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sion, by evacuating material delivered to river channels by landslides. However, large landslide-derived boulders that impede
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bedrock erosion, are immobile even, in major runoff-driven, floods. Glacial lake, outburst floods (GLOFs), mobilize these poul-

5_find a topographic signature consistent with widespread GLOF erosion in the Nepal Himalaya. Our interpretations emerge from

analysis of normalized channel steepness patterns, knickpoint distributions, and valley wideness, In, rivers, wit
headwaters that generate GLOFs, valleys stay narrow and relatively free of sediment, with bedrock often exposed to erosion.

ace, with GLOF-driven, incision,,
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1 Introduction

1.1 Motivation

The erosion of mountainous topography crafts the shape of Earth’s surface, influences atmospheric circulation and global
climate, modulates, global, carbon, and nutrient, fluxes, and affects, the, tempo, of, natural, hazards including earthquakes and,Jand-

45 slides (Raymo and Ruddiman, 1992; Hilton and West, 2020 Steer et al., 2014; Larsen and Montgomery, 2012). At elevations,
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Many, studies have, noted, the dramatic, erosiv

the sudden and catastrophic, draining of ice <.

shaped valleys{Davis, 1900). Fierce debates have centred on the notion that a “glacial erosion buzz-saw” limits the total height (F ormatted C..[10] 3
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ower, of GLOFs, which arise, fro; -

or moraine dammed lakes (Mason, 1929: Haeberli, 1983: Montgomery et al., 2004). The resulting floods can scour river valleys

for 10s to 100s of kilometres downstream (Cenderelli and Wohl, 2003; Baynes et al., 2015; Jacquet et al., 2017; Lang et al.

2013; Cook et al., 2018), in some, cases mobilizing boulders,that otherwise, remain stationary, even, during heavy, rainfall-driven,
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the, ability, of a flood, to, mobilize, new, material,{ Shields, 1936). Since, GLOFs, maintain, a, relatively, sediment-sparse, pulse, of

water, at, their, front, they remain capable of mobilizing additional, material as they, progress downstream, Thesg, features make,
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region which is frequently considered as a coherent unit in hazard analyses of GLOFs (Veh et al., 2019; Fischer et al., 2021). In
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etal.,2021). The relationship between upstream drainage area above the ELA and outburst flood frequency is likely non-linear,
but we maintain that it is a reasonable proxy for regional-scale assessment. Despite the many complicating variables at play
which we do not attempt to entirely account for here, we will test the hypothesis that the immobility of large boulders in
monsoon-driven floods points to GLOFs as an important erosional mechanism. To do this, we present a conceptual model for
a potential river morphologic response if repeated GLOFs are indeed effective enough as geomorphic agents to leave
topographic evidence in the regional landscape. We then test this model against several lines of topographic evidence found in

the Himalayan landscape.
1.3 Conceptual model for river morphologic response to GLOF erosion

At-elevations below the extent of glaciation; rivers-are the-main pacemakers-of erosion: The erosive power of rivers-is-controlled
by their base level, which is the lowest elevation of active fluvial erosion. Base level is scale-dependent, and might be defined
for a tributary as the elevation of the junction with a higher-order stream, affected by incision and aggradation in the trunk
stream. Regionally, it might be the defined by elevation of an alluvial fan at a range front, while globally, base level is sea

level. Uplift of mountainous terrain effectively decreases regional base level, driving rivers to steepen and incise more deeply

into uplifting rock. This incision steepens surrounding hillslopes, which respond by eroding faster (Burbank et al., 2003).
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We test for three predicted effects of GLOF-driven erosion on the topographic form of rivers in the central Himalaya. The first

of these is the steepness of river channels. Normalized channel steepness (ksn) represents the steepness of channels after
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Figure 2. (a) Schematic of predicted kg, patterns arising from erosion driven by upstream knickpoint migration resulting from base level fall,
including knickpoint diffusion described in alluvial and bedrock-alluvial channels (Rosenbloom and Anderson. 1994). (a-c) represent time
steps showing the evolution of kg, patterns following a base level fall initiating at the thrust fault at the outlet of the catchment (panels A-C
reflect temporal progression). In 1c, a second base level fall has initiated. (d) Schematic of kg, patterns we hypothesize to arise from erosion _ [ Formatted (W
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where discharge thresholds for initiation of erosion are high YSnyder et al., 2003; Lague et al.. 2005; Turowski-et-al., 2009;

DiBiase and Whipple, 2011). As a result, erosional efficiency can be enhanced under conditions where channel steepness is :
low, mean discharge and discharge variability are high, and incision thresholds are high {DiBiase-and Whipple. 2011). The —
major rivers of the Nepal Himalaya should meet these conditions, with discharge peaks defined by catastrophic outburst floods |2
and incision thresholds governed by the presence of 10 meter-scale boulders in the channel. We thus expect river segments that “
are influenced by GLOFs to erode more rapidly than rivers with similar geometry and characteristic grain size and lithology “
without GLOFs. Therefore, we expect that GLOF-influenced rivers will drive their non-GLOF influenced tributaries toward |
higher ks for the same erosion rate than if runoff-driven floods were the dominant erosional mechanism. If correct, this effect “
should be detectable in the geometry of tributary channels (Figure 2D). “

Secondly, and, similarly, we, expect, GLOF, erosion, may, be, associated, with, discrete, steepened, reaches, (knickpoints), in tribu-,

tary channels near their outlets into larger trunk streams. In our proposed model for GLOF erosion, knickpoints should form <
in tributaries as a result of pulses of GLOF incision in the trunk stream. A concentration of knickpoints near trunk streams

where outburst floods are more frequent would support an erosion model where GLOFs, are an important factor. This is not to

suggest that outburst floods are the only means by which knickpoints can develop at confluences. Punctuated incision, which
may result in steepened reaches developing in tributaries, has been documented at a variety of timescales in rivers with differ-
ent characteristics, and knickpoints generated at regional base level may propagate upstream and stall at confluences (Gardner

et al., 1987; Crosby and Whipple, 2006: Finnegan et al., 2014). However, we hypothesize that outburst flood-driven incision

may be particularly effective at generating knickpoints at tributary junctions due to the magnitude of erosion that may occur in
a single event, particularly for rivers where GLOFs are relatively frequent.

