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Abstract.

The rate of erosion of a [removed: geomorphic surface depends on its ]landscape depends largely on local gradient and [re-

moved: on the material fluxesover it ]material fluxes. Since both quantities are functions of the shape of the catchment surface,

this dependence constitutes a mathematical straitjacket, in the sense [removed: that – subject ]that—subject to simplifying as-

sumptions about the erosion process, and absent variations in external forcing and [removed: erodibility – the ]erodibility—the5

rate of change of surface geometry is solely a function of surface geometry. Here we demonstrate how to use this geometric

self-constraint to convert [removed: an ]a gradient-dependent erosion model into its equivalent Hamiltonian, and explore the

implications of having a Hamiltonian description of the erosion process. To achieve this conversion, we recognize that the rate

of erosion defines the velocity of surface motion in its orthogonal direction, and we express this rate in its reciprocal form as the

surface-normal slowness. By rewriting surface tilt in terms of normal slowness components, and by deploying a substitution10

developed in geometric mechanics, we extract what is known as the fundamental metric function of the model phase space; its

square is the Hamiltonian. Such a Hamiltonian provides several new ways [removed: of solving ]to solve for the evolution of

an erosion surface: here we use it to derive Hamilton’s ray tracing equations, which describe both the velocity of a surface point

and the rate of change of the surface-normal slowness at that point. In this context, gradient-dependent erosion involves two

distinct directions: (i) the surface-normal direction, which points subvertically downwards, and (ii) the erosion ray direction,15

which points upstream at a generally small angle to horizontal with a sign controlled by the scaling of erosion with slope. If the

model erosion rate scales faster than linearly with gradient, the rays point obliquely upwards; but if erosion scales sublinearly

with gradient, the rays point obliquely downwards. This dependence of erosional anisotropy on gradient scaling explains

why, as previous studies have shown, model knickpoints behave in two distinct ways depending on the gradient exponent.

Analysis of the Hamiltonian shows that [removed: these ]the erosion rays carry boundary-condition information upstream,20

and that they are geodesics, meaning that [removed: erosion ]surface evolution takes the path of least erosion time. [removed:

This constitutes a definition of the variational principle governing landscape evolution. In contrast with previous studies of

network self-organization, neither energy nor energy dissipation is invoked in this variational principle, only geometry. ]Cor-

respondingly, the time it takes for external changes to propagate into and change a landscape is set by the velocity of

these rays. The Hamiltonian also reveals that gradient-dependent erosion surfaces have a critical tilt, given by a simple25

function of the gradient scaling exponent, at which ray propagation behaviour changes. Channel profiles generated from
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the non-dimensionalized Hamiltonian have a shape entirely determined by the scaling exponents and by a dimensionless

erosion rate expressed as the surface tilt at the downstream boundary.

Copyright statement. The article and corresponding preprints are distributed under the Creative Commons Attribution 4.0 License. Unless

otherwise stated, associated material is distributed under the same licence.30

1 Introduction

When geomorphologists describe the evolution of a landform, a direction of erosion is often invoked: for example, we speak of

a bank cutting laterally, or a cliff retreating, or a knickpoint eroding upstream, or a river channel incising down into bedrock.

Generally, such statements are taken at face value, and the erosion direction in each case is understood from context, e.g.,

erosion in a bedrock channel is broadly considered to take place sub-vertically downwards, hewing closely to gravity, except35

at knickpoints where it occurs sub-horizontally upstream, and along the channel walls where it acts sub-horizontally and

roughly orthogonal to streamflow. At the same time, we recognize that the geomorphic processes driving or mediating erosion

are associated with particular directions relative to the geometry of the surface, which presumably has consequences for the

direction in which that surface erodes: weathering acts roughly normal to an exposed surface, mechanical abrasion involves

obliquely streamwise impacts that can be resolved into normal and tangential components, as can frictional wear by sliding ice40

or debris, and so on. There are [removed: apparently ]obviously many directions involved in [removed: the driving evolution

of an erosion surface , and it is not immediately clear how to unify them. ]driving the evolution of a landscape, so what can

we say about the direction of motion of the erosion surface itself? Our goal here is to answer this question using some

concepts and tools of differential geometry and classical mechanics.

[removed: In other physical contexts, the logical step would be to deploy tracers to establish motion.But ]45

1.1 Tracking points on an erosion surface

Tracking the motion of a solid object is easy if the surface of the object is not eroded during motion: all that’s needed

is to tag the surface with markers and monitor their displacements. This isn’t possible for a surface undergoing erosion,

because all such markers are destroyed by the erosion process itself. We can nevertheless describe, in a mathematical

sense, how points on an erosion surface move—if we know something about the process of erosion. The purpose of this50

section is to preview how this task can be achieved and to provide some conceptual context. The ideas outlined here are

developed in full in the main body of the paper.

A moving erosion surface has only one intrinsic direction available at each surface point: the local normal to the surface.

Describing motion in any other way entails the supply of extra information—through the choice of an additional direction

as a reference. Since gravity acts downwards, the usual choice is to assign vertical as the reference axis, and to express55

erosion rate as a vertical velocity. On the other hand, for problems such as sea cliff retreat or river bank erosion it can be
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Figure 1. Illustration of how points map from one erosion surface (grey curves) at time t= Ta to the next at time t= Tb = Ta + ∆T .

If the erosion mechanism is not specified (“free” inset), each point a ∈ Ta (solid grey circle) can in principle be mapped to any of the

points {b} ∈ Tb (empty grey circles). However, if the erosion process is known, the point mapping is constrained (albeit indirectly) as

follows. The erosion function can be converted into a metric function that tells us how far apart the surfaces are after the time interval

∆T . We gauge this spacing using a slowness covector p̃ (blue ladder symbols) oriented normal to Ta and at an angle β from vertical.

If we convert the metric into a Hamiltonian, we get evolution equations both for p̃ and for point velocity v (red arrows; at angle α

clockwise from horizontal). The point velocity determines the point pairing. If the erosion process is independent of gradient (“isotropic”

inset), the metric is Euclidean, the point velocity is colinear with normal slowness, and the point a on Ta maps to its nearest neighbour

b on Tb. If instead the erosion process is gradient-dependent (“anisotropic” inset), the metric it generates is non-Euclidean, p̃ and v

are not colinear, and the mapping of point a to point b is oriented at an angle ψ = α−β+ 90◦ to the surface normal. The angle ψ is

therefore a measure of erosional anisotropy.

more convenient to pick horizontal as the reference. Whatever the choice, basic trigonometry makes it easy to transform

an erosion function between any of these geometries (but with a complication: see Sect. 3.1).

The minimal approach therefore avoids supplying a reference direction and treats surface erosion as acting intrinsically

in the local normal direction. In light of this, we may be tempted to infer that points on an erosion surface [removed: , by60

definition, destroys itself as erosion proceeds. If we were to tag a set of points on some initial surface , these points would

immediately vanish as the surface evolves. The idea of persistent points moving with an erosion surface is an abstract one,

]move in the normal direction: in general, however, they do not.
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To see why, let’s examine a surface evolving by some unknown mechanism. Let’s assume for simplicity that the surface

is an always-smooth 1D line in 2D x–z space (Fig. 1). Mark the surface at time Ta, and again at a very small time interval65

later Tb = Ta + ∆T . Each surface can be considered as a set of points: Ta = {a} and [removed: its utility is not obvious.

]Tb = {b}, where a and b are 2D vectors.

[removed: So, what does it really mean when we speak of the direction of erosion? Does it make sense to talk of erosion

in terms of motion of surfaces? And can we learn anything fundamentally useful and insightful by doing so? The goal of this

paper is to answer these questions with an emphatic “yes” ]In the absence of an equation of motion, we are free to pair70

each point a ∈ Ta with any otherwise unpaired point b ∈ Tb (Fig. 1, “free” inset). We could enforce a strict order to the

pairings, but we would still have a very large number of choices. What matters is that the motion of surface points from

Ta to Tb is defined by our choice of mappings, and for the moment this choice is arbitrary.

Now, there are two ways to assess the rate of surface motion: one familiar, the other much less so. The familiar quantity

is the velocity vector, which we get by measuring the distance between, and direction defined by, each pair of points75

v := (b−a)/∆T . The unfamiliar quantity is the normal-slowness covector p̃ (Sect. 3.1), which get by measuring the time

∆T it takes for the surface to move a given distance in its normal (intrinsic) direction. We visualize p̃ as a series of small

planes emanating from a, parallel to the local tangent to Ta and approaching Tb. The term “slowness” is used because

the units of p̃ are reciprocal speed.

This brings us to our key premise: when we specify an erosion function, we are explicitly defining the behaviour of p̃,80

but only indirectly obtain the behaviour of v. That’s because an erosion rate function measures the time it takes for the

surface to move a given distance, not the travel time for points on the surface. If the process of erosion is isotropic, this

subtle distinction is moot; if, however, the erosion rate depends on gradient, the distinction is fundamentally important

(Fig. 1, “isotropic” and “anisotropic” insets).

We can understand why if we realize that by quantifying the elapsed time between successive erosion surfaces, the85

erosion rate function actually defines a metric, aka a tool for measuring the “length” of the covector p̃. If the erosion rate

depends only on location, meaning that it’s independent of surface tilt and thus isotropic, the corresponding metric is

Euclidean, which makes p̃ and v point in the same direction, and leads each point on Ta to pair with its nearest neighbour

(in a Euclidean sense of the term) on Tb. This is the most intuitive way of linking points on one surface to another, but

is not correct for erosion in general. That’s because, if the erosion rate is also a function of gradient, the resulting metric90

will be anisotropic and non-Euclidean, p̃ and [removed: to justify this conclusion in a rigorous fashion using ]v will point in

different directions, and the way the metric measures the shortest distance between successive erosion surfaces will no

longer be a simple use of Pythagorean geometry.

Metrics of this kind—that depend on position and orientation—are called Finsler metrics. They constitute a way to

measure travel time between two points when resistance to motion varies with direction in a non-trivial way. Physical95

analogues include measuring travel time when walking over hills or navigating a boat in a wind. In special cases they may

reduce to, or at least incorporate, a Riemannian form.
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Transformation of the erosion equation into a metric function takes a few steps. The first is to reparameterize the

directional parts of the erosion equation using the components of the slowness covector p̃= [px, pz] while leaving any

spatial dependence untouched. For example, if the erosion function depends explicitly on surface gradient tanβ, where100

β is the angle of the [removed: mathematics of differential geometry and classical mechanics. ]surface-normal relative to

vertical, we can use the substitution tanβ = |px/pz|. The normal erosion speed is replaced with the reciprocal magnitude

of the slowness covector ξ⊥ = 1/p= 1/
√
p2
x + p2

z.

If this reparameterization is possible, we get an equation that can be rearranged into the form F∗(a, p̃) = 1. This F∗ is a

fundamental metric function, which measures the shortest time interval for the surface to erode a unit distance in a given105

direction. Among several special properties exhibited by this function, the crucial one is its order-1 Euler homogeneity in

p̃, which means that F∗(a,λp̃) = λF∗(a, p̃).

Squaring and scaling the metric function defines a quadratic Hamiltonian H(a, p̃) := F2
∗/2 = 1/2, which is the key

result of this study. This “geomorphic” Hamiltonian provides us with equations of surface motion in the form of Hamilton’s

equations, which allow ray tracing and other methods to be used to solve for landscape evolution. And it tells us not just110

that surface points move according to a Hamiltonian flow, but also that they follow geodesic path aka paths of shortest

erosion time.

Point velocities, and therefore point pairings {a,b}, are given by one half of Hamilton’s equations: differentiating the

Hamiltonian by each of the erosion slowness covector components px and pz in turn, we get a vector expressing the

change of point position with time: v = ∂H/∂p̃. It follows from order-1 homogeneity of the metric function F∗ that the115

surface-normal slowness covector and this point velocity vector must always be conjugate, p̃ ·v = 1.

Earlier, we asserted that surface points do not, in general, move in the surface-normal direction: now we have proof.

Exploiting conjugacy, we can measure the angle ψ between the surface-normal and the point velocity using their dot

product cosψ = p̃ ·v/(pv). If the rate of erosion depends on surface tilt β, the corresponding metric function and Hamil-

tonian will both depend, in some nonlinear fashion, on the normal slowness components px and pz, and so ∂H/∂p̃ and120

point velocity v will not in general be colinear with the surface normal. A gradient-dependent erosion process is therefore

anisotropic, and its degree of anisotropy is measured by the angle ψ.

The practical consequence of erosion driving anisotropic Hamiltonian flow lies in how it controls the propagation of

information, in the sense of initial and boundary conditions, into a landscape. Each element of this Hamiltonian flow has

both a point position a and a normal slowness p̃, i.e., each element contains information about the location and orien-125

tation of the surface and its reciprocal rate of erosion. Progression along the Hamiltonian flow occurs along successive

point pairings; each pairing translates an element in space while carrying (and to some extent modifying) the surface

information along with it. The angular disparity between the direction of information transfer (aka point velocity) and the

intrinsic direction of surface-normal motion, is the anisotropy ψ.
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1.2 Structure of the paper130

The paper is organized into [removed: seven sections (including this introduction) ]eight sections and a set of appendices.

Section [removed: ?? provides some background on geometric mechanics and its potential applications to geomorphology: it

discusses how surface motion ]2 summarizes how erosion in three dimensions (3D) can be [removed: described mathemat-

ically, makes some connections with geometric optics, and cites related applications in fields such as seismology, crystallog-

raphy, materials science, and wildfire prediction ]tracked using implicit surfaces and level sets, makes a connection with135

the Hamilton-Jacobi equation, and demonstrates the natural link with Hamiltonian methods. Section 3 [removed: develops

these ideas in a more formal fashion, ]combines these concepts with those introduced in Section 1.1 and formulates a

Hamiltonian theory of [removed: erosion front propagation (albeit limited to ]gradient-driven erosion (for a 2D slice of 3D

space)[removed: , and explores aspects of this theory from the points of view of ]. It explores this theory using geometric

mechanics and differential geometry, and reveals how strong anisotropy lies at the heart of landscape surface evolution.140

Section [removed: 5 explains how to generate numerical solutions of erosion front motion using ray tracing ]4 implements

the geomorphic surface Hamiltonian using a particular model of gradient-driven erosion—an adaptation of the stream-

power incision model to handling erosion in the surface-normal direction—and presents a non-dimensionalization of the

Hamiltonian and Hamilton’s ray tracing equations, and a simple means of model solution. Section [removed: 6 presents

solutions for one class of problem: a time-invariant erosion profile driven by slip on a bounding fault. These results are an-145

alyzed to reveal how erosion defined in the surface-normal direction connects with vertical and horizontal erosion rates and

with erosion ray velocities; further analysis reveals how strong anisotropy lies at the heart of the erosionprocess. ]5 shows

how to use Hamiltonian ray tracing to obtain model surface solutions for a domain whose boundaries are subject to a

constant vertical erosion rate. Section 6 discusses these numerical solutions and examines what they have to tell us

about erosional anisotropy and the notion of two distinct directions of landscape erosion. It also relates model scales to150

real-world landscape time, space and velocity scales. Section 7 looks at the broader implications of [removed: this ]the

Hamiltonian approach to erosion, and Sect. 8 draws some conclusions. [removed: Further discussion of more advanced math-

ematical aspects of the theory are provided in the appendices, ]The appendices A–F draw on disparate literature sources

linked together here for the first time, and use them to shed light on the theory presented in this paper.

2 [removed: Background ]155
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[removed: In this section, we look at how the evolution of a surface in 3D space, such as erosion of a landscape, can

be framed in a way that sheds new light on its geometric principles. We review some pertinent mathematical concepts such

as implicit surfaces, level sets, the Hamilton-Jacobi equation, arrival-time surface functions, and the eikonal equation. We

discuss past applications of these concepts not just to geomorphic erosion but also to crystal dissolution, microerosion by ionic

bombardment, and wildfire spread, and we draw connections with seismology and seismic anisotropy. We emphasize how160

two fundamental axioms of geometric optics – Huygens’ principle and Fermat’s principle – underpin these applications, and

compare Hamiltonian ray tracing in 3D with use of the method of characteristics to solve 2+1D stream-power law models.

We end the section by proposing a principle of least erosion time as the governing variational principle that drives landscape

evolution. ]

2 Core principles165

2.1 Landscape as an implicit surface

In almost every model treatment of landscape erosion (Coulthard, 2001; Dietrich et al., 2003; Fowler, 2011; Pazzaglia, 2003;

Tucker and Hancock, 2010; Tucker, 2015; van der Beek, 2013; Willgoose, 2005), the shape of the land surface in 3D space

is written mathematically as a function of elevation h parameterized by the 2D horizontal coordinates {x,y} of points on the

surface, and by the time t at which the point elevations are assessed. In other words, the landscape is described by an explicit170

surface function h(x,y; t).

An explicit surface description has advantages and disadvantages. On the plus side, theoretical development is relatively

simple, because it effectively involves only two spatial dimensions, and numerical solution can be carried out on a 2D grid.

On the negative side, the rate of erosion is only tracked in the vertical direction, through the partial derivative of elevation with

time ∂h
/
∂t: if there is any horizontal component of erosion it is not tracked directly, and has to be calculated indirectly using175

the lateral variation in elevation ∇h. Problems arise when the surface gradient becomes very steep, for example at knickpoints

or channel banks, and any development of overhangs is obviously impossible.

If we instead describe the landscape using an implicit surface, many of these issues are eliminated. The price is greater

complexity in the mathematics needed to formulate surface motion and to resolve it numerically. The extra cost is worth

paying if it leads to greater insights into how landscapes form.180

2.2 Landscape as the 2D zero contour of a 3D function

An implicit surface in 3D space is the set of points {x(t),y(t),z(t)} that define the 2D “contour” or level-set surface of a

function φ:

φ(x,y,z; . . .) = φ0 (1)
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where φ is a nonlinear function defined at all points across the 3D domain of interest, that varies with time, and is [removed:185

non-local – in ]non-local—in the sense that it can be a function of curvature, or of values of itself at a distance, etc. Put more

simply, φ is a very flexible function that can be tailored to induce whatever surface motion is desired.

The term “implicit” is used because surface positions are not specified directly; instead, a surface is defined by “slicing”

the function φ(x,y,z) at some chosen value φ0 and finding positions {x,y,z} for which φ(x,y,z) = φ0. Think of how a

visualization tool for a 3D scalar field, such as temperature, works: sequential slicing across a range of temperatures provides190

an animated view of its variation throughout a volume. This variation can be complex, revealing isolated blobs of high (or low)

values that connect in topologically complicated ways as the slicing threshold temperature is changed. In this way, an implicit

description of a surface can represent complex, multivalued geometry and topology without extra mathematical work.

Landscape evolution can be [removed: modeled ]modelled with an implicit surface by writing an equation to drive evo-

lution of the function φ, and watching how its zero level-set φ= φ0 = 0 implicitly prescribes changes in surface positions195

{x(t),y(t),z(t)} over time.

