Generation of autogenic knickpoints in laboratory landscape 1

experiments evolving under constant forcing. 2

3

Léopold de Lavaissière¹, Stéphane Bonnet¹, Anne Guyez¹, and Philippe Davy² 4

- ¹ GET, Université de Toulouse, CNRS, IRD, UPS(Toulouse), France, 5
- 6 ² Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, 35000 Rennes, France,
- 7 Correspondance to Léopold de Lavaissière (leopold.delavaissiere@gmail.com)
- 8

ABSTRACT 9

10	The upward propagation of knickpoints in <u>river</u> long <u>itudinal</u> profiles of rivers is commonly		Supprimé:
11	related to discrete changes in tectonics, climate or base-level. However, the recognition that some		
12	knickpoints may form autogenically, independently of any external perturbation, may challenge		
13	these interpretations. We investigate here the genesis and dynamics of such autogenic knickpoints		
14	in laboratory experiments at the drainage basin scale, where landscape evolved in response to		
15	constant rates of base-level fall and precipitation. Despite these constant forcings, we observe that		
16	knickpoints regularly initiate in rivers at the catchments' outlet, throughout experiments duration.		Supprimé:
17	The <mark>,upstream</mark> propagation rate <u>of knickpoint</u> does not decrease monotonically in relationship with		Supprimé:
18	the decrease of their, drainage area as predicted by stream-power based models, but it first		Supprimé:
19	increases until the mid-part of catchments before decreasing. Their initiation at the outlet		Supprimé:
20	coincides with <u>a fairly abrupt</u> river, narrowing <u>entailing an</u> increase <u>, in</u> their shear stress. Then,		Supprime:
21	once knickpoints have propagated upward, rivers widen, entailing a decrease in shear stress and		Supprimé: i Supprimé: i
22	incision rate <mark>, making the river lower than</mark> the base-level fall rate <mark>, This creates</mark> an unstable situation	~~~~	Supprimé:
23	which drives the formation of a new knickpoint. The experiments suggest a new cyclic and		Supprimé: creating
24	autogenic model of knickpoints generation controlled by river width dynamics regardless of any		Supprimé:
25	variations of climate or tectonic rates. This questions an interpretation of landscape		Supprime:

the

- (Supprimé: s
-(:	Supprimé: ir
_	
-(Supprimé: in
-(:	Supprimé: with a peak retreat rate in
<u>_(</u>	Supprimé: s
-(Supprimé: and
~(Supprimé: ing
(*	Supprimé: ing leads to
-(:	Supprimé: below
- (S 0	Supprimé: once knickpoints have propagated upward, creating
-	Supprimé: that ends up with
	Supprimé: We propose a
$\mathbf{}$	Supprimé: cyclic
\langle	Supprimé: of autogenic knickpoints

42 records focusing only on climate and tectonic changes without considering autogenic processes,

43 Introduction

44	Knickpoints	are	discrete	zones	of	steepened	bed	gradient	that	are	common	ly o	bserved	in	river

45 longitudinal profiles. Although they occasionally occur due to changes in bedrock properties (e.g. Duvall

- 46 et al., 2004), in many cases they are dynamical features that propagate upstream along drainage networks.
- 47 (Whipple and Tucker, 1999; Kirby and Whipple, 2012; Whittaker and Boulton, 2012). In this last case,
- 48 they are commonly considered as formed in response to variations in external forcing such as uplift rate,
- 49 sea Jevel or climate (e.g. Crosby and Whipple 2006; Berlin and Anderson, 2007; Kirby and Whipple,
- 50 2012; Whittaker and Boulton, 2012; Mitchell and Yanites, 2019) which opens the possibility of using
- 51 knickpoints in landscapes to identify such changes. Several studies pointed out however that some
- 52 <u>knickpoints_could_be autogenic, that is to say internally-generated without any variation in boundary</u>
- 53 conditions (e.g. Hasbargen and Paola, 2000, 2003; Finnegan and Dietrich, 2011). Understanding how
- 54 knickpoints can form autogenically is therefore crucial for retrieving changes in external forcing from
- 55 their occurrence in landscapes. Most observations of autogenic knickpoints formation come from
- 56 experimental modelling (see for example Paola et al., 2009) their initiation being attributed to
- 57 amplification of local instabilities in flume (Scheingross et al., 2019) and drainage basin scale
- 58 (Hasbargen and Paola, 2000) experiments. In these latter experiments for example, successive
- 59 knickpoints initiated despite constant external forcing (base-level fall and precipitation) throughout the
- 60 duration of the runs, even when landscapes were at steady-state on average. Internal processes may also
- 61 complexify the propagation of knickpoints as shown in the flume experiments of Cantelli and Muto
- 62 (2014) and Grimaud et al. (2016) where a single discrete event of base-level drop result in the
- 63 propagation of multiple waves of knickpoints.

64

- 65 In this work, we consider the generation and dynamics of autogenic knickpoints in laboratory-scale
- 66 <u>drainage basins experiments forced by constant rate of base-level</u> fall and steady precipitation. Such
- 67 <u>landscape experiments have been used successfully to explore how tectonics and climate impact erosion</u>
- 68 processes and the evolution of topography under controlled conditions (e.g. Hasbargen and Paola, 2000;

Supprimé: It illustrates the need to consider autogenic processes in the generation of knickpoints and for deciphering variation of tectonic and climatic processes from landscape records.

Supprimé: in rivers

Supprimé: the

Supprimé: of landscapes

Supprimé: ; Yanites et al., 2013

Supprimé: -

Déplacé (insertion) [1]

Supprimé: Unlike the commonly accepted idea that knickpoints are symptomatic of changing external forcing (e.g. Crosby and Whipple 2006; Berlin and Anderson, 2007; Kirby and Whipple, 2012; Whittaker and Boulton, 2012; Mitchell and Yanites, 2019),

Supprimé: s

Supprimé: they

(Supprimé: also

Supprimé: Their consideration should then be

Supprimé: analysis of knickpoints observed

(Supprimé: Autogenic knickpoints

Supprimé: has been observed for example in experimental drainage basins forced by constant rate of base-level (BL) fall by Hasbargen and Paola (2000). In their experiments, successive knickpoints initiated despite constant forcing, even when landscapes were at steady-state. Internal processes may also complexify the propagation of knickpoints as shown in flume experiments by Cantelli and Muto (2014) and Grimaud et al. (2016) who observed that a single discrete event of BL drop may result in the propagation of multiple knickpoints

Supprimé: Other flume experiments show that some knickpoints may generate autogenically along a river profile from the amplification of local instabilities (Scheingross et al., 2019).

Déplacé (insertion) [2]

Supprimé: W

Supprimé: here

Supprimé: BL

2

106	Bonnet and Crave, 2003; Lague et al., 2003; Turowski et al., 2006; Bonnet, 2009; Singh et al., 2015;
107	Sweeney et al., 2015; Moussirou and Bonnet, 2018). This approach allows for the observation of
108	complex dynamics that are sometimes difficult to simulate numerically and sheds new light on the way
109	natural landforms may evolve. Landscape experiments capture the tree-like structure of drainage
110	networks, the supply of eroded material from hillslopes, and especially their fluctuations, which is a
111	natural complexity that is not reproduced in flume experiments, for example. The experiments presented
112	here have been performed using a new setup specifically designed to investigate the evolution of a large,
113	meter-long, single drainage basin under controlled forcing condition. In previous similar catchment-
114	scale experiments (Hasbargen and Paola, 2000, 2003; Bigi et al., 2006; Rohais et al., 2012) the outlet
115	location was pinned to a narrow motor-controlled gate used to simulate base-level fall and which also
116	set the river width at the outlet. A specificity of our setup here is to use a large gate instead of a narrow
117	one, allowing experimental rivers to freely evolved downstream, with no constraints on their width. We
118	report here results from experiments where successive knickpoints initiate near the outlet autogenically
119	and propagate within drainage basins. The experiments emphasize a new model of autogenic knickpoint
120	initiation and propagation driven by downstream river width dynamics.
121	
122	
122	
123	x
124	2 Methods
125	We present here results from 3 experiments, BL05, BL10 and BL15, performed with different rates of
126	base level fall, of respectively 5, 10 and 15 mm.h ⁻¹ (Table 1). The facility is a box with dimensions 100
127	x 55 cm filled with silica paste (Fig. 1; see also Fig. S1 in the Supplemental Material). At its front side,
128	a sliding gate, 41 cm-wide, drops down at constant rate, acting as the base level. The initial surface
129	consists on a plane with a counterslope of ~3°, opposite to the base level-side (Fig. 1C). During a run,
130	runoff-induced erosion occurs in response to steady base level fall and rainfall (mean rainfall rate is of
131	95 mm.h ⁻¹ with a spatial coefficient of variation (standard deviation/mean) of 35%.), The mean spatial

Supprimé: We observe that Supprimé: and Supprimé: propose Supprimé: autogenic Supprimé: According to a stream-power based celerity

backprime: recording to a stream power backet or the set of the se

Déplacé vers le haut [1]: Unlike the commonly accepted idea that knickpoints are symptomatic of changing external forcing (e.g. Crosby and Whipple 2006; Berlin and Anderson, 2007; Kirby and Whipple, 2012; Whittaker and Boulton, 2012; Mitchell and Yanites, 2019), several studies pointed out that they could also be autogenic, that is to say internallygenerated without any variation in boundary condition (e.g. Hasbargen and Paola, 2000, 2003; Finnegan and Dietrich, 2011). Their consideration should then be crucial for retrieving changes in external forcing from analysis of knickpoints observed in landscapes. Autogenic knickpoints has been observed for example in experimental drainage basins forced by constant rate of base-level (BL) fall by Hasbargen and Paola (2000). In their experiments, successive knickpoints initiated despite constant forcing, even when landscapes were at steady-state. Internal processes may also complexify the propagation of knickpoints as shown in flume experiments by Cantelli and Muto (2014) and Grimaud et al. (2016) who observed that a single discrete event of BL drop may result in the propagation of multiple knickpoints. Other flume experiments show that some knickpoints may generate autogenically along a river profile from the amplification of local instabilities (Scheingross et al., 2019).