Thirdly, the removal of coarse sediment by GLOFs is expected to change river valley widths. We propose that outburst floods
facilitate river incision by mobilizing very coarse sediment, including large boulders, that remains stationary even during large
runoff-driven floods. The widths of valley floors should reflect the degree of aggradation at longer timescales than the width

of the active channels { Schwanghart et al., 2016; Yanites et al., 2018). If floods clear out aggraded material, we expect to see

@
anarrowing trend in rivers subject to- more GLOF activity if our erosion model depicted in Figure 2D plays a substantial role

in Himalayan river incision. To test this prediction, we analysed valley floor widths based on a discharge-adjusted normalized

channel wideness index (kwn, see Methods) to account for the typical power-law increase in valley width with discharge.
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widely depending on local factors { Wobus et al., 2006a). ,
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245 Figure S1). We measured the widths of valley bottoms instead of the channels themselves, since the active channel can change
o in width rapidly with deposition from local landslides and subsequent evacuation of deposits. Since glaciers can extend far
below the ELA and we aim to avoid analysing valleys subject to direct ice action, we avoided taking width measurements
at elevations above 3,000 meters except in a few locations where a V-shaped valley profile was very well-developed. We
determined the location of transitions from valley floors to hillslopes by observations of several features. Many valley bottoms
250 have riparian vegetation that is visually distinct from vegetation on the hillslopes. In parts of the study area where valleys and
hillslopes are developed for agriculture, farm terraces rapidly narrow where the hillslopes begin to steepen, offering a simple
visuakindicatiomofitherbaserofithehillslopesaFluviakterracesaresvisiblevimsatellite imagerysandiaidiin distinguishing actives
walley bottom from-abandoned surfaces.- We-included terraces within-10m-of the elevation-of the active channel in the valley-

bottom measurements, since a single outburst flood may incise enough to remobilize terrace material several meters above the
-«

1

555 active channel¥Cooketal-2018y-Ourasst ton-that the width-of vall y bottoms-is-analocous to the width-ofactive ¢l
- -

i

is supported by the observed power law relationships between discharge and valley width in the field area. While the width of
the active channel itself can vary significantly over a short time, we expect that, although individual large landslides or other
events might cause localized aggradation, on aggregate over our study area the width of the valley floor should reflect longer-
term trends given that the timescales inherent in significantly raising or lowering an entire valley floor (and thus widening or

ogp harrowing it) should be orders of magnitude longer than timescales governing the width of the channel {Ray-and Srivastava.—

v
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2.5 Statistical analyses “
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We calculated Spearman rank correlation coefficients (Spearman’s p) and P -values using the Matlab “corr” function with the <, ‘\‘\‘ :
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“Spearman” parameter. The Spearman’s p is a nonparametric measure of the strength of association between two variables, i \ Deleted
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265 specifically useful for testing for a monotonic relationship where the nature of that relationship is unknown{Spearman, 1987). X[ ]
p.is reported as a value between 1 and -1 indicating the strength of the positive or negative correlation. We chose the Spearman’s (D leted Column Break: . [163]}

test since it was unclear what functional form the expected relationships among our variables should take. We also used two-

sample Kolmogorov-Smirnov (K-S) tests, which compare the empirical distribution functions of two samples {Massey. 1951).
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K-S tests were conducted and P -values calculated using the Matlab “kstest2” function. The piecewise polynomial smoothing
270 spbline shown in Figure 3 used to determine expected ks at a given elevation was fit using the Matlab “cftool” utility in the
o Curve Fitting Toolbox, with smoothing parameter p = 4.4773e-09. We chose a spline fit as the relationship between elevation
and ks appears to be naturally piecemeal, with average ks increasing nonlinearly with basin elevation until 2500 meters, at

which point it begins to decrease (Figure 3B).
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the 10-meter resolution EarthDEM. We log-binned knickpoint counts and total knickpoint relief by the amount of upstream

drainage area above the ELA in the trunk stream that each tributary joins. We then assessed the proportion of knickpoints that
are found in tributaries to rivers without glaciated headwaters, and we compared this proportion to that of tributary confluences

in general. We found that knickpoints are less common in tributaries to rivers with no glaciated drainage area upstream (Figure
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Figure 3. (a) Difference between tributary basin average K, and expected K, given basin elevation (based on residuals for spline fit shown in
Figure 3b-c) versus total drainage area above LGM ELA in trunk stream basin (n = 3047). Box and whisker plot to the left of the break shows
distribution of kg, differences for tributaries draining to rivers with no drainage area above 4200 meters. Box shows mean and upper and lower
quartiles, whiskers represent 5th and 95th percentiles. Box plots to the right of the break show the mean and upper and lower quartiles for bins
centered at boxes. Spearman’s rank correlation coefficient (Spearman’s o), which tests for a potentially nonlinear monotonic relationship, is
£ =0.3899 with P <0.0001 indicating a statistically significant positive correlation. We conducted a two-sample Kolmogorov-Smirnov test
for the distributions of average tributary Ky, of basins draining to channels with above-ELA drainage areas between 107-10° m? (n = 754)
and 10°-10' m? (n = 748) to determine if the samples come from significantly different distributions, and found the empirical CDF for the
first group is larger with P < 0.0001.(b) Smoothing spline fit for tributary basin average K, vs basin average elevation, calculated using the

“cftool” utility from the Matlab Curve Fitting Toolbox. (¢) Residuals for smoothing spline fit.

