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Abstract. This paper presents a methodology that uses site-specific topographic and cosmogenic 10Be data to perform multi-

objective model optimisation of a coupled coastal evolution and cosmogenic radionuclide production model. Optimal 

parameter estimation of the coupled model minimises discrepancies between model simulations and measured data to reveal 

the most likely history of rock coast development. This new capability allows for a time-series of cliff retreat rates to be 

quantified for rock coast sites over millennial timescales. Without such methods, long-term cliff retreat cannot be understood 15 

well, as historical records only cover the past ~150 years. This is the first study that has 1) applied a process-based coastal 

evolution model to quantify long-term cliff retreat rates for real, rock coast sites, and 2) coupled cosmogenic radionuclide 

analysis with a process-based model. The Dakota optimisation software toolkit is used as an interface between the coupled 

coastal evolution and cosmogenic radionuclide production model and optimisation libraries. This framework enables future 

applications of datasets associated with a range of rock coast settings to be explored. Process-based coastal evolution models 20 

simplify erosional processes and, as a result, often have equifinality properties, for example, that similar topography 

develops via different evolutionary trajectories. Our results show that coupling modelled topography with modelled 10Be 

concentrations can reduce equifinality in model outputs. Furthermore, our results reveal that multi-objective optimisation is 

essential in limiting model equifinality caused by parameter correlation to constrain best-fit model results for real-world 

sites. Results from two UK sites indicate that the rates of cliff retreat over millennial timescales are primarily driven by the 25 

rates of relative sea level rise. These findings provide strong motivation for further studies that investigate the effect of past 

and future relative sea level rise on cliff retreat at other rock coast sites globally.  
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1 Introduction 30 

Fundamental features of a rock coast are a sea cliff and shore platform, and the rate of cliff retreat is foremost the collective 

result of processes eroding the cliff face horizontally and the shore platform vertically (Sunamura, 1992; Trenhaile, 2008a). 

The ability to erode a cliff face depends fundamentally on the type of cliff material exposed to the delivery of energy to the 

cliff surface, usually in the form of waves. In turn, delivery of wave energy is mediated by the configuration of the shore 

platform, beach width, and wave climate (Sunamura, 1992). Thus, the processes that effect the weathering, erosion and 35 

transport of shore platform, intact cliff, failed cliff and other beach material are an important part of the whole process of 

‘cliff erosion’ (Coombes, 2014; Hurst et al., 2016; Limber and Murray, 2011; Masteller et al., 2020; Naylor and Stephenson, 

2010; Prémaillon et al., 2018; Thompson et al., 2019). These complex and varied processes make predicting long-term cliff 

erosion rates difficult. Erosional processes are governed by climate, relative sea level (RSL), tides and local lithology type 

and structure (Kennedy et al., 2014), which further complicate the prediction of large spatial and temporal-scale erosion rates 40 

at rock coast sites. With climate change threatening the stability of these coastlines through RSL rise and increased 

storminess (Trenhaile, 2014), accurate long-term predictions of erosion rates will be highly valuable in the development of 

scenarios within the context of coastal management.  

 

Understanding and quantifying the long-term trajectory of cliff erosion is central to the development of predictive coastal 45 

evolution models that account for a changing climate. Current records of cliff retreat can only be observed through historical 

records, which are typically over a ~150 year time period (Brooks, 2010; Dornbusch et al., 2008). This time period is 

monopolised by engineering and modification of coastlines, hindering observations of their natural behaviours (Hurst et al., 

2016). Furthermore, infrequent mass wasting events can obscure relationships between climate and average erosion rates in 

short-term records (Trenhaile, 2014). This means projections of cliff retreat derived solely from short-term data records can 50 

be unreliable (Sunamura, 2015). It is critical that cliff retreat is studied over millennial timescales that are able to integrate 

changes in RSL rise, the return period of episodic erosion events and that precede the influence of anthropogenic 

modifications to the coastline.  

 

The contribution of cosmogenic radionuclide (CRN) analysis to the advances in rock coast science are well known, but 55 

further potential in its application to rock coasts is recognised (Trenhaile, 2018).  The quantification of rock coast evolution 

is impeded by scarce and slow erosion indicators and a lack of dateable deposits (Trenhaile, 2008a). However, CRN analysis 

can be applied directly to the shore platform surface to calculate exposure time and erosion rates (Regard et al., 2012). 

Cosmic rays interact with target elements in the upper few metres of the Earth’s surface to produce CRNs (Gosse and 

Phillips, 2001). Model predictions of CRN concentrations across a shore platform display a characteristic ‘humped’ 60 

distribution profile across-shore (Hurst et al., 2017), for which the magnitude of the hump is inversely proportional to cliff 

retreat rate (Regard et al., 2012). Previous applications of CRN measurements on cliffs and shore platforms have been used 
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to quantify cliff retreat rates (Duguet et al., 2021; Hurst et al., 2016; Regard et al., 2012; Rogers et al., 2012; Swirad et al., 

2020), understand Quaternary-scale shore platform exposure history (Choi et al., 2012), date major mass wasting events 

(Barlow et al., 2016; Recorbet et al., 2010) and constrain shore platform denudation rates (Raimbault et al., 2018). 65 

Combining CRN analysis with a coastal evolution model can help reveal site-specific, long-term cliff retreat and shore 

platform lowering rates (Trenhaile, 2018).  

 

A novel contribution here is the use of a morphodynamic model of rock coast development to interpret CRN concentrations. 

Furthermore, this study sees the first application of a morphodynamic rock coast evolution model to real-world sites in order 70 

to model past cliff retreat rates. Coupling CRN concentrations with topography can help constrain modelled 

morphodynamics and replicate real-world sites. Equally, accurate morphodynamic development provided by the coastal 

evolution model is needed in order to interpret CRN concentrations. Application of a process-based model allows for 

replication of CRN production and regulation through time that corresponds directly to rock coast profile development. In 

order to apply a morphodynamic model to a real rock coast site and accurately model CRN concentrations, we need a 75 

rigorous method of comparing model results with measured field data. Primarily, we need to establish whether the model is 

capable of replicating both the measured topography and CRN concentrations simultaneously to ensure the modelled cliff 

retreat rates are an accurate reflection of the evolutionary history at the rock coast sites in question.   

 

In order to interpret CRN concentrations, a process-based model of rock coast development is required. Matsumoto et al. 80 

(2016) presents an effective, exploratory coastal evolution model that simplifies wave properties. The model can produce a 

wide range of endmember across-shore profile shapes, and generally identify dominant erosion processes (Matsumoto et al., 

2018). However, simplified processes and lack of field data calibration inhibit the application to real-world sites. As such, 

replication of an observed topographic profile of a cliff and shore platform has not yet been achieved. Equifinality is often an 

unavoidable property of modelled geomorphic systems and, as a result of simplified processes, causes the same endmember 85 

results to be produced from non-distinctive parameter values. Previous explorations into the relative contributions of wave 

and weathering-driven erosion revealed evidence of equifinality in the model (Matsumoto et al., 2018). In particular, similar 

profile shapes were produced in mega-tidal settings when considering a significant range of wave force. The addition of 

modelled CRN concentrations to the topographic profiles has the potential to address equifinal model results. Moreover, 

field data calibration can be used to identify and constrain the conditions that cause equifinality, so that this abstract model 90 

can be applied to real-world sites.  

 

This study uses multiple site-specific datasets in order to calibrate a model that couples the Matsumoto et al. (2016) coastal 

evolution model and the Hurst et al. (2017) dynamic coastal evolution and cosmogenic radionuclide production model. We 

use Dakota optimisation software (Adams et al., 2019) with the Queso Bayes calibration library (Estacio-Hiroms et al., 95 

2016) to implement multi-objective model optimisation using the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) 
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method (Hastings, 1970; Metropolis et al., 1953). We demonstrate that with our optimisation method, wave and weathering 

processes are adequately simulated so as to model real-world sites. The model was calibrated to a high-resolution, across-

shore topographic profile and, more importantly, high precision 10Be concentrations. We are therefore able to extract further 

information from the model, such as: 1) the antiquity of the shore platform, 2) a time series of long-term cliff retreat rates 100 

and 3) are able to distinguish between different forms of erosion acting on real-world profiles over a large temporal scale, 

while addressing and limiting model equifinality. This new capability allows us to better constrain the geomorphic history of 

rock coast evolution and input model parameters. As a result, the constrained model parameters can be used together with 

future RSL predictions to project rock coast profile development so that predictions of future coastal erosion rates are 

possible. 105 

2 Field location overview 

We utilise field datasets taken from two UK sites to develop an approach to calibrate the coastal evolution model (Fig. 1).  

The first study site at Bideford is located on Devon’s north coast in south-west England. The study was carried out within the 

Bideford Formation, part of the Upper Carboniferous deposits of the Culm Basin in Devon, which is composed of nine 

coarsening-upwards cycles from black mudstone to massive sandstones (Edmonds et al., 1979). The beds are well exposed in 110 

the cliff and platform and are steeply dipping (60-65°) to the SW and strike SE-NW roughly perpendicular to the coastline. 

The intertidal shore platform has a width of ~230 m and a near-continuous gradient (tan 𝛽) of 0.02. Cliff height reaches 36 

m, with a ~24 m wide beach overlying the cliff-platform junction. The south-west coast of the UK is mega-tidal, with a mean 

spring tidal range of 8.41 m at the Bideford coastline (National Tidal and Sea Level Facility, 2021). 

 115 

The second study site at Scalby, is located in north Yorkshire on the east coast of the UK. The Scalby site is located within 

the Mid-Jurassic Long Nab member of the Scalby Formation, which is comprised of fine-grained sandstone (Riding and 

Wright, 1989). The beds at Scalby are shallowly dipping (~12°) to the SE and strike SW-NE. At Scalby, the intertidal shore 

platform width reaches ~240 m, has a gently sloping gradient (tan 𝛽) of 0.01 and a steeply sloping 50-80 m-high coastal 

bluff is present. The east coast of the UK has a meso-macrotidal range half of that at the south-west site, with mean spring 120 

tidal range of 4.6 m at the Scalby coastline (National Tidal and Sea Level Facility, 2021). 

