCR, they are easily identifiable in lidar data and are limited to a small portion of hilltops. Hence, 440 

while haphazard selection of hilltops without a predefined methodology for trimming hilltops should be avoided, our observed 

agreement between estimated erosion rates for all selected hilltops in a catchment and representative hilltops emphasizes that 

mild to moderate trimming of hilltop masks is sufficient for estimating an accurate erosion rate (Table 2, Fig. 56, S2). Finally, 

agreement between TC98 and L07 λ definitions and CRN erosion rates suggests that either definition is reasonable for 

calculating CHT. However, careful and informed selection of λ when calculating erosion rate remains paramount.  445 

5.2 Rapid calculation of CHT 

We have demonstrated that CWTs calculate CHT >103 times faster than PFTs at smoothing scales of λ=5 m (for a 

513x513 single precision grid).   At smoothing scales often utilized to estimate CHT (~10-30 m), the CWT operates >102 times 

faster (Fig. 4). Even at the largest smoothing scales we test (up to 197 m), the CWT operates ~14-15 times faster than the PFT. 

Importantly, the computational advantage of the CWT increases with DEM size (Fig. 4C), such that the ~103 computation time 450 

advantage that we observe should be considered a minimum, as most landscape analyses utilize DEMs larger than the grids 

we test here. While PFT computation times can often be substantially reduced by limiting curvature calculation to the hilltops, 

Tthis dramatic difference in curvature calculation time opens many doors for utilizing hilltop curvature in topographic analyses 

of landscapes that require consideration of large spatial scales. What’s more, the ability of the CWT to operate so efficient ly 

on high-resolution lidar data does not necessitate that coarse data be used to analyse large regions, as has generally been the 455 

case for past geomorphic analyses of regional and continental-scale bedrock rivers. Rather, the ability of the CWT to calculate 

hilltop curvature over large spatial scales with such speed means that the limiting factor for large landscape analyses where 

lidar data is available is not longer the operating time of the measurement technique, but rather the ability of existing systems 

to store vast quantities of high-resolution topographic data and curvature-related products! In addition to CHT measurement, 

the rapidity of the CWT will allow for large-scale analyses of other types of curvature and landscape characteristics well-suited 460 

to spectral analyses including mapping landslides (Booth et al., 2009; LaHusen et al., 2020), quantifying surface roughness 

(Doane et al., 2019; Roth et al., 2020), and mapping landforms (Black et al., 2017; Clubb et al., 2014; Passalacqua et al., 2010; 

Perron et al., 2008; Struble et al., 2021). 

 

5.3   CHT underestimated in moderate to fast-eroding landscapes 465 

We find that both the CWT and PFT are unable to reproduce accurate CHT at moderate to fast dimensionless erosion 

rates. Disagreement between measured and defined CHT for a given E* can be conceptualized primarily as a biasing of curvature 

measurement as hilltops progressively narrow and steepen in response to faster erosion rates. Specifically, since we utilize a 

nonlinear diffusion framework to construct the synthetic hillslopes (Equation 911), planar side slopes begin to develop and 

advance towards the hilltop as the hillslope gradient approaches the critical slope angle, Sc, at moderate to fast E*. The 470 
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formation of planar hillslopes means, by definition, that curvature does not accurately reflect CHT along the entire hillslope 

length, as would be the case for a slowly eroding broad hillslope with constant curvature experiencing (i.e. linear diffusion). 

The E*=1 synthetic hillslope, while also constructed with Equation 911, can be approximated as experiencing linear diffusion, 

as slopes are not sufficiently steep to approach SC and develop planarity. In this case, even as λ increases, CHT-W and CHT-P 

accurately recover the actual CHT. We observe that at these slow erosion rates (E*=1-10), the main obstacle to recovering an 475 

accurate CHT is topographic noise (Fig. 9A10A-H). As we have applied here, and has been previously demonstrated (Hurst et 

al., 2012; Roering et al., 2007), careful selection of a λ sufficiently large to remove such noise, but not so large such that 

concave valley bottoms introduce positive curvatures, still allows for accurate calculation of CHT, particularly for E*=1. By 

contrast, in cases where E* is sufficiently high to develop planar side slopes, once λ reaches a sufficiently high value to remove 