2.3 The level-set equation

Implicit surface motion in its most general form is described by the level-set equation (Gibou et al., 2018; Giga, 2006; Osher

and Fedkiw, 2001, 2003; Sethian, 1999; Vladimirsky, 2001), in which φ(x,y,z; t) is a 3D function constructed so as to evolve

over time t with a velocity ξ, a vector function that in general varies with position and time, is possibly non-local, and only200

need be defined where φ= 0:

∂φ

∂t
+ ξ ·∇φ= 0 (2)

This is equivalent to holding the material derivative of the scalar field φ[removed: – driven ]—driven to move by the vector

field ξ[removed: – at ]—at zero along the zero contour of φ, but otherwise allowing it to vary unconstrained.

Only the normal component ξ⊥ of the implicit surface velocity plays any role in driving motion: in the geomorphic case,205

this would be the surface-normal erosion rate. So we can write

∂φ

∂t
+ ξ⊥ |∇φ|= 0 (3)

The notation ξ⊥ is adapted from Osher and Merriman (1997).

[removed: With this equation we can describe ]This equation provides a very generic description of how a 2D surface

evolves in 3D space[removed: as a result of both erosion and deposition; the effects of tectonic displacement are easy to in-210

corporate , as are spatiotemporal changes in weathering rates, vegetation and precipitation, ], in the sense that it defers all

description of processes into the formulation of the surface-change rate function ξ⊥. This function can readily treat topo-

graphic gradient and curvature, and substrate erodibility; suitably provided with coupled process equations, it could also

incorporate water flow depth and velocity, intermittent sediment cover, development of a vegetation layer, spatiotemporal

precipitation, tectonic displacement, and so on. Such flexibility, however, is not our goal here. Instead, we seek geometric215

insights into the process of landscape erosion, which we can achieve [removed: by limiting ]if we limit the scope of this
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equation[removed: . The simpler, more constrained form of the ], and make ξ⊥ a simplified function of local gradient and

accumulated flow. A geomorphic level-set equation in this form makes it easier to tease out its fundamental behaviour.

2.4 Motion described by the Hamilton-Jacobi equation

If we restrict the surface velocity ξ to be a local function of position and time, Eq. ([removed: ?? ]3) becomes the Hamilton-220

Jacobi equation, or HJE:

[removed :H]H (r,∇φ; t) =
∂φ

∂t
(4)

where each vector r tracks a point as it moves from one zero level-set of φ to another with velocity ṙ = dr
/

dt, while the front

itself at that point moves in the direction ∇φ. These directions are not necessarily the same.

The HJE is a first-order partial differential equation that plays a central role in classical mechanics (Arnold, 1989; Goldstein225

et al., 2000; Houchmandzadeh, 2020; Small and Lam, 2011; Whitham, 1999). Its driver is the Hamiltonian [removed: H ]H,

which combines the surface velocity ξ with the gradient ∇φ in a way that lends it special properties.

The Hamiltonian in the HJE is required to be a local [removed: function – in ]function—in the sense that it can depend on

position r and instantaneous time t, but cannot depend on the shape of the propagating surface at some distance away, or on

any history-dependent quantities. Diffusive and quasi-diffusive processes are not allowed either. However, viscosity solutions230

of the HJE (Crandall and Lions, 1981), which are the standard means of resolving profound mathematical challenges with this

equation, ironically involve the addition of a weak, ultimately vanishing, second-order term that can be considered a diffusive

process at the sub-grid scale.

2.5 [removed: Geoscience applications of the HJE ]

[removed: The HJE has seen only sporadic use in the geosciences – except in the field of seismology, where its static or eikonal235

form has been found to be particularly useful. The eikonal equation is a good approximation for seismic wave propagation in

the so-called “high frequency limit” at which seismic wavelengths are very small compared to the scale of wave propagation

(e.g., Červený, 1989, 2005, 2002; Dellinger, 1997; Mensch and Farra, 1999; Rawlinson et al., 2008; Slawinski, 2014; Virieux

and Lambaré, 2007; Woodhouse and Deuss, 2007). From this approximation arises the convenient fiction of seismic rays, which

are both the characteristics of the HJE and solutions of Hamilton’s equations. Although there are disadvantages to its use in240

treating seismic wave propagation, e.g., dynamic interactions are not modeled and spectral information is lost, the Hamiltonian

approach has proven insightful, particularly when dealing with anisotropic media Antonelli et al. (2003a); Bóna and Slawinski

(2002, 2003); Bucataru and Slawinski (2005); Červený (2002); Klimeš (2002); Yajima and Nagahama (2009); Yajima et al.

(2011). ]

[removed: An analogous form of the seismic Hamiltonian approach has been applied to studying the effects of anisotropy245

on fluid flow in porous media (Sieniutycz, 2007; Yajima and Nagahama, 2015). ]

2.5 [removed: Applications of the HJE to geomorphology ]
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[removed: In geomorphology, Luke (1972, 1974, 1976) pioneered application of the HJE to the modelling of fluvial knickpoints

as shocks formed by kinematic waves (Lighthill and Whitham, 1955a, b; Whitham, 1999). Weissel and Seidl (1998) and

Royden and Perron (2013) built on this approach to further understand the conditions under which knickpoints form and how250

they propagate. In all these studies, the HJE was deployed in an explicit-surface form, and its ability to model implicit-surface

motion was not considered. ]

2.5 Landscape as an erosion arrival-time surface

If we wish to use the HJE to treat landscape evolution in terms of an implicit function, we need to consider how to write a

Hamiltonian form of the erosion function driving that evolution. If this Hamiltonian is independent of (i.e., does not change255

with) time, it simplifies into a static HJE or eikonal equation [removed: H(r,∇φ). Imposing such time constancy in the

Hamiltonian is not as onerous as it sounds. For example, if we use the eikonal equation to model landscape erosion driven by

slip along bounding faults, its ray-tracing solution can still incorporate changes in fault slip rate over time (this topic is covered

in ?). ]

H(r,∇φ). The implicit surface function φ that solves [removed: a static , eikonal form of Eq. (4) ]this static HJE is a260

single-valued, 3D function that defines the position and shape of arrival time surfaces. [removed: . ]In other words, φ can be

thought of as a first arrival time function T (x,y,z)−t , where T defines the locus of surface points {x,y,z} that satisfy at each

time step t the equation

T (x,y,z)− t= 0 (5)

Another way to express this is to say that the contours of T are 2D isochrone surfaces embedded in 3D space that define the265

shape of the landscape as it changes.

In the eikonal equation, the Hamiltonian is a constant function of surface point position r and the gradient of the arrival time

∇T with the simple form:

[removed :H]H (r,∇T ) = const (6)

Points on the surface move with velocity vector v = ṙ, while the surface itself moves with a [removed: slowness ]slowness270

covector [removed: ∇T ]given by p̃= ∇T ). It is important to emphasize that [removed: ∇T ]p̃ is not a vector[removed: ,

which will likely come as a surprise to those not schooled in differential geometry.Section ]: Sect. 3.1 goes into more detail as

to what is meant by the term “covector” and why the distinction is consequential.

Although both v and [removed: ∇T ]p̃ are both directional quantities describing surface motion, they only point in the

same direction if the motion mechanism is isotropic. Measuring their angular disparity is the key to assessing the anisotropy.275

One of the aims of this study is use this measure to reveal the strong anisotropy of landscape erosion processes (see Sect. 3.18).

2.6 [removed: Use of the eikonal equation in geomorphology ]
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[removed: To our knowledge, only one previous study has attempted to model landscape evolution as an implicit surface

moving according to an eikonal equation. Aronsson and Lindé (1982) did so in a treatment of weathering-limited denudation

of a rock cliff incised at its base by a river. By integrating the eikonal equation representing this erosion process, and by280

presenting level-set solutions as isochrones of the cliff transect, they demonstrated how variations in rock erodibility can lead

to highly irregular surface geometry such as overhangs. ]

2.6 [removed: Non-geomorphic erosion modeled with the HJE ]

[removed: There is a literature on erosion driven by non-geomorphic processes, and much of it is unfamiliar to the geomor-

phology community. The methods employed in some of these papers provide a partial foundation for our Hamiltonian-based285

approach. For example, both implicit surface motion and the HJE have been the basis for modeling erosion at microscopic

scales in an engineering context. ]

[removed: Frank (1958) employed the concept of surface-motion slowness as a means to model the anisotropic dissolution of

crystal surfaces in 2D (although neither the HJE nor the concept of a covector were explicitly invoked). He later extended this

approach to handling dissolution in 3D (Frank and Ives, 1960). His technique is widely cited in the crystallography literature290

(e.g., Frank and Ives, 1960; Ives, 1961; Osher and Merriman, 1997; Shemenski et al., 1965). ]

[removed: In materials science, the Frank method has been adapted to treat surface erosion at the micron scale driven by ion

beam bombardment. Early work (Barber et al., 1973; Carter et al., 1971; Nobes et al., 1969) focused on amorphous substrates

and isotropic erosion without mentioning the HJE. Subsequent advances introduced the HJE (Katardjiev et al., 1989; Nobes

et al., 1987; Smith et al., 1986; Witcomb, 1975) and the eikonal equation (Carter, 2001), and used them to address the issue of295

anisotropic erosion. Perhaps most relevant to our theoretical development is the review article by Smith et al. (1986), which is

also notable for its invocation of an erosional Hamiltonian, and the paper by Katardjiev et al. (1989), which connects the HJE

and its Hamiltonian to Huygens’ principle and the concept of erosional wavelets. ]

2.6 [removed: Front motion obeys Hugyens’ principle ]

[removed: Central to the ideas in the previous sections is Huygens’ principle, one of the founding contributions to the field300

of optics. Using a graphical construction, the principle explains how a wavefront bends as it passes through media of varying

resistance to motion (e.g., Arnold, 1989; Holm, 2011; Miller, 1991). At every instant, it pictures the front peppered with tiny

wavelets. Each wavelet represents how far, if it were spreading in isolation, a point on the front would expand in the next instant

to form its own microfront. Since the points are not isolated, they interfere to form a mutually tangential envelope, with each

point moving to the location of its wavelet tangent. The set of successive of tangential envelopes constitutes the progressive305

motion of the front. ]

[removed: In wave propagation terms, the wavelet represents the unit envelope of group velocity at the point of interest: its

shape is called an indicatrix. There is a corresponding structure for phase velocity, known as the figuratrix, which is typically

used in its reciprocal speed or slowness form. The velocity indicatrix and slowness figuratrix are linked through mutual conju-
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gacy: as such, they contain the same information about front propagation, but in different forms (Perlick, 2000; Rider, 1926;310

Rund, 1959). ]

[removed: In other words, wavefront propagation can be tracked using either phase information or group information. For

front propagation in general this equivalence translates into tracking using either (i) point velocities and their trajectories (ray

paths), or (ii) point-wise front-normal slownesses and their ensemble motions. ]

[removed: Huygens’ principle is best known for explaining wave propagation in inhomogeneous but isotropic media, where315

the indicatrices and figuratrices are spherical but vary in size from place to place; isotropy ensures that the group and phase

propagation directions are the same. The principle is also often used to explain propagation in media whose anisotropy is

ellipsoidal (Arnold, 1989), where the group and phase propagation directions are different. Recent efforts have further proved

that the principle extends to non-ellipsoidal indicatrices and figuratrices representing a generalized form of anisotropy (e.g.,

Dehkordi and Saa, 2019; Innami, 1995; Markvorsen, 2016) expressed in terms of something called Finsler geometry (see320

Appendices C and D). ]

2.6 [removed: Wildfire spread and Finsler geometry ]

[removed: Several of the ideas discussed in previous sections have seen application in a totally different field, that of wildfire

prediction, in the envelope model of fire spread. The earliest form of this 2D model was very simple (Van Wagner, 1969),

postulating that wind-driven fire growth can be approximated as a burn ellipse elongated and offset in the wind direction.325

Anderson et al. (1982) extended the model, and deployed Huygens’ principle to propagate a wildfire using elementary burn

ellipses scattered along the fire front, each scaled and shaped according to the local fuel availability and wind direction. ]

[removed: These early efforts were purely graphical constructions (Sullivan, 2009). Subsequently, Richards (1990, 1995)

formalized the fire front propagation process as a form of the HJE (without explicitly mentioning the equation by name). The

model has subsequently evolved, and its most sophisticated version (Markvorsen, 2016) recognizes the elementary burn shapes330

as non-elliptical velocity indicatrices and frames the anisotropic motion in terms of Finsler structures. Finsler geometry is

useful because it provides a convenient mathematical context in which to express the time it takes for a fire front to cover a

given distance under the directional influence of wind and terrain. It is for similar reasons that Finsler geometry is important

for understanding the anisotropy of geomorphic erosion, as Appendix D shows. ]

2.6 [removed: Fermat’s principle of least travel time ]335

[removed: Huygens’ principle emphasizes HJE solution in terms of propagation of a front; Fermat’s principle, on the other

hand, emphasizes solution in terms of tracing the trajectories of points along that front. These two principles are equivalent

or dual (Holm, 2011; Houchmandzadeh, 2020; Small and Lam, 2011). Fermat’s principle says that these trajectories are paths

of least travel time. To be more precise, it states that each path obeys a variational principle which ensures its travel time is

extremized; this extremal is almost always a minimum. ]340
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2.6 [removed: Ray tracing the motion of a front ]

[removed: The rays of seismology and geometric optics are paths of least time, and they can be traced in two distinct ways:

(i) by integrating Hamilton’s equations, which are derived from the Hamiltonian contained in the HJE; or (ii) by transforming

the Hamiltonian into (or writing directly) the corresponding Lagrangian, converting into the Euler-Lagrange equations, and

integrating them (see Appendix E). In both cases, the essential step is to write a Hamiltonian version of the process governing345

motion. For simplicity, the derivation presented in this paper is limited to a 2D vertical slice of a landscape. A fully 3D treatment

is the subject of ongoing research. ]

[removed: There is a connection between the Hamiltonian ray tracing method developed here and the work of Luke (1972),

Royden and Perron (2013), and Weissel and Seidl (1998). These previous approaches deployed the method of characteristics

to solve a 1+1D form of HJE in which a 2D topographic profile is represented in an explicit fashion, and their results have350

some resemblance to those we obtain by full ray tracing (see Sect. ??). The main difference is the explicitly 1+1D form of

the governing equation in these studies, which forces elevation to be a single-valued function, and which coerces ray tracing

into resolving horizontal motion only. If one were to write the Hamiltonian phase space covector coordinate (the direction and

reciprocal speed of the surface at a point on the front) for these problems, it would take the reduced form of the slope patch

variable of Royden and Perron (2013); this variable contains explicit information about horizontal motion of a surface patch355

(through its position), but vertical motion is implicit (see Royden and Perron, 2013, Eq. 15). As a result, the inherent anisotropy

of the erosion process is hidden. ]

2.6 [removed: Variational principle governing erosion patterns ]

[removed: The key lesson to be learned here is that each point on an erosion surface follows the path of least erosion travel

time. We therefore propose that ][removed: the ][removed: variational principle driving landscape formation is the principle360

of least erosion time. Since the Hamiltonian derived here (Sect. ??) is limited to a 2D slice (Fig. ??), for now we can only be

fully confident in making this claim for 2D topographic profiles. Nevertheless, this variational principle will likely hold for 3D

landscapes as well. If true, this assertion casts serious doubt on the idea that a principle of energy (dissipation) minimization

governs landscape self-organization (Ijjasz-Vasquez et al., 1993; Rigon et al., 1993; Rinaldo et al., 1992, 1998; Rodriguez-

Iturbe et al., 1992a, b; Rodriguez-Iturbe and Rinaldo, 2001). Sections 3.11, F and 7.3 develop this idea further. ]365

3 Theory

In this section, we formalize the ideas presented above [removed: are formalized ]into a Hamiltonian theory of erosion front

motion. First, we provide a gentle introduction to the pivotal concept of a covector (Sect. 3.1), and show how useful it is for

treating the direction and reciprocal speed of the propagating front[removed: (connections with the concept of phase spaces and

with tensor calculus are given in Appendix B). ]. Then we show that the gradient of the surface arrival time is itself a covector370

(Sect. 3.2). Next, we make the case that the geomorphic processes driving erosional motion of a topographic surface can be
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represented by local functions (Sect. [removed: ?? ]3.3) parameterized by the surface-normal covector, and how they constitute,

broadly speaking, a form of geometric self-constraint (Sect. [removed: ?? ]3.4). After [removed: specifying a separable form

for such an ]imposing a gradient-dependent form on the erosion function (Sect. [removed: ?? ]3.5), we [removed: then ]show

how the above ingredients lead, via the fundamental metric function[removed: (Appendix C), ], to a Hamiltonian description375

of erosion (Sects. [removed: ?? ]3.6–3.9[removed: ; a supplementary discussion of how the geomorphic surface Hamiltonian

inhabits a Finsler phase space, and a brief introduction to some pertinent concepts of differential geometry, are provided in

Appendix D). ]). Next we delve into the connections between the fundamental function and erosional wavelets, and use them

to provide a graphic explanation of Huygens’ principle as applied to erosion surface propagation (Sect. [removed: ?? ]3.10).

We then express the equivalent Fermat’s principle in terms of the variational path of least action (Sect. 3.11) to show that380

a point on the surface follows the path of least erosion time. This leads on to derivation of Hamilton’s ray tracing equations

(Sects. [removed: ?? ]3.12–[removed: ??) and ]3.13) and a discussion of some of their properties (Sects. [removed: ?? ]3.14–

3.15). [removed: Next, the ray velocity angle is used to establish a measure of erosional anisotropy along with a closed-form

for the Lagrangian (Sect. 3.17), followed by a proof ]A verification that the Lagrangian is constant (Sect. 3.16) [removed: .

The subsequent section establishes their connection to the geomorphic Hamilton-Jacobi equation ]follows. Then we discuss385

ray angles, their behaviour relative to surface tilt, and the existence of a critical tilt at which ray propagation behaviour

changes (Sect. [removed: F). In the penultimate section, we address how model topographic slope can be measured in several

ways ]3.17). This leads to an exploration of how the disparity between the two directions of erosion is a measure of

erosional anisotropy (Sect. [removed: 3.19 ]3.18). Finally [removed: , we choose a particular parameterization for the erosion

model ](Sect. [removed: ??)in preparation for undertaking numerical simulations. ]3.19), we look at the various ways the390

evolving surface tilt can be tracked in the model. Non-dimensionalization is undertaken in Section 4.

Note: we use superscripts for contravariant tensor components (e.g., rx), and subscripts for covariant tensor components

(e.g., pz); the Einstein summation convention (summing over similar tensor components) is adopted for brevity. Symbol usage

is summarized in Table A1.