weighted by relief, with only 33% of the total knickpoint relief found on these tributaries to unglaciated rivers. In tributaries
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Figure 4. (a) Distribution of knickpoints (n = 3707) and analysed 1 and 2" order tributaries (n = 3557) to 3" or higher order rivers with
respect to the area of terrain above the ELA drained by the trunk stream. Knickpoints included in the analysis are located on a 1% or 2° order
tributary within 2 km of a confluence with a 3 or higher order trunk stream. Area is log-binned, the lowest area bin contains only knickpoints
and confluences where the trunk stream does not drain any terrain above the ELA. See Methods for criteria for identifying knickpoints.
(b) Same as 4A, but knickpoints are weighted by their relief. For both the relief-weighted and non-weighted knickpoint distributions, we
conducted two-sample Kolmogorov-Smirnov tests for the distributions of knickpoints versus confluences with respect to above-ELA drainage areas
and found the empirical CDF for the confluences is larger with P < 0.0001. (c) Comparison of knickpoints and tributaries located above (n =
1472 tributaries, n = 2549 knickpoints and below (n = 2085 tributaries, n = 1152 knickpoints) the physiographic transition (PT) (Figure 1).
Including only those knickpoints and tributaries that drained to trunk streams with drainage area above the LGM ELA, we conducted two-
sample Kolmogorov-Smirnov tests for the distributions of knickpoints versus confluences with respect to above-ELA drainage area, and found
that the empirical CDF for the confluences is larger with P = 0.01 above the PT, while for the knickpoints below the PT we could not reject
the null hypothesis with 95% confidence that they belong to the same distribution.

Jransition(PT)(Figure 1), Only above the PT,do we, find g statistically,significant offset between,the distribution of knickpoints /(
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ider valleys should have less frequent bedrock exposure, reflecting aggradation and slower incision. Valleys on GLOF paths
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should be systemically narrower than expected for a given discharge if GLOFs are clearing out sediment and driving rapid incision

frequently enough to control river morphology. As described in the Methods, we measured the widths of valley floors and
calculated a normalized wideness index, kwn, adjusted for the expected power law increase in channel width with discharge

incorporating the a discharge estimation to account for the considerable variation in precipitation throughout the study area
(Allen et al., 2013). Measurements of valley width corroborate our inferences from ks, and knickpoint occurrence: we find
distinct trends in the relationship between valley width, and, discharge, with, rivers, that, have, upstream, glaciers, being, narrower,

at, lower, discharges, than, rivers, without, glaciated headwaters, (Figure, 5A), Moreover, among, rivers, that, do, include, glaciate

terrain, valleys, with, more, glaciated, drainage, area
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Flgure 5.(a) Valley floor width versus discharge for rivers with and without headwaters above the LGM ELA, with power-law fits for va]ley

Figure 5A. (d) Normalized wideness (kyn) versus contributing drainage area above the LGM ELA for valley width measurements in blue

from Figure 5A. Here, Ag refers to drainage area above the ELA. Spearman’s p = -0.2116 with P < 0.0001. We conducted a two-sample

Kolmogorov-Smirnov test for the distributions of Ky, ratios with above-ELA drainage areas between 107-10° m? (n =332) and 10°-10"° 12
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less, we recognize that the interplay of GLOF and LLOF processes is poorly constrained and we hope that this work serves as

a starting point for inquiry into their effects as regional agents of erosion. Further complicating the topographic picture is the

fact that outburst floods are triggers of landslides along their paths, providing more opportunities for landslide lakes to form .

and ultimately drain in LLOFs: The interplay of different types of catastrophic floods and their aftermath -makes it difficult “to
isolate the effect of GLOFs independent of other types of outburst flood. We expect that these inter-relationships may be

responsible for much of the substantial scatter in our topographic data.
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of the ELA. If uplift pushes terrain above the ELA, it could create new glaciers and glacial lakes that, in turn, accelerate GLOF-

“drivenincision: This feedback; in tandem with the propagation of knickpoints from below; could link uplift and erosion rates in-

ways not captured in current models of landscape evolution. Alongside the effect of tectonics, climatic shifts can drive the ELA
to higher or lower elevations, shifting dominant process domains and their signature relief structures to higher or lower
elevations. Studies of landscape -evolution -and -interpretations -of river -channel- morphology -and network -geometry -in
mountainous environments should consider the influence of outburst floods as regional drivers of erosion, even where glaciers
are no longer present. Altogether, our results suggest a rethinking is warranted of classic models of mountain river system

evolution, to consider the role of glacial outburst floods as regional controls on erosion.

5 Conclusions

We found several lines-of topographic-evidence consistent with-GLOF-controlled incision in rivers with-glaciated headwaters
in the Nepal Himalaya. Tributaries to GLOF-prone rivers are steeper than tributaries to non-glaciated rivers, and increasing
extent of upstream glaciation in the trunk stream (and thus increasing GLOF frequency) increases this effect. We also found
that the knickpoints are more numerous on tributaries to trunk streams with more glaciated terrain upstream, which provides

further evidence for the steepening response that highly efficiently eroding outburst flood-dominated channels stimulate in their
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Our results point to a top-down model for valley incision in the Himalaya, in which erosion may be coupled to tectonics by
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glaciated mountain ranges, appears to be independent of uplift and erosion rates, and should be considered in erosion models

~( Moved up [60]: 460
\(Formatted

o5 | EEEs

£ o tand
Tor such fandscapces.

Data availability. Upon publication, the datasets generated and analysed during the current study will be made available in the Hydroshare
repository, http://www.hydroshare.org/resource/2883cfeebb3a43f2b9a1b222e2cfff29

Author contributions. MPD and AJW conceived the study. MPD performed the analyses. MPD and AJW wrote the manuscript.

21

... [317
N ‘[Deleted: . [318
4 ‘(Deleted: o Column Break : )
) (Moved (insertion) [61] )
‘(Formatted (W
(Formatted (W
(Formatted (W
:k < (Formatted (W
. R, (Formatted ... [306]
N (Formatted (W
- N CDeleted: )
. ; % ‘(Formatted [308]
L CFormatted .[319]
W (Formatted . [320]
) . (Formatted (W
(Formatted (W
* CFormatted (W
[Deleted: (W




Competing interests. The authors declare that they have no conflict of interest.