topographic noise, the CWT and PFT kernels have become sufficiently large to incorporate planar slopes into the curvature 480 

measurements, thus underpredicting the actual value of CHT. In these cases, topographic noise is a secondary impediment to 

accurate CHT measurement, preventing utilization of a sufficiently small λ that avoids planar hillslopes. Furthermore, if E* is 

sufficiently large, planar side slopes may appear close enough to the hilltop to disqualify almost any smoothing scale , which 

is clear from our synthetic hillslopes with no added noise (Fig. 9E10E, I, M). Importantly, even at modest E*=10, planar slopes 

begin to bias CHT (Fig. 9E10E).   485 

The grid resolution of digital topographic data has been recognized to affect measurements of topographic curvature 

and hillslope sediment flux (e.g. Ganti et al., 2012; Grieve et al., 2016b). However, the deviation between known and measured 

CHT we note here is intrinsic to the form of hillslopes that are described by the nonlinear diffusion model. As E* increases and 

the hilltop undergoes a concomitant increase in CHT, a smaller λ is ideally required to avoid the planer side slopes and accurately 

calculate CHT. Unfortunately, however, λ can only be decreased so much before topographic noise and stochastic and 490 

disturbance-driven processes begin to overwhelm the calculated curvature values (Hurst et al., 2012, 2013; Roering et al., 

2007; Fig. 23, 910). As such, increasing the resolution of topographic data, while desirable for characterizing hillslope sediment 

transport processes, will not by itself alleviate the systematic deviation between measured and model-specified CHT, as such 

high-resolution data will also be recording the stochastic signals that deviate from the underlying hillslope form (Roth et al., 

2020). However, improved characterization of the distribution of roughness and microtopography in landscapes and how they 495 

may vary with erosion rate may provide a remedy for estimating erosion rate from topography and defining a better-informed 

λ, particularly in landscapes where hilltops are conspicuously sharp and where topographic resolution continues to improve.  

Importantly, we stress that neither CWTs nor PFTs are, at this time, capable of accurately estimating hilltop curvature 

at moderate to high E*, even when λ is small (Fig. 910). We observe that the CWT and PFT systematically underpredict E* 

when E*=100 (Fig. 9M10M-P). However, we acknowledge that E* values of 100 are perhaps unreasonably high for most 500 

natural landscapes, with perhaps a few notable exceptions (e.g. Taiwan, Himalaya, New Zealand). More so, soil production 

limits (e.g. DiBiase et al., 2012; Heimsath et al., 1997; Montgomery, 2007; Neely et al., 2019) imply that these settings may 

exhibit processes that are not well represented with the soil creep model employed here. Regardless, the CWT and PFT clearly 

underpredict CHT when E*=30 and exhibit underpredicted CHT when E*=10, even in the most ideal case when synthetic 
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hillslopes have no added noise. Similar values of E* have been recorded in numerous natural landscapes (Clubb et al., 2020; 505 

Grieve et al., 2016a; Hurst et al., 2019, 2013, 2012; Marshall and Roering, 2014; Roering et al., 2007). 

 

5.4 Does hilltop curvature vary linearly with erosion rate? 

The systematic underestimation of CHT that we observe here has important implications for interpreting erosion rates 

and hillslope surface processes in natural soil-mantled landscapes that are not eroding slowly. Specifically, our results here 510 

urge caution when applying hilltop curvature measurement techniques to natural soil mantled landscapes eroding at moderate 

to rapid rates and where hilltops are correspondingly sharp. While CHT has been found to generally agree with independently 

calculated erosion rates following Equation 1, the measurement artifact we have observed here calls into question the accuracy 

of calculated erosion rates from CHT in natural landscapes in past studies. Recent observations put forward by Gabet et al. 

(2021), show that hilltop curvature varies with the square root of erosion rate, which implies a square root relationship between 515 

hillslope diffusivity, D, and erosion rate, representing a deviation from the long-held view that CHT varies linearly with erosion 

rate (Equation 1). Here we use a synthetic hillslope simulation to explore whether these findings may be influenced by a 

systematic bias in the estimation of CHT as described above (Fig. 910). Specifically, we followed the methodology laid out by 

Gabet et al. (2021) and reproduced a CHT-E relationship from synthetic hillslopes with no added noise. While Gabet et al. 