3.1 Tracking erosion with covectors395

Imagine a locally planar surface undergoing constant erosion (Fig. 3), where the surface tilt angle is β and the vector r takes

values that lie along the erosion surface at a given time T (r). As time passes, erosion moves the surface progressively further

into the substrate. Taking snapshots at regular intervals ∆T generates a uniformly spaced sequence of surfaces which we call

erosional isochrones. These isochrones are level sets or contours of the arrival time function T . In Fig. 3, the time interval is

chosen to be ∆T = 1y and isochrones have been plotted for T (r) = {0,1,2,3,4,5}y.400

Let’s fix the point of interest r at the location shown in Fig. 3. Here the surface-normal rate or speed of erosion is ξ⊥ =

0.25mmy−1 and surface tilt is [removed: β = 60◦ ]β = 60◦. Written as a vector, the erosion rate is:

ξ [removed ::=] :=

ξx
ξz

= ξ⊥

 sinβ

−cosβ

=

√3/8

−1/8

 (7)
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T( )r

Figure 2. Model context and geometry. Theoretical treatment in the current study is limited to 2D. The model domain is a vertical transect

following a stream profile, with vertical axis z and horizontal axis x, spanning a fixed distance from catchment exit at x= 0 to drainage

divide at x= Lc. The locus of points r along the profile at time t= T , aka the surface isochrone, is defined as T (r).

with a direction normal to the surface and an angle [removed: β = 60◦ ]β = 60◦ to the vertical; its length or magnitude is the

surface-normal erosion rate:405

ξ⊥ = |ξ|= 1

4
mmy−1 (8)

Ideally, we should only have to compute the sine and cosine components to the erosion velocity vector ξ to get the horizontal

and vertical rates of erosion. However, the vertical trigonometric component ξz does not equal the (negated) vertical rate of

erosion ξ↓ (eq. 10), nor does the horizontal trigonometric component ξx equal the horizontal rate of erosion ξ→:

ξx = ξ⊥ sinβ 6= ξ→ =
ξ⊥

sinβ
(9)410

−ξz = ξ⊥ cosβ 6= ξ↓ =
ξ⊥

cosβ
(10)

It seems almost too trivial to ask, but why does naive application of trigonometry let us down here? The answer lies in the fact

that we have written the erosion rate as a vector: we should instead express it as a covector.

Consider p̃ in Fig. 3, which can be written as a function with single-row matrix form

p̃(·) =
[
px pz

]
(·) =

[
2
√

3 −2
]

(·) (11)415

This scalar function takes as input a vector such as n and returns the number of isochrones crossed by that vector. Here n is

the surface-normal unit vector

n=

nx
nz

=

√3/2

−1/2

 (12)
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Figure 3. Tracking surface motion at a point r using a slowness covector p̃ normal to the erosion front T (r), which points in the direction n.

Normal slowness here is p= p̃(n) = 4ymm−1 (Eqs. 13, 18) for a surface tilted at β = 60◦ corresponding to a surface-normal erosion rate

of ξ⊥ = 1/4mmy−1 (Eq. 8). Simple trigonometry applied to p gives the vertical and horizontal slownesses (Eq. 17), and their reciprocals

are the vertical ξ↓ and horizontal ξ→ erosion rates (Eqs. 9, 10, and 17). The front covector is also the gradient of the arrival times, or

isochrone density, given by p̃ = ∇T , which counts the number of isochrones crossed in unit time in the front-normal direction (Eq. 22).

Because we employ here units of millimetres and years, n has a length of |n|= 1mm. Over this distance n crosses four 1-year

isochrones, so we obtain420

p̃(n) = p̃

√3/2

−1/2

=
[
2
√

3 −2
]√3/2

−1/2

= 4 ymm−1 (13)

Now consider the vertical component of p̃ (which is negative here) acting on n: counting downwards over a distance nz =

1/2mm, we find one isochrone crossing, so:

pz(n) = p̃

 0

−1/2

=
[
2
√

3 −2
] 0

−1/2

= 1 ymm−1 (14)

The horizontal component of p̃ counts three isochrone crossings by the unit normal vector counting rightwards over a distance425

nx =
√

3/2mm:

px(n) = p̃

√3/2

0

=
[
2
√

3 −2
]√3/2

0

= 3 ymm−1 (15)

These components can be added together because p̃ is a linear function; this summation gives

px(n) + pz(n) = p̃(nx)+p̃(nz) =3 + 1 = 4 = p̃(n) (16)
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which is the count of four we found by measuring along n directly. The count can of course take any real (fractional) value:430

for clarity, the example here has been constructed so as to yield round numbers.

The function p̃ is called a one-form in the terminology of differential geometry, and instances of p̃ are called covectors. In

general, a one-form operates on a vector and returns a scalar. Here, p̃ takes in a unit vector and returns the slowness of erosion in

the direction of that vector. In optics and seismology, p̃ is known as the normal slowness; in classical mechanics it is called the

generalized momentum. In a geomorphic context, this normal slowness can be interpreted as the maximum isochrone density,435

and p̃ the isochrone density covector, in that when applied to the unit normal vector n it calculates the maximum number of

isochrones to be found in any direction from that point.

The slowness covector p̃ is a more convenient measure of erosion rate because its sine and cosine components are the

horizontal and vertical slownesses, which are (respectively) the reciprocal rates of erosion horizontally and vertically:

p̃ =
[
px pz

]
(17)440

= p
[
sinβ −cosβ

]
=
[
1/ξ→ −1/ξ↓

]
=
[
sinβ

/
ξ⊥ −cosβ

/
ξ⊥
]

The magnitude of the covector here is the normal erosion slowness aka the reciprocal erosion rate, and is given by

p= |p̃|=
√
p2
x + p2

z =
1

ξ⊥
(18)445

and surface slope is

tanβ =−px
pz

(19)

In other words, by describing the rate of surface motion with an erosion slowness covector, instead of an erosion velocity

vector, we can assess its variation with direction much more easily. Fundamentally, a covector is the correct way to represent

motion of a surface at a given point, and a vector is the appropriate way to represent the position and motion of that point. See450

Appendix B for more details.

3.2 Gradient is a covector

The erosion slowness covector p̃ has another facet: it is also the gradient of the arrival-time function T . To see why, consider

again Fig. 3 and its level sets of T at discrete intervals. These level sets are isochrones or contour surfaces of equal arrival time

T (r) = {0,1, . . .}, which are represented schematically as simple straight lines in this figure. They successively increase in the455

direction of the normal vector n.
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If we measure (in Fig. 3) the change in T in the x direction over a distance nx =
√

3/2, we find that nxdTx = 3. Similarly,

if we measure the change in the −z direction over a distance nz = 1/2, we get nzdTz = 1. In general terms,

dT (n) = nxdTx +nzdTz = [removed :=]
[
px pz

]nx
nz

= p̃(n) (20)

and in this example we find460

dT (n) = 4ymm−1 (21)

which is the normal slowness obtained in Eq. (13) written as a differential one-form. In other words, the rate of change dT (·)
over a unit distance in the isochrone-normal direction n is given by dT (n), and the isochrone or contour density dT (n) in the

contour-normal direction is the same as the covector magnitude p. We can now invoke the gradient operator ∇ and [removed:

state that ]have465

∇T [removed :=] :=

[
∂T

∂x

∂T

∂z

]
= [removed :=]

[
px pz

]
= p̃ (22)

which says that the Euclidean gradient of the arrival time [removed: function ]T of the erosion surface is the [removed: same

as its ]normal slowness covector p̃. [removed: Note that equations 20 and 22 are arguably an abuse of notation in the way they

mix operators and differentials; this problem could be resolved using Dirac or bra-ket notation (e.g., Cohen-Tannoudji et al.,

2020, chapter 2). ]470

3.3 [removed: A surface-normal ]Modelling erosion [removed: rate model ]in the surface-normal direction

If we wish to frame a model of landscape evolution in terms of geometric mechanics, we need to employ the following three

elements: (i) an implicit function to track the evolving landscape surface geometry; (ii) a surface-normal erosion slowness

covector, corresponding to the gradient of the implicit function, that encodes the reciprocal rate of motion of the surface; and

(iii) an erosion model for the surface-normal speed of erosion that can be parameterized using the slowness covector.475

To supply the third element, we can write a generic model for the surface-normal speed of geomorphic erosion that is a

solely function of local fluxes and gradient:

surface-normal erosion rate ∼ func(flow, gradient) (23)

Some erosion phenomena, such as quasi-diffusive processes like rain splash, cannot be [removed: modeled ]modelled under

this local restriction, but this is a minor loss. Henceforth the only flow we will consider is kinematic water flow resulting from480

spatially uniform rainfall-runoff, and we will ignore complexities such as storm hydrograph cycles and the effects of sediment

supply, transport, and cover.

A model in this form is not unambiguously local: its dependence on accumulated water flow presupposes a dependence on

upstream catchment geometry; any change in catchment geometry, through motion of drainage divides, acts to change flow at

distant points downstream. A fundamentally important assumption here is that divide motion is slow enough for the erosion485

equation to be considered effectively local. The validity of this assumption is discussed at the end of Sect. 7.1.
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3.4 Erosion imposes a geometric self-constraint

The process of landscape evolution represented by Eq. 23 is a kind of geometric straitjacket, or geometric [removed: self-

constraint – in ]self-constraint—in the sense that it essentially says the landscape obeys:

changes in geometry ∼ geometry (24)490

In other words, the shape of the landscape determines the patterns of surface flow and thereby the fluxes of material over the

surface, and it mediates the effectiveness of these fluxes through its control of the gradients; these effects combine to set the

rate at which the shape of the landscape changes: in short, change in landscape geometry is controlled by landscape geometry.

This conclusion applies even if the erosion process is not spatially local.

The consequence of this geometric self-constraint is that, at its heart, geomorphic erosion is driven by a particular kind of495

Hamiltonian. This Hamiltonian arises from how points on an erosion surface “see” (for want of a better term) [removed: “see”

]their shortest path of erosion to the next set of surface points at little time later. The sections below explore this assertion in

detail.

3.5 [removed: A specific form for the ]Separable, gradient-dependent erosion [removed: equation ]rate model

[removed: To see what form the geomorphic Hamiltonian may take, we need to make some concrete choices about the erosion500

model and its domain. As Fig. ?? illustrates, we restrict the model domain to a slice of 3D space – which is geometrically

distinct from slicing 2+1D space (e.g., Luke, 1972; Royden and Perron, 2013; Weissel and Seidl, 1998). This 2D transect is

defined as a half-space with coordinates (x,z), aligned along the mainstream of a catchment with simple off-axis geometry, a

drainage divide at x= x1, and predetermined variation of vertical positionz with time at x= 0. The model catchment is shaped

such that its upstream area is proportional to the square of the distance downstream from the divide (x1−x)2. ]505

[removed: For the purposes of simplicity and consistency with past practice ]The Hamiltonian approach developed here

can in principle be applied to any erosion rate model, with the proviso that the bedrock surface can only undergo erosion,

meaning that its motion must always be positive ξ⊥ > 0. If transient sediment deposition and bed cover are to be modelled,

meaning that topographic elevation (in the bedrock reference frame) can rise as well as fall, alluvial geometry needs to be

tracked as an additional model variable along with bedrock surface position. The resulting Hamiltonian would not be static510

and the dimensionality of its phase space would be comparatively large. Such sophistication will eventually be needed,

as models of this kind become the standard (e.g., Dietrich et al., 2003; Sklar and Dietrich, 2006; Zhang et al., 2015).

However, in this introduction of geometric mechanics to the task of modelling erosion, we choose to [removed: work with a

generalization of the stream power model (e.g., van der Beek, 2013) tailored to describe motion of an implicit erosion surface

(Sect. ??). The model defines the surface-normal speed of erosion ξ⊥ as a separable function of a flow component ϕ(x) and a515

surface tilt component |sinβ|η: ]

[removed : ξ⊥ := ϕ(x) |sinβ|η]
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[removed: where 0≤ x≤ x1 is the distance upstream from the domain boundary, β is the surface tilt angle from horizontal at

x, and η is a positive exponent. The flow component ]avoid such complexity, and instead settle on an erosion equation that:

(1) is a nonlinear (power) function of (space-time variable) rock surface gradient tanβ(x,t); (2) has a separable form,520

with spatial variables (constant in time) such as flow velocity and depth, sediment concentration, substrate erodibility, and

the abrasion process itself aggregated into a separate multiplicative term ϕ(x)[removed: encapsulates catchment geometry

and the downstream accumulation of water and tools, while the compound effects of gradient on flow velocity, impact wear rate

, etc. are wrapped into the |sinβ|η term. The exponent η here is approximately equivalent to the slope exponent n in the stream

power model, which instead expresses the vertical erosion rate ξ↓ in terms of |tanβ|n – noting that ξ↓ = ξ⊥/cosβ as given by525

Eq. (10), and that for small surface angles sinβ ≈ tanβ. As such, we expect the slope exponent to lie in the range 1/4≤ η ≤ 2

(e.g., Royden and Perron, 2013). ]; (3) describes the speed of erosion ξ⊥(x, t) in the rock-surface normal direction:

ξ⊥(x, t) := ϕ(x) |sinβ(x, t)|η (25)

Note that surface tilt relative to vertical is expressed as sinβ rather than tanβ, because erosion rate is measured in the

normal rather than the vertical direction. In a further simplification, we restrict the model to a 2D transect (Fig. 2).530

3.6 The erosion equation in Hamiltonian coordinates

Covectors are an essential ingredient in the construction of a Hamiltonian framework for surface erosion. As we will show in

the coming sections, the Hamiltonian endows each point on the surface at position r with an associated tangent covector p̃ that

represents the normal slowness of the surface at that point. The components of r and p̃ correspond to the axes of the phase

space inhabited by the Hamiltonian.535

Since our model is restricted here to a 2D transect of 3D Euclidean space, this Hamiltonian phase space is 4D; two of its four

axes are spanned by the two components of the position vector, and the remaining two by the slowness covector components:

r [removed ::=] :=

rx
rz

 , p̃ [removed ::=] :=
[
px pz

]
(26)

The Hamiltonian parameters (r, p̃) are coordinates in what, in mechanics, is usually called momentum phase space, and in

differential geometry is called a cotangent bundle; we henceforth refer to this as the slowness phase space since momentum540

has no meaning in the current context. It has a dual, called the velocity [removed: phase ]space, or tangent bundle, where the

Lagrangian corresponding to the geomorphic surface Hamiltonian is defined.

Reiterating Eq. ([removed: ?? ]18), and reducing it to express the surface tilt angle β explicitly, we have:

1

ξ⊥
= p= |p̃|=

√
p2
x + p2

z , sinβ =
px√
p2
x + p2

z

(27)

noting that px > 0 and pz < 0 for the half-domain shown in Fig. [removed: ?? ]2. Each point in phase space acts entirely545

independently.
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The erosion equation [removed: given in ](Eq. [removed: (?? ]25) is now easy to convert into a form parameterized by the

components of r and p̃:

√
p2
x + p2

z =
1

ϕ(rx)

∣∣∣∣√p2
x + p2

z

px

∣∣∣∣η (28)

This equation defines the surface-normal reciprocal rate of erosion along a 2D profile, written in a form that neatly expresses the550

geometric self-constraint inherent to the geomorphic erosion process. This self-constraint is parameterized by vector position

(rx, rz) and covector normal-slowness (px,pz), which respectively locate a particular point on the surface and encode the

reciprocal speed of erosion orthogonal to the surface at that point.

3.7 The fundamental function

What we need to do now is reparameterize Eq. (28) to express the degree to which a coordinate (r, p̃) satisfies the geometric555

self-constraint imposed by [removed: the ]this equation. This is easily achieved using Okubo’s technique (Antonelli et al.,

1993; Bao et al., 2000; Shimada and Sabau, 2005; Yajima and Nagahama, 2009; Yajima et al., 2011), in which the covector

parameter is scaled by a positive function [removed: F ∗(r, p̃): ]F∗(r, p̃):

px, pz → px
F∗
,
pz
F∗

(29)

and substituted back in, rearranging to make [removed: F ∗ ]F∗ the subject:560

[removed : F ∗]F∗(r, p̃) = ϕ(rx)pηx
(
p2
x + p2

z

)(1−η)/2
(30)

The function [removed: F ∗ is a Hamiltonian, although for problems of this type it is better known as a ]F∗ is known as the

fundamental (metric) function (see Appendix C; note that an asterisk in used in [removed: F ∗ ]F∗ for reasons that will become

clear in Section 3.9). [removed: As a Hamiltonian ]It is also a Hamiltonian, and as such it is associated with a phase space

defined by the four coordinate components (rx, rz,px,pz). The subset of this 4D space whose locations satisfy the erosion565

equation given by Eq. (28) must meet the condition:

[removed : F ∗]F∗(r, p̃) = 1 (31)

The power of a Hamiltonian comes from being able to trace a sequence of (r, p̃) across phase space for which this criterion

holds [removed: continuously – a ]continuously—a procedure otherwise known as solving Hamilton’s [removed: equations –

which ]equations—which yields the evolution over time of a single point on an erosion surface. However, for technical reasons570

(Sect. [removed: ?? ]3.8) it is best not to [removed: consider F ∗ ]use F∗ directly as the geomorphic surface Hamiltonian; a

little more work is needed.

To clarify the behaviour of [removed: F ∗ ]F∗, consider the combined meaning of Eqs. (30) and (31). The value of [removed:

F ∗ ]F∗ at a location in phase space with coordinates (r, p̃) is equal to the normal slowness
√
p2
x + p2

z implied by that

coordinate, aka its reciprocal erosion rate, multiplied by the erosion rate determined by the erosion process ϕ(rx)px
η
/

(p2
x +575
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p2
z)
η/2 acting at that coordinate. This [removed: product – of speed times slowness – is ]product—of speed times slowness—

is obviously equal to one for locations in phase space that represent geomorphically valid surface points in real space. All other

locations of phase space are unphysical, because at these values of (r, p̃) the erosion rate is not reciprocal to the erosion

slowness, and this product is not equal to one. [removed: Note that in physics (quantum field theory) jargon the physically

valid coordinates are called “on shell” whereas the invalid coordinates are called “off shell”: although this terminology has no580

physical meaning here, we deploy it occasionally to clarify which parts of phase space we are talking about. ]

3.8 The geomorphic surface Hamiltonian

The problem with using [removed: F ∗ ]F∗ as a Hamiltonian is its order-1 Euler homogeneity: functions of this type generate

a metric tensor whose determinant is singular, meaning that the tensor cannot be inverted (e.g., Červený, 2002). This puts the

Legendre transform, and the Lagrangian, out of reach. Fortunately there is a simple solution: just use the fundamental function585

in its squared form, and define the geomorphic surface Hamiltonian as:

[removed :H]H(r, p̃) [removed ::=] := [removed : (][removed : F ∗][removed :)]
1

2
F∗2 =

1

2
ϕ2(rx)px[removed :η]2η

(
p2
x + p2

z

)1−η
(32)

A prefactor of 1
2 is included to make subsequent derivations tidier.

This quadratic-form Hamiltonian has the advantage that it is order-2 Euler homogeneous:

[removed :H]H(r,λp̃) = λ2[removed :H]H(r, p̃)[removed : ] for λ > 0 (33)590

which makes its metric tensor non-singular (if η 6= 1) [removed: , and which puts ]and the Legendre transform [removed:

within reach ]feasible.

We know from Eq. (31) that [removed: F ∗ = 1 ]F∗ = 1 for trajectories across slowness phase space that correspond to

physically viable behavior of surface points[removed: (aka “on shell”). ]. So we can assert that the Hamiltonian is static and

has the value595

[removed :H]H(r, p̃)[removed : ][removed :on shell ] =
1

2
(34)

for solutions of the erosion equation. In more concrete terms, we can say that an arbitrary surface point located at r can

only represent a point on an eroding surface if its associated orientation and slowness p̃ satisfies this equation.