Déplacé vers le haut [2]: We consider here the generation and dynamics of autogenic knickpoints in laboratory-scale drainage basins experiments forced by constant rate of BL fall and steady precipitation. We observe that successive knickpoints initiate near the outlet and propagate within

Supprimé: Landscape experiments have been used successfully to explore how tectonics and climate impact erosion processes and the evolution of topography under controlled conditions (e.g. Hasbargen and Paola, 2000;[1]

Déplacé vers le bas [3]: (Fig. 1; see also Fig. S1 in the Supplemental Material)

Supprimé:

Déplacé (insertion) [3]

Supprimé: BL

Supprimé: artificial

3

Supprimé: and BL fall

- 211 precipitation rate of each experiment is of 95 mm.h⁻¹. Incisions initiate at some point along the base level
- 212 and propagate upstream until a complete dissection of the initial surface. Note that the counterslope of
- 213 the initial surfaceallows to separate the rainfall flux between the base level and the opposite side of the

214 device and then to create a water divide (Fig. 1B),

Supprimé: Then, some
Supprimé: i
Supprimé: BL
Supprimé: up to
Supprimé: , which consists on a plane with a counterslope of \sim 3°, opposite to the BL-side. This
Supprimé: between incisions that develop along the BL- side and the initial surface. The use here of a large gate on the BL-side of the setup constitutes a major difference compared to previous similar catchment-scale experiments of Hasbargen and Paola (2000, 2003), Bigi et al. (2006) and Rohais et al. (2012). In these experiments, a single outlet

In the set of the set

215

- Figure 1. Experimental setup. Purple and red lines show respectively the counter-slope of the initial 216
- 217 topography and the main water divide. (A) Sketch of the erosion box with the sliding gate, 41 cm wide,
- 218 used to drop down the base level (BL). (B), (C) Front and side photographs (experiments BL10, at 525'
- Supprimé: MBV07 219 and <u>BL15</u> at 185'). (D) Photograph of a typical knickpoint studied here. Supprimé: MBV06
- 220

221 Table1. Parameters of experiments

Experiments	Base Level Fall (mm/h)	Precipitation Rates (mm/h)	Duration Time (min)	Mean Divide Retreat Rates (mm/h)	nDDVmax	Mean Knickpoints Retreat Rates (mm/h)
BL15	15	95	1065	66.3	0.52	183.6 ± 93.8
BL10	10	95	1200	55.7	0.57	164.8 ± 74.8
BL05	5	95	1455	25	0.54	73.1 ± 50

240	

241	Experiments were stopped every 5 min to digitize the topography using a laser sheet and to construct
242	Digital Elevation Models (DEMs), with a pixel size of 1 mm. Longitudinal profiles and knickpoints were
243	extracted with a semi-automatic procedure that had to be developed to process the ~200 DEMs per
244	experiment. For this purpose, we first extracted longitudinal profiles by considering the lowest elevation
245	on the successive rows of each DEM within a 20 cm-wide swath that included the main river and then
246	by plotting it against distance down the long axis of the box. This procedure has already been applied
247	by Baynes et al. (2018) and Tofelde et al. (2019). It may result in a slight overestimation in channel
248	slope because it does not consider the obliquity of channels within the box in the distance calculation
249	nor their sinuosity. However, these effects are of minor influence here, because most of channels are
250	straight and roughly parallel to the long side of the box. In a second step, we computed the elevation
251	difference between each successive pairs of longitudinal profiles and we identified knickpoints as peaks
252	in erosion <u>rates</u> with values above the steady erosion amount defined by the rate of base-level fall (Fig.
253	2). We <u>verified manually that this procedure defines knickpoints correctly by checking the computed</u>
254	positions on longitudinal profiles, We investigated in particular if the procedure is robust with respect
255	to the time interval between successive profiles. We found that the record interval of 5 minutes is too
256	small to produce well-defined erosional peaks, which lead us to <u>identify</u> knickpoint positions from a
257	time-interval of 10 minutes. Then, we built a first catalogue of knickpoints positions at different times,
258	from which we manually extract the successive positions of each individual knickpoint. We
259	complemented the database by computing incremental retreat rates of knickpoints from their successive
260	positions.

Supprimé: s

Supprimé: Due to the large number of DEMs per experiment, about 200, river l Supprimé: based on Mis en forme : Police :(Par défaut) Times New Roman

Mis en forme : Police : (Par défaut) Times New Roman

Supprimé: in analysis of experiments

Supprimé: , h Supprimé: most of channels being straight

Supprimé: by considering

Supprimé: carefully
Supprimé: verified
Supprimé: verified
Supprimé: allows to
Supprimé: and
Supprimé: w
Supprimé: how
Supprimé: performed according
Supprimé: chosen
Supprimé: knickpoint retreats were generally
Supprimé: when we considered the highest time-resolution of 5 minutes
Supprimé: track
Supprimé: at
Supprimé: Thanks to this approach, we
Supprimé: rough
Supprimé: over
Supprimé: that we subsequently rearranged manually by gathering together the
Supprimé: then

Supprimé: As, Supprimé: R

Supprimé: considering

Supprimé: and a threshold depth between channels and hillslopes. Floodos routing procedure calculates water depth from precipitation over the totality of the topography, on hillslopes as well as in channels,

Supprimé: During runs, the actual water depth in rivers is very low, of mm-scale, and very difficult to measure without introducing any perturbation in the flow.

Supprimé: hus, t

Supprimé: varying this threshold over a DEM and by

Supprimé: corresponding extent of rivers with actual extent

of water flow as viewed

Supprimé: injecting

Supprimé: in the water used to produce the artificial rainfall Supprimé: consecutively

341	Figure 3. Impact of water depth threshold used to delineate river boundaries on estimated river widths,	
342	considering a friction coefficient C of 2.5 x 10^6 m ⁻¹ s ⁻¹ . A. Map views of water depths (blue colors)	
343	superimposed to DEM, for water depths threshold values between 0.025 and 1.5 mm. Red and purple	
344	lines show corresponding river widths for two rivers. Photo on the bottom right shows the active river	
345	width during the corresponding experimental run, viewed by injecting red dye in the water used to	
346	generate the artificial rainfall. B. Corresponding local river widths for the two sections shown by red	
347	and purple lines. The use of a low water depth threshold value (e.g. 0.025 mm; top left) leads to the	
348	inclusion of large areas of <i>shallow</i> water depth in the "wetted area" considered as rivers and then to	
349	unrealistic large rivers in comparison with actual rivers observed in the control run. On the opposite,	
350	considering large threshold value (e.g. 1.5 mm) results in narrow rivers, or even in the absence of rivers	
351	when maximum computed water depth is lower than this, threshold, A threshold value of between 0.1	<
352	and 0.5 mm shows a good similarity between rivers on water depth map and the control run. Here, a	
353	mid-value of 0.3 mm has been chosen for computing river widths.	

Supprimé: (pink colors; "control run")

Supprimé: thin

Supprimé: e Supprimé: used

354

355 3 Results

356 3.1 Dynamics of knickpoints retreat

357	In each experiment, <u>base level</u> fall induces the growth of drainage networks by headward erosion and
358	the progressive migration of a main water divide (Fig. 4). The migration rate of the divide is constant in
359	each experiment (Fig. 5 and Table 1), and this value increases from 25 to 66 mm.h ⁻¹ with prescribed rate
360	ofpase level fall. The successive longitudinal profiles of the main river investigated in each experiment
361	(Fig. 6) illustrate the growth of rivers as they propagate within the box. These profiles show alternations
362	of segments with low and higher slopes, the later defining knickpoints. They regularly initiate at the
363	outlet throughout the duration of the runs in all experiments and propagate upward until they reach and
364	merge with the divide, some profiles showing even several knickpoints that retreat simultaneously (Fig.
365	6). A characteristic of these knickpoints highlighted in Figure 7 (see also Fig. 6) is that they generally
366	initiate downstream with a gentle slope and gradually steepen as they migrate upstream. Their maximum
1	

 Supprimé: We present here results from 3 experiments, MBV09, MBV07 and MBV06, performed with different rates of BL fall, of respectively 5, 10 and 15 mm.h⁻¹ (Table 1).

 Mis en forme : Justifié, Interligne : Double

 Supprimé: BL

 Supprimé: but

 Supprimé: for increasing rate of

 Supprimé: BL

378	slope is generally reached when they have propagated to the central part of the profiles (see below).
379	Then the slope is maintained or slightly decreases during their retreat in the upper segment of the
380	profiles.