(2021) constructed synthetic hillslope profiles to account for the effect of grid spacing on calculated CHT, we additionally 520 

consider the role of smoothing scale, λ, on estimation of CHT. In order to facilitate comparison, we initially selected λ=14 m, 

the same scale that Gabet et al. (2021) applied at each of their field sites, to calculate CHT. We constructed a series of synthetic 

hillslopes described by Equation 9 11 for E*=1-100, which corresponds to erosion rates of ~0.01-1 mm yr-1 (assuming D=0.003 

m2 yr-1 and 
𝜌𝑠

𝜌𝑟
=0.5). We used the CWT to calculate curvature; a PFT could be used as well, which would be consistent with 

the Gabet et al. (2021) methodology. However, as we have demonstrated, CHT-P and CHT-W are similar for both natural hillslopes 525 

and synthetic hillslopes with no added noise (Fig. 23, 910). 

We observe that erosion rate and CHT do not vary linearly as expected from Equation 1 for all erosion rates (Fig. 

1011). While the relationship between erosion rate and measured hilltop curvature (we plot the absolute value, |CHT|, to allow 

visualization of positive values) is linear as expected from Equation 1 for erosion rates of 0.01-0.08 mm yr-1, the measured and 

actual synthetic values of |CHT| begin to clearly diverge for erosion rates >0.08 mm yr-1 (Fig. 10A11A), though some deviation 530 

exists at erosion rates as low as ~0.03 mm yr-1 (Fig. 10B11B; blue squares).  As this deviation increases with E*, it approximates 

a square root relationship between erosion rate and hilltop curvature. Importantly, the erosion rate at which this deviation 

occurs is heavily dependent on smoothing scale and diffusivity. We tested a range of diffusivities (D=0.001-0.005 m2 yr-1) for 

λ=14 m and λ=20 m and plotted the ratio of measured CHT to the actual CHT (Fig. 10B11B). We find that for smaller D, the 

deviation between measured and model-defined CHT occurs at slower erosion rates, while λ dictates the magnitude of deviation 535 

(Fig. 10B11B). Thus, while the erosion rates at which we observe significant deviation between measured and model-defined 

CHT tend to be higher than those found in many soil-mantled landscapes (for D=0.003 m2 yr-1 and λ=14 m) (Montgomery, 
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2007), including those tested by Gabet et al. (2021), the strong dependency of this deviation on diffusivity and smoothing scale 

warrants caution in interpretations of nonlinear relationships between hilltop curvature and erosion rate. We encourage future 

work to investigate climatic and other factors that dictate hillslope diffusivity and the potential coupling between diffusivity 540 

and erosion rate (e.g. Richardson et al., 2019), although care must be taken to ensure that observed relationships do not result 

from measurement artifacts that result deviate from the underlying hillslope form. 

Current hilltop curvature measurement techniques do not have a well-defined capability to filter topographic noise 

that is inherent to all landscapes and topographic datasets while establishing maintaining an unbiased value of CHT at elevated 

E*. As such, estimates of erosion rates using Equation 1 should be considered minimum erosion rates, particularly in 545 

landscapes with conspicuously sharp hilltops (Figure 10). These results strongly motivate future investigation of the structure 

of topographic noise in landscapes due to underlying processes such as trees throw and other sources of bioturbation, as well 

as noise inherent to digital topographic data. Improved understanding of the structure of topographic surface roughness may 

facilitate future accurate morphologic estimates of erosion rate in fast-eroding landscapes.  

6. Conclusions 550 

 We utilized 2D continuous wavelet transforms to calculate hilltop curvature in three catchments in the Oregon Coast 

Range that exhibit a diversity of hillslopes. We found that the measured hilltop curvature values are comparable to those 

calculated from fitting 2D polynomial functions to topography to calculate curvature, a method that has been commonly 

applied elsewhere. Both techniques produce estimates of erosion rate that are consistent with those independently constrained 

from cosmogenic radionuclides in stream sediments. Specifically, we find that erosion rate calculated with the CWT is 555 

~0.156±0.055 mm yr-1 in Hadsall Creek, 0.1±0.05 mm yr-1 in the North Fork Smith River, and 0.01±0.008 mm yr-1 in three 

small catchments that drain to Bear Creek. We further we find that the 2D continuous wavelet transform operates 102 to >103 

times faster than the 2D polynomial when applied at smoothing scales that are commonly used for calculating hilltop curvature 

(~5-30 m). We additionally find that the computational advantage of the 2D continuous wavelet transform increases as digital 

elevation models become larger This dramatic disparity in operation time opens numerous doors for widespread topographic 560 

analysis as high-resolution topographic data becomes increasingly available.  