Formatted: Top: 0.35", Number of columns: 1, Force equal
column width

<

‘ (Formatted: Left, Indent: Left: 0.41", Space Before: 4.05 pt

475 _Acknowledgements. We thank Kristen Cook, Jens Turowski, Georg Veh, and Missy Eppes for helpful discussions. We also thank William

Medwedeff for the photograph used in Figure 2. John Jansen, Christoff Andermann and an anonymous reviewer contributed insightful

comments that greatly jmproved this paper. Geospatial support for this work provided by the Polar Geospatial Center under NSF-OPP awards

<"

™, ‘(Formatted: Font: 9 pt
%, (Formatted: Space Before: 0.25 pt

1043681 and 1559691. This work was supported by NSF award EAR-1640894.

22

‘[Formatted: Indent: Left: 0.07", Hanging: 0.34", Space

(Formatted: Font: 10 pt

Before: 4.9 pt
(Formatted: Not Expanded by / Condensed by

A AN




AN A

NN

References “ ( Formatted: Space Before: 0 pt
N
| A80 Allen, G. H., Barnes, J. B., Pavelsky, T. M., and Kirby, E.: Lithologic and tectonic controls on bedrock channel form at the northwest (F ormatted: Font: Arial, Not Bold
Himalayan front: BEDROCK CHANNEL FORM, MOHAND, INDIA, Journal of Geophysical Research: Earth Surface, 118, 1806-1825, Moved up [61]: ]|
https://doi.org/10.1002/jgrf.20113, 2013. 11651]
Asahi, K.: Equilibrium-line altitudes of the present and Last Glacial Maximum in the eastern Nepal Himalayas and their implications for SW 1
monsoon climate, Quaternary International, 212, 2634, https://doi.org/10.1016/j.quaint.2008.08.004, 2010. H
485 Baynes, E. R. C., Attal, M., Niedermann, S., Kirstein, L. A., Dugmore, A. J., and Naylor, M.: Erosion during extreme flood events dominates T
Holocene canyon evolution in northeast Iceland, Proceedings of the National Academy of Sciences, 112, 2355-2360, H
https://doi.org/10.1073/pnas. 1415443112, 2015. 4707
Bharti, V. and Singh, C.: Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region: EVALUATION OF Deleted:
ERROR IN TRMM 3B42V7, 120, 12 458-12 473, https://doi.org/10.1002/2015JD023779. 2015. H
490 Bookhagen, B.: High Resolution Spatiotemporal Distribution of Rainfall Seasonality and Extreme Events Based on a 12-year TRMM Time T
Series, http://www.geog.ucsb.edu/~bodo/TRMM/index.php. 2013. H
Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived rainfall variations along the Himalaya, 33. 108 405 475
https://doi.org/10.1029/2006GL026037. H
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall 1
495 and their impact on river discharge, Journal of Geophysical Research, 115, F03 019, https://doi.org/10.1029/2009JF001426, 2010. H
Brozovic’, N., Burbank, D. W., and Meigs, A. J.: Climatic Limits on Landscape Development in the Northwestern Himalaya, Science, 276, q
571, https://doi.org/10.1126/science.276.5312.571, 1997. (Formatted: Font: Arial, 14 pt, Not Bold
Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., and Ojha, T. P.: Decoupling of erosion and (Formatted: Font: 14 pt
. precipitation in the Himalayas, Nature, 426, 652—655, https://doi.org/10.1038/nature02187, 2003. - ‘ (Moved (msertion) [62]
500  Cenderelli, D. A.and Wohl, E. E.: Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal, <. ) -
Earth Surface Processes and Landforms, 28, 385407, https://doi.org/10.1002/esp.448, 2003. 5 % (Formatted: Font: Aial, 8 pt
Center, P. G.: EarthDEM - Polar Geospatial Center, https://www.pgc.umn.edu/data/earthdeny, type: dataset, 2021. * (Formatted: Space Before: 0.25 pt
Collins, B. D. and Jibson, R. W.: Assessment of Existing and Potential Landslide Hazards Resulting from the April 25, 2015 Gorkha, Nepal (Formatted: Space Before: 0 pt
Earthquake Sequence, USGS Open-File Report, series: Open-File Report, 2015.
505 Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the importance of bedload transport for fluvial bedrock erosion and
knickpoint propagation: BEDLOAD TRANSPORT AND FLUVIAL INCISION, Earth Surface Processes and Landforms, 38, 683695,
https://doi.org/10.1002/esp.3313, 2013.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.: Glacial lake outburst floods as drivers of fluvial erosion in the
Himalaya, p. 6, 2018. . -
510 Croissant, T., Lague, D., Steer, P., and Davy, P.: Rapid post-seismic landslide evacuation boosted by dynamic river width, Nature Geoscience, < <Formatmd: Space Before: 0.25 pt
10, 680684, htps://doi.org/10.1038/nge03005, 2017. (Formatted: Space Before: 0 pt
Crosby, B. T. and Whipple, K. X.: Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North
Island, New Zealand, Geomorphology, 82, 16-38, https://doi.org/10.1016/j.geomorph.2005.08.023, 2006.
Crosby, B. T., Whipple, K. X., Gasparini, N. M., and Wobus, C. W.: Formation of fluvial hanging valleys: Theory and simulation, Journal of . (Formatted: Space Before: 025 pt
515 Geophysical Research, 112, https://doi.org/10.1029/2006JF000566, 2007. «

23

(Formatted: Space Before: 0 pt

N




Cunningham, M. T., Stark, C. P., Kaplan, M. R., and Schaefer, J. M.: Glacial limitation of tropical mountain height, Earth Surface Dynamics,

7, 147-169, https://doi.org/10.5194/esurf-7-147-2019, 2019.
Dahlquist, M. P. and West, A. J.: Initiation and Runout of Post-Seismic Debris Flows: Insights From the 2015 Gorkha Earthquake, Geophys-

525

530

535

ical Research Letters, 46, 9658-9668, https://doi.org/10.1029/2019GL083548, 2019.