381	▼		Supprimé: Figure 6 shows the evolution of the longitudinal
202	The mean retreat velocity of knickpoints varies between experiments from 73 ± 50 to 183 ± 04 mm h ⁻¹		profile of the main river investigated in each experiment, as well as topography of the initial surface, the profiles being colored according to the experimental runtime. These stacks
302	The mean refeat velocity of kincepoints varies between experiments from 75 ± 50 to 185 ± 94 min.m		illustrate the growth of rivers as they propagate within the
383	(Table 1) and increases as a function of the rate of base-level fall. Data suggest a non-linear relationship		box. Longitudinal profiles show alternations of segments with low and higher slopes, the later defining knickpoints that
384	between base-level fall rate and mean retreat velocity of knickpoints, however complementary		knickpoints that retreat simultaneously. Knickpoints regularly initiate at the outlet throughout the duration of the runs in all
385	experiments would be necessary to constraint this dependency. To investigate the propagation of the		experiments, and propagate upward until they reach and merge with the divide.
386	knickpoints, we built space-time diagrams (Fig. 8) by considering the successive alongstream position		Supprimé: in average
			Supprimé: BL
387	of each knickpoint over experimental runtime, as well as the position of the water divide in the box as		Supprimé: show in Figure 7
388	already reported in Figure 5, To compare the dynamics of knickpoints within an experiment regardless		Supprimé: In order to be able to
389	of the stage of water divide retreat into the box, the position of knickpoints (distance to outlet, D) has		
390	been normalized to the position of the divide, hereafter referred to as normalized distance to divide		
391	(nDD; nDD=0 at outlet and nDD=1 at the divide; Figure 4). Lines of isovalue of nDD considering an		Supprimé: 2
392	increment of 0.1 are also shown in the space-time diagrams (Fig. 8), To a first order, the trajectories of		Supprimé: in Figure 7
393	each knickpoint are very comparable within an experiment regardless the stage of retreat of the water		Supprimé: whatever
394	divide and the size of the catchment. Visually for example, in the space-time diagrams there is no		
395	systematic variation in the general slope of the successive knickpoint trajectories over time, as the rivers		
396	expand, that would indicate a change in mean knickpoint velocity in relation to the change in the river		
397	length and catchment size. In detail, an inflection of trajectories is visible for many knickpoints when		Supprimé: A
398	they are close to the divide, for nDD $> \sim 0.8$ (Figure <u>8</u>), which indicates that they slow down as they		Supprimé: 7
399	approach the divide. The opposite is observed for some knickpoints when they are close to the outlet,		
400	for nDD < \sim 0.2 / 0.3, with some trajectories suggesting, on the contrary, an acceleration after their		
401	initiation (Figure <u>8; see also Fig. 7</u>). These <u>qualitative interpretations</u> are supported by the detail analysis	~	Supprimé: 7
402	of retreat velocity data shown in Figure 9. For each experiment, we show in Figure 9A the stack of		Supprimé: suppositions
102	or reactive erecting data shown in right erection experiment, we show in right of the stack of		Supprimé: 8
403	successive retreat velocities of each individual knickpoint according to distance nDD, The envelopes		Supprimé: 8A
404	draw a bell-shaped distribution for each experiment, which suggests, that retreat velocities are maximum		Supprimé: , <i>i.e.</i> according to their propagation between the outlet and the divide
			(Supprimé: indicates

433	when knickpoints are located at a mid-distance between the outlet and the divide, for central values of		
434	nDD, between 0.4 and 0.6. This is supported by summary statistics of retreat velocities at 0.1 intervals		Supprimé: Figure 8b
435	of nDD considering all knickpoints in each experiment (Fig. 9B). Both the mean and median values		
436	show higher rates of upstream propagation when knickpoints are in the central section of rivers in the		Supprimé: retreat
437	<u>three experiments</u> , and conversely lower rates near the outlet ($nDD < 0.2 / 0.3$) where, they initiate and	*****	Supprimé: n
438	start to propagate and <u>near</u> the divide (nDD > 0.8), as suggested by trajectories shown in Figure §. Note	~	Supprimé: when they
439	that because knickpoint retreat rates also depend on the rate of base-level fall, the range of retreat rates		"(Supprimé: 7
440	is smaller in experiment with the lower rate of base level fall, BL05, so that their variation with distance		
441	is not as well defined as in both other experiments. However, the mean and median values are also		
442	slightly higher for intermediate distances which suggests that the trends described for the other two		
443	experiments are also valid here, Data from the three experiments indicate that after their initiation near	*****	Supprimé: Then, thes
444	the outlet, knickpoints first speed up with a maximum in the central part of the catchments before,	\leq	Supprimé: accelerate
445	decelerating near the divide. It is worth noting that this specific trend of knickpoint retreat rates is		Supprimé: and reach t
446	observed regardless of the experiment stages and thus whatever the position of the divide in the box.		Supprimé: e
447	This applies both to rivers in the early stages of experiments evolution, i.e. when they are small as well		Supprimé: as they app Supprimé: distribution
448	as for, very large rivers at the end of experiments. To further characterize this trend, we determined the		Supprimé: progress of
449	nosition of maximum knickpoint velocity on longitudinal profiles hereafter nDDy from a second		Supprimé: the advanc
			Supprimé: to
450	order polynomial fit (Fig. 9C). This value is very similar between experiments, of 0.52, 0.57 and 0.54		Supprimé: of experim
451	<u>(Table 1).</u>		Supprimé: short
		1	Supprimé: , and to
452			Supprimé: evolution
			Déplacé (insertion) [4]
453			Supprimé: considered
454			Supprimé: to the data inflexion to define a not maximum velocity of k
			Supprimé: 8
455			Supprimé: referred to
			Supprimé: 52 to 0.57

Supprimé:	Figure	8b	provides	
-----------	--------	----	----------	--

	Supprimé: retreat
	Supprimé: n
	Supprimé: when they approach
······(Supprimé: 7

Supprimé:	Then, these d
Supprimé:	accelerate
Supprimé:	and reach their maximum retreat rate
Supprimé:	to
Supprimé:	e
Supprimé:	as they approach
Supprimé:	distribution
Supprimé:	progress of the
Supprimé:	the advancement stage of incision and divide
Supprimé:	retreat
Supprimé:	to
Supprimé:	of experiments
Supprimé:	short
Supprimé:	, and to
Supprimé:	evolution of the
Déplacé (inse	ertion) [4]
Supprimé:	considered
Supprimé: inflexion to d maximum ve	to the data shown in Figure 8 and used the lefine a normalized longitudinal distance of locity of knickpoints
Supprimé:	8
Supprimé:	referred to as nDD _{Vmax} in the following

Figure 4. Photos and corresponding DEMs of experiment <u>BL15</u> at four runtimes. Note the propagation of the divide through the erosion box (red line) and the drop of the sliding gate used for falling base-486 level. The normalized distance to divide (nDD, see text) used to follow the position of knickpoints during

runs is shown superimposed to DEMs.

Supprimé: MBV06

Figure 5. Evolution of the water divide position within the erosion box for the three experiments. <u>The</u>

inset figure (Bottom right) show the relation between the divide migration rate in the three experiments

and their related base-level fall rate.

Figure 6. Successive river longitudinal profiles of experiments, shown here every 10 min. Each
longitudinal profile is colored according to experimental runtime. The sliding gate used to drop the base
<u>level</u> is to the left. Note the initial counterslope (cs). Black thick line on <u>BL10</u> is the longitudinal profile
at t=790', illustrating the outlet (o), knickpoints (k), and water divide (d). Note the change of scale for
<u>experiment BL05.</u>

Supprimé: (BL)
Supprimé: MBV07

503 Figure 7. Detail retreat of an individual knickpoint from experiment BL10 (see also Fig. 6) showing its 504 initiation with a gentle slope which subsequently steepen as it migrates upstream (see also Fig. S3), Its 505 maximum slope is reached at mid-distance between the outlet and the divide. Its lowest retreat rates are

observed downstream near the outlet and upstream near the divide.

Supprimé:

502

506

519

520

527

Supprimé: 8 Supprimé: 7 Mis en forme : Police :Gras Déplacé vers le haut [4]: we considered a second order

Déplacé vers le haut [4]: we considered a second order polynomial fit to the data shown in Figure 8 and used the inflexion to define a normalized longitudinal distance of maximum velocity of knickpoints (Fig. 8C) referred to as nDD_{vmax} in the following. This value is very similar between experiments, of 0.52 to 0.57 (Table 1).

Supprimé: Studies that investigated knickpoints retreat at catchment-scale demonstrated that their velocity decreases as they propagate upstream due to the progressive reduction of the upstream drainage area and water discharge (e.g. Crosby and Whipple, 2006. Berlin and Anderson, 2007). The pattern of velocity distribution that we document here is not consistent with this finding because we observe here an increase in knickpoints velocity in the early stage of their propagation. To evaluate this effect in our experiments, we investigated the dependency between retreat velocities and discharge by cutting the dataset into two parts corresponding to the different regimes identified above. For this purpose, we considered a second order polynomial fit to the data shown in Figure 8 and used the inflexion to define a normalized longitudinal distance of maximum velocity of knickpoints (Fig. 8C) referred to as nDD_{Vmax} in the following. This value is very similar between experiments, of 0.52 to 0.57 (Table 1). Data above nDD_{Vmax} (Figure 9) allows to consider retreat rates against more two orders of magnitude of unit discharge (total discharge normalized to river width). They do not show a clear tendency of increasing rate with discharge as expected, although a rough positive correlation could be defined, following a power law with an exponent of 0.25. Data below nDD_{Vmax} show 3 distinct fields without any clear trend with discharge. The restricted range of discharge data however limits the analysis.