 

 

 

 125 
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Figure 1: Map of the United Kingdom with 2 rock coast sites labelled. Bideford located in south-west England on the north coast of 
Devon. Scalby located on the east coast of England in north Yorkshire. 

3 Methods 

Using methods described below, we aim to quantify long-term, transient cliff retreat rates that will enable better predictions 130 

of erosion rates at rock coast sites across the UK and world-wide. This flexible optimisation method implemented within the 

Dakota environment allows for simple replication with new datasets and can be applied to a range of rock coast settings. 

3.1 Field datasets  

Two distinct datasets are used to calibrate the coastal evolution model. The first dataset is an across-shore topographic 

profile (Fig. 2a). The profile is extracted from a high-resolution digital surface model (DSM) generated by structure-from-135 

motion analysis of aerial photographs collected by an unmanned aerial vehicle (UAV) survey at both sites. The second 

dataset is a 10Be concentration across-shore profile (Fig. 2b). In situ bedrock samples for CRN analysis were taken along an 

across-shore transect at ~10 m intervals from a sandstone bed at both sites. Analyses of 10Be/9Be ratios using accelerator 

mass spectrometry (AMS) were carried out at the Australian Nuclear Science and Technology Organisation using the 6 MV 

Sirius tandem accelerator (Wilcken et al., 2017). Measured 10Be concentrations were normalised to the KN-5-3 standard with 140 

an assumed ratio of 6.320 x 10-12 (t1/2=1.36 Ma, (Nishiizumi et al., 2007)). Details of CRN sample collection and preparation, 

and drone survey data collection, processing and swath profile generation will be presented and interpreted in detail in future 
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work (Shadrick et al., in prep). In this study, our measured data serve solely as input test datasets for developing appropriate 

multi-objective optimisation routines, thus details of these test datasets are not central to this investigation. 

 145 

Measured 10Be concentrations are corrected for both chemistry background and inherited levels of 10Be by subtracting the 

concentration of 10Be present in process blank samples and a shielded sample taken from a sea cave or cliff base 

respectively. Two key 10Be production pathways exist: 10Be produced from spallation reactions (4.0 atoms g-1 yr-1), 

normalised to sea level high latitude (SLHL), and muogenic-produced 10Be (0.028 atoms g-1 yr-1). 10Be production in the 

upper few metres of the Earth surface is dominated by exposure to secondary cosmic-ray neutrons (spallation), whereas 150 

muon-produced 10Be prevails with greater depth below the Earth’s surface owing to its longer attenuation length (42000 kg 

m-2) in contrast to the spallation attenuation rate of 1600 kg m-2 (Braucher et al., 2013). The production of in situ 10Be 

declines exponentially with depth below the Earth’s surface as cosmic ray flux attenuates (Balco et al., 2008; Gosse and 

Phillips, 2001; Hurst et al., 2017; Mudd et al., 2016). Because the cliff/sea cave samples are previously shielded by ~40-80 

m of rock (see section 2), the concentration of 10Be within the shielded sample is assumed to be entirely produced from deep-155 

penetrating muons, with no contributions accounted to neutron spallation through exposure to cosmic rays. Correcting shore-

platform samples using the shielded samples corrects for any 10Be present in the rock before spallogenic 10Be becomes 

dominant. The exposure time is then calculated from the corrected 10Be concentrations. See supplementary materials Table 

S1 and Table S2 for 10Be concentrations used as model inputs for Bideford and Scalby sites. 

 160 

A RSL history record from a glacial-isostatic adjustment (GIA) model (Bradley et al., 2011) shows a constant but declining 

rate of RSL rise across the Holocene for both sites (Fig. 2c). At both sites, the RSL 8,000 years BP was at an elevation of 

~16 m lower than the present day RSL. At Scalby, average rates of RSL rise reduce from +0.7 mm y-1 to +0.05 mm y-1 

across the last 8,000 yrs. Similarly, at Bideford, average rates of RSL rise reduce from +0.7 mm y-1 to +0.04 mm yr-1 across 

the last 8,000 years. 165 
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Figure 2: Measured topographic profile (a) and 10Be concentration data (b) from Bideford and Scalby shore platform rock coast 
sites. Average elevation in the swath profile is shown by the solid line and uncertainty for the topographic profile shown by the 170 
shaded area sum the standard error from a linear regression of the topographic swath profile and the resolution of the UAV 
imagery (a). 10Be concentration values (b) are corrected for chemistry background using process blank samples and inherited 10Be 
using shielded cliff samples. Errors are propagated in quadrature, allowing for calculation of corrected 10Be concentrations (see 
section 3.1). A RSL curve of absolute RSL elevations taken from a GIA model (Bradley et al., 2011) are shown from 8,000 years 
BP to present day (c). 175 
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3.2 The coastal evolution model 

Our model combines a rocky profile model (RPM) for rock coast evolution (Matsumoto et al., 2016) with a rock coast, 

cosmogenic radionuclide production model (Hurst et al., 2017). This coupled model applies a dynamic form of coastal 

evolution, in which cliff retreat rate is controlled by competing cliff-platform dynamics. Generally, an initial period of rapid 180 

cliff retreat results in widening of the shore platform. As a result, increased wave energy dissipation allows less wave energy 

to reach the cliff base, and cliff retreat rate declines under stable RSL conditions (Hurst et al., 2017; Trenhaile, 2000; 

Walkden and Hall, 2005). Either platform lowering or RSL rise can maintain energy supply to the cliffs. As a result, 

platform morphology is an emergent element of the model.  

 185 

The exploratory model uses a grid framework, in which cells are assigned a binary value of 1 (rock) or 0 (water/air), and 

represents a cross section transect (elevation and distance), taken perpendicular to the cliff line (Fig. 3). Wave erosion is 

considered an erosion driving process and follows established conceptual rocky shore evolution models, which express wave 

hydraulic and mechanical properties as wave assailing force and considers both horizontal cliff back-wearing and vertical 

platform lowering (Payo et al., 2015; Sunamura, 1992; Trenhaile, 2008a) (Fig. 3). Offshore wave height remains fixed 190 

throughout a model simulation time; waves are transformed inshore into shallow water and break when wave height exceeds 

0.8 × water depth. Wave height then decays exponentially across the shore platform after wave breaking is initiated. Erosion 

achieved by breaking and broken waves can be changed by varying the distance across the shore platform that waves can 

dissipate energy: wave height decay rate (y) (Fig. 3). A small value for y means wave height will decay slowly, in which case 

breaking waves exert energy across a greater distance of the shore platform surface, which achieves more erosion. In 195 

contrast, a large value for y indicates that wave height will decay quickly and wave-driven erosion covers a shorter distance 

across the shore platform.  

 

In the model array, each rock cell of the cliff-platform profile is assigned a value for material resistance. The rock cell is 

eroded and removed from the array (cell values change from 1 to 0) once wave assailing force (Fw) exceeds the material 200 

resistance value (FR): FW ≥ FR (Matsumoto et al., 2016) (Fig. 3). The conceptual value for material resistance (FR) is highly 

simplified by incorporating mechanical, geological and structural rock factors into a single value to represent rock mass 

strength (Matsumoto et al., 2016). 

 

Subaerial weathering of the platform’s intertidal zone acts to lower the resistance of the rock material (Matsumoto et al., 205 

2016). The distribution of intertidal weathering efficacy is informed by empirical experiments of cyclical wetting and drying 

(Porter et al., 2010). Maximum weathering rate (K) occurs at the mean high water neap tidal level (MHWN), which is 

defined by a weathering efficacy distribution (Porter et al., 2010) (Fig. 3). An annual tidal duration distribution (Trenhaile, 
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2000) is used as an erosion-modulating process by estimating the total annual wave assailing force at each intertidal level 

(Matsumoto et al., 2016) (Fig. 3).  210 

 

Cosmogenic radionuclide production is incorporated into the model by coupling a numerical model of 10Be accumulation on 

eroding shore platforms (Hurst et al., 2017). The concentration of 10Be is calculated for each rock cell at every annual time 

step. Both 10Be produced from exposure to neutron spallation at the surface and muon-produced 10Be at depth are modelled 

(see section 3.1). Modelling both production pathways for the surface material and at depth below the shore platform surface 215 

is important because both horizontal and vertical erosion of the cliff and shore platform are simulated. Horizontal erosion at 

the cliff base causes cliff retreat and exposes new shore platform material to spallogenic 10Be production and accumulation. 

Concentrations of 10Be will increase offshore from the cliff base as exposure times increase. Erosion across the intertidal 

shore platform, including by platform lowering and intertidal weathering, removes the most abundant 10Be-laden rocks and 

uncovers rocks with less abundant 10Be underneath. Incoming cosmic rays are shielded from the shore platform by water 220 

coverage across the platform surface, which is further influenced by tides and RSL change. As water depth increases 

offshore, the cosmic ray flux attenuates exponentially and production in the shore platform surface is reduced (Hurst et al., 

2017; Regard et al., 2012). Topographic shielding from the presence of a sea cliff also modulates 10Be production close to 

the cliff base (Hurst et al., 2017). The combination of scaling factors to account for each of these variables, i.e., production 

of 10Be in rock, topographic shielding and water shielding, result in the predicted across-shore ‘humped’ 10Be concentration 225 

profile (Regard et al., 2012). 
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Figure 3: Coastal evolution model schematic. Topographic profile cross-section constructed in a gridded framework, 

showing wave approach and influence of tidal duration distribution. MHWS, MHWN, MT, MLWN, MLWS denote 

mean high water spring, mean high water neap, mid tide, mean low water neap and mean low water spring. Binary 230 

values of 0 and 1 are assigned to water/air and rock categorised cells respectively. Rock cells (value 1) are eroded and 

removed from the profile (assigned value 0) once wave force exceeds material resistance (FW ≥ FR) (b,c). Subaerial 

weathering (K), can also lower the material resistance value (FR). Wave height decay rate (y) controls the distance 

waves can break across the shore platform and as a result, the erosional potential of wave assailing force FW. 
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 235 