3.9 The geomorphic surface Lagrangian

The quadratic Hamiltonian [removed:H(r, p̃) ]H(r, p̃) has a dual quantity called the Lagrangian [removed: L(r,v) ]L(r,v),600

which operates in a counterpart [removed: phase ]space spanned by coordinates giving the position r and velocity v of evolving

points on the erosion surface. By symmetry, the Lagrangian is also the quadratic of a fundamental function, denoted [removed:

F ]F . This function [removed: F ]F is the dual of [removed: F ∗ ]F∗, and is similarly order-1 homogeneous. Its quadratic
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[removed: L ]L is similarly order-2 homogeneous:

[removed : L]L [removed ::=] :=
1

2
[removed : F ]F2 (35)605

To make the link between the [removed: phase spaces of H and L ]spaces of H and L, we recognize that the normal

slowness covector can be defined as the derivative of the Lagrangian with respect to the velocity coordinate

p̃=
∂L
∂v

⇔ pi =
∂L

∂vi
=
∂
(

1
2F

2
)

∂vi
(36)

This is known as the “fibre derivative”.

Mapping from the Hamiltonian [removed: H ]H to the Lagrangian [removed: L ]L (and vice versa) exploits this property610

and is achieved with the Legendre transform:

[removed : L]L= p̃(v)−H=piv
i− [removed :H]H (37)

A closed form for [removed: L ]L requires several more pieces of the puzzle before it can be derived, and the eventual

equation is [removed: very long and ]unwieldy. The contrasting simplicity of [removed: H ]H (Eq. 32) is why we prioritize

the Hamiltonian over the Lagrangian in this paper.615

In due course we will show that the dual fundamental function and the corresponding Lagrangian have constant values

[removed: F = 1 and L= 1
2 ]F = 1 and L= 1

2 , in symmetry with [removed: F ∗ = 1 and H = 1
2 ]F∗ = 1 and H= 1

2 . Such

constancy means that the Lagrangian does not vary with time, and that the mutual variation of position r and erosion velocity

v is tightly constrained.

3.10 Erosional wavelets and Huygens’ Principle620

[removed: The preceding discussion is rather abstract, so we return to Huygens’ principle to help visualize some of the ideas.

Compare the following: in Sect. ??, we argued that stepwise motion ]Geometric optics provides a way to visualize the

Lagrangian and its relationship to the Hamiltonian (Figures 4 and 5). Motion of an erosion front [removed: can be imagined

as the propagation of an ensemble of tiny erosional wavelets; in Sect. A6, we connected this idea to an extension of Hugyens’

principlein which its elliptical wavelets (for the 2D model domain here) can take on a more general shape; in Sect.s ?? and 3.9,625

and Appendix C, we introduced the concept of a fundamental (metric) function and defined such a function F (r,v) for the

velocity phase space (which for the geomorphic surface Lagrangian is a Finsler tangent space). These three concepts are all the

same thing: the ]obeys Huygens’ principle: we can imagine each point on the front generating a tiny erosional wavelet,

and the coalescence of these wavelets forming the next erosion front. The shape of each erosional wavelet is [removed: also

the shape implicitly defined by F , and these shapes are the elementary wavelets used by Huygens’ principle to visualize how630

front motion proceeds ]defined by F . Each shape is a velocity indicatrix giving the radial variation of ray velocity v at a point

r, or equivalently giving the distance that a point on the surface will erode in an infinitesimal interval. [removed: Figures ??

and 5 provide a graphic explanation. ]
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Figure 4. Incremental erosion (for η = 3
2

) described by [removed: H ]H and [removed: L ]L, with L visualized as an erosional wavelet

([removed: red ]green curve) aka a velocity indicatrix; point-motion ray vector in [removed: green ]red and front-normal-motion covector

in blue. [removed: See Fig. 5 for full symbology. ]

Figure [removed: ?? ]4 visualizes a single erosional wavelet, its relationship both to the current erosion front at T = t

and to the next at T = t+ ∆t, the particular ray increment vector for which [removed: H = L= 1
2 ]H= L= 1

2 , and the635

conjugate relationship of this vector to the front normal covector (see Sect. 3.15). Motion of the surface T (r) = t at point

r over the interval ∆t can be viewed in two mutually consistent ways: (i) the front moves a distance [removed: p̃∆t/p2

]∆t/p in the surface-normal direction given by [removed: p̃= ∇T ; ]p̃; (ii) the point moves a distance ∆r = v∆t in the ray

direction r[removed: (Sect. 3.18). ]. These directions are quite different, because the erosion process is strongly anisotropic

(Sect. [removed: ?? ]3.18).640

Unconstrained, the point at r could be displaced onto any of the points along the [removed: “erosional wavelet ” ]erosional

wavelet {∆r}[removed: (the locus of 2D indentation produced by erosion at that point alone) ]. However, the only valid motion

is onto the point r+ ∆r where the tangent to the wavelet curve is orthogonal to the front increment p̃∆t/p2, i.e., the ray and

front increments are conjugate to each other (Sect. 3.15).

When erosional wavelets at points along the surface are aggregated, moving T (r) onto T (r+ ∆r) as shown in Fig. 5, the645

result is anisotropic front motion that obeys Huygens’ principle. [removed: This ]The new front can also be found simply by

propagating the old front a distance ∆t/p in the direction p̃ at each point r.

3.11 Fermat’s principle as a least action integral

[removed: As first mentioned in Sect. ??, ]Huygens’ principle emphasizes HJE solution in terms of propagation of a front;

Fermat’s principle[removed: (Holm, 2011) says that the path of a light ray between two points is such that its optical length650

is stationary against any small deflection onto a nearby path (where optical distance is defined as the product of geometric

distance and of the refractive index of the medium). This is equivalent to saying that the travel timeis stationary, and, for

all practical purposes, ], on the other hand, emphasizes solution in terms of tracing the trajectories of points along that

front. These two principles are equivalent or dual (Holm, 2011; Houchmandzadeh, 2020; Small and Lam, 2011). Fermat’s

principle says that these trajectories are paths of stationary travel time: each trajectory obeys a variational principle which655

ensures its travel time is extremized; this extremal is almost always a minimum. The geomorphic equivalent is the principle
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Figure 5. Huygens’ principle visualized as the coalescence of erosional wavelets ([removed: red ]green curves; for η = 3
2

) at their mutual

tangent envelope (pale grey isochrone).

that the path of erosion through a substrate from one point to another is the shortest route given the erodibility of the material

and its anisotropy and inhomogeneity.

This principle is expressed mathematically by writing an action functional Sγ , in terms of the static Lagrangian [removed:

L ]L, for the set of all possible paths {γ(t)} that a point on the erosion surface might take between two fixed points a= γ(ta)660

and b= γ(tb):

Sγ [removed ::=] :=

b∫
a

[removed : L]L(γ(t), γ̇(t)) dt (38)

Note that the integrand [removed: L ]L is independent of time t and is a parametric function of positions along γ only. The

path actually taken γ0 is the path for which the variation of the action is stationary:

γ0 = γ : δSγ = δ

b∫
a

[removed : L]L(γ(t), γ̇(t)) dt= 0 (39)665

For paths traced across the velocity [removed: phase ]space to which the geomorphic surface Lagrangian [removed: L ]L
belongs, we can be sure that the action is minimized[removed: (on other types of phase space the stationary action may be a

maximum). Since L ]. Since L is independent of t, we can deduce that γ0 is the path of (locally) least erosion time. Such

paths are known as geodesics.

In summary: by expressing a local erosion equation as a geomorphic surface Hamiltonian, converting it into its dual La-670

grangian form, and writing the consequent variational principle as the minimization of an action functional for paths across

velocity space, we can conclude that points on an erosion surface follow the shortest (in terms of erosion time) possible paths

in real space. The next section derives Hamilton’s ray tracing equations from the Hamiltonian: integration of these rays across

slowness phase space generates identical paths of shortest erosion time in real space.
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Figure 6. Ray tracing of erosion using Hamilton’s equations ([removed: Sect ]Sects.[removed: ?? ] 3.12 & 4.2), illustrated here for a

2D [removed: model mountain formed by uniform vertical uplift and surface-normal erosion between two vertical normal faults slipping

at constant and equal rates ]landscape transect. The geomorphic surface Hamiltonian [removed: model ]is solved over the [removed:

left half of the domain shown above ]left-hand half-domain, ranging from an exit boundary at x= 0 up to a drainage divide at [removed:

x= x1 ]x= Lc (see Fig. [removed: ?? ]2). [removed: The ]A fixed divide is enforced by mirroring [removed: the ]this profile [removed:

at x= x1 and by imagining a symmetrical profile to x= 2x1 ]over the right-hand half-domain (for Lc ≤ x≤ 2Lc, such that symmetrically

generated rays annihilate each other at a cusp formed at [removed: x= x1 ]x= Lc. The boundary condition imposed at x= 0 (and [removed:

simulated ]mirrored at [removed: x= 2x1 ]x= 2Lc) is a constant vertical erosion rate ξ↓0 , mimicking the behavior of a vertical normal

fault slipping at a constant rate ξ↓0 at the boundary. The initial value of the front slowness covector p̃ at x= 0 is chosen such that the surface

tilt β0 and vertical slowness pz0 are consistent with this rate. The model therefore simulates a horst block undergoing constant uplift and

consequent erosion. Model topography is [removed: solved for ]obtained by constructing surface isochrones {T (r)} from the rays. Since

rays are traced only from the boundary, and none from an initial surface, the isochrones are time-invariant[removed: (more complex initial

and boundary conditions are explored in ??) ]. The standard term for such topography is “steady state”, but the term is somewhat misleading

here because the Hamiltonian dynamical system has no stable point[removed: and the term is somewhat misleading here ].

3.12 Derivation of Hamilton’s ray tracing equations675

The fundamental function [removed: F ∗ ]F∗ generates a slowness phase space spanned by r and p̃ on which the geomorphic

surface Hamiltonian [removed: H(r, p̃) ]H(r, p̃) operates, and we have a simple expression for [removed: H ]H given by

Eq. (32). We inferred the existence of a dual fundamental function [removed: F ]F that generates a velocity [removed: phase

]space spanned by r and v on which a Lagrangian [removed: L(r,v) ]L(r,v) operates, but we have yet to obtain expressions

for [removed: F and L ]F and L. We can nevertheless make use of the Lagrangian to derive equations of motion for the680

erosion surface that operate on the slowness phase space. These are called Hamilton’s equations.
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Our starting point is to examine the differentials of [removed: H and L ]H and L and to compare them. The geomorphic

surface Hamiltonian defined in Eq. (32) is static, meaning that it is constant over time, so its differential is:

[removed : dH]dH=
∂H
∂ri

dri +
∂H
∂pi

dpi (40)

The differential of its counterpart Lagrangian [removed: L(r,v) is: ]L(r,v) is:685

[removed : dL]dL=
∂L
∂ri

dri +
∂L
∂vi

dvi (41)

Substituting the “fibre derivative” form of p̃ in Eq. (36) into this equation, and adapting the terms in pi, gives

[removed : dL]dL=
∂L
∂ri

dri + pidv
i =

∂L
∂ri

dri + d(piv
i)− vidpi (42)

Rearranging, we have an equation that contains the Legendre transform given in Eq. (37),

d
(
piv

i− [removed : L]L
)

=− ∂L
∂ri

dri + vidpi (43)690

Consequently we have a second expression for the differential of [removed: H: ]H:

[removed : dH]dH=− ∂L
∂ri

dri + vidpi (44)

Equating the terms in [removed: dH ]dH defined by this equation with those in Eq. (40), we obtain:

∂H
∂ri

=− ∂L
∂ri

,
∂H
∂pi

= vi (45)

The next step is subtle but important. Every coordinate (r,v) in velocity [removed: phase ]space is (potentially) an initial695

position and velocity for a point on some initial erosion surface. Similarly, every coordinate (r, p̃) in slowness phase space is

(potentially) an initial position, surface orientation, and reciprocal surface-normal erosion rate for a point on that initial erosion

surface. However, most such phase space coordinates do not correspond to real-world points lying on physically viable paths

{γ0} that obey the principle of least erosion time established in Eq. (39). Conversely, for the locations in phase space that do

lie on a paths of least action, we can write:700

dri

dt
= vi ⇒

∫
δvidt= δri (46)

Returning to the variation integral in Eq. (39), we can integrate by parts and simplify using the above result to get:

δSγ =

b∫
a

(
∂L
∂ri

δri +
∂L
∂vi

δvi
)

dt (47)

=

[
∂L
∂vi

δri
]b
a

+

b∫
a

(
∂L
∂ri
− d

dt

∂L
∂vi

)
δridt= 0
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The term in brackets [·] vanishes because a and b are fixed points, associated with limit times ta and tb, at which δri = 0. The705

remaining integral gives the Euler-Lagrange equations for erosional surface motion:

d

dt

∂L
∂vi
− ∂L
∂ri

= 0 (48)

Substituting this equation, Eq. (36) and Eq. ([removed: ?? ]46) into the two linking equations in Eq. (45) we obtain Hamilton’s

equations:

dri

dt
=
∂H
∂pi

,
dpi
dt

=−∂H
∂ri

(49)710

3.13 The meaning of Hamilton’s equations

Hamilton’s equations are coupled first-order ordinary differential equations (ODEs) whose integration gives the motion of a

single point on an erosion surface in terms of a trajectory across slowness phase space. Each point along the trajectory has phase

space coordinates of position ri = r (also the position in real space) and normal slowness covector pi = p̃ (which encodes both

the local tilt of the erosion surface and its reciprocal rate of erosion p= 1/ξ⊥). If we aggregate the trajectories of a set of points715

from an initial surface we have the motion of the whole surface. This method of front tracking is called ray tracing.

The differential equations in Eq. (49) define the rates of change of the coordinates (r, p̃) in terms of the gradient components

of the Hamiltonian. Since the Hamiltonian is a constant [removed: H = 1
2 ]H= 1

2 along a ray or trajectory (Eq. 34), motion

across the phase space must follow coordinates (r, p̃) that trace a contour of [removed: H ]H. This is achieved by moving r in

the direction [removed: ∂H
/
∂pi ]∂H

/
∂pi and p̃ in the direction [removed:−∂H

/
∂ri ]−∂H

/
∂ri, which is to say, orthogonal720

to the Hamiltonian gradient.

Hamilton’s equations take concrete form if we substitute the expression for [removed: H ]H in Eq. (32) into Eq. (49). Since

the model is limited here to 2D we have four coupled ODEs: two for the component rates of change of position,

dr

dt
= ṙ =

ṙx
ṙz

=

vx
vz

 =
∂H
∂p̃

(50)

= ϕ2(rx)
p2η−1
x

(p2
x + p2

z)
η

 (
p2
x + ηp2

z

)
−(η− 1)pxpz

725

and two for the component rates of change of normal slowness,

dp̃

dt
= ˙̃p=

[
ṗx ṗz

]
= −∂H

∂r
(51)

=−p2η
x

(
p2
x + p2

z

)1−η
ϕ(rx)

∂ϕ

∂rx

[
1 0

]
Ray tracing solutions of Hamilton’s equations are illustrated in Figs. 6, 12, 13, 14 and 17.
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3.14 Constancy of the vertical erosion rate along a ray730

The erosion model defined in Eq. ([removed: ?? ]25) is independent of elevation. This makes the Hamiltonian [removed: H

]H independent of the vertical coordinate rz , which leads to the zero element in ˙̃p in Eq. (51), i.e., the vertical component of

erosion slowness is constant:

ṗz =
dpz
dt

= 0 (52)

This is a manifestation of Noether’s theorem (Holm, 2011; Noether, 1971), which states that a continuous symmetry in735

the action implies a conservation law for the Euler-Lagrange equations. Here, we have symmetry with respect to rz in

H, and therefore in L, which implies a law of conservation of vertical slowness for the ray tracing equations, i.e., that pz

must be conserved along a ray. Inasmuch as normal slowness can be crudely equated with the concept of momentum in

classical mechanics, we have a “law of conservation of vertical momentum”. Similar conservation laws limited to particular

coordinate directions arise in geometric optics (Holm, 2011).740

This property simplifies the task of ray tracing by reducing the number of coupled ODEs in the numerical integration from

four to three. Moreover, this constancy has the profound implication that the initial rate of vertical erosion ξ↓0 of a point is

carried unchanged along its ray trajectory as the surface to which it is attached moves:

ξ↓(t) =− 1

pz(t)
=− 1

pz0
= ξ↓0 (53)

As such, each ray propagates information about the initial surface erosion rate upstream into the landscape until such time as745

it is destroyed at a cusp (which includes drainage divides: e.g., Fig. 6). Meanwhile the horizontal erosion rate can and does

change along the ray, because the horizontal component of the slowness covector px evolves as the surface erodes (Eq. 51).

3.15 Conjugacy of point velocity and front slowness

Hidden in the mathematics in previous sections is a simple relationship between the tangent velocity vector and cotangent

normal-slowness covector pair: they are conjugate to each other (Figs. [removed: ?? ]4 and 5), which is to say, their inner750

product is one. To prove this, consider the following property of an order-2 homogeneous function like [removed: H: ]H:

∂H
∂pi

pi =
∂
(

1
2F

2
∗
)

∂pi
pi = [removed : (F ∗)]F∗2 (54)

Combining Hamilton’s equation for [removed: ∂H
/
∂pi ]∂H

/
∂pi (Eq. 49) with the definition of ray velocity vi = dri

/
dt,

and given the constant value of [removed: F ∗ = 1 ]F∗ = 1 known from Eq. (30), this gives

p̃(v) =piv
i = 1 (55)755

which is the definition of conjugacy.

If the process of erosion were isotropic, conjugacy would obviously be true: erosion velocity and normal slowness would

be colinear, and since their magnitudes are mutually reciprocal, their product would be unity. However, the erosion process is

manifestly not isotropic (see Sect. 3.18), which means that conjugacy also constrains the angular disparity between the ray and

front-normal directions.760
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Figure 7. Variation of ray dip α with surface tilt β for η = 3
2
, 1
2

.

3.16 Constancy of the Lagrangian

We can exploit conjugacy to reveal important behaviour of the fundamental function F and the related Lagrangian L.

Since L is (like H) order-2 homogeneous, it has the property

∂L
∂vi

vi =
∂
(
1
2F

2
)

∂vi
vi =F2 (56)

Using the fibre derivative form of p̃ in Eq. (36) and the definition of the Lagrangian in Eq. (35), we can deduce that, for765

physically valid ray trajectories,

F2 = p̃(v) = piv
i = 1 ⇒ L(r,v) =

1

2
(57)

In other words, the Lagrangian has the constant value of 1
2—just like the Hamiltonian (Eq. 34)—meaning that is is only

those points with positions r and velocities v satisfying this equation that represent points on a moving erosion surface.

This shows that the geomorphic surface Lagrangian and Hamiltonian are both static given the model assumptions770

made here, such as constant external forcing and domain symmetry (Fig. 6): a more general theory that relaxes these

restrictions would lead to non-constancy of L and H.

3.17 Ray angle

An essential measure of ray direction is the angle α of the velocity vector v defined relative to horizontal:

tanα[removed ::=] :=
vz

vx
(58)775
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Figure 8. Erosional anisotropy measured using ray vs. normal angular disparity ψ = α−β+90◦: variation with surface tilt β shown for

(a) η = 3
2

and (b) η = 1
2

, and with µ/η = 1
2

.