564		
504		
565	•	Supprim retreat rat nDD _{Vmax} (
566	3.2 Knickpoints initiation	Supprim
		Supprim
567	To illustrate how knickpoints initiated near the outlet, we consider here a 120 minutes-long sequence of	downstrea
568	channel evolution in experiment BL15 during which two knickpoints (K1 and K2) successively initiate	initiation a channel ci
569	and propagate upward (Fig. 10). In addition, we analyzed the history of channel width (Fig. 11A) and	Supprim
570	unit water discharge (Fig. 11B) at a cross-section located at 8 cm from the outlet (see location on Fig.	Mis en fo
571	10B). We also present a summary of the statistics of normalized elevation changes (Fig. 11C) and shear	Supprim
572	stress (Fig. 11D) for all pixels across the section, The sequence starts with a "standard" profile (i.e., a	water disc well as su (Fig. 11C)
573	typical river profile without any perturbation) at runtimes 880 and 890 min once a previous knickpoint	section. O values of
574	already propagated, still visible upstream in Figure 10A. The channel is 23 to 25 mm wide (Fig. 10B	fall and th indicate re fall rate N
575	and 11A) and the unit discharge is about 1.5.10 ⁶ mm ³ .h ⁻¹ .mm ⁻¹ . Erosion in the channel is <u>on average</u>	sequence min once
576	lower than the base level fall as normalized erosion is <1 for most pixels along the section (Fig. 11C).	upstream
577	Then, the knickpoint K1 initiates at runtime 895' and starts to propagate upstream. At the surveyed	Supprim
578	section, the channel first narrows, up to ~15 mm wide at 905 min (~60 % decrease), and then widens	Supprim Supprim
579	(~25 mm) once the knickpoint has moved upstream of the section, at 910 min (Fig. 10B). The	Supprim
580	narrowing phase is naturally associated with an increase of the unit discharge (Fig. 11B) and with an	Supprim
581	enhanced erosion well above the base level fall rate, up to 4 times this rate in average at 900 min (Fig.	Supprim
582	11 C) with extremes as high as 8 times the base level rate. Once this knickpoint K1 has retreated unit	Supprim Mis en fo
		Supprim
583	discharge decreases as the channel subsequently widens, to reach a width of 25 cm to 28 cm between	Supprim
584	925 and 930 min (Fig. 11A) while a new regular profile, i.e. without any slope break, established at 930	Supprim
585	min (Fig. 10A). The normalized erosion across the section decreases below the base level value (Fig.	Supprim
586	11C), with mean erosion rate, values of 0.53, 0.36 and 0.76 times below the base level, rates between 915	Supprim
587	to 925 min. Longitudinally, the profiles stack together downstream of the knickpoint following its retreat	Supprim
588	from 895 to 925 min (Fig. 10A), which also indicates minor vertical erosion here once the knickpoint	Supprim

Supprimé: Figure 9. Relationship between knickpoints retreat rates and unit discharge (discharge/width) for nDD < nDD_{Vmax} (left) and nDD > nDD_{Vmax} (right).

Supprimé: MBV06

Supprimé: from experimental runtime 880 to 1000 minutes,

Supprimé: Figure 10 shows 5 min intervals sequence of downstream longitudinal profiles, 40 cm-long, showing their initiation and propagation as well as the evolution of a channel cross-section located at 8 cm from the box boundary

Supprimé: Some photos and perspective views of the corresponding DEMs also illustrate the evolution of the channel.

Mis en forme : Police : (Par défaut) Times New Roman

Supprimé: Complementary data are shown in Figure 11: variations over time of channel width (Fig. 11A) and unit water discharge (Fig. 11B) at the cross-section location as well as summary statistics of normalized elevation changes (Fig. 11C) and shear stress (Fig. 11D) for all pixels across the section. On the graph shown in Figure 11C, normalized values of 1 indicate erosion at the same rate than base-level fall and then steady-state conditions. Values > 1 or <1 indicate respectively higher and lower erosion rate than BL fall rate. Negative values indicate sedimentation. The sequence starts with a regular profile at runtimes 880 and 890 min once a knickpoint has already retreated, still visible upstream (Figure 10A).

7	Supprimé: in
1	Supprimé: BL
Ì	Supprimé: B
Ì	Supprimé: the first
Ì	Supprimé: retreat
Ľ,	Supprimé: T
Ù	Supprimé: being
()	Supprimé: before to subsequently widenings
()	Supprimé:
Ŋ	Mis en forme : Police : (Par défaut) Times New Roman
Ņ	Supprimé: retreated
	Supprimé: at the location of the section surveyed
N	Supprimé: goes
Ņ	Supprimé: in
N	Supprimé: BL
Ņ	Supprimé: BL
Ì	Supprimé: first
()	Supprimé: decreased
Ì	Supprimé: BL
1	Supprimé: s
Ì	Supprimé: BL

634	has retreated despite the ongoing base level falling. The second knickpoint (K2) then initiates at 935
635	min, propagates upstream in a similar way, and disappears leading to the setting up of a new regular
636	profile at 980 min (Fig. 10A). <u>Channel narrowing is also observed on the cross-section at the passage of</u>
637	this second knickpoint, with a width that decreases to ~15 mm wide (Fig. 10B and 11A), associated with
638	an increase of the unit discharge and the erosion rate (Fig. 11C). It is followed again by a phase of
639	widening to reach a width to around 30 / 35 mm once the knickpoint has propagated upstream and by a
640	decreasing erosion below the base level, fall rate (Fig. 11C). Again, the longitudinal profiles stack
641	together downstream of the knickpoint (Fig. 10A). Note that at 975 min, most of the surveyed section is
642	undergoing sedimentation (mean normalized erosion rate is 0.1 and median is -0.25; Figures 10B and
643	11C). The distribution of river bed shear stress along the section is given in the Figure 11D, Despite a
644	large variability along the section, one can observe a significant increase of the median and maximum
645	values at the time of the knickpoint passage, both for K1 and K2. Once knickpoints passed, the shear
646	stresses decrease as the river widens.
647	This sequence illustrates that the rivers are never in equilibrium at the 5 min time-scale, but continuously
648	oscillate over time between disequilibrium states with periods when channel are too wide to keep pace
649	with the base level, and periods of knickpoint propagation when the erosion is enhanced to catch up the
650	base level. The river width is the regulation parameter which allows the river erosion to adapt
651	by increasing or decreasing the unit discharge, These knickpoints then propagate upward up to the divide
652	as discussed previously (Fig. 6). The average erosion rate is similar to the baselevel fall rate (0.99) but
653	it does not correspond to any stable configuration of the river since the erosion rate fluctuates between
654	smaller and larger values. Knickpoints are by-products of this unsteady dynamics, which are generated

(Supprimé: falling
••(Supprimé: A
Y	Supprimé: initiated
1	Supprimé: and propagated
Ì	Supprimé: until
Ì	Supprimé: establishment
Ì	Supprimé: The
ľ,	Supprimé: also coincides with a narrowing of the channel, being
()	Supprimé: on the cross-section shown here
Ì,	Supprimé: a rise in the
Ì	Supprimé: with an increase of the normalized erosion above the BL
ľ,	Supprimé: BL
Ì	Déplacé (insertion) [5]
Ì	Supprimé: sedimentation took place on a large part
Y	Supprimé:)
Ì	Déplacé vers le haut [5]: Again, the longitudinal profiles stack together downstream the knickpoint (Fig. 10A).
ſ,	Supprimé: Figure 11D provides summary
Ì	Supprimé: statistics of
Ì	Supprimé: exerted on the channel bed
ļ	Supprimé: for all pixels along the channel section.
	Supprimé: The values of shear stress show a quite
ļ	Supprimé: large variability at the scale of the cross-
	Supprimé: with
1	Supprimé: increasing however in phase with
l	Supprimé: the passage of
Ì	Supprimé: s
ļ	Supprimé: Then o
	Supprimé: values
ļ	Supprimé: periods of
ļ	Mis en forme : Police :(Par défaut) Times New Roman
	Supprimé: during which erosion in wide channels goes at a slower rate than the BL and periods
1	Supprimé: with
Ņ	Mis en forme : Police : (Par défaut) Times New Roman
Ì	Supprimé: enhanced erosion and increased discharge in narrower rivers, erosion being well above the BL rate along the knickpoint segment

692 during the phases when the river catches up with its erosion deficit with respect to the base level.

Supprimé: Although erosion appears to be fundamentally punctuated over time, considering all erosion rates data across the investigated cross-section and for the whole sequence shown here gives an average normalized erosion rate closed to unity (0.99) which indicates that these oscillations take place however around an average steady state over the long time-scale (crosion rate equal to BL rate). It indicates that enhanced erosion above the BL value during the retreat of knickpoint compensates the delay in vertical erosion that accumulates between two successive knickpoints, while rivers are defeated in following BL fall.

694	Figure 10. Downstream knickpoints initiation and propagation in a 120 minutes-long sequence of
695	experiment BL15 from experimental runtime 880 to 1000 minutes. (A) Sequence of downstream
696	longitudinal profiles (<u>5 min time-interval</u>) of the investigated river, corresponding to the sequence
697	hydro-geomorphic parameters shown in Figures 11 and 12. Propagation of the first (K1; initiated at

Supprimé:

Supprimé: Successive

Supprimé: downstream section

Supprimé: in experiment MBV06

713 <u>895'</u>) and second (K2<u>; initiated at 935'</u>) knickpoints is shown in green and purple colors respectively

714 (see text). (B) Time evolution of successive cross-sections of the channel at 80 mm from the outlet. (C)