3.2.1 Model implementation  

Other fixed model parameters and initial model conditions are set to the same values as used by Matsumoto et al. (2018) 

(supplementary materials Table S7). Once the model burn-in period has been completed (first ~1000 years), the initial 

conditions, such as platform gradient, have negligible effect on final outputs of topography, 10Be concentrations and retreat 

rates. The RSL history input is taken from the GIA model of Bradley et al. (2011). RSL uncertainty was not considered as 240 

we expect it to make little difference to final results. For southern UK sites across the late-Holocene, the misfits between 

measured RSL data and GIA model predictions are minor (Bradley et al., 2011). Uncertainties of magnitude ±0.01-0.1 mm 

y-1 of RSL rise have negligible impact due to the spatial and temporal resolution considered for the model. A fixed mean 

spring tidal range of 8.41 m for Bideford and 4.6 m for Scalby are used, which are based on tide gauge records (National 

Tidal and Sea Level Facility, 2021). 245 

 

We chose to implement a model simulation time of 8000 years. A simulation time of 8000 years BP to present day captures 

the RSL history curve for both sites (Fig. 2), where rapid RSL rise occurs for the first ~1000 years, followed by a slow 

decline from 7000 years BP to present day. So, we can observe how cliff retreat rates will respond to these different stages in 

the RSL history. Having tested longer simulation times, implementing a simulation time of 10000 years, for example, would 250 

show no change to final model outputs for nearshore topography or 10Be concentrations. Our results are thus independent of 

this initial boundary condition, and longer simulations would increase the computer run time unnecessarily. Modelling rock 

coast evolution across an 8000-year window means only a Holocene history for shore platform formation has been 

considered, with no possible re-occupation from a previous interglacial period (e.g. Choi et al. (2012)). The 10Be 

concentration datasets used to develop this optimisation routine at both sites exhibit low concentrations, suggesting these 255 

rock coast features are Holocene-formed (Regard et al., 2012). Therefore, these datasets are suitable for modelling Holocene-

formed shore platforms, as a means to develop this optimisation routine. During the 8000-year simulation time, the 

topographic profile and 10Be concentrations are calculated and output every year (1-year timestep). The model space is split 

into 10x10cm gridded cells (Fig. 3). 

 260 

3.3 Model optimisation 

3.3.1 Dakota and multi-objective optimisation  

We use Sandia National Laboratory’s Dakota optimisation software toolkit (Adams et al., 2019) to implement multi-

objective optimisation. The optimisation software was chosen to work with the model because of Dakota’s flexibility and 

ease of testing a variety of methods and available functionality within the software. In particular, the Queso Bayesian 265 

calibration library (Estacio-Hiroms et al., 2016) is used to apply the Metropolis-Hastings MCMC algorithm. Multiple 
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MCMC simulations are performed, each with different weightings assigned to the topographic profile and 10Be concentration 

profile to construct a Pareto front of optimised results across the range of weightings explored (see section 3.3.3). 

 

3.3.2 Objective function definition, scaling and weighting 270 

In this study, we use the coupled model to simulate both a topographic profile and also a 10Be concentration profile. The first 

model output is the cliff-platform profile, which displays a cross section of the elevation, width and gradient of the modelled 

shore platform in an across-shore orientation. The second model output is an across-shore 10Be concentration profile. In 

order for the model to replicate the topography and 10Be concentrations of a real, rock coast site, we need to calibrate model 

results to measured datasets. Our model calibration targets a set of model input parameters that best match the measured data 275 

by minimising an objective function (Barnhart et al., 2020). Selected input model free parameters are varied repeatedly 

within a set parameter space, and model outputs are compared to corresponding data with the aim of minimising residuals 

between modelled and measured profiles. Because two outputs are generated with the model, we have two objective 

functions to minimise simultaneously. Multi-objective optimisation is used to find a set of model input parameters that 

minimises both topographic and 10Be concentration residuals with different weights.   280 

 

First, the root mean square error (RMSE) is calculated both between the modelled and measured DSM-extracted topographic 

profile and also the modelled and measured 10Be concentration profile, respectively. Modelled outputs and measured data are 

shifted to the final (present-day) modelled cliff position, where the final cliff position is at 0m. Interpolation is used to assign 

corresponding modelled data (cell resolution = 0.1 m) to every measured data position across the shore profile. For every 285 

measured data point, the elevation and concentration residuals are calculated and combined into a RMSE score for both 

topographic and 10Be concentration model outputs: 

 

𝑅𝑀𝑆𝐸! =	+∑ -"#$!,#%"&'(!,#
)#

.
*)#

+,-                   (1) 

 290 

In Eq. (1), for each objective function i, the residuals (Modi,j – Measi,j) are calculated between the modelled and measured 

data values, which are indexed by subscript j. The number of measured data points are distinct to the topographic profile and 
10Be concentration profile datasets and are denoted by Ni. 

 

Next, both RMSE values are then scaled (si) within Dakota to 1) equalise the magnitude ranges of both the topographic and 295 

cosmogenic radionuclide RMSE scores, and 2) set the RMSE magnitudes to a sensible multiple relative to the default 

measurement error used by Dakota in the likelihood function: variance is assumed to be 1.0 when no measurement error is 

specified. In this case, we have not considered individual datapoint measurement errors in the RMSE calculation. As a result, 
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scaled RMSE scores for both the topographic and 10Be concentration profiles are within the range of ~0 to 10. Individual 

weightings (wi) are applied to the scaled RMSE functions for both the topographic and 10Be concentration profiles (Adams et 300 

al., 2019). Finally, the scaled and weighted RMSE scores are combined within a Gaussian likelihood function, and the final 

composite objective function, Likelihoodp, becomes: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑. =	∏
-

√*0
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3
*

*
<)!

!,4                             (2)                                        

In Eq. (2), Ni  is the number of individual objective functions we aim to collectively minimise. In this case, we have two 

individual objective functions (Ni = 2): a topographic profile and a 10Be concentration profile. Future applications may add 305 

additional objective functions (Ni >2), for example, a secondary CRN concentration profile (e.g., 26Al or 14C). Weightings 

applied to the separate RMSE scores are denoted by wi, where subscript i refers to specific values associated with each 

individual objective function. The weightings applied to the topographic profile and 10Be concentration profile are changed 

between MCMC inversion calculations in order to construct the Pareto set of optimised results (see section 3.3.3). The 

scaling values are denoted by si and are exclusive to the individual objective function. A topographic profile scaling value is 310 

calculated by summing the standard error from a linear regression of the topographic profile and the resolution of the UAV 

imagery. The average measurement error of 10Be concentrations for each site is used as a scaling value for the 10Be profile. 

Table S7 in supplementary materials summarises the objective function scaling values for both sites. Subscript p refers to the 

different set of weights (wi,p) assigned to each objective function (RMSEi) used to construct the pareto front.  

 315 

3.3.3 Pareto front results  

When performing multi-objective optimisation, rather than a single optimal solution, there are multiple optimised solutions, 

which map out what is known as a Pareto front. We need to consider best-fit model results across a spectrum of objective 

function combinations, because changing the weightings applied to each objective function may result in different best-fit 

input model parameters. The Pareto front is a set of optimised results for which no improvement can be made to an 320 

individual objective function without compromising the performance of at least one of the other objective functions. This set 

of results is the most optimal set of input model parameters. The Pareto front is constructed by performing numerous MCMC 

inversions with various weightings given to the RMSE scores that are calculated for the topographic and 10Be concentration 

profiles for each run. The weighted RMSE values are combined in a likelihood function to form a single objective function 

(Eq. 2). In this investigation, a total of five MCMC calculations for each site are performed. For each of the five MCMC 325 

runs, the weightings assigned to the topographic and 10Be concentration profile RMSE scores are changed. Weightings 

assigned to each individual objective functions for each MCMC analysis are shown in Table 1. Figure 4 shows a basic 

framework of the multi-objective optimisation of the coupled model. 

 

 330 
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Table 1: Weightings assigned to the topographic and 10Be concentration RMSE scores for the five MCMC calculations. 

 

MCMC analysis Topography 

weighting (%) 

10Be weighting (%) 

1 50 50 

2 25 75 

3 75 25 

4 5 95 

5 95 5 

 

 

 335 
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Figure 4: Structure for implementing a single MCMC calculation using Dakota. Data inputs into the coupled model include a 340 
topographic profile, a 10Be concentration profile and a RSL history. The MCMC analysis is performed multiple times with 
different weightings (shown by the blue loop) for the objective functions (topographic profile RMSE and 10Be concentration profile 
RMSE) and produces a corresponding maximum likelihood estimation (MLE*) result. For each MCMC calculation, the Weights* 
value is changed for each RMSE score. The different values for the Weights* are shown in Table 1 and correspond to wi (Eq. 2). 
The set of MLE results together produce the ‘Pareto front’ of multi-objective optimised results. 345 
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3.3.4 MCMC analysis 

Metropolis-Hastings is a specific MCMC implementation (Metropolis et al., 1953), in which MCMC is a class of methods 

based on Bayesian inference calibration. A detailed explanation of how Bayesian inference can be used to calibrate models is 

provided by Kennedy and O’Hagen (2001). 

 350 

The composite likelihood score (Eq. 2) is calculated in Dakota; the lowest combined RMSE scores result in the maximum 

likelihood estimation (MLE). A so-called proposal distribution is used to select and jump to new parameter values within the 

MCMC algorithm. After each run, new values for the free parameters y, FR and K (see section 3.4) are randomly selected 

from a uniform proposal distribution centred at the current accepted parameter values. A likelihood ratio compares the 

posterior likelihood of the proposed parameter set to the previous accepted likelihood and is used to decide whether the new 355 

set of parameters is accepted or rejected. If the proposed parameter set produces a model result that is more likely than the 

current accepted parameter set (ratio of current to last accepted iteration >1), then the new parameter set is always accepted. 