This definition, along with that for β given in Eq. (27), allow us to manipulate Hamilton’s equations for the components of ṙ

(see Eq. 50) for which

vz

vx
=−p

2η
x p

1−2η
x pz (η− 1)

ηp2
z + p2

x

(59)

into a relationship between the two angles (Fig. 7):

[removed : tan(β)]tanα= [removed :
η−

√
η2− 4η tan2 (α)− 2η+ 1− 1

2tan(α)
]
(η− 1)tanβ

η+ tan2β
(60)780
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Figure 9. [removed: Tracing of ]Ray anisotropy ψ(η;α) (colour curves) as a [removed: reference ray for (a) η = 3
2

]function of gradient

exponent η, [removed: (b) η = 1, ]and [removed: (c) η = 1
2

, and with µ/η = 1
2

, obtained by numerically integrating Hamilton’s equa-

tions ]its value ψc ([removed: Eqs. 50, 51 ]black line and solid circles) [removed: from a constant-slip boundary ]at [removed: x= 0

across ]the [removed: domain until termination at the divide at x= x1 = 1 ]ray angle extremum αext, for a selection of ray angles

α ∈ {±0.1◦,±2◦,±6.4◦,±11.5◦,−19.3◦}.

[removed: where the root is chosen to conform with the requirement that β > 0 for small α ]which inverts to give

tanβ =
η±

√
η2− 4η tan2α− 2η+ 1− 1

2tanα
(61)

where the choice of root depends on how far the point is along the ray trajectory (see below). By comparing α and β we

can measure erosional anisotropy [removed: (α−β+ 90◦) ](see Sect. 3.18).

Examination of Eqs. (58) and (59) reveals an important property of the vertical motion of erosion rays and its dependence785

on η. Since px > 0 and pz < 0 in the model half-space, and because vx > 0,

α > 0 ⇔ rays point up for η > 1

α= 0 ⇔ rays are horizontal for η = 1

α < 0 ⇔ rays point down for η < 1

This switch in ray orientation as a function of slope scaling exponent η, which is illustrated in Fig. 12, echoes the observations790

in 1+1D of Weissel and Seidl (1998) and Royden and Perron (2013) of a change in upstream propagation with their gradient

scaling exponent n. As their work has shown, this switch has important consequences for how and when knickpoints form

[removed: (?) ](Stark and Stark, 2022).
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3.18 [removed: Constancy of the Lagrangian ]

[removed: We can exploit conjugacy to reveal important behaviour of the fundamental function F and the related Lagrangian795

L. Since L is (like H) order-2 homogeneous, it has the property ]

[removed :
∂L

∂vi
vi =

∂
(

1
2F

2
)

∂vi
vi = F 2]

[removed: Using the fibre derivative form of p̃ in ]The ray angle function (Eq. [removed: (36) and the definition of the

Lagrangian in Eq. (35), we can deduce that ]

[removed : F 2 = piv
i = 1 ⇒ L(r,v)

∣∣∣
on shell

=
1

2
]800

60) has an extremum whose value is given by:

tanαext =
η− 1

2
√
η

(62)

[removed: i.e., ]This extremum represents a bound on permissible values of ray angle α. For η > 1, the extremum is

positive αext > 0 and rays cannot point up more steeply than α < αext, while for η < 1, the extremum is negative αext < 0

and rays point down at negative angles limited by α > αext. The extremum is located at a critical value of β:805

tanβc =
√
η (63)

For η = 3
2 , the critical surface tilt is βc = 50.77◦, while for η = 1

2 the critical tilt is βc = 35.26◦ (see Fig. 7). At this critical an-

gle the Lagrangian and the [removed: Lagrangian has the constant value of 1
2 just like the Hamiltonian (Eq. 34)for physically

realistic aka “on shell” states. ]

[removed: This shows that the geomorphic surface Lagrangian and Hamiltonian are both static given the model assumptions810

made here, such as constant external forcing and domain symmetry (Fig. 6): a more general theory that relaxes these restrictions

would lead to non-constancy of L ]metric tensor are singular, which means that if the surface tilt reaches this angle, the

link between H and L is broken, F∗ and [removed: H . ]F are no longer metric functions, and the model space is no

longer (pseudo) Finsler. What this means in practice is not yet clear; the critical angle may manifest as a transition in

landscape geometric behaviour, but we can only speculate at this stage: further study is needed.815

3.18 [removed: HJE and Hamilton action ]

3.18 Erosional anisotropy

[removed: Ray tracing through integration of Hamilton’s equations is not the only way to solve for surface motion. In principle,

we could instead use the geomorphic surface Hamiltonian H(r, p̃) in its HJE form and solve erosion front propagation using

grid-based methods. In practice, numerical solution of this kind of eikonal equation is not straightforward (see Sect. 7.2 and820

Appendix C) . The HJE is nevertheless instructive if we examine it in the context of some important concepts of classical

33



mechanics. For example, Hamilton’s principal function S(r, t), which is the Hamilton action Sγ (see Eq. 38) plus a constant,

is ]

[removed : S =

∫
Ldt ⇔ dS

dt
= L]

[removed: Use of the Legendre transform (Eq. 37) yields ]825

[removed :
dS

dt
= piv

i−H]

[removed: The total derivative of S(r, t) with respect to time t has ]

[removed :
dS

dt
=
∂S

∂ri
∂ri

∂t
+
∂S

∂t
]

[removed: Assuming the points {r} all lie on a path γ0 of least erosion time (“on shell”) , we can write ]

The difference between the erosion ray angle α and the erosion front-normal angle β (rotated by 90◦ such that both830

angles are measured relative to horizontal) quantifies the anisotropy of the erosion process:

[removed :=][removed : vi]ψ := α−β+ 90◦ (64)

[removed: Comparing this equation with ]Defined in this way, ψ = 0◦ for isotropic motion and ψ = 90◦ when anisotropy is

so strong that rays and surface normal are orthogonal.

Figure 8 shows how ψ varies with surface tilt β when computed along a time-invariant profile for η = 3
2 and η = 1

2 . As835

these plots demonstrate, the gradient-dependent erosion process described by Eq. ([removed: F2) leads to ]

[removed : pi =
∂S

∂ri
, −H =

∂S

∂t
]

[removed: such that the Hamiltonian H (r, p̃) can be written as ]

[removed :H

(
r,
∂S

∂r

)
=−∂S

∂t
]

[removed: which is the standard form for the HJE. Now consider the arrival time function T (r), whose total time derivative is,840

given Eqs. (22) , (55) , and ∂T
/
∂t= 0: ]

[removed :
dT

dt
=
∂T

∂ri
∂ri

∂t
=
∂T

∂ri
vi = piv

i = 1]

[removed: Integration here gives the abbreviated action; by choosing to integrate along a path of least action γ0 we obtain the

shortest erosion time T (r): ]

[removed :

∫
piv

idt=

∫
pidr

i =

∫
dt= T (r)]845

[removed: Use of Eq. (34) and ]25) is strongly anisotropic.
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Figure 9 illustrates how anisotropy varies as a function of gradient-scaling exponent η for a selection of ray angles α.

As predicted in the previous section, the rays all point upwards (positive α) for η > 1 and downwards (negative α) for

η < 1. Broadly speaking, anisotropy ψ reaches greater extremes for larger absolute values of |η− 1|.
The physical relevance of anisotropy ψ is revealed by the following. The surface-normal erosion rate can be computed850

from ray velocity by exploiting ray-front conjugacy (Eq. [removed: (F2)connects S(r, t) with T (r), H(r, p̃) and time t: ]55),

which is equivalent to a dot product between ray vector and surface-normal slowness

[removed : S]p̃(v) = [removed : T −Ht]pvcosψ = [removed : T ]pvcos(α− [removed : t]β+ 90◦)= 1 (65)

[removed: Differentiation gives ]

[removed :
∂S

∂r
=
∂T

∂r
= ∇T ,

∂S

∂t
=−1

2
]855

[removed: Substitution into the standard HJE in ]and by using the reciprocal relationship between erosion slowness and

erosion speed p= 1/ξ⊥ (Eq. [removed: (F6)leads to ]18), to get

[removed :H][removed :,][removed : T ]v =
ξ⊥

cosψ
(66)

[removed: In this form, the HJE prescribes how the erosion front T (r) has a locus (a set of points {r}) that propagates such that

the gradient ∇T (the directional density of T isochrones) satisfies the static HamiltonianH = 1
2 ]While surface erosion takes860

place at a speed ξ⊥, changes in external boundary conditions propagate much faster into the landscape along an erosion

ray trajectory with a speed ξ⊥ secψ. The two are related by projecting the ray vector v onto the local unit surface-normal

vector, which lies at an relative angle ψ relative to the ray.

3.19 Measuring slope along the erosion front

Since the Hamiltonian tracks motion of the erosion front in a phase space spanned in part by the surface-normal covector,865

solutions of front motion have the surface gradient encoded into them. Therefore the gradient along the evolving topographic

surface can be tracked in three distinct ways. One method is to take the ratio of the covector components:

tanβp[removed ::=] := tanβ =−px
pz

(67)

A second method is to compute the topographic gradient:

tanβts[removed ::=] :=
dz

dx
for {x,z} ∈ T (x,z) (68)870

In a numerical solution, this entails making a finite-difference approximation using values at nearest neighbour points. A third

method is to construct a velocity triangle from the ray velocity components and the reciprocal covector slowness in the vertical

direction, aka the vertical erosion rate:

tanβvt[removed ::=] :=
vz − 1/pz

vx
=
vz + ξ↓

vx
(69)
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Figure 10. Estimation of the surface-normal angle from vertical β, aka the angle of the surface from horizontal for (a) η = 3
2

and (b) η = 1
2

,

and with µ/η = 1
2

and Ci = 4◦. This angle can be computed in three ways; their mutual consistency shown here provides a partial validation

of the ray tracing method.

Ideally, all three measurements of the topographic gradient should be equal. In practice, βts is computed non-locally while βp875

and βvt are strictly local but numerically different computations; we therefore expect the three estimates to be equal to within

a precision set by choices such as ray density, time step and interpolation method. A comparison of the methods is [removed:

illustrated ]given in Fig. 10.

4 Implementation

4.1 [removed: Formulation of erosion model ]880

[removed: The analysis presented above is quite general: the only restriction on the erosion model has been (Eq. ??) that it take

a separable form in flow and slope as ξ⊥ := ϕ(x) |sinβ|η . We can further generalize and note that the slope component can

be any composition of trigonometric functions of angle β. Choosing a specific equation for the erosion model is nevertheless

necessary if we wish to explore some of the important consequences of the geomorphic Hamiltonian ]To keep development of

a geomorphic Hamiltonian theory as simple as possible, the treatment so far (Sect. 3) has employed a somewhat abstract885

erosion model: it has assumed the erosion rate can be written as some combination of a power function of surface tilt

and a spatially variable (but constant in time) function that encompasses flow rate, flow geometry, substrate erodibility,

and so on. If we want to probe any further the behaviour of the geomorphic surface Hamiltonian and its implications for

landscape erosion, we need to choose a particular form for the flow function component and to parameterize this spatial

36



dependence. Bear in mind, though, that more general erosion models could also be transformed into Hamiltonian form890

and subjected to the analyses presented below.

4.1 A modified stream-power incision model

Previous studies related to our work (Luke, 1972; Royden and Perron, 2013; Weissel and Seidl, 1998) have focused on the

stream power incision model [removed: or SPIM(e.g., Lague, 2014) ](SPIM) (e.g., Lague, 2014). In order maintain a clear

conceptual link with these studies, and because [removed: of its relative simplicity we make a broadly similar choice here ,895

with an optional addition that incorporates a hillslope component into the model. The SPIM approach ]SPIM can be adapted

to satisfy the simplifying criteria adopted in Section 3.5, we use it here in a modified form. SPIM asserts that, in channels,

vertical erosion rate ∝ (area)m ([removed : gradient]slope)n (70)

[removed: under the assumption that ]where “slope” is the channel gradient tanβ, and where upstream area, suitably scaled,

is [removed: a good ]assumed to be a good composite proxy for the [removed: rate contribution of the ]volumetric flow900

of water per contour width and [removed: where gradient is defined as tanβ. In a modest modification, we instead assert

that, along a channel transect, ]its contributions to channel geometry, boundary flow, sediment transport, and rock surface

abrasion. We modify this equation so that it instead tracks

surface-normal erosion rate ∼ (area)µ (slope)η (71)

where “slope” is now sinβ. [removed: Note that ]This model and classic SPIM coincide if η = 1, since ξ↓ = ξ⊥/cosβ905

(Eq. 10), [removed: the two models are the same when η = 1. More broadly ]although they differ somewhat otherwise. Given

this similarity, we can [removed: make the approximate asymptotic associations ]treat as roughly equivalent the slope and

area exponents η⇔ n and µ⇔m. [removed: In concrete terms, we set ]

[removed : ϕ(x) := ϕ0

((
1− x

x1

)2µ

+ ε

)
]

Our model domain is a 2D transect along a channel, which means we have to parameterize out catchment geometry910

and drainage accumulation into a function of distance downstream. If we consider upstream area to scale with an offset

distance from the divide Lc−(x−ε), where [removed: x1 is the transect length, such that (1−x/x1) is dimensionless distance

downstream, ϕ0 is a rate constant, and ϕ0ε is the value of ϕ(x) at the divide. This modelgenerates a channel profile ]ε is a

very small regularization term, we can wrap this scaling into a power function form for the flow component of the erosion

model:915

ϕ(x) := ϕ0(Lc−x+ε)2µ ∼ ϕ0(upstream area)µ (72)

In the numerical solutions presented in Section 6, the regularization term ε is given a non-zero value, but in the equations

below it is ignored.
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The surface-normal channel erosion rate is then

ξ⊥ := ϕ0(Lc−x)2µ (sinβ)
η (73)920

In a similar manner to steady (constant erosion rate) solutions of SPIM (e.g., Lague, 2014), this model will generate

channel profiles with the asymptotic slope-area scaling

slope ∼ area−µ/η (74)

[removed: at constant erosion rate (see, e.g., Lague, 2014) and for ]assuming low-to-moderate slope angles [removed: for

which ]where tanβ ≈ sinβ. To [removed: keep complexity to a minimum, in the remainder of the paper ]ensure that925

our numerical simulations all yield slope-area scaling consistent with that typically observed (e.g., Beeson and McCoy,

2020; Flint, 1974; Lague, 2014; Royden and Perron, 2013), we fix the exponent ratio (aka “concavity index”) at a constant

µ/η = 1
2 [removed: such that the resulting slope-area scaling is close to that typically observed (e.g., Beeson and McCoy, 2020;

Flint, 1974; Lague, 2014; Royden and Perron, 2013) ].

4.2 Non-dimensionalization930

Before embarking on numerical solutions of the model, we non-dimensionalize it. This is helpful in two ways: (i) it requires

us to identify the characteristic length, time, erosion rate and slowness scales, which makes it easier to relate the model

to real-world landscapes; (ii) it makes generalization of model behaviour and solution geometries simpler.

An obvious length scale is the horizontal channel length Lc, aka the distance from the drainage divide x= Lc to the

channel terminus x= 0. The horizontal and vertical erosion rates at the terminus are935

ξ→0 = ϕ0Lc
2µ(sinβ0)

η−1
, ξ↓0 =

ϕ0Lc
2µ (sinβ0)

η

cosβ0
(75)

where ξ→0/ξ↓0 = tanβ0, and where the channel tilt angle at the terminus is

β0 := β|x=0 (76)

We choose ξ→0 as the characteristic velocity scale. The horizontal time scale is therefore

t→0 :=
Lc

ξ→0
=

Lc
1−2µ

ϕ0
(sinβ0)

1−η (77)940

The vertical time scale is given by t↓0 = t→0 cotβ0.

Now we can non-dimensionalize the primary model variables:

t̂ :=
t

t→0
, r̂ :=

r

Lc
, p̂ := ξ→0 p̃ (78)

and the coordinate axes

x̂ :=
x

Lc
, ẑ :=

z

Lc
(79)945
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Using them to rewrite the Hamiltonian we get

H(r̂, p̂) = (1− r̂x)4µ p̂2ηx 2
(
sin2Ci

)η−1(
p̂2x + p̂2z

)η−1
(80)

where we have defined the dimensionless number

Ci := arcsin

(ϕ0Lc
2µ

ξ→0

) 1
1−η

= β0 (81)

We can think of Ci as both an angle and a dimensionless erosion rate because, when we non-dimensionalize the vertical950

rate of erosion imposed at the boundary ξ↓0 , we get this:

ξ↓0/ξ→0 = tanβ0 = tanCi (82)

Note that we can write

ϕ(̂rx) = ϕ0Lc
2µ (1− r̂x)2µ =

ξ→0 (1− r̂x)2µ

(sinCi)η−1
(83)

We can now rewrite Hamilton’s equations in dimensionless form by rederiving them from Eq. (80). Or we can just955

substitute the non-dimensionalized variables into Eqs. (50) and (51):

dr̂

dt̂
:=

t→0

Lc

dr

dt
=

1

ξ→0

dr

dt
(84)

dp̂

dt̂
:=ξ→0t→0

dp̃

dt
=Lc

dp̃

dt
(85)

and so we get:

dr̂

dt̂
=
∂H
∂p̂

=
1

ξ→0

∂H
∂p̃

(86)960

=
(1− r̂x)4µ(
sin2Ci

)η−1 p̂2η−1x

(p̂2x + p̂2z)
η

 (p̂2
x + ηp̂2

z

)
(1− η) p̂xp̂z


and

dp̂

dt̂
=−∂H

∂r̂
=−Lc

∂H
∂r

(87)

=
2µ(1− r̂x)4µ−1(

sin2Ci
)η−1 p̂2ηx

(p̂2x + p̂2z)
η−1

[
1 0

]
Figure 11 provides a comparison of time-invariant stream profiles for a selection of values of the dimensionless hor-965

izontal erosion rate Ci ∈ {0.1◦,1◦,4◦}. In all other figures illustrating numerical solutions a value of this dimensionless

number is set at Ci = 4◦.
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Figure 11. Time-invariant profiles (shown in non-dimensionalized form) obtained by direct integration of the model (Sect. 4.3) for two

choices of η ∈ { 1
2
, 3
2
} and three choices of Ci ∈ {0.1◦,1◦,4◦}; for each value η, the flow exponent µ is chosen such that µ/η = 1

2
. The

channel incision number Ci sets the overall steepness since it effectively defines the gradient at the exit x= 0. Given a value of Ci, the

profiles for η = 3
2

and η = 1
2

are approximately the same until x≥ 0.95Lc.

4.3 Direct integration

For the simple scenario of a time-invariant profile, the erosion equation (Eq. 73) can be directly integrated; more complex

boundary and initial conditions do not allow it. The first step is to assume the vertical rate of erosion is constant everywhere970

ξ↓ = ξ↓0 , and thereby to manipulate Eq. (73) to expose its straightforward dependence on surface tilt β and position x

(through ϕ(x)):

ξ↓=
ξ⊥

cosβ
=
ϕ(x) |sinβ|η

cosβ
(88)

We can combine this equation with Eq. (68) to obtain a polynomial in surface gradient tanβ = dz/dx, and constrain it

using the result (Eq. 53) that −pz = 1/ξ↓ = 1/ξ↓0 along the whole ray and thus everywhere along a time-invariant profile.975

The resulting polynomial in surface gradient, in non-dimensionalized form and for rational values of the gradient exponent

such as η = 3
2 or η = 1

2 , is

dẑ

dx̂

4η
(

dẑ

dx̂

2

+ 1

)2−2η

− sin4η (Ci)

(1− x̂)8µ cos4 (Ci)
= 0 (89)

We can use this function to compute the surface elevation as a 1+1D function ẑ(x̂; η,µ,Ci) as follows: (1) pick values of

η, µ, and Ci; (2) substitute these numbers into the above function to generate a polynomial in dẑ/dx̂ and x̂; (3) define a980
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set of sample positions 0≤ {x̂}< 1 along the profile; (4) at each x̂, find the positive, real root of this polynomial to infer

the gradient dẑ/dx̂ at this position; (5) use quadrature to integrate the gradient values along the profile to get ẑ(x̂).