715 *Photos and perspective views of DEM at five time-steps.*

716

717

Supprimé: is Supprimé: blue and orange

20

718

721	Figure 11. Time-series (5 min time interval) of river width (A) and unit and total discharge (B) for the	(Supprimé: at	
722	channel in experiment <u>BL15</u> shown in Figure 10B. Time-series of box-and-whisker plots of normalized		Supprimé: MBV06	
723	erosion or sedimentation (C) and shear stress (D) for all pixels across the section. Orange solid circles		Supprimé: elevation	
724	and vallow lines show the mean and median values respectively. Edges of the bayes indicate the 25th		Supprimé: changes	
724	and yellow lines show the mean and median values respectively. Edges of the boxes indicate the 25th	\sim	Supprimé: F	
725	and 75 th percentiles. Note that in C, normalized values of 1 indicate erosion at the same rate than base-		Mis en forme : Police : Italique	
726	level fall and then steady-state conditions. Values ≥ 1 or ≤ 1 indicate respectively higher and lower			
727	erosion rate than BL fall rate. Negative values indicate sedimentation. On all graphs, crosshatched	(Supprimé: C	
728	areas indicate the passage of knickpoints <u>K1 and K2</u> .			
729	To complement cross-section data, we also illustrate (Fig. 12) how parameters vary longitudinally by	(Supprimé: show in Figure 12	
730	considering four stages, two before (925 min) and after (975 min) the passage of the knickpoint K2 and	(Supprimé: second	
731	two during its retreat (945 and 950 min). Note that at 925 min, the previous knickpoint (K1) has just	(Supprimé: first	
732	passed upstream the investigated profile and is responsible for the enhanced normalized erosion and			
733	increased shear stress upstream between distance 200 to 350 mm. Similarly, at 975 min the second		Supprimé: 800	
724	Initial point $(K2)$ is still in the unstream part of the profile between distance 200 to 250 mm. We also		Supprimé: 650	
/ 54	Kinckpoint (K_2) is sum in the upstream part of the prome between distance $\frac{200}{000}$ (0) $\frac{250}{000}$ min. We also	< 0	Supprimé: ,	
735	reported the longitudinal variations in river width, shear stress and normalized erosion along the profiles		Supprimé: 700	$ \longrightarrow $
736	(Fig. 12). At runtimes 925 and 975 min. before and after the passage of knickpoint K2, erosion is below	}	Supprimé: 650	\longrightarrow
737	the <u>base level</u> rate along all the profiles down the knickpoints, with even localized sedimentation at 975		Supprimé: BL	
738	min between 50 and -150 mm. These sections are characterized by low shear stress values, being	(Supprimé: 805	
720	between 0.5 and 1 and by rivers that widen downward (around 0.7 mm/cm). On the opposite, during the		Supprimé: 950	
	between 0.5 and 1 and by rivers that which downward (around 0.7 min/em). On the opposite, during the			
740	passage of knickpoint K2, at runtimes 945 and 950 min, mean shear stress increases locally at the	\leq	Supprimé: a second	
741	knickpoint location, being > 1 and the normalized erosion overpasses the base level rate there. These		Supprimé: (K2)	\longrightarrow
742		C	Supprime: BL	
742	knickpoint segments are characterized by a narrowing of the rivers as already shown previously. The			
743	data illustrate that erosion mainly occurs during periods of knickpoint retreat though a combination of			
744	local steepening of the profile and narrowing of the river, resulting in an increased shear stress. On the			
745	opposite, once a knickpoint has propagated and between the passage of two successive knickpoints,			
746	erosion decreases significantly and does not longer compensate the base level, fall. These periods of	(Supprimé: BL	
747	defeated erosion are characterized by low bed shear stress values in wide rivers, that widen downward.			

771 *Figure 12.* Longitudinal trends of hydro-geomorphic parameters in experiment <u>*BL15*</u> at runtimes 925,

772 945, 950 and 975 min (see text for comments). K1 and K2: first and second knickpoints discussed in the

773 text (see also Fig. 10A).

Supprimé: MBV 06

_	_	-
-7	7	Ц
		-

775		
776	4 Discussion,	Supprimé: and conclusions
777	4.1 Autogenic knickpoints	
778	Our experiments illustrate the generation and retreat of successive knickpoint waves that traveled across	
779	the landscape during the growth of drainage networks. They formed throughout the duration of	
780	experiments regardless of the steadiness of the precipitation and base level, fall rates and of the	Supprimé: BL
781	homogeneity of the eroded material. These knickpoints were autogenically generated (Hasbargen and	Supprimé: Consequently, these
782	Paola, 2000), arising only from internal geomorphic adjustments within the catchments rather than from	
783	variation in external forcing. Our observations appear very similar to those of Hasbargen and Paola	
784	(2000, 2003) and Bigi et al. (2006) who also reported the generation of successive autogenic knickpoints	
785	in landscape experiments evolving under steady forcing (rainfall and base level fall rate), throughout the	Supprimé: BL
786	duration of the runs. Unlike our experiments, which mainly consider the growth phase of drainage	Supprimé: ,
787	networks, experiments reported in Hasbargen and Paola (2000, 2003) and Bigi et al. (2006) considered	Supprime: These authors mentioned that their initiation was not "attributed to abrupt base-level drops, because the outlet drops continuously" (Hasbargen and Paola, 2000) as in our citcle.
788	the propagation of knickpoints after the phase of network growth, while their system was at steady-state	Supprimé: the
789	on average (mean catchment erosion rate equals to base level rate). Then, given that the size of their	Supprimé: i
790	experimental catchment was steady over time and given the steady rainfall rate, they were able to rule	(Supprimé: BL
791	out variations of water discharge over time as a main driver for the generation of their knickpoints. On	Supprimé: the
792	the opposite, in our experiments the size of catchments continuously increased over time, and thus the	
793	water discharge. However, this does not appear as a key factor controlling knickpoints initiation for	Supprimé: the main
794	several reasons. First, as we already mentioned, knickpoints arose at all stages of network growth and	
795	divide retreat, for both small and large rivers (Fig. 8), and thus whatever the range of water discharge at	Supprimé: 7
796	outlet. Second, the migration of the water divide related to drainage network growth occurred steadily	
797	and roughly at a constant rate during the experiments (see Figures 5 and 8), as well as the size of the	Supprimé: an
709	catchments and the related increase in water discharge. Then, we can rule out abrunt variations in	Supprimé: 7
190	cateminents and the related increase in water discharge. Then, we can full out dolupt valiations in	Supprimé: and then
799	discharge as the driving mechanism for knickpoint initiation. Last, knickpoint initiations occurred at a	
800	higher frequency than the increase in water discharge that <u>resulted</u> from catchment expansion and divide	Supprimé: results
801	migration. For example, in addition to unit discharge, we also reported on Figure 11B, the variation in	Supprimé: C
1		

822	total discharge during the 120 min-long sequence of knickpoint initiation discussed previously. The total
823	discharge rose from 3.7 10^7 to 4.0 10^7 mm ³ .h ⁻¹ in 120 minutes representing a ~ 8% increase, which is
824	relatively low compared to the ~100 % increase of unit discharge during the passage of a knickpoint.
825	For all these reasons we conclude that the change in catchment size was not the main driver of successive
826	knickpoints initiation in our experiments, which <u>occurred</u> at a higher frequency. Supprimé: occurs
827	4.2 Processes controlling knickpoints initiation and propagation
828	Given that the initiation of successive knickpoints was not related to changes in external factors and Supprimé: Admitting
829	catchment size over time, we consider internal geomorphic processes as driving mechanisms. The Supprimé: it is then necessary to
830	detailed sequence of knickpoints initiation and propagation discussed above shows enhanced incision Supprimé: clearly
831	above the rate of base level, fall during the periods of knickpoints propagation. This occurred through
832	local steepening of the longitudinal profile and narrowing of the river, these two factors leading to an
833	increase in unit discharge and bed shear stress along the knickpoints. Several studies already Supprimé: section
834	documented how steepening and narrowing act together for increasing river incision rate (e.g. Lavé and
835	Avouac, 2001; Duvall et al., 2004; Whittaker et al., 2007; Cook et al., 2013), which is what we also
836	document here. The novelty in our finding here, however, lies in the phase of post-knickpoint retreat. Supprimé: particularity of the rivers in our study
837	Actually, immediately after the retreat of a knickpoint, we show that erosion is inhibited downstream
838	and rivers no longer incised despite the ongoing base level, fall, until the passage of a new knickpoint. Supprimé: BL
839	Although only illustrated in the sequence detailed previously (Figs. 10 to 12), this was a general behavior Supprimé: clearly shown
840	that concerned the three experiments and their whole longitudinal profile, not only their downstream Supprimé: presented here
841	part as in this sequence. Actually, this systematic decrease in erosion downstream of the knickpoints is
842	inherent to the geometry of the stacks of all successive longitudinal profiles of each experiment (Fig. 6).
843	In most cases, profiles downstream of retreating knickpoints stack on top of each other, as illustrated Supprime: shown in
844	schematically on Figure 13A, which indicates minor or no erosion downstream of the knickpoints until
845	the passage of a new one. In the case of continuous adjustment of rivers to base level fall downstream
846	ot the knickpoints, the geometry of profiles should rather show a pattern as illustrated in Figure 13B.
847	The pattern of profiles evolution over time documented here is usually observed following <u>incremental</u> Supprimé: a sudden and finite
848	drops in base level, (Finnegan, 2013; Grimaud et al., 2016) and to our best knowledge this is the first Supprimé: BL

868	time here that such geometry is documented in the case of a continuous, base level fall. This particular Supprimé: BL
869	pattern is explained by the decrease in erosion rate downstream of the retreating knickpoints which
870	finally acts as if the base level, was not falling continuously at a constant rate but dropped regularly step-
871	by-step. Therefore, understanding the systematic occurrence of successive knickpoints in our
872	experiments requires to understand why erosion rate dropped downstream of knickpoints, following
873	their retreat. After the passage of knickpoints, we systematically observe a widening of the rivers, as
874	also documented in natural systems (e.g. Cook et al., 2014; Zavala-Ortiz et al., 2021) and a decrease in
875	the bed shear stress. Because an increase in channel width over time inevitably reduces the bed shear Supprimé: will
876	stress if discharge and river gradient remain constant (Fuller et al., 2016), we propose that widening was
877	the main factor responsible for the decrease in shear stress and erosion rate after the passage of a
878	knickpoint, and then for the occurrence of the successive autogenic knickpoints. Demonstrating the sole
879	effect of river width on bed shear stress and erosion rate is complicated by covariations of these factors
880	with river slope and variations of discharge related to connection of tributaries. This can be <u>illustrated</u> Supprimé: discussed
881	however on the basis of the sequence <u>considered</u> previously, particularly at runtime 925 min between Supprimé: discussed
882	the passage of the two successive knickpoints K1 and K2 (Figs. 10 and 12). At that time, the profile of
883	the river here had a roughly constant slope (Fig. 14), without any slope break and no major tributary Supprimé: (Fig. 14)
884	connected (Fig. 10) that could have significantly changed the water discharge. As illustrated in Figure
885	12, this river segment was characterized by widening and decreasing shear stress downward <u>despite</u>
886	constant slope and total discharge. Then, this example illustrates a decrease in shear stress that was only Supprimé: as shown in Figure 14 we can document here
887	the result of the widening of the river downward (Fig. 14), which supports the hypothesis that defeated Supprimé: . This observation
888	erosion downstream of the propagating knickpoints was mainly due to the widening dynamics of the
889	experimental rivers.