Davis W M., Glacial Erosio: rance, Switzerland and Norway Proceedin, h

Dingle, E. H., Attal, M., and Sinclair, H. D.: Abrasion-set limits on Himalayan gravel flux, Nature, 544, 471-474,
https://doi.org/10.1038/nature22039, 2017.

Egholm, D. L., Nielsen, S. B., Pedersen, V. K., and Lesemann, J.-E.: Glacial effects limiting mountain height, Nature, 460, 884887,
https://doi.org/10.1038/nature08263, 2009.

Fan, X., Dufresne, A., Siva Subramanian, S., Strom, A., Hermanns, R., Tacconi Stefanelli, C., Hewitt, K., Yunus, A. P., Dunning, S., Capra,
L., Geertsema, M., Miller, B., Casagli, N., Jansen, J. D., and Xu, Q.: The formation and impact of landslide dams — State of the art, Earth-
Science Reviews, 203, 103 116, https://doi.org/10.1016/j.earscirev.2020.103116, 2020.

Finnegan, N. J., Roe, G., Montgomery, D. R., and Hallet, B.: Controls on the channel width of rivers: Implications for modeling fluvial
incision of bedrock, Geology, 33, 229, https://doi.org/10.1130/G21171.1, 2005.

Finnegan, N. J., Schumer, R., and Finnegan, S.: A signature of transience in bedrock river incision rates over timescales of 104-107 years,
Nature, 505, 391-394, https://doi.org/10.1038/nature12913, 2014.

Fischer, M., Korup, O., Veh, G., and Walz, A.: Controls of outbursts of moraine-dammed lakes in the greater Himalayan region, The
Cryosphere, 15, 4145-4163, https://doi.org/10.5194/tc-15-4145-2021, 2021.

Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resources Research, 10, 969-973,

A

hnp ://doi.org/10.1029, WRﬂlﬂiﬂ(HpﬂﬂQ(»Q 1974.
Forte, A. M. and Whipple, K. X.: Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox, Earth Surface Dynamics, 7,
87-95, https://doi.org/10.5194/esurf-7-87-2019, 2019.

) Gansser; A::-Geology of the Himalayas; Interscience Publishers; 1964:
o Gardner, T. W., Jorgensen, D. W., Shuman, C., and Lemieux, R., C.: Geomorphic and tectonic process rates: Effects of measured time
interval, Geology, 15, 259-261, 1987.
Gerrard, J.: The landslide hazard in the Himalayas: geological control and human action, Geomorphology, 10, 221-230, 1994.
Godard, V., Bourles, D. L., Spinabella, F., Burbank, D. W., Bookhagen, B., Fisher, G. B., Moulin, A., and Leanni, L.: Dominance of tectonics
545 over climate in Himalayan denudation, Geology, 42, 243-246, https://doi.org/10.1130/G35342.1, 2014. b
Goode, J. K. and Burbank, D. W.: Numerical study of degradation of fluvial hanging valleys due to climate change, Journal of Geophysical
Research, 114, https://doi.org/10.1029/2007JF000965, 2009.
Haeberli, W.: Frequency and Characteristics of Glacier Floods in the Swiss Alps, Annals of Glaciology, 4, 85-90,
https://doi.org/https://doi.org/10.3189/S0260305500005280, 1983.
550 Hewitt, K.: Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan, Geomorphology,

26, 47-80, https://doi.org/10.1016/S0169-555X(98)00051-8, 1998.
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nat Rev Earth Environ, 1, 284-299, https://doi.org/10.1038/s43017-
020-0058-6, 2020.

24

g CMoved (insertion) [63]

‘ (Formatted: Font: Times New Roman

(Formatted: Font: Times New Roman, 10 pt

(Formatted: Space Before: 0 pt

CDeleted:

Formatted

325

(Formatted: Space Before: 8.4 pt

]/m
[
2 =
) A A

[ Moved up [62]:
500

505

510

\ (Moved up [63]:

\l (Deleted:

\(Deleted: e Column Break
it

\
(Formatted: Font: Arial, 8 pt

Formatted

Formatted

(Formatted

(Formatted: Space Before: 4.95 pt

: (Formatted: Space Before: 0.2 pt

(Formatted: Space Before: 0.05 pt

(Formatted: Space Before: 0.1 pt

(Moved (insertion) [64]

(Formatted: Font: Arial

(Formatted: Font: Arial, 8 pt

(Formatted: Space Before: 0.25 pt

(Formatted: Space Before: 0 pt

(Formatted: Space Before: 0.25 pt

ﬂ/m ﬂﬂ |
ISR CIRISINEST H
LS 2] f) (=2 i
AN NN NN NN




Howard, A, D., A, detachment-limited model, of, drainage, basin, evolution, Water, Resources, Research, 30, 2261-2285, (Moved (insertion) [65]

555

560

565

570

https://doi.org/10.1029/94WR00757, 1994. (Formatted: Font: Times New Roman, 10 pt

Huber, M. L., Lupker, M., Gallen, S. F., Christl, M., and Gajurel, A. P.; Timing of exotic, far-traveled boulder emplacement and paleo-outburst