Fig. 11 shows a selection of non-dimensionalized time-invariant profiles obtained in this way. Notice how the profiles

for the two different gradient exponents η = 3
2 and η = 1

2 are essentially colinear for 0≤ x̂= x/Lc < 0.95. The practical

upshot of this similarity is that it is unreasonable to expect to infer the scaling exponents η and µ from topography alone.985

Direct integrations like this are also useful as a validation of the ray-traced solutions: this is illustrated in Fig. 13, in

which some examples of directly integrated time-invariant profiles are shown to match those obtained by ray tracing.

5 [removed: Solution ]Ray tracing solutions

The previous sections have shown how the geometric self-constraint implicit in a broad class of erosion models can be trans-

formed into a geomorphic surface Hamiltonian [removed: H (Eq ]H (Eqs. 32[removed: ), which can in turn ], 80), and how990

this function can be used to derive Hamilton’s equations of motion for points on an erosion surface (Eqs. 50, 51[removed: ).

Ray tracing using these equations (a set of coupled first-order ODEs) allows us to track the evolution of such a surface. ],

86, 87). In this section [removed: , we explain how to carry out such ray tracing through numerical integration of ]we solve

Hamilton’s equations [removed: – for a particular choice of model domain and ]by numerical integration and use them

to construct “steady-state”, time-invariant surface profiles driven by a constant erosion-rate boundary conditions. In all995

solutions presented below, the dimensionless horizontal erosion rate is set at Ci = 4◦.

5.1 Model domain and boundary conditions

The [removed: model domain is limited to a vertical ]domain is a vertical x–z transect (Fig. [removed: ??) in the theoretical

development by Section 3. The particular setup implemented here is a long-stream profile ranging from a fault-slip, ]2) along

a stream profile that ranges from a drainage divide at x= Lc to a flow-exit boundary at x= 0[removed: to a fixed drainage1000

divide at x= x1. The ]. Profile evolution is driven by a constant vertical erosion rate imposed at the exit, and evolution

of the profile is tracked relative to the elevation of the exit. The drainage divide is pinned at a fixed horizontal position

by mirroring (Fig. 6) the main profile with a symmetrical “image” profile spanning [removed: x ∈ [x1,2x1] and bounded by

a paired faultat x= 2x1 ]Lc ≤ x≤ 2Lc; solution need only be performed over 0≤ x≤ Lc. Although there is no need to

invoke tectonic processes here, note that this model is geometrically equivalent to erosion of a (half) horst block whose1005

uniform rock uplift is driven by constant-rate vertical slip along a bounding normal fault, and whose topographic evolution

is studied in the reference frame of the hanging wall.

5.2 Ray equations

In this model geometry, rays that initiate at x= 0 (Fig. 12) and propagate in the positive x direction are annihilated at [removed:

x= x1 ]x= Lc when a paired ray, initiated at the same time at [removed: x= 2x1 ]x= 2Lc, arrives from the opposite1010

direction. As such, the model induces a cusp to form at [removed: x= x1 ]x= Lc, although its formation is not [removed:
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Figure 12. Tracing of a reference ray for (a) η = 3
2

and (b) η = 1
2

, with µ/η = 1
2

and Ci = 4◦, obtained by numerically integrating

Hamilton’s equations (Eqs. 50, 51) from a constant-slip boundary at x= 0 across the domain until termination at the divide at x= Lc.

modeled here (instead ]explicitly modelled here—instead, rays from x= 0 are simply truncated at [removed: x= x1). Cusp

self-formation and propagation, which can be modeled explicitly by locating and tracking ray intersections (?). ]x= Lc.

5.3 [removed: Boundary and initial conditions ]

[removed: Ray tracing across the 2D transect here (Fig. 12) involves the ]Such ray tracing entails the numerical integration1015

of Hamilton’s equations in the form of four coupled, first-order ODEs for ṙx and ṙz (Eq. 50), ṗx and ṗz (Eq. 51). These are

first-order differential equations in time alone, so for each ray we need only supply four initial conditions[removed: – ], i.e.,

rx0 , rz0 ,px0
,pz0 [removed: – ], one for each ray ODE. An oddity of ray tracing is that what would be boundary conditions in

a partial differential equation (PDE) treatment become initial conditions for the rays, and what would be a separate Neumann

velocity boundary condition for a PDE gets wrapped into those initial conditions.1020

Here we focus on [removed: solving the formation of a ]obtaining the time-invariant profile generated by [removed: constant

slip ]a constant vertical velocity boundary condition ξ↓ = ξ↓0 at x= 0, [removed: and so we need only ]for which we only

need to perform ray tracing from [removed: the boundary at ]x= 0[removed: ; this avoids the complexity of the supplying

boundary conditions ]. We thus avoid having to generate rays along an initial topography [removed: . For the model 2D
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transect (Fig. ??), the ]and having to handle their transient interaction as the time-invariant profile develops (a topic to be1025

addressed in Stark and Stark (2022)).

The initial horizontal position for all rays is fixed at the [removed: fault ]stream terminus/location of the boundary

condition rx0 = x= 0 [removed: . The vertical fault slip rate is mimicked by forcing the boundary rate of vertical erosion ξ↓0

to match it.Consequently, the ](Fig. 2). The initial vertical position of a ray initiated at time t= t0 is given by simple integration

of [removed: this slip (aka erosion ) ]the vertical erosion rate: rz0 =−ξ↓0t0. [removed: Correspondingly, the ]The initial1030

vertical component of the ray slowness covector must be consistent with [removed: the vertical slip (aka erosion) rate, requiring

]this vertical velocity component, and so we have pz0 =−1/ξ↓0 . Since ṗz = 0, this vertical covector component remains

unchanged throughout [removed: the propagation of the ray , as ]ray propagation (see Sect. [removed: ?? has discussed

]3.14), and so the number of coupled ODEs that need to be solved is effectively reduced from four to three.

The initial horizontal component of the slowness covector can be calculated if we realize that the topographic gradient at the1035

boundary must be consistent with the orientation of the normal slowness, i.e., tanβ0 =−px0
/pz0 . As such, the initial value of

the slowness covector p̃ encodes the velocity boundary condition in both its direction and magnitude.

5.3 [removed: Direct integration ]

[removed: For the simple scenario of a time-invariant profile, the erosion equation (Eq. ??) can be directly integrated; more

complex boundary and initial conditions do not allow it. The first step is to assume the vertical rate of erosion is constant1040

everywhere ξ↓ = ξ↓0 , and thereby to manipulate Eq. (??) to expose its straightforward dependence on surface tilt β and position

x (through ϕ(x)): ]

[removed : ξ↓][removed :=
ξ⊥

cosβ
= ϕ(x) |sinβ|ηcosβ]

[removed: which, for sinβ > 0, can be converted into ]

[removed : ϕ2(x)p2η
x

(
p2
x + p2

z

)1−η − 1 = 0]1045

[removed: or ]

[removed : ϕ4(x)p4
z tan4ηβ

(
tan2β+ 1

)2− (tan2β+ 1
)2η

= 0]

[removed: We can combine this equation with Eq. (68) to obtain a polynomial in surface gradient tanβ = dz/dx, and constrain

it using the result (Eq. 53) that −pz = 1/ξ↓ = 1/ξ↓0 along the whole ray and thus everywhere along a time-invariant profile.

The resulting polynomial in dz/dx takes the form, for η = 3
2 , ]1050

[removed :

(
ϕ(x)

ξ↓0

)4(
dz

dx

)6

−
(

dz

dx

)2

− 1 = 0]

[removed: and for η = 1
2 , ]

[removed :

(
ϕ(x)

ξ↓0

)4(
dz

dx

)4

−
(
ϕ(x)

ξ↓0

)4(
dz

dx

)2

− 1 = 0]
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Figure 13. Comparison of ray-traced solutions of time-invariant profiles (black curves) for (a) η = 3
2

and (b) η = 1
2

, and with µ/η = 1
2

and Ci = 4◦. A reference ray solution was obtained (Fig. 12) by numerically integrating Hamilton’s equations (Eqs. [removed: 50, 51 ]86

& 87) from [removed: a constant-slip boundary at x= 0 ]x̂= 0 across the domain until termination at the divide at [removed: x= x1,

from which successive ]x̂= x/Lc = 1. Successive rays were then generated [removed: . Four ]with initiation times {t̂0} and initial

elevations {ẑ(t̂0)} consistent with the constant vertical erosion rate imposed at x̂= 0: four are shown here [removed: , for initiation

times t0 ∈ {0,10,20,30} ](arrowed curves). [removed: The ]Each time-invariant profile T (r) was generated both from [removed: this

]the ensemble of rays [removed: , ]and [removed: also ]by direct integration [removed: of erosion equation ](Sect. [removed: ?? ]4.3); the

[removed: solutions ]results match in each case.

[removed: By finding at each x the roots of the respective polynomial, and by integrating over x the appropriate root dz/dx,

we obtain the surface elevation z(x) as a function that combines horizontal distance upstream x, the flow component function1055
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ϕ(x), and the slip rate at the boundary ξ↓0 : ]

[removed : z(x) = func(][removed : ξ↓0 ][removed :, ][removed : ϕ(x)][removed :, x)]

[removed: In order to obtain values of z(x), numerical root finding is required for all but the simplest choices of η and ϕ(x).

These direct integrations are useful, because they serve to validate the ray-traced solutions, as illustrated in Fig. 13. ]

5.3 Numerical integration method1060

After some experimentation, the most accurate quadrature or numerical integration scheme for ray tracing with Eqs. (50)

and (51) was found to be an implicit Runge-Kutta method designed for stiff ODEs: specifically, an implementation of the

Radau IIA family of order 5 (see Hairer and Wanner, 2013, p. 72) provided by the Python package SciPy (Virtanen et al.,

2020). Simpler, and lower-order Runge-Kutta quadrature methods also work well for most choices of model parameters, as

does the high-order Runge-Kutta, dense output, DOP853 method (see Hairer et al., 2008, p. 194).1065

All the numerical solutions presented here are reproducible using the following open source software (split into two parts,

both of which are needed for full operation): (1) the GME package, which implements methods of geometric mechanics tailored

to treating geomorphic erosion [removed: (v. 1.0: ?Stark, 2021c) ](v. 1.0: Stark, 2021a, c); and (2) a utilities library called

GMPLib [removed: (v. 1.0: ?Stark, 2021d) ](v. 1.0: Stark, 2021b, d).

5.4 Reference ray construction1070

Computation of the trajectory of a point on an erosion surface (and its normal slowness covector) is carried out by numerically

integrating the coupled set of Hamilton’s equations (dimensioned: Eqs. 50 [removed: , 51 ]& 51; non-dimensionalized:

Eqs. 86 & 87) with the [removed: above boundary conditions ( ]boundary conditions described in Sect. [removed: ??) ]5.1.

This constitutes the tracing of a single reference ray (Fig. 12), which suffices for construction of a time-invariant topographic

profile (see below). More rays need to be traced if we want to handle time-variable boundary conditions, evolution from an1075

initial topography, or the transition between an initial surface and a slip boundary (Stark and Stark, 2022).

5.5 Synthesis of a time-invariant profile

[removed: Several ]The following steps are required to construct a time-invariant solution of the erosion equation akin to a

fault-driven steady-state solution (Figs. 6 [removed: , ]& 13):

1. choose values for the model parameters (notably gradient-scaling exponent η and upstream area-scaling exponent1080

µ)

2. specify the dimensionless vertical erosion rate at the boundary Ci

3. generate a reference ray rref(t) by integrating Eqs. (50) and (51) (or their non-dimensionalized equivalents Eqs. (86)

and (87)) from the boundary at (0, rz0), and assign it an initiation time of t0 = 0;
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Figure 14. Ray tracing construction of erosion surfaces or isochrones: (a), (b) η = 3
2

; (c), (d) η = 1
2

, and with µ/η = 1
2

and Ci = 4◦. Only a

subset of the resolved rays and isochrones is shown.

4. define the isochrone time T such that [removed: rxref(T ) = x1 ]rxref(T ) = Lc;1085

5. generate a kth later ray rk∆t0(t+ k∆t0) with initiation time k∆t0 by making a copy of the reference ray, displacing it

vertically by −ξ↓0k∆t0, and pasting it at (0, rz0 − ξ↓0k∆t0);

6. truncate the copied ray at the point rk∆t0(T − k∆t);

7. repeat [removed: step (ii) ]from step 4 until k∆t0 ≥ T ;

8. collate the truncation points to generate a continuous curve T (r).1090

Some of these steps also entail interpolation and resampling.

This procedure generates the time-invariant isochrone T (r) formed by the constant [removed: fault-slip ]vertical velocity

ξ↓0 boundary condition at x= 0 (Figs. 6, 13). Repetition of the procedure (or a simple copying of the solution), combined
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with a progressive offset of the initial ray location rz0 at the boundary, simulates vertical normal-fault-driven erosion of a

topographic profile at steady state in the reference frame of the (bedrock) substrate of the footwall bedrock (Fig. 14). Analysis1095

of [removed: the shape of the time-invariant profile gives the ]these composite results generates solutions for the along-

profile variations in the component erosion rates (Figs. 15[removed: , 16 ]c–e, 16c–e) and their anisotropy (Figs. [removed:

??, ]15a, 16a, 17).

In all the solutions presented here, the area-scaling exponent µ is chosen such that µ/η = 1
2 . In all but Fig. 11 the

dimensionless rate of boundary erosion (Eq. 81) is fixed at Ci = 4◦.1100

6 Results

[removed: Numerical ]In this section we present numerical solutions of time-invariant topographic profiles [removed: (Sect.

5) provide a way ]in dimensionless form. These solutions help to validate the geomorphic surface Hamiltonian [removed:

, ](Sects. 1.1–3), to test the inferences drawn from it ([removed: Sect ]Sects. 3 [removed: ), and check that ]& 4), to ex-

amine its non-dimensionalization (Sect. 4.2) and the time/length/velocity scales predicted by it (Sect. 6.1), to check how1105

ray tracing by integrating Hamilton’s equations [removed: is a viable approach to modeling surface erosion . More broadly,

they demonstrate the practicality of modeling landscape evolution in true 3D (albeit with a ]performs as a means of mod-

elling surface erosion and the propagation of boundary-change information (Sect. 5.4; Figs. 12–14), and to explore how

erosional anisotropy ψ varies across a landscape.

Although the solutions here are limited to a 2D [removed: transect)with an equation that describes the erosion rate in1110

the surface-normal direction ]x–z transect, they provide a pilot test of elements needed to construct a fully 3D landscape

evolution model around a geomorphic Hamiltonian: one in which (1) the denudation rate is defined as acting in the surface-

normal direction, rather than [removed: in ]purely vertically, and (2[removed: +1D (which would be reduced to 1+1D here)

with erosion constrained to act in the vertical direction only. ]) topographic elevation is tracked as true geometric surface

using an implicit “time-slice” function T (x,y,z), instead of being modelled as a field using an explicit height function1115

h(x,y; t).

6.1 Scales

Tables 1 and 2 provide some example values of model parameters and their corresponding time, rate and vertical scales.

For each example, the key choice is the dimensionless horizontal erosion rate Ci. This dimensionless number determines

the dimensionless traversal time t̂→Lc
, which is defined as the time it takes for a ray to travel from x= 0 to x= 0.95Lc, and1120

which is obtained by numerical ray tracing. Then, by choosing the domain length Lc and the boundary rate of vertical

erosion, dimensioned quantities can be computed. The parameters grad = tanβ0, ξ→0 , and t→0 are derived exactly; the

horizontal travel time t→Lc
and the profile height hLc

close to the divide (at x= 0.95Lc) are obtained by numerical solution.

The values shown here are all rounded to one or two significant figures for clarity.

47



Table 1. Example model parameters and predicted time scales for η = 3
2

and µ= 3
4

, and for selected values of dimensionless erosion

rate Ci and domain length scale Lc.

Ci grad t̂→Lc
Lc ξ↓0

/
ξ→0 t→0 t→Lc

hLc

◦ % – km mm/y My My m

4 7 2 10 1
/

14 0.7 1.5 2000

4 7 2 5 1
/

14 0.35 0.7 1000

1 2 2 100 1
/

60 2 3 4800

1 2 2 10 1
/

60 0.2 0.3 480

0.1 0.2 2 100 1
/

600 0.2 0.3 480

0.1 0.2 2 10 1
/

600 0.02 0.03 48

4 7 2 10 10
/

140 0.07 0.15 2000

4 7 2 5 10
/

140 0.035 0.07 1000

1 2 2 100 10
/

600 0.2 0.3 4800

1 2 2 10 10
/

600 0.02 0.03 480

0.1 0.2 2 100 10
/

6000 0.02 0.03 480

0.1 0.2 2 10 10
/

6000 0.002 0.003 48

These tables demontrate that boosting the imposed vertical erosion rate ξ↓0 linearly increases the consequent hori-1125

zontal erosion rate ξ→0 , and symmetrically decreases t→0 and t→Lc
, but has no effect on the profile height hLc

. The most

important result here is that by calculating the dimensionless traversal time t̂→Lc
we can estimate how long it takes for

boundary change information to propagate into a landscape.

6.2 Time-invariant solutions

[removed: Figure 13 illustrates ]Figures 13 & 14 illustrate ray-traced time-invariant solutions for two choices of the slope ex-1130

ponent η ∈
{

3
2 ,

1
2

}
in the model equation (Eq. [removed: ?? ]73) for surface-normal erosion rate ξ⊥. Each ray-traced isochrone

T (r) is compared with an isochrone obtained by directly integration (Sect. [removed: ?? ]4.3), and in each case the match is

excellent. Sequences of erosion surfaces resulting from similar time-invariant solutions are shown in Fig. 14.

These solutions illustrate an important behaviour of the rays: for values of the slope exponent η > 1 the ray velocities

always have a positive vertical component ṙz > 0, whereas for η < 1, the vertical component ṙz always has a negative vertical1135

component ṙz < 0.

6.3 Erosion rates
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Table 2. Example model parameters and predicted time scales for η = 1
2

and µ= 1
4

, and for selected values of dimensionless erosion

rate Ci and domain length scale Lc.