А

В Time Time

25

915	allowing the river to recover from the incision delay accumulated during the previous widening period.
916	Further work is required to understand the mechanisms responsible for lateral channel erosion in our
917	experiments, which is a key ingredient for understanding river mobility and widening. Several field (e.g.
918	Hartshorn et al., 2002; Turowski et al., 2008; Fuller et al., 2009), experimental (e.g. Wickert et al., 2013;
919	Bufe et al., 2016; Fuller et al., 2016; Baynes et al., 2020) and numerical (e.g. Turowski et al., 2007;
920	Lague, 2010; Langston and Tucker, 2018; Li et al., 2021) studies have demonstrated that high sediment
921	flux relative to transport capacity promotes increased lateral channel erosion. Most of these studies
922	highlight the role of cover effect, the protection of the river bed by transient deposition of sediments on
923	the river bed (Sklar and Dietrich, 2001; Turowski et al., 2007, 2008; Lague, 2010; Baynes et al., 2020;
924	Li et al., 2021), as a main factor promoting lateral erosion in high sediment flux settings. Other studies
925	show that by modifying the bed roughness, sediment deposition may deflect the flow, which also
926	promotes lateral erosion and widening (Finnegan et al., 2007; Fuller et al., 2016). Contrary to
927	experimental devices specifically designed to address these issues, large flumes in particular (e.g.
928	Finnegan et al., 2007; Fuller et al., 2016), direct observation on actual processes that drive lateral erosion
929	in our experiments is made difficult by the small size of the topographic features, the depth of rivers
930	being of millimeter scale, and by the low grain size of the material used. Opacity due to the generation
931	of the artificial rainfall also considerably limits direct observation during the runs. Despite these
932	limitations, data suggest that lateral erosion and river widening in our experiments is also related to
933	increase in sediment flux. We show actually that knickpoints are location of enhanced erosion well
934	above the rate of base level fall. We document for example mean erosion rates greater than 5 times the
935	base level fall rate, with extreme values up to a factor of 8 locally (Fig. 11 and 12). Downstream, where
936	rivers widen, we observe that the general decrease in erosion rate is also associated with local deposition
937	in some parts of the channels (for example at runtime 915 min in Figure 11 or 975 min in Figures 10 to
938	12). We then hypothesize that lateral erosion and widening are due in part to the increase sediment flux
939	related to enhanced erosion on knickpoints. Further work is needed to test this hypothesis, for example
940	by investigating in detail spatio-temporal variations in erosion and sedimentation during width
941	widening.

942	V
943	Further work is also needed to better understand how knickpoints initiate after the phases of widening,
944	in particular for determining whether river narrowing drives the formation of the knickpoints (e.g. Amos
945	and Burbank, 2007) or whether narrowing is a consequence of steepening (e.g. Finnegan et al., 2005).
946	Some studies that investigated the rivers response to increased uplift rate show that narrowing alone, at
947	constant river gradient, can allow rivers to increase their incision rate (Lavé and Avouac, 2001; Duvall
948	et al., 2004; Amos et al., 2007). In this context, Amos et al. (2007) propose a model in which the river
949	response to an increase in uplift rate first involves width narrowing, with the increase in slope and
950	formation of a knickpoint occurring only in a second stage, if the increase in incision induced by
951	narrowing is not sufficient to counteract the uplift rate. In our experiments here, we suggest that channel
952	narrowing predates, and in fact enables, the steepening of the profile in the initial stages of knickpoints
953	formation. Indeed, we observe that the transition from a wide to a narrow channel occurs very quickly,
954	at a smaller time scale than the time interval between two successive digitization of the experiments (5
955	min), and the knickpoints that form then have a very gentle slope, which then amplifies as they migrate
956	upstream (Fig. 7). This suggests that it is not the steepening that drives river narrowing but on the
957	contrary that narrowing is essential for knickpoints to initiate. Further work would also be needed to
958	verify this hypothesis, in particular with additional experiments with much higher frequency of data
959	acquisition to capture these changes in much more detail.

960 <u>4.3 Implications</u>

Knickpoints in river longitudinal profiles are commonly related to variations in tectonics or climate 961 through their influence on base level and/or sediment supply (e.g. Whipple and Tucker, 1999; Crosby 962 and Whipple, 2006; Kirby and Whipple, 2012; Whittaker and Boulton, 2012) and are then used to 963 964 highlight such changes when interpreting their occurrence in natural systems. The recognition here that 965 knickpoints may be generated autogenically due to cycles of river widening and narrowing is then of 966 first importance for retrieving information on tectonics and climate from their record in landscapes in 967 the form of knickpoints. Finding criteria that could be used in the analysis of natural systems to 968 differentiate these autocyclic knickpoints from those formed in response to tectonics or climate would

Supprimé: The set of experiments presented here illustrates the initiation and propagation of successive knickpoints during the growth of drainage networks and progressing enlargement of catchments, under constant external forcing. From the detailed analysis of their initiation and propagation, we propose that they formed autogenically, in response to variations in river width. We show that once knickpoints had retreated, unit discharge, shear stress and incision rate all decreased downstream while the rivers widened, resulting in a state where incision no longer counterbalanced the BL fall. We propose that rivers widening downstream the retreating knickpoints is the main mechanism responsible for the decrease in incision rate through its feedback on unit discharge and shear stress. This results in an unstable situation that ends up with the initiation and propagation of a new knickpoint and a sequence of river narrowing, increasing shear stress and incision rate. Then, incision of rivers in these experiments appears to be fundamentally discontinuous despite continuous forcing, and we highlight downstream river width dynamics as the main driver. Unlike studies that documented how river narrowing leads to an increase in shear stress and incision rate (Lavé and Avouac, 2001; Duvall et al., 2004; Whittaker et al., 2007; Cook et al., 2013) we propose that the opposite, river widening, is potentially responsible for a decrease in erosion rate downstream a retreating knickpoint, leading ultimately to the generation of a new knickpoint. This specific mode of autogenic knickpoints initiation result in an upward dynamic of retreat that is not conventional, as we observe that they first accelerate during the first step of their propagation before to decelerate in a second time as they approach the divide. Actually,

1000	be an important step in the continuation of this work. A specificity of knickpoints in our experiments is
1001	to initiate downstream with a gentle slope, which then amplifies in the early stages of migration, and as
1002	a hypothesis we suggest that this may be characteristic of their autogenic formation following the
1003	mechanism described here. Being able to recognize these autogenic knickpoints would also be important
1004	for studies that investigate knickpoints propagation (e.g. Crosby and Whipple 2006; Berlin and
1005	Anderson, 2007; Schwanghart and Scherler, 2020) because knickpoints in our experiments are
1006	characterized by an upward dynamic of retreat that is not conventional. According to stream-power
1007	based celerity models, these studies consider that the upstream propagation rate of knickpoints depends
1008	inversely on drainage area (a proxy for discharge; Crosby and Whipple 2006; Berlin and Anderson,
1009	2007), implying a monotonous decrease of their retreat rate as they propagate upstream due to the
1010	progressive reduction of drainage area and water discharge. This property is used for example to invert
1011	their present location for dating the external perturbation responsible for their formation (Crosby and
1012	Whipple 2006; Berlin and Anderson, 2007). Here, knickpoints in our experiments first accelerate during
1013	their initial stages of propagation before decelerating in a second time as they approach the divide
1014	(Fig.9). Only this later phase of decreasing knickpoint velocity in the upstream part of rivers (for
1015	normalized distance NDD \ge nDD _{Vmax} : Fig. 9) is consistent with predictions from stream-power based
1016	celerity models (see Fig. S3 in the Supplemental Material). On the opposite, a sole control by drainage
1017	area and discharge cannot explain the increase in velocity observed in the downstream sections (for
1018	$NDD \le nDD_{Vmax}$; Fig. 9), which implies an additional controlling factor. We suggest that this specific
1019	mode of retreat downstream is related to the progressive steepening of the knickpoints rather than to a
1020	purely hydrologic control. Deciphering the respective roles of slope and discharge in the retreat
1021	dynamics documented would require further in-depth analysis, particularly during the early stages of
1022	initiation and propagation which appear to be specific to the autogenic mechanism defined here.
1023	We show that the formation of knickpoints in our experiments is closely related to periods of decreasing
1024	erosion rate as the rivers widen, counterbalanced by increasing rate greater than the rate of base level
1025	fall as the rivers narrow and knickpoints form. Thus, the sequential evolution of longitudinal profiles is
1026	more consistent with the geometry that would be observed if the system was forced by discrete drop of
1	

Supprimé: to Supprimé: e

29

the base level, rather than by a continuous base level drop as it is actually the case. We did not measure
the sediment flux at the output of our models, but we can assume that it would be characterized by
fluctuations controlled by the frequency of knickpoint initiation, superimposed on a longer-term
increasing trend related to the growth of drainage networks. Some sediment outflux fluctuations were
actually measured by Hasbargen and Paola (2000) in their experiments and interpreted as the
consequence of knickpoint propagation. This study and our work illustrate that fluctuations in sediment
flux can be observed at catchments outlet despite constant forcing parameters, when autocyclic
knickpoints are generated in river systems.
By performing such exploratory experiments, we do not pretend to reproduce natural landscapes in the
laboratory because of important scaling issues (see Paola et al., 2009 for an extensive reflection on this
matter) but rather to highlight and document complex system behaviors under controlled conditions that
could provoke further investigations. Our findings support ongoing investigations that aim in better
understanding the links between lateral erosion, channel geometry and valley width which is an issue
that is emerging in the last years (e.g. Turowski, 2018; Croissant et al., 2019; Langston and Tucker,
2019; Baynes et al., 2020; Zavala-Ortiz et al., 2021). A perspective to our work would be to investigate
the mechanism of knickpoints generation driven by river width variations and the conditions that lead
to their formation using landscape evolution models that incorporate lateral erosion and a dynamic river
width (e.g. Davy et al., 2017; Carretier et al., 2018; Langston and Tucker, 2019). Simulations of
Langston and Tucker (2019) highlight the role of bedrock erodibility as an important factor controlling
lateral migration of rivers and the width of valleys, an issue that has not been investigated here given
the similarity of the eroded materials in our experiments here. This study also confirms the assumption
of Hancock and Anderson (2002) that lateral erosion and widening occurs preferentially in contexts of
low incision rate, <i>i.e.</i> in domains with low uplift rate. This is likely in such contexts that the new mode
of autogenic knickpoints formation driven by river width dynamics that we define in this study should
apply.