If the proposed posterior is less likely (likelihood ratio <1), the new parameter set may still be accepted with a probability of 

acceptance proportional the likelihood ratio (Hurst et al., 2016). This is achieved by generating a random number r from a 

uniform distribution between 0 and 1; if r < ratio, the proposed parameter set is accepted. The Metropolis-Hasting algorithm 360 

allows for acceptance of less likely parameter sets in order to prevent the acceptance chain from reaching an immovable 

position in a localised likelihood trough. The proposal distribution variance was tailored so as to produce an acceptance rate 

of ~23% that ensures optimal chain mixing and full exploration of the parameter space (Gelman et al., 1997).  

 

As we have no prior knowledge of the best-fit model parameters, a uniform prior distribution is used. As the prior 365 

distribution is essentially removed from the posterior probability calculation, Dakota returns best-fit parameter values that 

correspond with the MLE, which is similar to methods used to find optimal model results by Hurst et al. (2016). Dakota 

takes the log form of the likelihood function to help numerical stability by working with more manageable negative numbers 

and transforming from multiplications to additions. Minimising the negative log-likelihood is equivalent to maximising the 

likelihood.  370 

 

3.3.5 Dakota functionality and constraining the parameter space 

The parameter space is constrained to where modelled topographic profiles are similar to those observed at the selected study 

sites. The failure capture recovery option within Dakota is used to identify which combinations of input model free 

parameters cannot replicate the measured topographic profile sufficiently. A ‘fail’ flag is produced by the model if the 375 

modelled shore platform profile does not erode to a width of at least the intertidal width of the measured shore platform 

profile. The width of the measured topographic profile (~250 m) should be taken as the minimum width because the shore 

platform undoubtedly extends further offshore than where the UAV survey ended. A ‘fail’ flag returned to Dakota is 
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replaced by a high RMSE value (set to 999999) so this combination of input model free parameters is avoided in future 

simulations within the Metropolis-Hastings algorithm. 380 

 

3.4 MCMC analysis inputs  

A previous investigation into the relative importance of wave erosion versus weathering using the RPM coastal evolution 

model found that wave erodibility, material resistance and weathering rate parameters have the greatest influence on the 

dominance of erosional form (Matsumoto et al., 2018). Because these model variables have the greatest control over 385 

principal erosion processes, wave erodibility by means of wave height decay rate (y), material resistance (FR) and maximum 

intertidal weathering rate (K) are chosen to vary in the MCMC calculations (see section 3.2.1).  

 

Wave erodibility is explored in the MCMC analysis by varying the wave height decay rate (y), which is consistent with 

previous modelling approaches (e.g., Matsumoto et al., 2018; Trenhaile, 2000). Incident wave height is kept constant 390 

throughout model simulations. We chose to explore wave erodibility in the model by varying wave height decay rate (y) over 

incident wave height, as a linear relationship between input wave height and material resistance (FR) is already established: 

greater wave height needs to be compensated by an increase in material resistance (FR) (Matsumoto et al., 2016). Whereas, 

by focussing on process dynamics with wave height decay rate (y), the spatial distribution and degree of wave erosion can be 

considered; this will have implications for the evolving shore platform morphology. Initial ranges of y followed Matsumoto 395 

et al. (2018) by varying a between -2 and 1 (i.e. y = 0.01-10 m-1) which, across a 200 m-wide shore platform, would equate 

to wave height decrease by 67-100%. These wave attenuation rates are consistent with field-based observations of wave 

transformation across a shore platform. For example, Ogawa et al. (2011) finds wave height was reduced by ~93% across a 

250 m-wide platform at the lowest tidal stage. Wave height decay rate (y) is further constrained in this study to 0.01-0.16 m-

1, as when values of y exceed 0.16 m-1, wave height would dissipate too quickly and wave force is not large enough to erode 400 

a shore platform to a distance that matches at least the width of the measured intertidal platform for both the Bideford and 

Scalby sites. This results in failed model runs as detected by the failure capture recovery function in Dakota (see section 

3.3.5). 

 

For material resistance, we use a range of b from 1-3 (i.e. FR = 10-1000 kg m2 yr-1), which follows Matsumoto et al. (2018), 405 

and encompasses material resistance values used by other modelling studies that explore a range of rock strength settings, 

e.g., Trenhaile (2008a, b, 2000). 

 

Following Matsumoto et al. (2018), maximum intertidal weathering rate (K) is varied as a proportion of the material 

resistance, in order to capture the controls on the variation in topographic development. The greatest rate of weathering that 410 

we apply when exploring the parameter space for optimisation is equal to: FR × 0.2 kg m2 yr-1, which, results in maximum 

down-wearing rates of 20 mm yr-1 when only considering weathering contributions to shore platform downwear. Rates of 
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20mm yr-1 is unrealistically high for a sandstone platform (e.g. Yuan et al. (2020)). In this study, preliminary investigations 

were carried out to establish an appropriate range of weathering rates needed to match both objective functions at the two 

UK sites. Initial results for Bideford and Scalby showed that the topographic profiles and 10Be concentration profiles could 415 

only be well-matched simultaneously at very low to negligible weathering rates (K). Weathering of the shore platform 

surface becomes negligible when weathering rates (K) fall below a particular ratio in relation to material resistance (FR). By 

calculating the weathering rate (K) (kg m-2 y-1) for the full modelled simulation time (K x 8,000 years), we can compare this 

to the value of FR to detect when weathering rate (K) is less than the material resistance (FR). We find that when the exponent 

of c < -5, maximum weathering rate falls below the value for material resistance (FR) for the simulated model time, and 420 

erosion of the shore platform through weathering processes becomes negligible, because rock cells cannot be removed from 

the model array by means of subaerial weathering. The range of c was adjusted to -10 to -4 for Bideford and -10 to -1 at 

Scalby to ensure negligible weathering was included within the MCMC analysis parameter space. At Scalby, 10Be 

concentrations can still be matched at higher rates of weathering, therefore we include the upper range of K values in the 

MCMC analysis. The wide range of weathering rates that we explore are similar to equivalent platform downwear rates 425 

quantified for a range of field-based studies (e.g., Buchanan et al., 2020; Moses, 2014; Stephenson et al., 2019; Swirad et al., 

2019).  

 

In order to replicate a full range of platform geometries, we vary these parameters over several orders of magnitude across a 

range that was guided by previous exploratory morphodynamic modelling (Matsumoto et al., 2016, 2018).  We need to not 430 

only apply effective proposal distributions to the free parameters that ensure the full parameter space is explored, but also 

achieve optimal acceptance rates (see section 3.3.4). In order to target optimal acceptance rates and fully explore the 

parameter space, exponents of the y, FR and K variables are treated as the calibration parameters, similar to approaches taken 

by Barnhart et al. (2019) and these values are varied between model runs. Symbology assigned to the exponent calibration 

parameters are a for y, b for FR and c for K, which are summarised in Table 2: 435 

 

y = 10a 

FR = 10b 

K = 5c x FR 

 440 

 As these parameters are abstractly defined within the model, it is important to highlight that our aim is not to report accurate 

wave force, weathering rates and material strength at real-world sites, but to determine the best combination of model 

parameters to match measured datasets in order to model cliff retreat. Table 2 summarises the ranges of the free parameters 

y, FR and K used in the MCMC analysis. 

 445 
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Table 2: Free variables, corresponding calibration parameters and their units, and lower and upper bounds used in the MCMC 
calculations. 
 

Variable 

description 

Calibration 

parameter 

(exponent) 

Upper and lower 

bounds (a,b,c) 
Variable 

Equivalent 

variable range 

(y,FR,K) 

Units 

Wave height 

decay rate 
a 

-2 y 

(= 10a) 
0.01-0.16 (m-1) 

-0.8 

Material 

resistance 
b 

1 FR 

(=10b) 
10-1000 (kg m-2 yr-1) 

3 

Maximum 

weathering 

efficacy rate 

c 

-10 
K 

(=5c x FR) 

 

Scalby: 

10-6-200 
(kg m-2 yr-1) 

Scalby: -1 

Bideford: -4 

Bideford: 

10-6-1.6 

 450 

3.5 Interpretation of results   

The best-fit parameter results provided by Dakota, which correspond to the set of parameters with the MLE, are used for the 

model results that best-fit the measured data. Likelihood-weighted histograms are constructed from the distribution of 

accepted MCMC samples for each of the free parameters. Confidence intervals defined by the 16% and 84% percentiles of 

the distributions are used as the uncertainty for the best-fit parameter values. We choose not to use 5% and 95% confidence 455 

intervals because the resultant range of model outputs produce unrealistic uncertainty for the modelled topographic profile in 

terms of the range in platform elevations and gradients. To observe the resultant uncertainty of model outputs as defined by 

the MCMC results, ensemble runs of the coupled model explore the median, 16 and 84% confidence range for each 

parameter against the median result of the other two parameters. A total of nine model outputs for each site are produced. 

 460 

4 Results  

4.1 Pareto set of optimised results  

A Pareto set was constructed by performing multiple MCMC inversions with different weightings given to the two objective 

functions (see section 3.3.3). Because we use measurement error to scale each objective function, there is potential for bias 

as a result of the relative precision of both measured datasets. It was necessary to explore a range of weightings for the 465 

objective functions to understand the impact of measurement error to the model outputs and to explore how sensitive final, 

best-fit model outputs were to changes in the dominant objective function. 
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The Pareto set of MCMC best-fit results for the Bideford site is shown in Figure 5a. All combinations of objective function 

weightings, except for the MCMC analysis weighted most towards the 10Be concentration profile (shown in darkest red), fit 470 

both measured datasets well. The saw-tooth pattern seen in the 10Be concentration profile is caused by the cell framework 

resolution of the model. When a surficial rock cell, with greatest 10Be concentrations, is eroded and removed from the rock 

profile, 10Be concentrations drop, as a subsurface cell with less 10Be is unveiled. The MCMC best-fit result with 95% 

weighting assigned to the 10Be concentration profile and 5% assigned to the topographic profile results in a topographic 

profile that is considerably steeper than the measured profile at Bideford. We do not want to base modelled cliff retreat rates 475 

on scenarios that are not able to replicate well the topography of the shore platform profile, and so should avoid weighting 

too strongly towards the 10Be concentration profile. For the Pareto front, where the scaled and weighted topographic and 10Be 

concentration objective functions are compared, the sensitivity of different weighting sets to final model results at Bideford 

is revealed (Fig. 5c). The Pareto set at Bideford again suggests we should weight more towards the topography, but only 

when we weight the combined objective function 95% towards the 10Be concentration profile RMSE, do we see a poor 480 

match to the topography (Fig. 5a). 