 We additionally test the accuracy of both the wavelet transform and polynomial by constructing synthetic hillslopes 

following a nonlinear diffusive hillslope geomorphic transport law. Synthetic hillslopes were constructed with and without 

added surface noise of various types (white, pink, red/Brownian) and exhibited various forms corresponding to a range of 

dimensionless erosion rates. We find that both the wavelet transform and polynomial are able to reproduce hilltop curvature 565 

for slow dimensionless erosion rates (E*=1-10). However, we also observe that both techniques produce underestimated values 

of CHT when E*≥10, as planar hillslopes begin to systematically bias the calculated curvature at the hilltop. While this is in 

part due to the required smoothing of topography to remove added noise, which in natural landscapes is due to stochastic 

transport processes as well as noise inherent in digital topographic data, we also find that curvature is underestimated on 

synthetic hillslopes where there is no added noise. At moderate to high dimensionless erosion rates (E*=30-100), we find that 570 

hilltop curvature is systematically underestimated as hillslopes become progressively narrower near the hilltop. This systematic 
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deviation from the defined and measured hilltop curvature has key implications for predicting erosion rates in soil mantled 

landscapes. In landscapes eroding at moderate to rapid rates, erosion rates calculated with hilltop curvature should be 

considered a minimum. Finally, we demonstrate that underestimation of synthetic hilltop curvature at moderate to fast erosion 

rates results in apparent power law and square root relationships between erosion rate and hilltop curvature. This previously 575 

observed relationship from natural hillslopes has led to suggestions that hillslope diffusivity may also vary as the square root 

of erosion rate. Our results here, however, demonstrate that this is likely a measurement artifact introduced by planar hillslopes 

biasing hilltop curvature measurements as hilltops progressively narrow and steepen. Future hillslope geomorphic work must 

more clearly characterize the roughness characteristics of soil mantled hillslopes and develop methods that smooth and remove 

topographic noise while maintaining an unbiased hilltop curvature measurement, if hilltop curvature is to be applied in rapidly 580 

eroding landscapes.     

 

 

 

 585 

 

 

 

Code and Data Availability 

We utilized TopoToolbox (https://topotoolbox.wordpress.com/download; Schwanghart and Scherler, 2014) code in this paper, 590 

which is freely available. We additionally used wavelet codes from the Automated Landslide Mapping toolkit (ALMtools) by 

Adam Booth (http://web.pdx.edu/~boothad/tools.html; Booth et al., 2009). Additional MATLAB scripts, including for 

synthetic hillslope construction, are available at https://github.com/wtstruble. All utilized lidar DEMs are publicly available 

from the Oregon Department of Geology and Mineral Industries (https://www.oregongeology.org/lidar/). 
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Figure 1: Oregon Coast Range study sites. Note the drainage divide (red) between catchments that flow directly to the Pacific Ocean 

and those that flow east into the Willamette River, which then flows northward to the Columbia River. A) Hadsall Creek and the 

North Fork Smith River (NFSR). B) The three catchments that flow to Bear Creek. Arrows in A) and B) denote river flow direction.  
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Figure 2: Oregon Coast Range hillslope profiles.   Example lidar hillshades of hillslopes from Hadsall Creek (a), the 

North Fork Smith River (b; NFSR), and Bear Creek (c). Red lines in hillshades correspond to the hillslope profiles in 

right column. Note that hillslope profiles have the same horizontal scale, allowing for clear visualization of the 

difference in hillslope relief between sites. Each sample hillslope profile corresponds to the representative hilltop in 830 

each catchment (yellow lines in Figure 1). Note that at the rapidly eroding Hadsall Creek and NFSR, the hillslopes 

have attained threshold gradients and are near-planar. CHT, however, still reflects the difference in erosion rate 

between sites.

Formatted: Left, Line spacing:  single
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 835 

Figure 23: Curvature extracted from representative hilltop at Hadsall Creek, NFSR, and Bear Creek for a range of λ. 