Ci grad t̂→Lc
Lc ξ↓0

/
ξ→0 t→0 t→Lc

hLc

◦ % – km mm/y My My m

4 7 5 10 1
/

14 0.7 3.4 1900

4 7 5 5 1
/

14 0.35 1.7 940

1 2 6 100 1
/

60 2 10 5000

1 2 6 10 1
/

60 0.2 1 500

0.1 0.2 6 100 1
/

600 0.2 1 500

0.1 0.2 6 10 1
/

600 0.02 0.1 50

4 7 5 10 10
/

140 0.07 0.34 1900

4 7 5 5 10
/

140 0.035 0.17 940

1 2 6 100 10
/

600 0.2 1 5000

1 2 6 10 10
/

600 0.02 0.1 500

0.1 0.2 6 100 10
/

6000 0.02 0.1 500

0.1 0.2 6 10 10
/

6000 0.002 0.01 50

[removed: The component rates ]Figures 15 (for η = 3
2 ) and 16 (for η = 1

2 ) provide a side-by-side comparison of surface

erosion [removed: along a ]rate components (ξ⊥, ξ→, ξ↓) along ray-traced time-invariant [removed: profile behave in

some obvious and some non-obvious ways. ( ]profiles, together with some of the variables that contribute to their variation1140

(anisotropy ψ and ray velocity components vx, vz). All plotted quantities are dimensionless.

As Figs. 15[removed: , 16). ]

[removed: There is no fault-driven uplift in the model – there is only fault slip at the left-boundary simulated by a vertical

velocity condition at x= 0. Therefore, the ]a–c and 16a–c show, the progressive upstream decrease in anisotropy ψ

is reflected in upstream decreases ray velocity (particularly the vertical component vz) and the surface-normal erosion1145

rate ξ⊥. The horizontal rate of erosion ξ→ decreases upstream in an apparently linear fashion, correlating with a similar

behaviour in the horizontal component of the ray velocity vx. The vertical rate of erosion ξ↓ is constant (to within the

precision of the numerical solution), as expected for time-invariant [removed: profile as a whole must move downwards,

without changing shape and with a constant rate of vertical motion ξ↓. If we were to track the profile in a reference frame

moving with the slipping fault, which would be equivalent to adding a vertical uplift rate , the profile would remain static, and1150

all surface isochrones would be colinear. Such a solutionwould constitute what is better known as a ](“steady-state[removed:

topographic profile ]”) profiles.
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Figure 15. Ray and front behaviour along a time invariant profile for η = 3
2

and Ci = 4◦: (a) [removed: surface-normal erosion rate ξ⊥;

(b) ]anisotropy ψ, aka ray-front angular disparity [removed: (α−β+90◦) ](α−β+90◦); [removed: (c) ](b) horizontal (red) and vertical

(blue) ray speeds vx and vz; (c) surface-normal erosion rate ξ⊥; (d) horizontal erosion rate ξ→. (e) vertical erosion rate ξ↓. All rates are

normalized by the [removed: bounding fault slip ]reference horizontal erosion rate [removed: ξ↓0 ]ξ→0 , aka the [removed: vertical erosion

]rate imposed at the boundary x= 0.

[removed: The surface-normal erosion rate can be ]Surface-normal erosion rate is computed in two ways from the ray-

tracing results (Figs. 15[removed: a and 16a). We can ]c and 16c). One way is to simply use the fact (Eq. [removed: ??
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Figure 16. Ray and front behaviour along a time invariant profile for η = 1
2

and Ci = 4◦: (a) [removed: surface-normal erosion rate ξ⊥;

(b) ]anisotropy ψ, aka ray-front angular disparity [removed: (α−β+90◦) ](α−β+90◦); [removed: (c) ](b) horizontal (red) and vertical

(blue) ray speeds vx and vz; (c) surface-normal erosion rate ξ⊥; (d) horizontal erosion rate ξ→. (e) vertical erosion rate ξ↓. All rates are

normalized by the [removed: bounding fault slip ]reference horizontal erosion rate [removed: ξ↓0 ]ξ→0 , aka the [removed: vertical erosion

]rate imposed at the boundary x= 0.

]18) that normal [removed: slowness ]speed is the reciprocal of [removed: the normal speed ]normal slowness ξ⊥ = 1/p.1155
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Figure 17. Anisotropy of erosion ψ = α−β+ 90◦ for time-invariant profiles with η = 3
2

and η = 1
2

, and with µ/η = 1
2

and Ci = 4◦. Ray

velocity vectors v are represented by arrows (where arrow length provides a rough indication of speed v); normal-slowness covectors p̃ are

represented by fishbone symbols (where the number of cross-tick “bones” approximates slowness p). The degree of anisotropy is evident both

in the divergence of the r and p̃ directions, and in the colour attribute used to visualize their angular disparity. Anisotropy ψ progressively

decreases upstream.

[removed: Or we can invoke ray-front conjugacy and deduce that: ]

[removed : ξ⊥ = v cos
(
α−β+

π

2

)
]

[removed: As Figs. 15a,b and 16a,b show, the surface-normal erosion rate decreases progressively towards the divide, and this

trend clearly originates in the angular disparity (α−β+ π
2 ) in the above equation (see Sect. 3.18). ]

The other is to project the ray velocity onto the surface normal (unit) vector using Eq. (66). The horizontal ξ→ and1160

vertical ξ↓ erosion rate components are computed with Eqs. (9) and (10) using either of the estimates of ξ⊥. Since ray tracing

involves discrete sampling, values of ξ⊥ computed in these two ways are not numerically identical. The discrete sampling also

entails having to generate interpolating functions so that erosion rate values can be calculated at arbitrary positions along the
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profile. [removed: It turns out that ξ⊥ = 1/p is the more numerically stable estimator (Figs. 15a and 16a), but both schemes

are accurate. ]1165

[removed: Figures 15c and 16c show that the horizontal component of ray velocity vx decreases (close to) linearly with

distance upstream. The magnitude of the vertical component of ray velocity |vz| decreases in a fashion that mirrors the trend

in the normal erosion rate. The rate of vertical erosion ξ↓, meanwhile, is constant along the whole profile – as expected for a

time-invariant solution (Figs. 15d and 16d). ]

[removed: Variation of ray dip α with surface tilt β for η = 3
2 ,

1
2 . ]1170

[removed: Erosional anisotropy measured using ray-normal angular disparity (α−β+ 90◦): variation with surface tilt β

shown for (a) η = 3
2 and (b) η = 1

2 , and with µ/η = 1
2 . ]

6.4 Anisotropy

[removed: The relative directions of motion of the erosion front and of a point on the front provide an insightful measure of

erosional anisotropy. The front moves with a normal slowness covector tilted at an angle β to the vertical, while a point on the1175

front moves with a ray vector tilted at an angle α to the horizontal (Fig. ??). The angular disparity (α−β), with 90◦ added

to put both angles in the same frame of reference, is the quantity to focus on. Figure ?? shows how (α−β+ 90◦) varies with

surface tilt β when computed along a time-invariant profile for η = 3
2 and η = 1

2 . These plots show that the erosion process

described by Eq. (??) is manifestly anisotropic. Isotropy would plot as α−β+90◦ = 0 for all β. Instead, the angular disparity

(α−β+ 90◦) is non-zero almost everywhere and is close to 90◦ for low surface gradients (small β). ]1180

[removed: Figure ]Figure 17 provides a [removed: more ]striking visualization of [removed: this anisotropy ]erosional

anisotropy ψ(x) by plotting its variation with x along time-invariant topographic profiles. The direction and magnitude of

normal slowness covectors are represented with “fishbone” symbols (where the number of cross-tick “bones” approximates

slowness p), while arrows represent the ray velocity vectors. The colour attribute of each symbol [removed: indicates its angular

disparity (α−β+90◦) ]visualizes the magnitude of the angular disparity ψ. The degree of anisotropy is evident in the strong1185

angular disparity of r and p̃ for the same choices of η ∈
{

3
2 ,

1
2

}
. The strongest anisotropy is found downstream in the channels,

where the channel tilt β is small, the normal covector points almost vertically downwards, and the ray velocity vector points

almost horizontally upstream. Anisotropy decreases monotonically upstream as the normal covector rotates towards horizontal

more rapidly than the ray vector angle. At the divide, the [removed: erosion process (for this simplistic erosion model )

is approximately isotropic ]model erosion process is approximately isotropic; this limiting behaviour is moot, however,1190

because the erosion model used here (Eq. 25) does not apply to steep channels.

7 Discussion

7.1 Geometry controls (almost) everything
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[removed: A key ]The main aspiration of this paper is to clarify what we mean when, in the context of landscape evolution,

we speak of the direction of erosion. Our central mathematical tenet has been that [removed: , from a mathematical point of1195

view, it is only meaningful to consider erosion of a static object in its ]while gradient-driven surface erosion takes place in

the surface-normal direction (Sect. 1.1; Eq. [removed: ??) ]3), points on successive erosion surfaces do not necessarily

map in the same direction. Working from this premise, and with the help of geometric mechanics, we have found unexpected

complexity [removed: in this seemingly benign issue ]hidden in simple erosion models.

The concept of a covector is pivotal to our theory (Sect. 3.1). Once we realize that the [removed: rate of ]surface-normal1200

erosion [removed: (which is ]rate (imposed by the [removed: model erosion process ]gradient-dependent erosion model) can

be written in terms of the normal-slowness covector (which is the consequent motion of the surface), it takes only a few short

steps to reach the geomorphic surface Hamiltonian. Hamilton’s ray tracing equations, the geomorphic surface Lagrangian, and

the adherence to Huygens’ and Fermat’s principles all logically follow.

The essential ingredient of the theory is the realization that, at its core, the process of erosion is a geometric self-constraint.1205

If we disregard complexities such as sediment cover factors and external variations in forcing, a generic model of erosion is

a statement about how a surface geometry (through its gradient and flow accumulation) determines the rate of change of that

surface geometry. Reparameterizing this statement generates a fundamental function (and thus a Hamiltonian) that describes

how to measure distance in the phase space of the erosion equation. The properties of this function reveal that landscape erosion

is best described using Finsler geometry. This is important because it provides a fundamental explanation for why geomorphic1210

erosion is anisotropic. As Fig. 17 demonstrates, this anisotropy is very strong.

[removed: Counterintuitively ]Counter-intuitively, the erosion rays point (obliquely) upwards if the scaling behaviour of

slope in the erosion model has an exponent η > 1: we might have expected points on an erosion surface to always move

downwards since erosion is, after all, driving the surface downwards; this is indeed the case if η < 1. Remember that the

topographic profiles obtained by numerical solution here are time-invariant solutions without an uplift term, as visualized as1215

time slices in Fig. 14; upward motion of rays is therefore driven only by erosion and is not influenced by any tectonic motion.

The idea that surface erosion simultaneously drives two distinct [removed: motions – subvertically ]motions—subvertically

in the surface-normal direction and subhorizontally in the ray [removed: direction – is ]direction—is an uncomfortable and

apparently very abstract notion, but it has physical consequences. It means erosion drives information about boundary condi-

tions upstream subhorizontally [removed: (generally with an upward tilt steeper than the channel) ]while also driving motion1220

of the whole profile downwards subvertically. The time scale on which boundary condition information propagates into the

interior is the time it takes for a point to travel along a ray (the ray velocity is sometimes known as the signal velocity, which

conveys the sense of information propagation well). This information may be the [removed: instantaneous ]rate of erosion

at the stream terminus, or the equivalent slip rate on [removed: the boundary fault(Sect. ??) ]a boundary fault, or the erosion

rate at a point on an initial profile[removed: (?). ].1225

For these time-invariant solutions, all rays are identical and the [removed: fault slip ]boundary condition does not change.

If the [removed: slip rate ]boundary erosion rate (or equivalent fault slip rate) were to change (e.g., Reinhardt et al., 2007),

we would anticipate the ray paths to change, and we might expect them to intersect (depending on the value of η): this is one
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way that knickpoints form. Exploration of this topic is left for another paper [removed: (?) ](Stark and Stark, 2022). The only

ray intersections presented here are those that implicitly take place at the drainage divide, as rays are imagined to approach1230

symmetrically from a right-hand half-domain (Fig. 6). The crucial difference is that intersection at divides occurs when rays

approach from opposite directions; knickpoints form where rays move in the same direction at different speeds, one overtaking

the other.

Previous studies have considered knickpoint formation as the propagation and intersection of ray-like characteristics (Luke,

1972; Royden and Perron, 2013; Weissel and Seidl, 1998), but always in terms of an explicit surface function and a one-1235

dimensional Hamilton-Jacobi equation describing elevation as a function of distance upstream and time. The parameter space

traversed by these characteristics has no concept of the surface-normal or of erosion slowness covectors, which prevents a

direct comparison of the results of these studies with those presented here. However, they are broadly in agreement.

Perhaps the oddest outcome of the Hamiltonian theory, but one that is not surprising in retrospect, is that the vertical com-

ponent of the erosion slowness covector is constant (Sect. [removed: ?? ]3.14; Eqs. 52–53). To be precise: as a surface point1240

initiates at the boundary and moves along a ray into the interior, its vertical component of surface slowness is invariant, ṗz = 0,

and thus the vertical component of the surface erosion rate is constant, ξ↓(t) =−1
/
pz(t) =−1

/
pz0 = ξ↓0 . For a time-invariant

(steady-state) profile, all rays are identical, meaning that there is only one ray solution; therefore, the surface at every point

along the ray must be moving vertically at the same speed; all rays are independent; therefore, all rays must maintain con-

stancy of the vertical component of the surface erosion rate 1
/
pz . In this sense, a ray carries information of the boundary1245

[removed: condition – the vertical slip rate – into ]condition—the vertical slip rate—into the landscape until it is destroyed at

a cusp[removed: (Royden and Perron (2013) came to a similar conclusion). ].

The time scale of this information transfer is of crucial importance. If it is small relative to the time scale on which drainage

divides move laterally and significantly change accumulation areas and flows, then the assumption made in Sect. [removed:

?? ]3.5 is valid: namely, that the [removed: flow – at ]flow—at every point on the surface where flow influences [removed:1250

erosion – can ]erosion—can be parameterized by its surface geometry, aka its upstream area, in a manner constant with time

(for the lifetime of a ray). This requirement can be weakened to allow for slow variation of the parameterization with time,

in which case the Hamiltonian field would need to be recalculated periodically. This is not to say that the geomorphic surface

Hamiltonian theory is invalidated if the time scale requirement is not met; rather, the theory would become nonlocal and more

complicated. The degree to which such a step is necessary is a topic for future research.1255

On a side note, bear in mind that the following are all different ways of saying the same thing: (1) the directional

pace (reciprocal rate) of erosion-driven surface motion; (2) the surface-normal slowness covector; (3) the gradient of

the erosion-front arrival-time function; (4) the directional density of erosion-surface isochrones; (5) the gradient of the

geomorphic Hamilton action.
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7.2 A geomorphic surface Hamiltonian in 3D1260

While the geomorphic surface Hamiltonian developed here is limited to erosion-driven motion of a linear front in 2D space, the

[removed: ultimate ]goal is to construct a theory for surface evolution in 3D space. Several conceptual as well as computational

hurdles will need to be overcome if this goal is to be met.

The main challenge for a 3D theory will be to find a way to treat channel formation that is consistent with the Hamiltonian

methodology. It is tempting to want to resolve the channel shape itself, but this would entail having to add hydrodynamics,1265

sediment transport and abrasion processes to the mix; such a change would not only make the theory inordinately complex, it

would run counter to our core premise that what matters is the geometric self-constraint imposed by geomorphic processes, not

the details of those processes. A parameterization of flow focusing in channels will be required: one that encapsulates channel

cross-sectional geometry without describing it explicitly.

Another challenge hinges on the assumption of locality. A first-cut 3D model can probably be framed with fixed catchment1270

perimeters and static drainage divides; however, there will be a pressing need to generalize and allow for divide motion so

that catchment shapes can self-form. The question of time scales raised in Sect. 7.1 will still apply in 3D: if the time scale of

divide motion and catchment area change is large relative to the time it takes for erosion rays to traverse the catchment, we will

probably be able to treat the flow component of the geomorphic surface Hamiltonian as approximately static, which will make

it possible to derive Hamilton’s equations for 3D ray tracing.1275

Numerical solution may require a change of approach, because ray tracing of a surface in 3D is much more cumbersome than

for a line in 2D, particularly when dealing with ray intersections and cusp formation. An obvious alternative approach lies in

the fact that the theory employs an implicit surface function to describe landscape geometry (Sect. 2): we can resolve erosion

front motion on a regular grid and use a level-set method [removed: such as fast marching ]to solve the geomorphic HJE

(Adalsteinsson and Sethian, 1995c; Mosaliganti et al., 2013; Sethian and Adalsteinsson, 1997). This will have to be done1280

with some care, however, because of the Finsler nature of the geomorphic surface Hamiltonian and its inherent anisotropy.

[removed: Direct application of one-pass ]One-pass fast marching will not be possible, because even the most advanced

algorithms for fast marching [removed: are ](Mirebeau, 2014a, 2019; Mirebeau and Portegies, 2019) are currently limited

to metrics whose anisotropy is Riemannian (velocity-independent[removed: or Riemannian (Mirebeau, 2014a, 2019; Mirebeau

and Portegies, 2019), and to a small subset of Finsler metrics (Mirebeau, 2014b). It may nevertheless be possible to use1285

Riemannian fast marching in an incremental, ]) or Randers (velocity-dependent of a different type to that of the geomorphic

Hamiltonian) (Mirebeau, 2014b). A further issue will be the non-convexity of the geomorphic Hamiltonian for certain

ranges of η and β (Appendix C): non-convex Hamiltonians were addressed in the early literature on the level-set [removed:

propagation fashion to approximate integration of a Finsler HJE; other methods may also be viable (Moser, 1991; Qian et al.,

2003; Rawlinson et al., 2008; Wang et al., 2006) ]method (e.g., Adalsteinsson and Sethian, 1995b, a, 1997) and have been1290

encountered in applications to non-geomorphic erosion (e.g., Radjenović et al., 2006a, b; Radjenović and Radmilović-

Radjenović, 2009; Radjenović et al., 2010); recent methodological developments (Chow et al., 2018, 2019; Evans, 2014;
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Pinezich, 2019) may help. Methods developed in the field of seismology may also prove useful (e.g., Moser, 1991; Qian

et al., 2003; Rawlinson et al., 2008; Wang et al., 2006).

,1295

7.3 The variational principle is not energy minimization

There is a substantial body of work founded on the idea that landscapes self-organize in order to minimize energy dissipation

across their flow networks. Most of the literature developing this [removed: idea – broadly ]idea—broadly known as optimal

channel network (OCN) [removed: theory – dates ]theory—dates from the 1990s (Ijjasz-Vasquez et al., 1993; Rigon et al.,

1993; Rinaldo et al., 1992; Rodriguez-Iturbe et al., 1992a, b; Rinaldo et al., 1998) and is comprehensively reviewed in the book1300

by Rodriguez-Iturbe and Rinaldo (2001). In this section we compare and contrast OCN theory with our theory of the geometric

mechanics of erosion.

OCN theory is framed in terms of the self-optimization of a cost function. It identifies this cost function as the total rate

of dissipation of mechanical potential energy released by water flowing down channels across the whole landscape. Initial

development of the theory focused on the planform geometry and topology of channel networks; it was only later work that1305

addressed the consequent formation of topography. Hillslopes were assumed to play no role. The strong geometric similarity

between OCNs and natural stream networks, in particular their similar scaling behaviour, is often presented as a vindication of

the theory.

Optimality is a commonly used concept in engineering; its cousin in physics is the notion that system behaviour arises

through a variational principle that guarantees minimization of a key quantity. The most fundamental difference is that in1310

engineering the optimization criterion is invoked as a design choice, whereas the variational principle arises as an expression

of the underlying physics. It is from this difference that the following criticisms of OCN theory spring.