‘ [F ormatted: Character scale: 100%, Not Expanded by /

- NN

flooding in the central Himalayas, Earth Surf. Dynam., 8, 769787, https://doi.org/10.5194/esurf-8-769-2020, 2020. ‘ Condensed by
Jacquet, J., McCoy, S, W., McGrath, D., Nimick, D. A., Fahey, M., O’kuinghttons, J.. Friesen, B. A., and Leidich, J.; Hydrologic and (Formatted 1)
geomorphic changes resulting from episodic glacial lake outburst floods: Rio Colonia, Patagonia, Chile, Geophysical Research Letters, ‘ (Formatted (W
44, 854-864, https://doi.org/10.1002/2016GL071374, 2017. (F ormatted .[333]
Jansen, J. D., Fabel, D., Bishop, P., Xu, S., Schnabel,C., and Codilean, A, T.: Does decreasing paraglacial sediment supply slow knickpoint (Formatted [334]
retreat?, Geology, 39, 543-546, https:/doi.org/10.1130/G32018.1, 2011. (Formatted [335]
Kirby, E. and Whipple, K.: Quantifying differential rock-uplift rates via stream profile analysis, Geology, 29, 415, i (Formatted ]
https://doi.org/10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2, 2001. (Formatted: Space Before: 0 pt
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., King, J. G., and Megahan, W. F.: Mountain erosion over 10 yr, 10 : : (Formatted
k.y., and 10 m.y. time scales, Geology, 29, 591, https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2, 2001. (Formatted
Kirchner, N., Greve, R., Stroeven, A. P., and Heyman, J.: Paleoglaciological reconstructions for the Tibetan Plateau during the last (F ormatted
glacial cycle: evaluating numerical ice sheet simulations driven by GCM-ensembles, Quaternary Science Reviews, 30, 248-267, (F ormatted
https://doi.org/10.1016/j.quascirev.2010.11.006, 2011. (Formatted
Korup, O. and Tweed, F.: Ice, moraine, and landslide dams in mountainous terrain, Quaternary Science Reviews, 26, 3406-3422, : : (F ormatted

https://doi.org/10.1016/j.quascirev.2007.10.012, 2007. (Formatted

Korup, O., Montgomery, D. R., and Hewitt, K.: Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes, Proceedings (F ormatted: Space Before: 8.35 pt

of the National Academy of Sciences, 107, 5317-5322, https://doi.org/10.1073/pnas.0907531107, 2010. ! (F ormatted: Condensed by 0.2 pt

575

580

585

Kummerow, C., Barnes, W., Kozu, T., Shiue, J.. and Simpson, J.: The Tropical Rainfall Measuring Mission (TRMM) Sensor Package, Journal (Formatted: Justified, Right: 0.07"

of Atmospheric-and-Oceanic Technology:15; 809817 https://doi:org/10:1175/1520-0426(1998)015<0809: TTRMMT>2:0.C0:;2,1998: (Moved up [64]: 1

Lague, D., Hovius, N., and Davy, P.: Discharge, discharge variability, and the bedrock channel profile: DISCHARGE VARIABILITY AND CMoved up [65]: ¢

CHANNEL PROFILE, Journal of Geophysical Research: Earth Surface, 110, n/a—n/a, https://doi.org/10.1029/2004JF000259, 2005. (Deleted: e SeCtON Break (Next Page)--
Lang, K. A., Huntington, K. W., and Montgomery, D. R.: Erosion of the Tsangpo Gorge by megafloods, Eastern Himalaya, Geology, 41, (Deleted: il ... [344
1003-1006, https://doi.org/10.1130/G34693.1, 2013. (Deleted: Column Break

Larsen, I. J. and Montgomery, D. R.: Landslide erosion coupled to tectonics and river incision, Nature Geoscience, 5, 468473, (Formatted: Font: Arial

https://doi.org/10.1038/nge01479, 2012. (Formatted: Font: Arial, 8 pt

Lavé, J. and Avouac, J. P.: Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res., 106, 26 561-26 591,

(Formatted: Font: Times New Roman, 11 pt

https://doi.org/10.1029/2001JB000359, 2001. (Formatted: Condensed by 0.25 pt
Leopold, L. B. and Maddock, T.: The Hydraulic Geometry of Stream Channels and Some Physiographic Implications, US Geological Survey :. (F ormatted: Condensed by 0.25 pt
Professional Paper 252, p. 64, 1953. : (Formatted: Space Before: 0.05 pt
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in High Asia’s runoff due to increasing glacier ‘ (Formatted: Space Before: 0.2 pt
melt and precipitation, Nature Clim Change, 4, 587-592, https://doi.org/10.1038/nclimate2237, 2014. (Formatted: Space Before: 0.05 pt
Ma, N.. Szilagyi, J.. Zhang, Y.. and Liu, W.: Complementary-Relationship-Based Modeling of Terrestrial Evapotranspiration Across China (Formatted: Space Before: 0.2 pt
During 1982-2012: Validations and Spatiotemporal Analyses, 124, 4326-4351. https://doi.org/10.1029/2018JD029850, 2019. (Formatted: Space Before: 0.05 pt

CMoved (insertion) [66]

(Formatted: Font: Arial

(Formatted: Font: Arial, 8 pt

(Formatted: Space Before: 0.2 pt

: ElEE] B IS [S] [S ey
=) Rl s S Y S o7 7 T
ANEZANEA 4 N4 N A A N4 NI A NI A AN A N NN AN AN AN /

25



Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernandez-Prieto, D., Beck, H. E., Dorigo, W. A, and _

e (Moved (insertion) [67]

290 )
Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, "(Formatted: Space Before: 4.5 pt )
1903-1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. (Formatted: Space Before: 0.1 pt )

Mason, K.: Indus floods and Shyok glaciers, The Himalayan Journal, 1, 10-29, 1929. <« Formatted: Right, Indent: Left: 0.07", First line: 0", Tab
Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association, 46, 6878, 1951. ilof;gv(')"iig]fg;g?,-zlé]ffgt_g7vlv;(])“7e”f’11ff;;2v1-;izg]:reﬁ

595 Montgomery, D. R. and Foufoula-Georgiou, E.: Channel network source representation using digital elevation models, Water Resources 3.8", Left + 4.32", Left + 4.57", Left + 5.02", Left + 5.72",

Rescarch, 29, 3925-3934, htps://doi.org/10.1029/93WR02463, 1993, Left + 6.27" Left + 6.58", Left
Montgomery, D. R., Hallet, B., Yuping, L., Finnegan, N., Anders, A., Gillespie, A., and Greenberg, H. M.: Evidence for Holocene megafloods <« (Formatted: Not Expanded by / Condensed by )
down the tsangpo River gorge, Southeastern Tibet, Quaternary Research, 62, 201-207, https://doi.og/10.1016/j.yqres.2004.06.008, 2004. (Formatted: Not Expanded by / Condensed by )
Mool P. K. Glacier TLake Outburst Floods in Nepal, Journal of Nepal Geological Society. 11, 273-280. . (Formatted: Not Expanded by / Condensed by )