Upper row is CHT measurements, second row is the standard deviation of CHT, and the bottom row is the interquartile 

range of CHT. Note that the scaling break that identifies where tree throw pits are filtered out depends on the size of the 

considered hillslope and consistency of pit-mound topographic in a landscape. Here, though, a break exists at λ≈15 m 

for Hadsall Creek (especially apparent in standard deviation and interquartile range) and the NFSR and Bear Creek 840 

at λ≈11-20 m (note that second break at ~60 m  in Bear Creek corresponds to the introduction of concave valleys). 

These scaling breaks are generally consistent with those observed for the OCR by Roering et al. (2010) and are visible 

for CWT and PFT λ definitions.   
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Figure 34: Speed of the CWT and compared to the PFT for different smoothing scales, λ. A, B: Relative speed of the 

CWT and to the PFT processing time for small portions (513x513 single precision grid, cell size of 0.9144 m) of the 

Hadsall and Bear Creek catchments, quantified as the ratio of CWT/PFT processing time. Note the speed and 

consistency of the CWT. C, D: Relative speed of the CWT to the PFT, quantified as the ratio of CWT/PFT. Thus, for 850 

each smoothing scale, each point can be interpretated as the CWT being n times faster than the PFT. At small λ, the 
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CWT is >1000 times faster than the PFT. The CWT remains >100 times faster than the PFT until λ≈30 m, a scale that 

is usually larger than most smoothing scales utilized in CHT calculation. C: Relative speed of the CWT to PFT for DEMs 

of various size in Hadsall Creek for λ=5-101 m. Largest DEM is 682x682 pixels. The medium-sized DEM is the upper-

left quadrant of the large DEM (341x341 pixels), and the small DEM is upper-left quadrant of medium DEM (171x171 855 

pixels). Note that the CWT increases in relative speed as DEM size increases.  
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Figure 45: Comparison of CHT calculation methods for λ=15 m. Black dots correspond with curvature measured at 

nodes for all mapped hilltops (roads, landslides, valley bottoms, etc. removed). Red points correspond with the 

representative hilltop nodes (Fig. 1). Perfect agreement between measurement techniques would plot as 1:1 line (black 

line). Recall that more positive (lower magnitude) CHT corresponds with more gentle hillslopes (upper-right corner). 865 

See text for details. L07: Lashermes et al. (2007); TC98: Torrence and Compo (1998).  
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Site 
Lat. 

(° N) 

Long. 

(° W) 
 

Mean CHT (m-1) Median CHT (m-1) 
Standard Deviation CHT 

(m-1) 

CWT 

(L07) 

CWT 

(TC98) 
PFT 

CWT 

(L07) 

CWT 

(TC98) 
PFT 

CWT 

(L07) 

CWT 

(TC98) 
PFT 

Hadsall 

Creek 
43.983 -123.823 

All 

Hilltops 
-0.104 -0.099 -0.110 -0.111    -0.106  -0.116 0.037  0.034  0.040 

Rep. 

Hilltop 
-0.125 -0.119 -0.129 -0.126 -0.120 -0.128 0.023 0.020 0.028 

NFSR 43.963 -123.811 

All 

Hilltops 
-0.061 -0.059  -0.065 -0.059  -0.057 -0.061 0.033 0.037 0.037 

Rep. 

Hilltop 
-0.067 -0.066 -0.069 -0.063 -0.063 -0.068 0.020 0.017 0.023 

Bear 

Creek 
44.181 -123.371 

All 

Hilltops 
-0.007 -0.006   -0.008 -0.006   -0.005   -0.006   0.006 0.005  0.007 

Rep. 

Hilltop 
-0.005 -0.005 -0.006 -0.004 -0.004 -0.005 0.003 0.003 0.004 

 

Table 1: CHT measured at OCR study sites by the CWT and PFT for λ=15 m. L07: λ definition of Lashermes et al. 

(2007); TC98: λ definition of Torrence and Compo (1998). All values rounded to nearest 10-thousandth.  870 

 

 

 

Site 
Lat. 

(° N) 

Long. 