 

In contrast, at Scalby, all combinations of objective function weightings produce very similar model outputs (Fig. 5b). This 

reveals that the best-fit model result for the topographic profile and the 10Be concentration profile are found in the same 

parameter space for Scalby, but not necessarily for Bideford. Uniformity in results across the Pareto set for Scalby is further 485 

supported by the Pareto front (Fig. 5c). For Scalby, the Pareto front shows the expected, convex shape of a Pareto front that 

looks to minimise both objective functions simultaneously. 

 

Crucially, final results from the 50 – 50% weighted MCMC analysis show a good representation of the full Pareto set of 

output model result (Fig. 5). We suggest that future applications can confidently use a single, equally-weighted multi-490 

objective MCMC calculation to optimise the coupled model to multiple measured datasets and quantify modelled cliff retreat 

rates. Subsequently, results from the equally-weighted MCMC analysis are used to construct final model outputs and 

objective function surfaces in following sections. Results from all weighted MCMC calculations can be found in the 

supplementary materials, Table S8. 

 495 
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Figure 5: The five Pareto set results for both Bideford (a) and Scalby (b) sites. The modelled topographic profile and 10Be 
concentration profile are shown alongside corresponding measured data. Modelled cliff retreat rates are shown for the past 7000 
years. Yellow coloured model results correspond to 50 – 50% objective function weighted MCMC results. Darkest blue coloured 
model results correspond to the MCMC results that were most weighted towards the topographic (Topo) profile (95%). Darkest 500 
red coloured model results correspond to the MCMC results that were most weighted towards the 10Be concentration (CRN) 
profile (95%). The Pareto front of scaled and weighted 10Be and topographic objective functions is shown for both sites (c). 
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4.2 Best-fit model results  

Model outputs using the best-fit results and uncertainty defined by the 50 – 50% weighted MCMC results show that the 505 

coupled model is able to produce a good fit to both the topographic profile and 10Be concentration profile for both sites (Fig. 

6). The topographic profiles shown are the present-day positions (Time 0 k yr BP). For the topographic profile, maximum 

uncertainty in the elevation range is found furthest offshore from the cliff. For the intertidal platform width, where measured 

data was collected, maximum uncertainty in elevation is ~5 m (300 m offshore from the cliff) at Bideford (Fig. 6b) and ~1 m 

(300 m offshore from the cliff) at Scalby (Fig. 6f). The nearshore increase in the measured platform slope seen at Scalby is a 510 

result of boulder accumulation near the cliff foot. Modelled 10Be concentrations display the characteristic ‘humped’ profile 

(Regard et al., 2012) (Fig. 6c and Fig. 6g), with maximum variance in 10Be concentrations occurring offshore of the ‘hump’ 

at both sites. Maximum uncertainty in modelled 10Be concentrations for the intertidal platform is ~ 5000 atoms g-1 at 

Bideford (Fig. 6d) and ~2500 atoms g-1 at Scalby (Fig. 6h). These uncertainties are proportional to the magnitude of the 

measured concentrations, with peak 10Be concentration of 14818 atoms g-1 at Bideford and 7547 atoms g-1 at Scalby. 515 

Deviations between modelled and measured topography and 10Be concentrations should be interpreted carefully in the 

context of local variation in process rates. 

 

At Bideford, the best-fit modelled scenarios show the platform has eroded to a width of 750-1650 m across the past 8000 

years (Fig. 6a). At Scalby, however, the best-fit modelled scenarios indicate the platform has eroded to a wider width of 520 

2200-3500 m (Fig. 6e), over the same time period. Time stamps for modelled cliff positions are back calculated and shown 

for the corresponding distance across the shore platform. For example, the modelled cliff position at Bideford was 200 m 

offshore from the present-day cliff position ~5000 yrs BP (Fig. 6b). These timestamps correspond to when the horizontal 

position of the cliff foot was there, but not the exact elevation as down-wearing has occurred since. Our results indicate that 

the 250m, present-day intertidal platforms at Bideford and Scalby were eroded in the past 5800 and 2400 years, respectively 525 

(Fig. 6). The lesser time taken to erode the same distance of shore platform at Scalby indicate that late-Holocene cliff retreat 

rates at Scalby are over two times faster than at Bideford. As the magnitude of the measured 10Be concentrations at Scalby is 

considerably less than at Bideford, this model result aligns with model predictions of CRN concentrations and cliff retreat 

rate interpretations, i.e., that the magnitude of CRN concentrations is inversely proportional to cliff retreat rates. 
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 530 
Figure 6: Final results from the 50 - 50 % weighted multi-objective MCMC calculation for the Bideford study site (a,b,c,d; shown 
in purple) and Scalby study site (e,f,g,h; shown in orange). Dark lines show the best-fit results and the shaded areas show the 
confidence interval uncertainty range. The 16% - 84% confidence interval for each parameter (FR, K and y) were plot against the 
median results for the other parameters and shaded uncertainty regions were constructed from the upper and lower limits of 
model outputs. Subplots (a) for Bideford and (e) for Scalby show the full width of the modelled topographic profile. Subplots (b) 535 
for Bideford and (f) for Scalby show the first 300 m of the modelled platform offshore from the cliff (0 m) and compares modelled 
results to the measured topographic profile (black solid line). Subplots (c) for Bideford and (g) for Scalby show the full modelled 
extent of the 10Be concentration profile. Subplots (d) for Bideford and (h) for Scalby, show the first 300 m of the modelled 10Be 
concentration profile offshore from the cliff (0 m) and compares modelled results to the measured and corrected, 10Be 
concentrations (see section 3.1). Grey boxes (a,c,e,g) correspond to 300 m distance offshore (b,d,f,h). Timestamps for the cliff 540 
positions across the 8000-year duration simulation time were back calculated and shown against corresponding cliff positions.  
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A time series of cliff retreat rates, which are calculated from modelled cliff positions every 100 years, show a decline in cliff 545 

retreat rates across the Holocene (Fig. 7). The evolution of modelled cliff retreat covered by the across-shore distance of 

measured data encompasses the past 5800 years at Bideford (Fig. 6b) and the past 2400 years at Scalby (Fig. 6f). We are 

only able to report cliff retreat rates with confidence for these time periods which correspond to the measured datasets. 

Following this, the model results for Bideford show cliff retreat rates have declined from 7.5-17.5 cm yr-1 at 5800 yrs BP to 

1-3 cm yr-1 at present day (Fig. 7a). Likewise, the model results for Scalby show cliff retreat rates have declined from 11-17 550 

cm yr-1 at 2400 yrs BP to 4-8 cm yr-1 at present day (Fig. 7b). Despite lacking measured data beyond 250 m offshore from 

the cliff, we can assess the antecedent modelled cliff retreat rates needed to match the modelled to measured profiles in the 

intertidal zone (full extent of grey areas in Figure 7). Best-fit model results for the full model simulation time reveal a 

declining cliff retreat rate scenario for both sites. At Bideford, cliff retreat rates decline from 25-55 cm yr-1 at 7000 yrs BP to 

1-3 cm yr-1 at present day (Fig. 7a). Similarly, at Scalby, cliff retreat rates decline from 70-100 cm yr-1 at 7000 yrs BP to 4-9 555 

cm yr-1 at present day (Fig. 7b). 

 

The best-fit scenario of a declining cliff retreat rate throughout the Holocene directly reflects the pattern of decline in the rate 

of RSL rise for both UK sites. At Bideford, the rate of RSL rise falls from +0.25 mm yr-1 at 5800 yrs BP to +0.05 mm yr-1 at 

present day (Fig. 7a). Similarly, at Scalby the rate of RSL rise falls from +0.11 mm yr-1 at 2700 yrs BP to +0.03 mm yr-1 at 560 

present day (Fig. 7b). 

 

 
Figure 7: A time series of cliff retreat rate (m y-1) shown by the solid line and shaded area across the late Holocene (from 7000 yr 
BP to present day) calculated from modelled cliff positions every 100 years. The first 1 kyr is excluded as this corresponds to the 565 
burn in period of the model. The rate of RSL rise (mm y-1) is shown alongside cliff retreat rates by the dashed black line. Inset 
plots show the cliff retreat rates and rate of RSL rise for the time period that correspond with the distance across the shore 
platform over which measured data were analysed (~250 m). For Bideford (a), the past 5800 years of modelled cliff retreat 
correspond with the 250 m intertidal shore platform. For Scalby (b), the past 2700 years of modelled cliff retreat correspond with 
the 250 m intertidal shore platform. The grey shaded area corresponds to the cliff retreat rates which occurred further offshore 570 
than where the measured data was collected, and the non-shaded area shows the extent of the inset plots. 
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Table 3 summarises the results from the 10,000 iteration, equally-weighted MCMC analysis for both sites, with uncertainties 

defined by the 16% and 84% confidence intervals of the likelihood-weighted accepted sample distributions. Acceptance rates 575 

for all MCMC calculations ranged between 17% and 40%, and therefore encompass the range of optimum acceptance rates 

for chain mixing (Gelman et al., 1997). Supplementary Figure S1 and Figure S2 plot the cumulative moving median, 16% 

and 84% quantiles across the 10,000 iterations to show the MCMC burn-in period. We found that 10,000 iterations for each 

weighted MCMC analysis was a sufficient number of samples to build robust posterior distributions. 