00 Atpsi/doi.org/hitps://doi.org/10.3126/jngs.v11i0.32802, 1995, - (F ormatted: Not Expanded by / Condensed by )

o Pickering, J., Diamond, M., Goodbred, S., Grall, C., Martin, J., Palamenghi, L., Paola, C., Schwenk, T., Sincavage, R., and SpieB3, V.: Impact <} . ‘(Formatted: Space Before: 0.25 pt )
of glacial-lake paleofloods on valley development since glacial termination II: A conundrum of hydrology and scale for the lowstand | Moved up [66]:

Brahmaputra-Jamuna paleovalley system, GSA Bulletin, 131, 58-70, https://doi.org/10.1130/B31941.1, 2019. %
Prasicek, G., Herman, F., Robl, J., and Braun, J.: Glacial Steady State Topography Controlled by the Coupled Influence of Tectonics and ;{ 575
605 Climate, Journal of Geophysical Research: Earth Surface, 123, 1344-1362, https://doi.org/10.1029/2017JF004559, 2018.
Ray, Y. and Srivastava, P.. Widespread aggradation in the mountainous catchment of the Alaknanda—Ganga River Sys-
tem: timescales and implications to Hinterland—foreland relationships, Quaternary Science Reviews, 29, 2238-2260,
https://doi.org/10.1016/j.quascirev.2010.05.023, 2010.
Raymo, M. E. and Ruddiman, W. F.: Tectonic forcing of late Cenozoic climate, Nature, 359, 117-122, https://doi.org/10.1038/359117a0, <« (Moved up [67]: 590
610 1992. . (Deleted: Section Break (Next Page)--
o Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Chamlagain, D., and Godt, J. W.: The size, distri- [Deleled:

301,-121-138.

bution,and - mobility of landslidescaused. by the 2015 M. w. 7.8 Gorkha earthquake, Nepal, Geomorphology
https://doi.org/10.1016/j.geomorph.2017.01.030, 2018.

Roe, G. H., Montgomery, D. R., and Hallet, B.: Orographic precipitation and the relief of mountain ranges: OROGRAPHIC PRECIPITATION
AND-RELIEF; Journal of Geophysical Research: Solid Earth;-108; https://doi.org/10.1029/2001JB001521,2003:

Rosenbloom, N. A. and Anderson, R. S.: Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, California, J. Geophys.
Res., 99, 14 013-14 029, https://doi.org/10.1029/94JB00048, 1994.

Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N. K., and Stoffel, M.: Recent catastrophic landslide lake outburst floods in the Himalayan
mountain range, Progress in Physical Geography: Earth and Environment, 41, 3-28, https://doi.org/10.1177/0309133316658614, 2017.

A

Scherler, D., Munack, H., Mey, J., Eugster, P., Wittmann, H., Codilean, A. T., Kubik, P., and Strecker, M. R.: Ice dams, outburst floods, -

and glacial incision at the western margin of the Tibetan Plateau: A >100 k.y. chronology from the Shyok Valley, Karakoram, Geological
Society of America Bulletin, 126, 738-758, https://doi.org/10.1130/B30942.1, 2014.

Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 — MATLAB-based software for topographic analysis and modeling
in Earth surface sciences, Earth Surface Dynamics, 2, 1-7, https://doi.org/10.5194/esurf-2-1-2014, 2014.

Schwanghart, W., Bernhardt, A., Stolle, A., Hoelzmann, P., Adhikari, B. R., Andermann, C., Tofelde, S., Merchel, S., Rugel, G., Fort,
M., and Korup, O.: Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya, Science, 351, 147-150,
https://doi.org/10.1126/science.aac9865, 2016.

26

A

| (Formatted: Space Before: 0.05 pt

( leted:

(Formatted: Font: Arial
(Formatted: Font: Arial, 8 pt
(Formatted: Character scale: 95%
(Formatted: Expanded by 2.7 pt
(Formatted: Condensed by 0.1 pt
(Formatted: Space Before: 0 pt

Column Break ... [346

(Formatted: Space Before: 5 pt

(Formatted: Space Before: 0.05 pt
[Moved (insertion) [68]
(Formatted: Font: Arial
(Formatted: Space Before: 0.1 pt
(Formatted: Font: Arial, 8 pt
(Formatted: Space Before: 0.2 pt

(Formatted: Space Before: 0 pt
(Formatted: Space Before: 0.25 pt
(Formatted: Space Before: 0.05 pt

[
lgj




v

Shields, A.: Application of similarity principles and turbulence research to bed-load movement, CalTech library, Soil Conservation Service

Cooperative Laboratory, 1936.

<
630 Sklar; ~L:S:and - Dietrich; ~W:~E::~Sediment -androck strengthcontrols ~on - river ~incisionintobedrock; - Geol; 29, 1087, .

https://doi.org/10.1130/0091-7613(2001)029<1087:SARSC0>2.0.CO;2, 2001.
Sklar, L. S. and Dietrich, W. E.: The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation—abrasion <
incision model, Geomorphology, 82, 58-83, https://doi.org/10.1016/j.geomorph.2005.08.019, 2006.
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.: Importance of a stochastic distribution of floods and erosion thresholds in
635 the bedrock river incision problem: FLOODS AND THRESHOLDS IN RIVER INCISION, Journal of Geophysical Research: Solid Earth,
108, https://doi.org/10.1029/2001JB001655, 2003.
Spearman, C.: The Proof and Measurement of Association between Two Things, The American Journal of Psychology, 100, 441-471, 1987.