(° W) 
 

Mean E (mm yr-1) Median E (mm yr-1) 
Standard Deviation E 

(mm yr-1) CRN E 

(mm yr-1) CWT 

(L07) 

CWT 

(TC98) 
PFT 

CWT 

(L07) 

CWT 

(TC98) 
PFT 

CWT 

(L07) 

CWT 

(TC98) 
PFT 

Hadsall 

Creek 
43.983 -123.823 

All 

Hilltops 
0.156 0.149  0.164 0.167  0.159 0.174 0.055 0.051 0.060 

0.113±0.018*a 

Rep. 

Hilltop 
0.188 0.178 0.193 0.189 0.179 0.193 0.034 0.030 0.042 

NFSR 43.963 -123.811 

All 

Hilltops 
0.100 0.099 0.104 0.088 0.086  0.092 0.050 0.046 0.055 

0.058±0.0054*a 

Rep. 

Hilltop 
0.092 0.088 0.097 0.095 0.095 0.101 0.030 0.025 0.035 

Bear 

Creek 
44.181 -123.371 

All 

Hilltops 
0.010 0.009  0.012 0.008 0.008 0.009 0.008 0.007 0.010 

0.008±0.0007b 

Rep. 

Hilltop 
0.007 0.007 0.009 0.006 0.006 0.008 0.005 0.005 0.006 

 

Table 2: Erosion rate at OCR study sites calculated with Equation 1, assuming D=0.003 m2 yr-1 and 
𝝆𝒔

𝝆𝒓
=0.5. L07: λ 875 

definition of Lashermes et al. (2007); TC98: λ definition of Torrence and Compo (1998). All values rounded to nearest 

10-thousandth.  
a*Recalculated erosion rates from Penserini et al. (2017); see Table 3. 
bSee Table 4. 
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Catchment Location 

Concentration 

(atoms g-1 

quartz) 

Error 

(atoms g-1 

quartz) 

Erosion 

Rate 

(mm/yr) 

Error 

(mm/yr) 
Notes 

Hadsall 

Creek 

43.985°N, -

123.824°W 
33766.10 (10Be) 4666.26 (10Be) 0.113 0.018 

Recalculated from 

Penserini et al. (2017) 

NFSR 
43.964°N, -

123.811°W 
70902.91 (10Be) 3408.59 (10Be) 0.058 0.0054 

Recalculated from 

Penserini et al. (2017) 

 885 

Table 3: Recalculated CRN erosion rates 

We used the CRONUS online calculator (Balco et al., 2008) to determine catchment-averaged erosion rates from 10Be 

in stream sediment. The samples from Hadsall Creek and NFSR are recalculated from the 10Be data presented by 

Penserini et al. (2017). The sample from Bear Creek is previously unpublished. Reported CRN error is from external 

uncertainty.  890 

 
 

Catchment Location 

Mean 

Elevation 

(m) 

Shielding 

Factor 

Quartz 

Weighta 

(g) 

Be 

Carrier 

Weight 

(mg) 

10Be/9Be 

(x 10-13) 

10Be 

Concentration 

(atoms g-1 

quartz) 

Erosion Rate 

(mm/yr) 

Bear 

Creek 

44.186°N, -

123.375°W 
240 1 25.02 221 6.338±0.1175 400833±8011.37 0.008±0.0007 

 

Table 4: New CRN erosion rate at Bear Creek 
aAssumed a density of 2.6 g/cm3. 895 
We used the CRONUS online calculator (Balco et al., 2008) to determine catchment-averaged erosion rates from 10Be in stream 

sediment at Bear Creek. Reported CRN error is from external uncertainty 
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Figure 56: Probability density functions of CHT (bottom x-axis) and erosion rate calculated using Equation 1 (top x-

axis) for the representative hilltop at each OCR field site. See Fig. S1 for all mapped hilltops version. Note agreement 

between each CHT calculation method. Further, note dramatic variability in CHT between sites (all panels use same x-905 

axis; inset in panel C more clearly displays distribution of CHT at Bear Creek). Small vertical lines at bottom of each 

panel represent the mean of the plotted distribution (Table 2).  Note that positive CHT values are not permitted in the 

output PDF (C).  
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Figure 67: CRN erosion rate vs CHT.  CRN erosion rates for Bear Creek (slow E), NFSR (moderate E), and Hadsall 