 580 
Table 3: Best-fit parameter results from 50 – 50% weighted, multi-objective MCMC calculations.  

 

Wave height decay rate (y) Material resistance (FR) Weathering rate (K) 

Bideford 

a y b FR c K 

-1.45 
+0.09 0.02-0.04 m-

1 
1.93  

+0.68 23-407 

kg m-2 yr-1 
-6.14 

+0.17 ~10-4-10-3 

kg m-2 yr-1 -0.24 -0.56 -2.83 

Scalby 

a y b FR c K 

-1.97 
+0.17 0.01-0.015 

m-1 
2.04 

+0.1 19-138 

kg m-2 yr-1 
-4.94 

+1.08 ~10-4-0.2 

kg m-2 yr-1 -0.02 -0.76 -3.61 

 

 

4.2.1 Material resistance (FR)  585 

Posterior MCMC results of accepted samples show that the topography and 10Be concentration profiles can be well-matched 

across a large range of FR values (Table 3). For Bideford, the best-fit result defined by the 16-84% confidence intervals for 

the equally weighted multi-objective MCMC analysis for FR is equivalent to 23-407 kg m-2 yr-1. For Scalby, best-fit results 

for FR tend towards lower values for material resistance of 19-138 kg m-2 yr-1. The large uncertainty for FR from posterior 

distributions is caused by correlation found between FR and y (see section 5.2). 590 

 

4.2.2 Weathering rates (K) 

At both sites, low to negligible weathering rates (K) as a proportion of material resistance (FR) are needed to match both 

measured datasets simultaneously. At Bideford, the best-fit results for maximum weathering rate are skewed towards the 

lowest K values. Both measured datasets could only be well-matched when negligible weathering was implemented in the 595 
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modelled profile evolution. Best-fit results for K range across orders of magnitudes (~10-5-10-3 kg m-2 yr-1) when applying 

the best-fit result for FR (85 kg m-2 yr-1). Using the upper limit of FR and K defined by 84% confidence intervals, the absolute 

maximum weathering rate acting on the profile at Bideford is equivalent to 0.03 kg m-2 yr-1. This weathering rate would 

result in maximum downwear rates equivalent to 0.007 mm yr-1 when only considering downwear as a result of intertidal 

platform weathering. These results indicate that erosion of the shore platform at Bideford is dominated by wave-driven 600 

erosion. 

 

In comparison to Bideford, at Scalby, maximum weathering rates acting on the shore platform surface (K) best match the 

measured data at intermediate to low weathering rates, equivalent to ~ 0.0001-0.27 kg m-2 yr-1 when using the best-fit result 

of FR (109 kg m-2 yr-1). This weathering rate would result in maximum downwear rates equivalent to 0.2 mm yr-1 if only 605 

considering downwear as a result of intertidal platform weathering. Although weathering rates are still low at Scalby, 

distinctions between the two sites in relation to maximum weathering rates can still be made. Observing objective function 

surfaces (see section 4.3) can help explain the differences between the two UK sites in terms of weathering-controlled 

erosion of the shore platform and the match to both the measured topography and 10Be concentrations. This, in turn, can 

reveal if and where any compromises had to be made to match both objective functions, e.g., if the two individual objective 610 

functions are not minimised in the same area of the parameter space. 

 

4.2.3 Wave height decay rates (y) 

Results from the wave height decay rate (y) show Scalby best-fit results tend towards the lowest wave height decay rates, 

which are equivalent to 0.01-0.015 m-1. Or, in other words, breaking waves exert erosive power across the furthest distance 615 

possible, based on realistic constraints placed on y (see section 3.4). Bideford on the other hand, has best-fit y values at 

higher wave height decay rates, with a best-fit value equivalent to 0.02-0.04 m-1. The larger value for y means wave height 

will dissipate faster and cover a shorter distance across the shore platform at Bideford in comparison to Scalby.  

 

4.3 Objective function results  620 

Observing the objective function space for the topographic RMSE, 10Be concentration RMSE and the combined likelihood 

helps disclose the trade-offs between the three different parameters (Fr, K and y) and the effects on the two objective 

functions. In following sections, when addressing the unitless values for the free parameters, we are referring to the 

exponential calibration parameters (a,b,c) that were varied in the MCMC calculations (see section 3.4).  

 625 

4.3.1 Material resistance vs. weathering rate   

Comparisons between calibration parameters varied for material resistance (b) and weathering rate (c) show no distinctive 

influence on the endmember topographic profile at the Bideford site (Fig. 8a). In contrast, only once c falls below -5 and 

weathering rates become negligible, can the modelled 10Be concentration profile closely replicate the measured data (Fig. 
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8b). Furthermore, with insignificant active weathering, combinations between material resistance and weathering rate show 630 

no noteworthy influence on the modelled 10Be concentration profile. The likelihood objective function for the accepted 

samples show the best samples are generally found when c is below -5 (Fig. 8c). Results from initial Bideford MCMC 

calculations, where the range of c is set to -5 to -1 are found in the supplementary material and show that the 10Be 

concentrations cannot be matched with the higher range of weathering rates explored initially (Figure S3 supplementary 

materials). There needs to be negligible intertidal weathering of the shore platform in order to produce the relatively high 635 
10Be concentrations measured at the Bideford site. This is only revealed when optimising for the 10Be profile; optimising for 

the topographic profile alone, however, does not reveal any distinct behavioural trends between b and c. 

 

At Scalby, comparisons between b and c show a better fit to the topographic profile, can generally be found at the lower 

range of b and c (Fig. 8d). In contrast, the 10Be concentration profile can be well-matched at higher weathering rates, where c 640 

is -2 (Fig. 8e). These results contrasts with the results from Bideford, which show negligible weathering needs to occur in 

order to match the 10Be concentration profile. However, these relationships are not well-defined: well-matched 10Be 

concentration profiles can still be produced when weathering rates are low (Fig. 8e). Equally, poorly-matched topographic 

profiles can still be produced at the lower range of b and c (Fig. 8d). This suggests that the 3rd free parameter varied in the 

MCMC analysis, wave height decay rate (a), has further influence on the final modelled profiles. For both sites, these results 645 

strongly imply that wave driven erosion dominates over subaerial weathering in the long-term. 
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Figure 8: Objective function results for the material resistance (b) and weathering rate (c) parameters; constructed from 50 – 50% 
weighted MCMC analysis results for the Bideford site and Scalby site. The topographic profile RMSE [(a) and (d)] and 10Be 
concentration profile RMSE [(b) and (e)] objective function spaces are constructed from all 10,000 samples visited in the MCMC 650 
analysis. The combined likelihood objective function space [(c) and (f)] is constructed just from the accepted samples from the 
MCMC analysis. Dark blue corresponds with the worst samples that have the highest RMSE and negative log-likelihood scores, 
while bright yellow corresponds with the best samples that have the lowest RMSE and negative log-likelihood scores.  
 

 655 
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4.3.2 Wave height decay rate vs. weathering rate 

For Bideford, a clear zone in the mid-range of wave height decay rates (a = -1.5) produces well-matched topographic 

profiles across the full range of weathering rates (c) (Fig. 9a). When a > -1.5, a threshold exists where a zone of well-660 

matched topographic profiles suddenly meets a zone of poorly matched topographic profiles. So, when wave height decay 

rate (a) is increased too much, waves will dissipate their energy too quickly and will result in modelled topographic profiles 

with gradients too steep to match the topographic profile at Bideford. 

 

When considering the influence on the 10Be concentration profile at Bideford, a much wider zone across the range of a 665 

produces well-matched 10Be concentration profiles when c < -5, i.e., when there is negligible subaerial weathering occurring 

(Fig. 9b). This zone of well-matched 10Be concentration profiles extends across the boundary where good and bad 

topographic profiles can be produced (Fig 9a). This results in a dense zone of accepted samples across a range for a of ~ -1.8 

to -1.3 when c < -5 (Fig. 9c). 

 670 

In contrast to Bideford, the slowest wave height dissipation across the shore platform (defined by the lowest a values) 

produces the best topographic profile seen at Scalby (Fig. 9d). Only when assessing the 10Be concentration profile are we 

able to see how weathering rates interact with wave erosion to impact the model results for Scalby (Fig. 9e). Slower wave 

height dissipation requires lower rates of weathering in order to produce a matching 10Be concentration profile. In the zone 

of well-matched results, as wave height decay rate (a) values decrease, weathering rates also decrease (Fig. 9e). Because the 675 

peak in 10Be concentrations at Scalby is ~7000 atoms g-1 less than the peak in 10Be concentrations at Bideford, greater 

weathering rates, and as a result, greater platform lowering can produce a modelled 10Be profile that matches the measured 

data for Scalby. As active subaerial weathering can contribute to model outputs that can replicate the measured data, the 

balance of wave driven and weathering controlled erosion is more complex at Scalby. Wave erosion and weathering can 

trade-off in multiple combinations to produce model outputs that match both the measured 10Be concentration profiles and 680 

topographic profiles at Scalby. The accepted samples (Fig. 9f) show that the best model results are found at the lower range 

of y, when constrained by matching to the topographic profile (Fig. 9d) and 10Be profile (Fig. 9e) simultaneously. 
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Figure 9: Objective function results for the wave height decay rate (y) and weathering rate (K) parameters constructed from 50 – 
50% weighted MCMC analysis results for the Bideford and Scalby sites. The topographic profile RMSE [(a) and (d)] and 10Be 685 
concentration profile RMSE [(b) and (e)] objective function spaces are constructed from all 10,000 samples visited in the MCMC 
analysis for Bideford and Scalby, respectively. The combined likelihood objective function space [(c) and (f)] is constructed just 
from the accepted samples from the MCMC analysis. Dark blue corresponds with the worst samples that have the highest RMSE 
and negative log-likelihood scores, while bright yellow corresponds with the best samples that have the lowest RMSE and negative 
log-likelihood scores.  690 
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4.3.3 Wave height decay rate vs. material resistance 

A distinct, negative relationship exists between material resistance (b) and wave height decay weight (a) at Bideford when 695 

optimising to the topographic profile (Fig. 10a). As b increases, more wave energy is needed to erode the cliff at a rate fast 

enough to produce a shore platform with a gradient shallow enough to match that seen at Bideford. In other words, wave 

height decay rate has to reduce so waves can dissipate their energy across a further distance. Varying the wave decay rate (a) 

for any value of b reveals a distinct zone where wave energy is high enough to produce a wide enough platform, but not 

large enough to decrease the profile slope to below the observed 0.02 gradient at Bideford. The same relationship exists 700 

when optimising for the 10Be concentration profile, but the best region has shifted to a zone with a greater wave height decay 

rate (Fig. 10b).  This ratio between a and b strongly controls the accepted results for Bideford (Fig. 10c). Section 5.2 expands 

on this correlation found between the a and b parameters. 