1054 <u>5 Conclusions</u>

1055	Knickpoints in the longitudinal profile of rivers are commonly considered as incisional waves that
1056	propagate upstream through landscapes in response to changes in tectonics, climate or base-level. Based
1057	on results from a set of laboratory experiments at the drainage basin scale that simulate the growth of
1058	drainage networks in response to constant base level fall and rainfall, we show that knickpoints also
1059	form autogenically, independently of any variations in these external forcing factors. In all experiments,
1060	successive knickpoints initiate and propagate upward throughout the duration of the experimental runs,
1061	regardless of the rate of base level fall applied and of the size of the rivers as the catchments expand.
1062	Thanks to the computation of hydraulic information (water depth, river width, discharge and shear
1063	stress) using a hydrodynamic model, we show that the formation of knickpoints is driven by variations
1064	in river width at the outlet of catchments and we highlight width widening as a main cause of instability
1065	leading to knickpoint formation. Widening actually entails a decrease in shear stress and an incision rate
1066	lower than the rate of base level fall, resulting in an unstable situation that ends up with a sequence of
1067	width narrowing, increasing shear stress and incision rate as a knickpoint initiates. Rivers in our
1068	experiments thus evolve following sequences of width widening and narrowing that drive the initiation
1069	and propagation of successive knickpoints. As a result, incision is fundamentally discontinuous over
1070	time despite continuous forcing. It occurs during discrete events of knickpoint propagation that allows
1071	the rivers to recover from the incision delay accumulated during widening periods.
1072	•
1072	Author contributions SD designed the experimental device I dI SD and AC built the experimental
1073	Author contributions. SB designed the experimental device. LaL, SB and AG built the experimental
1074	setup and carried out the experiments. LdL analyzed the data with the help of SB and PhD. All authors
1075	discussed the data. LdL and SB wrote the manuscript with input from AG and PhD.
1076	
1077	Acknowledgements. This work was supported by ORANO-Malvesi and CNRS-INSU Tellus-Syster
1078	programme. We thank Sebastien Carretier and Odin Marc for fruitful discussions and Jens Turowski
1079	for his comments on a preliminary version of this manuscript. We thank Laure Guerit and an

for his comments on a preliminary version of this manuscript. We thank Laure Guerit and an

1080 anonymous reviewer for their constructive comments which greatly improved the manuscript, experiments that simulate the growth of drainage networks in response to constant base level fall, we propose a new model of autogenic knickpoint formation driven by variations in river width at catchments' outlet. Obtaining these results was possible thanks to the development of a novel setup that allows the experimental rivers to freely evolved downstream near the base level, their width in particular not being constrained by the device. Knickpoints regularly initiate and propagate upward throughout the duration of the runs in all experiments and form autogenically, regardless of variation in external forcing and catchments size. Their initiation coincides with an increase in shear stress induced by river narrowing, leading to an increase in incision rate. Then, once knickpoints have propagated upward, rivers widen entailing a decrease in shear stress, and an incision rate lower than the rate of base level fall. This results in an unstable situation that ends up with the new phase of width narrowing and initiation of a new knickpoint. Thus, incision in our experiments occurs during discrete events of knickpoint propagation driven by river narrowing and is then fundamentally discontinuous despite continuous forcing. We highlight downstream river width dynamics, in particular the decrease in erosion rate as rivers widen, as the main cause of instability Contrary to predictions from stream-power based models, the upstream propagation rate of knickpoints formed in response to width variations does not decrease monotonically. Once initiated at outlet, they first speed up until the mid-part of catchments and then decelerate as they approach the divide. We relate this specific downstream trend of velocity to their initiation with a gentle slope as rivers narrow.

Supprimé: Based on results from a set of three laboratory

Supprimé: This work was supported by ORANO-Malvesi. We thank Sebastien Carretier and Odin Marc for fruitful discussions and Jens Turowski for his comments on a preliminary version of this manuscript.

1117	References
1118	Amos, C.B., and Burbank, D.W.: Channel width response to differential uplift: J. Geophys. Res., 112,
1119	doi:10.1029/2006JF000672, 2007.
1120	Baynes, E.R.C., Lague, D., Attal, M., Gangloff, A., Kirstein, L.A., and Dugmore, A.J.: River self-
1121	organisation inhibits discharge control on waterfall migration: Scientific Reports, v. 8, p. 2444,
1122	doi:10.1038/s41598-018-20767-6, 2018.
1123	Baynes, E.R.C., Lague, D., Steer, P., Bonnet, S., and Illien, L.: Sediment flux-driven channel
1124	geometry adjustment of bedrock and mixed gravel-bedrock rivers: Earth Surface Processes and
1125	Landforms, v. 45, p. 3714-3731, doi:10.1002/esp.4996, 2020.
1126	Berlin, M.M., and Anderson, R.S.,: Modeling of knickpoint retreat on the Roan Plateau, western
1127	Colorado: Journal of Geophysical Research, v. 112, p. F03S06, doi:10.1029/2006JF000553, 2007.
1128	Bigi, A., Hasbargen, L.E., Montarani, A., and Paola, C.: Knickpoints and hillslope failure: Interactions
1129	in a steady-state experimental landscape, in Willet, C.D., Hovius, N., Brandon, M.T., and Fisher,
1130	D.M., eds. Tectonics, Climate and Landscape evolution: Geological Society of America Special paper
1131	398, p. 295-307, doi:10.1130/2006.2398(18), 2006.
1132	Bonnet, S.: Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the
1133	main drainage divide: Nature Geoscience, v. 2, p. 766-771, doi:10.1038/ngeo666, 2009.
1134	Bonnet, S., and Crave, A.: Landscape response to climate change: Insights from experimental
1135	modeling and implications for tectonic versus climatic uplift of topography: Geology, v. 31, p. 123-
1136	126, doi: 10.1130/0091–7613, 2003.
1137	Bufe, A., Paola, C., and Burbank, D.W.: Fluvial beveling of topography controlled by lateral channel

mobility and uplift rate: Nature geosc., 9, 706-710, doi:10.1038/ngeo2773, 2016.

1140	level: experimental investigation: Earth Surface Dynamics, 2, 271-278, doi:10.5194/esurf-2-271-2014,		
1141	2014.		
1142	Carretier, S., Godderis, Y., Maertinez, J., Reich, M., and Martinod, J.: Colluvial deposits as a possible		
1143	weathering reservoir in uplifting mountains: Earth Surf. Dynam., 6, 217-237, doi: 10.5194/esurf-6-		
1144	217-2018, 2018.		
1145	Cook, K.L., Turowski, J.M., and Hovius, N.: A demonstration of the importance of bedload transport		
1146	for fluvial bedrock erosion and knickpoint propagation: Earth Surface Processes and Landforms, v. 38,		
1147	p. 683–695, doi:10.1002/esp.3313, 2013.		
1148	Cook, K.L., Turowski, J.M., and Hovius, N.: River gorge eradication by downstream sweep erosion:		
1149	Nature geoscience, doi:10.1038/NGEO2224, 2014.		
1150	Croissant, T., Lague, D., and Davy, P.: Channel widening downstream of valley gorges influenced by		
1151	flood frequency and floodplain roughness: Journal of Geophysical Research-Earth Surface, v. 124, p.		
1152	154–174, doi:10.1029/2018JF004767, 2019.		
1153	Crosby, B.T., and Whipple, K.X.: Knickpoint initiation and distribution within fluvial networks: 236		
1154	waterfalls in the Waipaoa River, North Island, New Zealand: Geomorphology, v. 82, p. 16-38,		
1155	doi:10.1016/j.geomorph.2005.08.023, 2006.		
1156	Davy, P., Croissant, T., and Lague, D.: A precipiton method to calculate river hydrodynamics, with		
1157	applications to flood prediction, landscape evolution models, and braiding instabilities: Journal of		
1158	Geophysical Research-Earth Surface, v. 122, p. 1491–1512, doi:10.1002/2016JF004156, 2017.		
1159	Duvall, A., Kirby, E., and Burbank, D.: Tectonic and lithologic controls on bedrock channel profiles		

Cantelli, A., and Muto, T.:Multiple knickpoints in an alluvial river generated by a single drop in base

- 1160 and processes in coastal California: Journal of Geophysical Research, v. 109, p. F03002,
- 1161 doi:10.1029/2003JF000086, 2004.

1139

Supprimé: Davy, P., Croissant, T., and Lague, D.: A precipition method to calculate river hydrodynamics, with applications to flood prediction, landscape evolution models, and braiding instabilities: J. Geophys. Res.-Earth, 122, 1491-1512, doi:10.1002/2016JF004156, 2017.

Mis en forme : Anglais (E.U.)

Mis en forme : Anglais (E.U.)

1167 Finnegan, N.J.: Interpretati	on and downstream correlation	of bedrock river terrace	treads created by
-----------------------------------	-------------------------------	--------------------------	-------------------

1168 propagation knickpoints: Journal of Geophysical Research-Earth Surface, v. 118,

doi:10.1029/2012JF002534, 2013.