Creek (fast E) against the absolute value of CHT for the representative hilltop in each catchment. Filled symbols are 

mean E and CHT values and errorbars correspond to the standard deviation of CHT and external uncertainty in CRN 

erosion rate measurements (Table 1, 3). Note that errorbars may be smaller than the size of the mean symbol for Bear 955 

Creek samples.  
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Figure 78: Synthetic hillslopes constructed using Equation 911. Upper row shows pink noise surfaces that are added to 

the original hillslope form (left column); yellow colors correspond with positive deviations from the hillslope (convex 

noise) and blue with negative deviations (concave noise). Each row of hillslopes corresponds with range of dimensionless 

erosion rates, from E*=1-100. Note the increased prominence of planar hillslopes as E* increases; the z-axis on each 

plot may differ. Noise does not vary with E*; thus the magnitude of noise relative to hillslope relief is more visually 965 

apparent at lower E* (See σ=5% LH column for clear example). Note that all results in Fig. 9C10C, G, K, and O 

correspond with the third column here (σ=0.5% LH). See supplemental for corresponding figures for σ=0.1%LH and 

σ=5%LH cases. 
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Figure 89: Synthetic hillslopes constructed using Equation 911. Same as Fig. 78, but with red noise added (see 

supplemental for white noise example). Upper row shows red noise surfaces added to the original hillslope form (left 

column); yellow colors correspond with positive deviations from the hillslope (convex noise) and blue with negative 975 

deviations (concave noise). Each row of hillslopes corresponds with dimensionless erosion rates from E*=1-100. Note 

the increased prominence of planar hillslopes as E* increases. Noise does not vary with E*; thus the magnitude of noise 

relative to hillslope relief is more visually apparent at lower E* (See σ=5% LH column for clear example). Note that 

compared to Fig. 78, the surface noise exhibits longer wavelength noise, made apparent by larger concave and convex 

regions. Note that all results in Fig. 9D10D, H, I, and P correspond with the third column here (σ=0.5% LH). See 980 

supplemental for corresponding figures for other σ=0.1%LH and σ=5%LH cases. 
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Figure 910: Ratio of CHT of synthetic hillslopes where E*=1, 10, 30, and 100 measured at various smoothing scales, λ, 985 

with: no noise added (first column), σ=0.5% LH white noise (second column), pink noise (third column), and red 

(Brownian) noise (fourth column). Ratio of CHT is quantified as the quotient of the CHT-W or CHT-P and the model-

specified CHT. Black horizontal line in each panel corresponds with where the measured CHT equals the actual synthetic 

CHT (i.e. ratio=1). Points that plot above the line correspond with locations where CHT is overestimated (sharper hilltops 

than expected); points that plot below are underestimations (broader hilltops that expected). See text for details but 990 
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note systematic underestimation of CHT as E* increases, even for the surface with no added noise. Dashed vertical line 

indicates λ=15 m. Note that y-axis differs between E*=1 plots. 

 

 

 995 

 



46 

 

 



47 

 

 

Figure 110: A) The absolute value of CHT plotted against erosion rate for synthetic hillslopes constructed for E*=1-100, 

corresponding to erosion rates of ~0.01-1 mm yr-1 (assuming D=0.003 m2 yr-1, 
𝝆𝒔

𝝆𝒓
=0.5). Red crosses correspond with the 1000 

actual CHT for each synthetic hillslope constructed for a given E*. Black circles are CHT-W, using the L07 λ definition. 

In this case λ = 14 m. Note the linear relationship between CHT and erosion rate at small erosion rates, in agreement 

with Equation 1. At E>~0.08 mm yr-1, the relationship between measured CHT and E is no longer linear but could be 

potentially expressed as a power law. An example square root relationship is plotted at these erosion rates for reference 

(Gabet et al., 2021). Note example synthetic hillslopes profiles spanning the range of erosion rates (y-axes differ). B) 1005 

Ratio of measured CHT and the actual model-defined CHT for synthetic hillslopes constructed for E*=1-100 using a 

range of diffusivities (D=0.001-0.005 m2 yr-1) and measured with λ=14 m (same as panel A) and λ=20 m. For each case, 
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the measured CHT deviates from the known value as erosion rate increases. The erosion rate at which this deviation 

occurs depends on diffusivity and smoothing scale, λ. 