 

For Scalby, there is a similar, but less distinctive, trade-off between a and b as seen at the Bideford site. A wider range of 705 

wave height decay rates (a) is able to produce a suitable topographic profile in relation to b; with the most likely results 

tending towards lower rates of wave height decay rate (a) (Fig. 10d). The platform gradient is shallower at Scalby (0.01); 

once a falls below ~ -1.5, a shallow platform gradient can be produced by a wider range of wave height decay rate values, as 

long as material resistance (b) is relatively low. The influence of the 10Be concentration optimisation constrains the window 

of best results (Fig. 10e). Accepted samples cover a wider area of the parameter space at Scalby compared to Bideford (Fig. 710 

10f).  
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Figure 10: Objective function results for the material resistance (b) wave height decay rate (a) parameters; constructed from 50 – 
50% weighted MCMC analysis results for the Bideford site and Scalby site. The topographic profile RMSE [(a) and (d)] and 10Be 715 
concentration profile RMSE [(b) and (e)] objective function spaces are constructed from all 10,000 samples visited in the MCMC 
analysis. The combined likelihood objective function space [(c) and (f)] is constructed just from the accepted samples from the 
MCMC analysis. Dark blue corresponds with the worst samples that have the highest RMSE and negative log-likelihood scores, 
while bright yellow corresponds with the best samples that have the lowest RMSE and negative log-likelihood scores. 
 720 
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5 Discussion  

Our ultimate aim is to quantify the long-term history of transient cliff retreat rates in order to enable better predictions of 725 

future cliff retreat rates at rock coast sites across the UK and world-wide. Our results show that rigorous multi-objective 

optimisation of a process-based coastal evolution model to high-precision measured datasets, permits long-term trajectories 

of cliff retreat to be identified and quantified for real-world sites over centennial to millennial timescales. 

 

To explore the potential for further application of these methods at other rock coast sites, here we justify the methodology 730 

chosen, address equifinality in model results and explore how equifinality impacts our ability to quantify cliff retreat rates. 

We also highlight some aspects of our results that should be interpreted with caution, specifically where correlation exists 

between parameters. 

 

5.1 The importance of multi-objective optimisation   735 

In this study, we have a rare opportunity to formally evaluate how two distinctive datasets constrain a model differently. We 

find the two datasets used here reveal dissimilar patterns in the objective function space between the topographic profile 

RMSE and the 10Be concentration RMSE (Fig. 8-10). The topographic data and 10Be concentration data have therefore, 

provided us with different information and validates the use of multi-objective optimisation in understanding the long-term 

evolution of rock coasts.  740 

 

Using the results from Bideford as an example, we can observe model outputs for three different zones within the parameter 

space: 1) zones where we are able to match the topographic profile, but not the 10Be concentration profile; 2) zones where we 

are able to match the 10Be concentration profile, but not the topographic profile; and 3) zones where we are able to match 

both objective functions. At the Bideford site, the parameter space that can produce model results that match the topographic 745 

profile well, but the 10Be concentration profile poorly, is only found where weathering rates are high (c > -5) (shaded blue, 

Fig. 11a). Examples of model outputs from this area (Fig. 11a) of the parameter space show that the shore platform gradient 

and elevation can be matched well, but the magnitude of all modelled 10Be concentration profiles are considerably lower than 

the corresponding measured data (Fig. 11b). This upper range of weathering rates (c) was incorporated into the initial 

MCMC analysis for the Bideford site, but was adjusted in later simulations because the model could not produce well-750 

matched 10Be concentration profiles for this range of c (see section 3.4). If we only optimise to the modelled topographic 

profile, we could vastly overestimate the contributions of weathering to the shore profile evolution at Bideford. More 

importantly, modelled cliff retreat rates are consistently faster than the multi-objective optimised retreat rate results that also 

try to match 10Be concentrations (Fig. 11e). 

 755 
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Furthermore, the zone where model outputs can match the 10Be concentration profile, but cannot match the topographic 

profile is shown for the parameter space between material resistance (b) and wave height decay rate (a) (shaded orange, Fig. 

11a). In all corresponding model examples shown (Fig 11c), the magnitude of the 10Be concentration profile matches the 

measured data well, but modelled shore platform profiles are steeper than the measured topographic profile. As wave height 

decay rate values (a) are increased above the parameter space that is able to match both objective functions well (shaded 760 

pink, Fig11a), the reduction in wave erodibility produces steeper profiles as erosion is less efficient. Concentrations of 10Be 

are highly dependent on the evolution of the surface topography. So, even if we are able to match 10Be concentrations to 

corresponding data, if the topography is incorrect, we are matching the 10Be concentrations incidentally and these results 

should be discarded. 

 765 

Finally, the parameter space where both the topographic profile and 10Be concentration profile can be matched well is shown 

(shaded pink, Fig 11a). This zone corresponds directly to the most likely accepted samples (Fig. 10). Examples of model 

outputs across this zone all show a good fit to the topographic profile and 10Be concentration profile (Fig. 11d). The reduced 

area covered by the pink shaded region demonstrates how optimising to multiple datasets has constrained uncertainty on 

final best-fit parameter results considerably. 770 

 

Results from topographic-only optimisation (shaded blue, Fig. 11e) show the same declining trend in cliff retreat rates, but 

are overall consistently faster than the rates of cliff retreat generated from multi-objective optimisation (shaded pink, Fig. 

11e). Furthermore, uncertainty in topographic-only optimised retreat rates is much greater compared to multi-objective 

optimisation results, particularly in modern-day modelled cliff retreat rates. In contrast, results from 10Be concentration-only 775 

optimisation (shaded orange, Fig. 11e) produce slower cliff retreat rates when compared to the multi-objective optimised 

results, but still show the declining trend. Multi-objective optimised results (shaded pink, Fig. 11e) show the declining trend 

in cliff retreat rates, where the magnitudes are intermediate to the two single-objective function results. Importantly, the 

range of retreat rates from multi-objective optimisation is considerably smaller in comparison to single-objective 

optimisation. Present-day cliff retreat rates based on multi-objective optimisation range from 1.8-2 cm yr-1 in contrast to 10Be 780 

concentration-only cliff retreat rates of 1-1.5 cm yr-1 and topographic-only optimisation cliff retreat rates of 3-9 cm yr-1. 

 

Differences between cliff retreat rates on the scale of cm yr-1 may not appear noteworthy, but projecting these retreat rates 

across large temporal scales have a significant effect on the modelled rock coast erosional history. The 250 m, modern-day 

intertidal shore platform would have been eroded in the past 2700-5200 years based on topographic only optimisation, 6800-785 

7000 years based on 10Be concentration only optimisation, and 5400-5600 years based on multi-objective optimisation. For 

these examples, the time period of modelled cliff erosion that reflects a good match to the measured topographic profile 

result in an uncertainty of 2500 years, while an uncertainty based on multi-objective optimisation is only 200 years. The 

example rock coast site at Bideford is a stable coastline with relatively slow historic cliff retreat rates. It is important to 
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ensure modelled cliff retreat rates can be constrained as much as possible, because the magnitude and uncertainty in cliff 790 

retreat rates would increase by orders of magnitude when applying this model to more dynamic rock coast sites, such as the 

southern UK coast chalk cliffs that are currently retreating at a much faster rate (eg. Hurst et al. 2016).  

 

Multi-objective optimisation ensures we optimise both objective functions simultaneously, and that best-fit results will 

reflect the parameter space where both measured datasets can be matched well. Consequently, equifinality in best-fit results 795 

can be limited substantially, which, most importantly, results in better-constrained modelled cliff retreat rates. Further 

improvements to the model optimisation may be made with future inversion calculations by optimising to a third measured 

dataset, including a secondary CRN concentration profile (eg., 26Al or 14C). This has the potential to 1) further constrain 

modelled long-term cliff retreat rates and 2) reveal more complex shore platform erosion evolution through coupled CRN 

analysis, e.g., such as platform burial due to sediment cover.   800 
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Figure 11: Objective function surface at Bideford (a), for parameters material resistance (b) and weathering rate (c), and material 
resistance (b) and wave height decay rate (a). Blue shaded region (a) shows where in the parameter space the modelled 
topographic profile alone can match measured data. Blue diamond’s (a) correspond to example model results shown in (b). 805 
Orange shaded region (a) shows where in the parameter space the modelled 10Be concentration profile alone can match measured 
data. Orange triangles (a) correspond to example model results shown in (c). Pink shaded region (a) shows where in the parameter 
space both the modelled topographic profile and 10Be concentration profile can match measured data. Pink crosses (a) correspond 
to example model results shown in (d). Cliff retreat rates (m yr-1) on a log-scale for each set of model examples are shown in (e). 
Model results are from the 50 - 50% weighted Pareto set simulation. 810 
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5.2 Parameter correlation  

As previously mentioned, Matsumoto et al. (2018) found that similar modelled topographic profiles can be produced across a 

wide range of wave force in relation to weathering, particularly in mega-tidal settings. Bideford is situated in a mega-tidal 

setting with a mean spring tidal range of 8.41 m. As expected, results from the MCMC analysis show accepted samples are 815 

found across a wide range of wave height decay rate (a) and weathering rate (c) values for Bideford (Fig. 8c; Fig. 9c; Fig. 

10c).  