- 1170 Finnegan, Noah J., Leonard S. Sklar, and Theodore K. Fuller. Interplay of sediment supply, river
- 1171 incision, and channel morphology revealed by the transient evolution of an experimental bedrock
- **1172** <u>channel. Journal of Geophysical Research: Earth Surface 112.F3, doi:10.1029/2006JF000569, 2007.</u>
- 173 Finnegan, N.J., Roe, G., Montgomery, D.R., and Hallet, B.: Controls on the channel width of rivers:
- 1174 Implications for modeling fluvial incision of bedrock: Geology, 33, 229-232, doi:10.1130/G21171.1,
 1175 2005.
- 1176 Fuller, T.K., Perg, L.A., Willenbring, J.K., and Lepper, K.: Field evidence of climate-driven changes
- 1177 in sediment supply leading to strath terrace formation: Geology, 37, 467-470,
- 1178 <u>doi:10.1130/G25487A.1, 2009.</u>
- 1179 Fuller, T.K., Gran, K.B., Sklar, L.S., and Paola, C.: Lateral erosion in an experimental bedrock
- 1180 channel: The influence of bed roughness on erosion by bed load impacts: Journal of Geophysical
- 1181 Research-Earth Surface, v. 121, p. 1084-1105, doi:10.1002/2015JF003728, 2016.
- 1182 Grimaud, J.-L., Paola, C., and Voller, V.: Experimental migration of knickpoints: influence of style of
- 1183 base-level fall and bed lithology: Earth Surface Dynamics, v. 4, p. 11–23, doi:10.5194/esurf-4-11-
- **1184** 2016, 2016.
- 1185 Hancock, G.S., and Anderson, R.S.: Numerical modeling of fluvial strath-terrace formation in
- 1186 response to oscillating climate: Geological Society of America Bulletin, v. 114, p. 1131-1142, 2002.
- Hartshorn, K., Hovius, N., Dade, W.B., and Slingerland, R.L.: Climate-driven bedrock incision in an active mountain belt: Science, 297, 2036-2038, 2002.
- Hasbargen, L.E., and Paola, C.: Landscape instability in an experimental drainage basin: Geology, v.
 24, p. 1067-1070, 2000.

Supprimé: Finnegan, N.J., and Dietrich, W.E.: Episodic bedrock strath terrace formation due to meander migration and cutoff: Geology, 39, 143-146, doi:10.1130/G31716.1, 2011.¶

1195	Hasbargen, L.E., and Paola, C.: How predictable is local erosion rate in erosional landscape ? in	
1196	Wilcox, P.R. and Iverson, R.M., eds., Prediction in Geomorphology: American Geophysical Union	
1197	Geophysical Monograph 135, doi:10.1029/135GM16, 2003.	
1198	Kirby, E., and Whipple, K.X.: Expression of active tectonics in erosional landscapes: Journal of	Supprimé: Hilley, G.E., and Arrowsmith, J.R.: Geomorphic response to uplift along the Dragon's Back pressure ridge,
1199	Structural Geology, v. 44, p. 54-75, doi:10.1016/j.jsg.2012.07.009, 2012.	Carrizo Plain, California: Geology, v. 36, p. 367-370, doi:10.1130/G24517A.1, 2008.¶
1200	Lague, D.: Reduction of long-term bedrock incision efficiency by short-term alluvial cover	
1201	intermittency: J. Geophys. Res., 115, doi:10.1029/2008JF001210, 2010.	
1202	Lague, D., Crave, A., and Davy, P.: Laboratory experiments simulating the geomorphic response to	Supprimé: Lague, D.: The stream power river incision model: evidence, theory and beyond: Earth Surface Processes
1203	tectonic uplift: Journal of Geophysical Research-Solid Earth, v. 108, doi:10.1029/2002JB001785,	and Landforms, v. 39, p. 38–61, doi:10.1002/esp.3462, 2014.
1204	2003.	
1205	Langston, A.L., and Tucker, G.E.: Developing and exploring a theory for the lateral erosion of	
1206	bedrock channels for use in landscape evolution models: Earth Surf. Dynam., 6, 1-27,	
1207	doi:10.5194/esurf-6-1-2018, 2018.	
1208	Lavé, J., and Avouac, J.P.: Fluvial incision and tectonic uplift across the Himalayas of central Nepal:	
1209	Journal of Geophysical Research-Solid Earth, v. 106, p. 26561–26591, doi:10.1029/2001JB000359,	
1210	2001.	
1211	Li, T., Venditti, J.G., and Sklar, L.S.: An analytical model for lateral erosion from saltating bedload	Mis en forme : Anglais (E.U.)
1212	particle impacts: J. Geophys. Res Earth, 126, doi:10.1029/2020JF006061, 2021.	
1213	Mitchell, N.A., and Yanites, B.J.: Spatially variable increase in rock uplift in the Northern U.S.	
1214	Cordillera recorded in the distribution of river knickpoint and incision depths: Journal of Geophysical	
1215	Research: Earth Surface, v. 124, 1238-1260, doi:10.1029/2018JF004880, 2019.	
1216	Moussirou, B., and Bonnet, S.: Modulation of the erosion rate of an uplifting landscape by long-term	
1217	climate change: An experimental investigation: Geomorphology, v. 303, p. 456-466,	
1218	doi:10.1016/j.geomorph.2017.12.010, 2018.	

- 1226 Paola, C., Straub, K., Mohrig, D., and Reinhardt, L.: The "unreasonable effectiveness" of stratigraphic
- 1227 and geomorphic experiments: Earth-Science Reviews, v. 97, p. 1–43,
- 1228 doi:10.1016/j.earscirev.2009.05.003, 2009.
- 1229 Rohais, S., Bonnet, S., and Eschard, R.: Sedimentary record of tectonic and climatic erosional
- 1230 perturbations in an experimental coupled catchment-fan system: Basin Research, v. 24, p. 198–212,
- 1231 doi:10.1111/j.1365-2117.2011.00520.x, 2012.
- 1232 Scheingross, J.S., Lamb, M.P., and Fuller, B.M.: Self-formed bedrock waterfalls: Nature, v. 567, p.
- 1233 229–233, doi:10.1038/s41586-019-0991-z, 2019.
- 1234 Schwanghart, W.S., and Scherler, D.: Divide mobility controls knickpoint migration on the Roan
- 1235 Plateau (Colorado, USA): Geology, 48, 698-702, doi:10.1130/G47054.1, 2020.
- 1236 Singh, A., Reinhardt, L., and Foufoula-Georgiou, E.: Landscape reorganization under changing
- 1237 climatic forcing: Results from an experimental landscape: Water Resources Research, v. 51, p. 4320-
- 1238 4337, doi:10.1002/2015WR017161, 2015.
- Sklar, L.S., and Dietrich, W.E.: Sediment and rock strength controls on river incision into bedrock:
 Geology, 29, 1087-1090, 2001.
- 1241 Sweeney, K.E., Roering, J.J., and Ellis, C.: Experimental evidence for hillslope control of landscape
- 1242 scale: Science, v. 349, p. 51–53, doi:10.1126/science.aab0017, 2015.
- 1243 Tofelde, S., Savi, S., Wickert, A. D., Bufe, A., and Schildgen, T. F.: Alluvial channel response to
- 1244 environmental perturbations: fill-terrace formation and sediment-signal disruption. Earth Surface
- 1245 Dynamics, v. 7, p. 609-631, doi:10.5194/esurf-7-609-2019, 2019.
- 1246 Turowski, J.M.: Alluvial cover controlling the width, slope and sinuosity of bedrock channels: Earth
- 1247 Surface Dynamics, v. 6, p. 29–48, doi:10.5194/esurf-6-29-2018, 2018.
- 1248 Turowski, J.M., Lague, D., Crave, A., and Hovius, N.: Experimental channel response to tectonic
- 1249 uplift: Journal of Geophysical Research-Earth Surface, v. 111, doi:10.1029/2005JF000306, 2006.

- 1250 Turowski, J.M., Lague, D., and Hovius, N.: Cover effect in bedrock abrasion: A new derivation and its
- 1251 implication for the modeling of bedrock channel morphology: J. Geophys. Res., 112,

1252 doi:10.1029/2006JF000697, 2007.

- 1253 Turowski, J.M., Hovius, N., Meng-Long, H., Lague, D., and Men-Chiang, C.: Distribution of erosion
- 1254 across bedrock channels: Earth Surf. Process. Landforms, 33, 353-363, doi:10.1002/esp.1559, 2008.
- 1255 Whipple, K.X., and Tucker, G.E.: Dynamics of the stream-power river incision model: Im- plications
- 1256 for height limits of mountain ranges, landscape response timescales, and research needs: Journal of
- 1257 Geophysical Research, v. 104, p. 17,661–17,674, 1999.
- 1258 Whittaker, A.C., and Boulton, S.J.: Tectonic and climatic controls on knickpoint retreat rates and
- 1259 landscape response times: Journal of Geophysical Research, v. 117, F02024, doi:10
- 1260 .1029/2011JF002157, 2012.
- 1261 Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E., and Roberts, G.P.: Bedrock channel adjustment
- to tectonic forcing: Implications for predicting river incision rates: Geology, v. 35, p. 103,
- 1263 doi:10.1130/G23106A.1, 2007.
- 1264 Wickert, A.D., Martin, J.M., Tal, M., Kim, W., Sheets, B., and Paola, C.: River channel lateral
- 1265 mobilitu: Metrics, time scales, and controls: J. Geophys. Res.-Earth, 118, 396-412,
- 1266 <u>doi:10.1029/2012JF002386, 2013.</u>
- 1267 Zavala-Ortiz, V., Carretier, S., Regard, V., Bonnet, S., Riquelme, R., and Choy, S.: Along-stream
- 1268 variations in valley flank erosion rates measured using 10Be concentrations in colluvial deposits from
- 1269 canyons in the Atacama Desert: Geophysical Research Letters, 48, doi:10.1029/2020GL089961, 2021.

Supprimé: Yanites, B.J., Ehlers, T.A., Becker, J.K., Schnellmann, M., and Heuberger, S.: High magnitude and rapid incision from river capture: Rhine River, Switzerland: Journal of Geophysical Research, v. 118, 1-25, doi:10 .1002/jgrf200567, 2013.¶ Page 3 : [1] Supprimé

SBonnet

10/09/2021 08:25:00

٠.

A.....

V.....