Steer, P., Simoes, M., Cattin, R., and Shyu, J, B. H.: Erosion influences, the seismicity of active, thrust faults, Nat Commun, 5, 5564,

https://doi.org/10.1038/ncomms6564, 2014. <

gap Sternberg, H.: Untersuchungen iiber lingen- und Querprofil geschiebefiihrender Fliisse, Zeitschrift fiir Bauwesen, 25, 486-506, 1875. Stock, _ |

J.D,and, Dietrich, W, E.; Erosion, of; steepland, valleys, by, debris, flows, Geological, Society, of, America Bulletin, 118,,1125-1148,

2006.
Thomson, S. N., Brandon, M. T., Tomkin, J. H., Reiners, P. W., Vasquez, C., and Wilson, N. J.: Glaciation as a destructive and constructive
control on mountain building, Nature, 467, 313-317, https://doi.org/10.1038/nature09365, 2010.
645 Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The impact of exceptional events on erosion, bedload transport
and channel stability in a step-pool channel, Earth Surface Processes and Landforms, 34, 16611673, https://doi.org/10.1002/esp.1855,
2009.
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged frequency of moraine-dammed glacial lake outburst floods in the <«
Himalaya, Nature Climate Change, 9, 379-383, https://doi.org/10.1038/s41558-019-0437-5, 2019.

650 “Veh; G:; Korup; O:;-and Walz; A.: Hazard from Himalayan glacier lake outburst floods; Proceedings of the National Academy of Sciences; ‘{

117, 907-912, https://doi.org/10.1073/pnas.1914898117, 2020.

West, A. J., Arnold, M., Aumaitre, G., Bourlés, D. L., Keddadouche, K., Bickle, M., and Ojha, T.: High natural erosion rates are the backdrop <«
for present-day soil erosion in the agricultural Middle Hills of Nepal, Earth Surf. Dynam., 3, 363-387, https://doi.org/10.5194/esurf-3-
363-2015, 2015.

655 Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of moun-
tain ranges, landscape response timescales, and research needs, Journal of Geophysical Research: Solid Earth, 104, 17 661-17 674,
https://doi.org/10.1029/1999JB900120, 1999.

‘Whittaker, A. C.: How do landscapes record tectonics and climate?, Lithosphere, 4, 160-164, https://doi.org/10.1130/RF.L003.1, 2012.

Willett, S. D. and Brandon, M. T.: On steady states in mountain belts, Geology, 30, 175, https://doi.org/10.1130/0091-
7613(2002)030<0175:0SSIMB>2.0.C0O;2, 2002.

Wilson, A., Hovius, N., and Turowski, J. M.: Upstream-facing convex surfaces: Bedrock bedforms produced by fluvial bedload abrasion, <«
Geomorphology, 180-181, 187-204, https://doi.org/10.1016/j.geomorph.2012.10.010, 2013.

Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography:

660

Procedures, promise, and pitfalls, in: Special Paper 398: Tectonics, Climate, and Landscape Evolution, vol. 398, pp. 55-74, Geological

665 Society of America, https://doi.org/10.1130/2006.2398(04), 2006a.

27

\

{

\

\
§
1
b

|

g CMoved (insertion) [69]

‘ (Formatted: Font: Times New Roman

(Formatted: Font: Times New Roman, 10.5 pt

) (Formatted: Space Before: 0.1 pt

(Formatted: Space Before: 0.1 pt

AN N

Moved up [68]:

615

620

' 625

Moved up [69]:

630

Section Break (Next Page)-

. [348]

(Deleted: Column Break

Formatted

[350

(Formatted: Justified

Formatted

=
S
g
g
g
2| B |
AN '

351

(Formatted: Space Before: 0.05 pt

(Moved (insertion) [70]

(Formatted: Font: Arial, 8 pt

Formatted: Body Text, Indent: Left: 0", Space Before:
0.25 pt

(Formatted: Font: (Intl) Times New Roman

(Formatted: Space Before: 0.1 pt

(Formatted: Space Before: 4.95 pt

AN A NN




<

..and Whipple. K. X.: Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape

[Formatted: Number of columns: 2, Col #1 width: 0.3", Not}
evolution, 111, FO2 017, https://doi.org/10.1029/2005JF000406. 2006b.

Force equal column width

Wobus, C. W., Whipple, K. X., and Hodges, K. V.: Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital
40 Ar/ ¥ Ar thermochronology, and thermal modeling: NEOTECTONICS OF CENTRAL NEPAL, Tectonics, 25, n/a-n/a,
https://doi.org/10.1029/2005TC001935, 2006¢.

( Deleted: 2006b

—/

Xu, D.: Characteristics of debris flow caused by outburst of glacial lake in Boqu river, Xizang, China, 1981, GeoJournal,
https://doi.org/10.1007/BF00209443, 1988.

Yanites, B. J.: The Dynamics of Channel Slope, Width, and Sediment in Actively Eroding Bedrock River Systems, Journal of Geophysical
Research: Earth Surface, 123, 1504-1527, https://doi.org/10.1029/2017JF004405, 2018.

Yanites, B. J., Mitchell, N. A., Bregy, J. C., Carlson, G. A., Cataldo, K., Holahan, M., Johnston, G. H., Nelson, A., Valenza, J., and Wanker, <«

M.;, Landslides, control, the, spatial, and, temporal, variation, of, channel, width, in, southern, Taiwan;, Implications, for, landscape, evolution,and, Iff;i (;_OJ"tSpacI\el l?eftorgﬁ()"OS pt, Line spacing: Multiple
1, 1ab stops: INot af

\ [ Deleted: ¢ (..353] j
Formatted (.. [352] j
Formatted (.. [354] }

[ Moved up [70]: 9
650
\ ( Deleted: )

Formatted: Justified, Indent: Left: 0.07", Hangmg 0.14", }

cascading hazards, in, steep, tectonically, active, landscapes;, Variation, in,channel, morphology, controlled, by, landslides, in, s, Taiwan, Earth
Surface, Processes,and, Landforms, 43, 1782—1797, https://doi.org/10.1002/esp.4353,2018.

\
\(Formatted (..[355] j
Formatted (... [356] }

28