 

The objective function space for wave height decay rate (a) and material resistance (b) reveals a trade-off relationship 

between the two functions. A linear regression analysis was performed and highlights a finite range of linearly related a and 820 

b values can produce a well-matched topographic profile and resultant 10Be concentration profile. The residuals of a, after 

fitting to the linear correlation in Figure 12a are shown (Fig. 12b). Nevertheless, the relationship between a and b is not as 

straightforward as saying faster wave height decay needs to be compensated by a lower material resistance. Varying the 

wave height decay rate (a) changes the erosive energy distribution across the shore platform, and this ultimately influences 

the amount of erosion achieved by waves. When waves dissipate energy too quickly (a is increased), erosion of the outer part 825 

of the platform is increased and less erosion is achieved towards the cliff base. As a result, modelled topographic profiles 

become too steep to match the gradient of the shore platform measured at Bideford (Fig. 12c). In contrast, when waves 

dissipate too slowly (a is decreased) and waves dissipate energy across a wider distance of the shore platform, erosion is 

increased further inshore and overall erosion across the shore platform is increased. The gradient of the modelled 

topographic profiles become lower than measured at the Bideford shore platform (Fig. 12e). Here we demonstrate the 830 

twofold impact of varying wave height decay rate: 1) increasing the distance across which waves break, increases the 

amount of energy made available for erosion, and 2) varying the rate of wave dissipation affects the spatial distribution of 

erosion across the shore platform. The observed range of residuals across the b/a regression and the resultant model outputs 

highlights the narrow uncertainty of y required to produce a matching topographic and 10Be concentration profile.  

 835 

In order for an MCMC analysis to produce effective posterior distributions, the optimisation method requires free parameters 

to be independent of each other. As a result of the correlation revealed between a and b parameters, the high confidence 

placed on a values (Fig. 12) is not reflected by the posterior distributions produced from the MCMC results (Table 3). Wide 

posterior distributions of the accepted samples (axis histograms in Figure 12a) produce large uncertainty for final MCMC 

results. We argue that propagating MCMC uncertainties for a together with the uncertainty for b produces unrealistic errors 840 

in model outputs, specifically seen in the large range of shore platform gradients, because of the correlation between these 

two parameters. Consequently, the uncertainty on final model outputs (Fig. 6; Fig. 7) are constructed by plotting the model 

result of the median and 16-84% confidence range for each parameter against the median result for the other two parameters.  
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Comparisons between the two sites further support our observations of the relationship between material resistance (b) and 845 

wave height decay rate (a). The platform gradient at Scalby is shallower compared to Bideford, and best-fit results for a 

show wave dissipation needs to be slower to match the topographic profile (Fig. 10). Best-fit a values are constrained by the 

lowest bound of a for Scalby, where a limits are informed by field-based studies (Ogawa et al., 2011). For Scalby, this either 

means: 1) overall wave erosion needs to be greater, or 2) wave erosion needs to be more evenly distributed across the shore 

platform, compared to at Bideford. Furthermore, Scalby is located at a meso-tidal coastline with mean spring tidal ranges of 850 

4.6 m, and previous studies have noted the positive correlation observed between platform gradient and tidal range for real-

world sites (e.g. Matsumoto et al. (2017)). Future investigations into how b vs a relationships may change as a function of 

platform gradient and/or tidal range within this exploratory model that are informed with additional site-specific datasets are 

needed in order to understand this model behaviour further.  
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 855 
Figure 12: (a) Objective function space of accepted samples from the MCMC analysis for material resistance (b) and wave height 
decay rate (a) parameters for Bideford. A linear regression calculation was performed and shown along with the r value of -0.83. 
Histograms on either axis show the distribution of accepted sample points. (b) Residual plot from the regression line shown in (a). 
Yellow circles plotted along the regression line in (b) correspond with model outputs shown in (d) that show the best-fit to the 
measured topographic profile. Green triangles pointing upwards (b) are plot +0.2 from the regression line and correspond with 860 
model outputs shown in (c). Green triangles pointing downwards (b) are plot -0.2 from the regression line and correspond with 
model outputs shown in (e).  
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5.3 Equifinality in cliff retreat trajectories  865 

Correlation between a and b parameters at Bideford also shows that a matching topographic profile can be produced across 

the full extent of material resistance (b), provided wave height decay rate (a) has adjusted accordingly (Fig. 12d). A greater 

material resistance (b) requires a greater wave force i.e., smaller wave height decay rate (a) in order to erode an across-shore 

intertidal shore platform with the same geometric properties. Correlation between a and b demonstrates one potential source 

of equifinality in terms of endmember topographic and 10Be concentration profiles. To ensure we report accurate cliff retreat 870 

rates, we need to identify whether equifinal a and b combinations result in similar cliff retreat trajectories as well as the same 

endmember model topographic and 10Be concentration profiles. The magnitude of material resistance (b) across the b/a 

regression has no effect on the final fit for the topographic profile (Fig. 12d). Most importantly, the resultant cliff retreat 

rates all show comparable trajectories and rates of cliff retreat across the late-Holocene. Therefore, as long as the 

combination of a and b track the regression fitted to the accepted samples (Fig. 12a), we can have confidence that the most 875 

accurate retreat rates are reported. 

 

5.4 Interpretation of best-fit parameter values  

It is important to recognise that the best-fit lower wave height decay rates (a) found at Scalby, which results in a breaking 

wave force to be exerted over a greater distance across the platform surface, do not necessarily mean that wave energy is 880 

greater at Scalby than Bideford. Wave energy is abstractly defined in the coastal evolution model by an assailing wave force, 

and we have chosen to explore this in the MCMC analysis by varying the wave height decay rate (a). Our aim is not to 

quantify the wave force at real-world coastlines, but to determine the best combination of model parameters to match 

measured datasets in order to model cliff retreat over timescales much longer than information on wave conditions is 

available. Wave height attenuation length is dependent on other factors such as profile gradient and tidal range, which are 885 

site-dependant (Trenhaile, 2000). We also have very few constraints on if and how tidal range has changed across the past 

8,000 years, as this depends strongly on local and far-field bathymetry, and other uncertain climatic variables. Furthermore, 

wave height decay rate is further impacted by surface roughness (Poate et al., 2018), and this is not considered within our 

model simulations. For these reasons, using wave height decay rate to infer wave energy for a range of real-world sites is 

unachievable with our model, even with a rigorous optimisation method. Moreover, parameter correlation, which seen 890 

particularly well in the relationship between material resistance (b) and wave height decay rate (a) (see section 5.2), means 

that finding a single best-fit result for wave height decay rate (a) is problematic without isolated parameter investigations. 

Nevertheless, the relative importance of the parameters that control the wave driven erosion (a) and weathering controlled 

erosion (c) can be considered.  Because best-fit results at Bideford clearly show that negligible contributions of weathering 

are needed to produce the 10Be concentration profile, we can conclude that the evolution of cliff retreat at Bideford is likely 895 
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dominated by wave-driven erosion. In contrast, modelled best-fit values of low to intermediate weathering rates at Scalby 

reveal a more complex interplay between wave-driven and weathering-controlled erosion.  

 

Resultant equifinality in cliff retreat trajectories (Fig. 12) reveal that correlation does not prevent identification of consistent 

patterns in cliff retreat rate histories. In other words, the relative combinations of a, b and c parameter values are able to 900 

capture the morphodynamics needed to model compatible rock coast evolutions at unique rock coast sites. Therefore, the 

abstract representation of wave force, weathering processes, and material resistance within the RPM does not inhibit the 

modelling of cliff retreat for real-world sites. Furthermore, consistent trends in past cliff retreat rates for all Pareto weighting 

sets (Fig. 5), that match the declining rate of RSL rise, suggest the influence of the RSL boundary condition dominates over 

individual parameter values in this model. 905 

 

6 Conclusions 

In this study, we have developed a multi-objective optimisation approach to reconstruct the history of rock coast evolution 

through the combination of morphodynamic modelling and field observations. Our approach calibrates a coupled 

morphodynamic-cosmogenic radionuclide rock coast evolution model using observations of modern rock coast topography 910 

and measurements of in situ 10Be concentrations in the exposed bedrock. These developments are vital to enable application 

of a process-based model to real-world coast sites and quantify a time series of rock coast erosion and sea cliff retreat rates. 

Our results demonstrate the necessity for using multi-objective optimisation in order to limit model equifinality, in which 

similar topographies develop via differing evolutionary trajectories. Optimal parameter selection is used to minimise 

discrepancies between model simulations and measured topography and 10Be concentrations can reveal the most likely 915 

history of rock coast development, including rates of shore platform lowering and cliff retreat.  

 

The selection of free parameters within the model optimisation focuses on the efficacy of intertidal weathering and erosion 

processes relative to the resistance of bedrock. There is still equifinality in model outcomes for parameter combinations 

where similar patterns of topographic development occur. More resistant bedrock combined with efficacious 920 

weathering/erosion can result in development of a rock coast profile similar to that of a less resistant bedrock and less 

effective weathering/erosion. This parameter correlation can be reduced through multi-objective optimisation, but ultimately 

does not prevent identifying consistent patterns in cliff retreat rates at specific rock coast sites.  

 

Investigations into the Pareto set of optimised results show best-fit results are consistent across a range of objective function 925 

weightings. These findings suggest that a single, equally weighted MCMC chain is sufficient to find an optimal set of input 

model parameters in order to constrain the cliff retreat rate history. 
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By applying rigorous optimisation methods, we demonstrate how an abstract, process-based model is capable of replicating 

rock coast profile development of real-world sites. Moreover, when coupled with a 10Be production model, equifinality is 930 

constrained sufficiently to reveal distinctive trends in long-term cliff retreat rates. Long-term cliff retreat rates of two unique 

UK rock coast sites both closely mirror the history of RSL change rates. These findings indicate that future accelerations in 

RSL rise associated with climate change will cause accelerations in cliff retreat rates, even at coastal sites that have been 

stable historically. We are only able to understand how cliff retreat responds to RSL by modelling the trajectory of cliff 

evolution across timescales that capture these changes in RSL rise. 935 

 

The multi-objective statistical modelling approach developed and tested in our study highlights potential for future efforts to 

1) reconstruct past rates and patterns of cliff retreat over timescales appropriate to the magnitude and frequency change of 

erosion at rock coast sites, 2) assess the relative importance of weathering and wave-driven erosion processes, and 3) 

forecast future erosion rates under different scenarios for RSL change as a result of climate change. 940 

 

Code and data availability. Input datasets are presented in the paper and/or the supporting information and will be made 

available from public sources specified. Output data and plotting scripts used to create the figures for this paper are currently 

available from Shadrick et al., (2021). All data and code used in this analysis will be open source and will be downloadable 

from a github repository (in progress): https://....githib.io// but can be requested from Shadrick et al., (2021) presently.  945 
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