OCN theory arbitrarily requires minimization of the energy dissipated across the whole channel network; this stipulation

is justified on the basis that many physical systems exhibit similar behaviour. Such a requirement implies the existence of a

variational principle (Sinclair and Ball, 1996) guiding landscape evolution towards this optimal state, but OCN theory does1315

not articulate this principle in words or mathematics. A corollary issue was the initial omission of a Hamiltonian, which was

remedied to some extent in Rinaldo et al. (1998). The weakness of their Hamiltonian is that it cannot be used to derive equations

for the time-evolution of the landscape: it constrains what shape the landscape must take, but it cannot explain how that shape

comes about.

By framing an alternative theory in terms of geometric mechanics, these issues are avoided. The guiding variational principle1320

is clearly articulated ([removed: sects. ??, ??, and ]sect. 3.11): topographic evolution obeys the principle of least erosion

time. Adherence to this principle is not imposed; it arises geometrically from the way that geomorphic erosion propagates a

topographic front and modifies the pattern of erosion rates. The correlative Hamiltonian (Sect. [removed: ?? ]3.8) generates

equations that describe landscape evolution both in the form of Hamilton’s equations and in their equivalent form of a Hamilton-

Jacobi equation. Solution of these equations, for appropriate boundary conditions, evolves the topography to a time-invariant1325

shape, but this shape is the outcome of geometric interaction rather than a mechanism of energy-dissipation minimization.

57



Comparison of the two theories is a little premature, because our theory needs further development if we want it to describe

the evolution of a whole channel network. The current model also pins the drainage divide at a fixed position: as a result, the

degrees of freedom present in a landscape evolving in 3D, notably those that permit different flow topologies and geometries,

are absent from our model. It is these degrees of freedom that lead to the existence of many possible states of energy dissipation1330

aka many possible drainage network configurations; in our 2D theory, only one time-invariant state (a simple linear profile),

imposed by the model erosion (Eq. [removed: ?? ]25), is possible. Nevertheless, it will be interesting to see if a full 3D theory

can throw light on what drives landscape self-organization and channel network formation: whether these phenomena arise

primarily from the geometric self-constraint imposed by geomorphic erosion, and if so, the extent to which the process of

energy minimization is complimentary.1335

8 Conclusions

When we say that the rate of erosion of a geomorphic surface is a function both of its tilt and of the fluxes passing over it, we

are in essence saying that the rate of change of landscape geometry is a function of that [removed: landscape ]geometry. Here

we have shown how to express this geometric statement as a Hamiltonian, and how to use this Hamiltonian to understand the

meaning of the phrase “the direction of landscape erosion”.1340

[removed: A key assumption in the development of this theory is the understanding that the rate of surface erosion is

a velocity normal to the surface : differential geometry tells us that no other directionhas any meaning. With this in mind

]Our foundational premise is that motion of an erosion surface intrinsically acts in the surface-normal direction. On this

basis, we can [removed: write a generic model of erosion – albeit one that does not explicitly treat the effects of sediment

cover, weathering, or any hydrodynamic effects – as the normal slowness of the surface as a function of tilt angle ]convert a1345

gradient-dependent erosion rate (aka speed) model into a model for the normal slowness (aka pace) of surface erosion,

parameterized by surface tilt and upstream area and expressed as a covector. Using a simple mathematical trick (a scaling

substitution), and by writing tilt in terms of slowness covector components, the model equation can be rearranged into what is

called the fundamental function of its metric space; the square of this function is the geomorphic surface Hamiltonian.

This Hamiltonian is parameterized in terms of (i) the position of a single point on the surface, and (ii) the corresponding1350

orientation and slowness of the surface at that point. The Hamiltonian [removed: therefore ]thus occupies a six-dimensional

phase space (which reduces to four if the model domain is restricted to a 2D slice). Although such extra dimensionality may

seem to be [removed: a distracting ]just a mathematical abstraction, it provides [removed: some real insights ]real insight.

Study of the Hamiltonian and its phase space [removed: makes it clear ]reveals that surface evolution simultaneously

involves two distinct directions of motion: the surface (at a given point) moves in the [removed: surface-orthogonal ]surface-1355

normal direction, while the point itself moves in what may be an entirely different direction. The disparity between these two

directions is a measure of the anisotropy of the process governing motion, and for the class of erosion models studied here such

anisotropy is very strong.
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This phenomenon is best explored using Hamilton’s ray tracing [removed: equations – derived ]equations—derived from

the Hamiltonian by simple [removed: differentiation – which ]differentiation—which express the motion of a surface point1360

and its allied surface-normal slowness in terms of ordinary differential equations (ODEs). They show that while changes in

the surface erosion rate and direction are encoded in the normal slowness ODEs, information about boundary conditions and

external changes [removed: are carried upstream along the rays ]is carried upstream by the ray ODEs.

There is an important dependence of ray tracing on surface tilt: if the model erosion rate faster than linearly with gradient

(η > 1), such rays always have a positive vertical component, i.e., they point upstream and obliquely upwards. However, if the1365

model erosion rate scales sublinearly with gradient (η < 1), erosion rays always have a negative vertical component, i.e., they

point upstream but obliquely downwards along their trajectories.

We have shown how the phase space occupied by the geomorphic surface Hamiltonian is a metric space, and how this leads

us to deduce that the erosion rays traced by surface points are geodesics, In other words, they follow paths of locally shortest

erosion time: this is the variational principle that [removed: governs ]guides geomorphic surface erosion. It appears that energy1370

dissipation need not be invoked, and that instead all that matters is geometry.

Code availability. Software to solve and visualize the model has been developed as a pair of platform-independent Python3 packages

(built around the SymPy, NumPy and SciPy libraries (Harris et al., 2020; Meurer et al., 2017; Virtanen et al., 2020)) and a set of allied

IPython/Jupyter notebooks (Kluyver et al., 2016). The base utilities package is available at the “Geomorphysics Python library” (GMPLib)

repository on GitHub at Stark (2021a) and archived on Zenodo at Stark (2021d) . The allied code and notebooks to solve the equations pre-1375

sented in this paper, both algebraically and numerically, is available at the “Geometric Mechanics of Erosion” (GME) repository on GitHub

(Stark, 2021b) and archived on Zenodo at Stark (2021c). GMPLib release version 1.0 and GME release version 1.0 were used to generate the

results presented in this paper.

Appendix A: Related studies

A1 Geoscience applications of the HJE1380

The HJE has seen only sporadic use in the geosciences—except in the field of seismology, where its static or eikonal form

has been found to be particularly useful. The eikonal equation is a good approximation for seismic wave propagation in the

so-called “high frequency limit” at which seismic wavelengths are very small compared to the scale of wave propagation

(e.g., Červený, 1989, 2005, 2002; Dellinger, 1997; Mensch and Farra, 1999; Rawlinson et al., 2008; Slawinski, 2014;

Virieux and Lambaré, 2007; Woodhouse and Deuss, 2007). From this approximation arises the convenient fiction of1385

seismic rays, which are both the characteristics of the HJE and solutions of Hamilton’s equations. Although there are

disadvantages to its use in treating seismic wave propagation, e.g., dynamic interactions are not modelled and spectral

information is lost, the Hamiltonian approach has proven insightful, particularly when dealing with anisotropic media
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(Antonelli et al., 2003a, b; Bóna and Slawinski, 2002, 2003; Bucataru and Slawinski, 2005; Červený, 2002; Klimeš, 2002;

Yajima and Nagahama, 2009; Yajima et al., 2011).1390

An analogous form of the seismic Hamiltonian approach has been applied to studying the effects of anisotropy on fluid

flow in porous media (Sieniutycz, 2000, 2007; Yajima and Nagahama, 2015).

A2 Applications of the HJE to geomorphology

In geomorphology, Luke (1972, 1974, 1976) pioneered application of the HJE to the modelling of fluvial knickpoints as

shocks formed by kinematic waves (Lighthill and Whitham, 1955a, b; Whitham, 1999). Weissel and Seidl (1998) and1395

Royden and Perron (2013) built on this approach to further understand the conditions under which knickpoints form

and how they propagate. In all these studies, the HJE was deployed in an explicit-surface form, and its ability to model

implicit-surface motion was not considered.

A3 Use of the eikonal equation in geomorphology

To our knowledge, only one previous study has attempted to model landscape evolution as an implicit surface moving1400

according to an eikonal equation. Aronsson and Lindé (1982) did so in a treatment of weathering-limited denudation of

a rock cliff incised at its base by a river. By integrating the eikonal equation representing this erosion process, and by

presenting level-set solutions as isochrones of the cliff transect, they demonstrated how variations in rock erodibility can

lead to highly irregular surface geometry such as overhangs.

A4 Non-geomorphic erosion modelled with the HJE1405

There is a literature on erosion driven by non-geomorphic processes, and much of it is unfamiliar to the geomorphology

community. The methods employed in some of these papers provide a partial foundation for our Hamiltonian-based

approach. For example, both implicit surface motion and the HJE have been the basis for modelling erosion at microscopic

scales in an engineering context.

Frank (1958) employed the concept of surface-motion slowness as a means to model the anisotropic dissolution of1410

crystal surfaces in 2D (although neither the HJE nor the concept of a covector were explicitly invoked). He later extended

this approach to handling dissolution in 3D (Frank and Ives, 1960). His technique is widely cited in the crystallography

literature (e.g., Frank and Ives, 1960; Ives, 1961; Osher and Merriman, 1997; Shemenski et al., 1965).

In materials science, the Frank method has been adapted to treat surface erosion at the micron scale driven by ion

beam bombardment. Early work (Barber et al., 1973; Carter et al., 1971; Nobes et al., 1969) focused on amorphous1415

substrates and isotropic erosion without mentioning the HJE. Subsequent advances introduced the HJE (Carter et al.,

1984; Katardjiev, 1989; Katardjiev et al., 1989; Nobes et al., 1987; Smith et al., 1986; Witcomb, 1975) and the eikonal

equation (Carter, 2001), and used them to address the issue of anisotropic erosion. Perhaps most relevant to our the-

oretical development is the review article by Smith et al. (1986), which is also notable for its invocation of an erosional
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Hamiltonian, and the papers by Carter et al. (1984), Katardjiev (1989) and Katardjiev et al. (1989), which connect the HJE1420

and its Hamiltonian to Huygens’ principle and the concept of erosional wavelets (see also: Adalsteinsson and Sethian,

1995a, b, 1997; Sethian and Adalsteinsson, 1997).

A5 Front motion obeys Huygens’ principle

Central to the ideas in the previous sections is Huygens’ principle, one of the founding contributions to the field of optics.

Using a graphical construction, the principle explains how a wavefront bends as it passes through media of varying1425

resistance to motion (e.g., Arnold, 1989; Holm, 2011; Miller, 1991). At every instant, it pictures the front peppered with

tiny wavelets. Each wavelet represents how far, if it were spreading in isolation, a point on the front would expand in

the next instant to form its own microfront. Since the points are not isolated, they interfere to form a mutually tangential

envelope, with each point moving to the location of its wavelet tangent. The set of successive of tangential envelopes

constitutes the progressive motion of the front.1430

In wave propagation terms, the wavelet represents the unit envelope of group velocity at the point of interest: its shape

is called an indicatrix. There is a corresponding structure for phase velocity, known as the figuratrix, which is typically

used in its reciprocal speed or slowness form. The velocity indicatrix and slowness figuratrix are linked through mutual

conjugacy: as such, they contain the same information about front propagation, but in different forms (Carathéodory,

1999; Perlick, 2000; Rider, 1926; Rund, 1959).1435

In other words, wavefront propagation can be tracked using either group information or phase information. For front

propagation in general this equivalence translates into tracking using either (i) point velocities and their trajectories (ray

paths), or (ii) point-wise front-normal slownesses and their ensemble motions.

Huygens’ principle is best known for explaining wave propagation in inhomogeneous but isotropic media, where the

indicatrices and figuratrices are spherical but vary in size from place to place; isotropy ensures that the group and phase1440

propagation directions are the same. The principle is also often used to explain propagation in media whose anisotropy is

symmetric but ellipsoidal (Arnold, 1989), where the group and phase propagation directions are different. Recent efforts

have further proved that the principle extends to asymmetric, non-ellipsoidal indicatrices and figuratrices representing a

generalized form of anisotropy (e.g., Dehkordi and Saa, 2019; Innami, 1995; Javaloyes et al., 2021; Markvorsen, 2016;

Palmer, 2015) expressed in terms of something called Finsler geometry (see Appendices C and D).1445

A6 Wildfire spread and Finsler geometry

Several of the ideas discussed in previous sections have seen application in a totally different field—that of wildfire

prediction—in the envelope model of fire spread. The earliest form of this 2D model was very simple (Van Wagner, 1969),

postulating that wind-driven fire growth can be approximated as a burn ellipse elongated and offset in the wind direction.

Anderson et al. (1982) extended the model, and deployed Huygens’ principle to propagate a wildfire using elementary1450

burn ellipses scattered along the fire front, each scaled and shaped according to the local fuel availability and wind

direction.
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These early efforts were purely graphical constructions (Sullivan, 2009). Subsequently, Richards (1990, 1995) formal-

ized the fire front propagation process as a form of the HJE (without explicitly mentioning the equation by name). The

model has subsequently evolved, and its most sophisticated version (Markvorsen, 2016) recognizes the elementary burn1455

shapes as non-elliptical velocity indicatrices and frames the anisotropic motion in terms of Finsler structures. Finsler ge-

ometry is useful because it provides a convenient mathematical context in which to express the time it takes for a fire front

to cover a given distance under the directional influence of wind and terrain. It is for similar reasons that Finsler geometry

is important for understanding the anisotropy of geomorphic erosion, as Appendix D shows.

A7 Ray tracing the motion of a front1460

The rays of seismology and geometric optics are paths of least time, and they can be traced in two distinct ways: (i) by

integrating Hamilton’s equations, which are derived from the Hamiltonian contained in the HJE; or (ii) by transforming

the Hamiltonian into (or writing directly) the corresponding Lagrangian, converting into the Euler-Lagrange equations,

and integrating them (see Appendix E). In both cases, the essential step is to write a Hamiltonian version of the process

governing motion. For simplicity, the derivation presented in this paper is limited to a 2D vertical slice of a landscape. A1465

fully 3D treatment is the subject of ongoing research.

There is a connection between the Hamiltonian ray tracing method developed here and the work of Luke (1972), Royden

and Perron (2013), and Weissel and Seidl (1998). These previous approaches deployed the method of characteristics to

solve a 1+1D form of HJE in which a 2D topographic profile is represented in an explicit fashion, and their results have

some resemblance to those we obtain by full ray tracing (see Sect. 3.12). The main difference is the explicitly 1+1D form1470

of the governing equation in these studies, which forces elevation to be a single-valued function, and which coerces ray

tracing into resolving horizontal motion only. If one were to write the Hamiltonian phase space covector coordinate (the

direction and reciprocal speed of the surface at a point on the front) for these problems, it would take the reduced form of

the slope patch variable of Royden and Perron (2013); this variable contains explicit information about horizontal motion

of a surface patch (through its position), but vertical motion is implicit (see Royden and Perron, 2013, Eq. 15). As a result,1475

the inherent anisotropy of the erosion process is hidden.

Appendix B: Phase spaces and tensors

Slowness covectors and velocity vectors are different mathematical objects, and they live on different spaces, where “space”

is meant in the abstract sense used in differential geometry. For each point r in the physical, Euclidean world we can create

an allied tangent space that contains all the possible tangent velocity vectors (like ξ) at that point; we can also envisage a1480

corresponding cotangent space to contain all the possible slowness covectors (like p̃) at that point. Bundled together, the

tangent spaces for all points in real space constitute a tangent bundle or velocity [removed: phase ]space, while the union of

cotangent spaces forms a cotangent bundle or slowness (classically called “momentum”) phase space. These two [removed:

phase ]spaces are indispensable tools of geometric mechanics.
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One way to see that vectors and covectors are different is to look at their tensor form: vectors are rank (1,0) contravariant1485

tensors, whereas covectors are rank (0,1) covariant tensors (which is where the “co-” prefix comes from). Tensors of different

rank cannot be combined arithmetically; instead, operations such as contraction are needed to combine them. For example, in

Eq. (13), the action of covector p̃ on the unit vector n is a tensor contraction:

p̃(n) = pin
i =

∑
i∈{x,z}

pin
i = pxn

x + pzn
z (B1)

The expression pini here employs the Einstein summation convention: when an index (such as i) is shared by several terms,1490

summation is automatically performed for those terms over all index elements (in this case, over i ∈ {x,z}). Upper indexes

are used for contravariant tensor components; lower indexes are used for covariant tensor components. [removed: The utility

of tensor calculus, specifically the use of metric tensors to express the direction of erosion, is explored in more detail in ?. ]

Appendix C: [removed: F ∗ ]F∗ is a metric function

The fundamental function [removed: F ∗ ]F∗ has three key properties that are valid for a domain D of {rx, rz,px,px} phase1495

space corresponding to physically reasonable values of surface tilt and erosion rate:

1. Positive, order-1 Euler homogeneity in the parameter p̃: if the covector p̃ in [removed: F ∗ ]F∗ is scaled by a positive

scalar λ > 0, the reparameterized function equals the original function scaled by λ,

[removed : F ∗]F∗(r,λp̃) = λ[removed : F ∗]F∗(r, p̃) for λ > 0 (C1)

where the 1 in “order-1” refers to the exponent in λ on the right hand side of this equation1500

2. Regularity: [removed: F ∗ ]F∗ is smooth, in that it can be differentiated infinitely many times without encountering a

discontinuity or undefined value.

3. [removed: For η > 1, the Hessian of (F ∗)2 ]The Hessian of F2
∗ , i.e., the Hessian of the Hamiltonian [removed: H ,

isregular, which means that all the values of the matrix gij are positive, where ]

[removed : gij :=
1

2

∂(F ∗)2

∂px∂pz
]1505

H, is:

gij∗ :=
1

2

∂F2
∗

∂px∂pz
(C2)

[removed: We deduce that g is positive-definite (all eigenvalues are ]For η > 1 and −px/pz = tanβc 6=
√
η, both

eigenvalues of gij∗ are real and positive[removed: ), and that F ∗ is ], making gij∗ positive-definite and F∗ strongly

convex.1510
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Given these properties, [removed: F ∗ ]F∗ constitutes a type of Finsler metric (Bao et al., 2000; Shimada and Sabau, 2000).

This means that [removed: F ∗ ]F∗ provides a means of measuring distance and travel time between points in slowness phase

space that is dependent on both position and direction of motion (Sect. A7 and Appendix D; see Bao, 2007). In other words,

the shortest time path between two points in the corresponding real space may not be a straight line.

Strictly speaking, [removed: F ∗ ]F∗ is a co-Finsler metric on the cotangent space, and thus we are dealing with a co-Finsler1515

or Cartan geometric space [removed: (e.g., Anastasiei, M and Hrimiuc, D, 2000; Yajima et al., 2011) ](e.g., Miron et al.,

2002; Yajima et al., 2011). The term “Finsler” is reserved for the counterpart tangent space and for the fundamental function

[removed: F ]F , the dual of [removed: F ∗ ]F∗. Nevertheless, for brevity we use the term “Finsler” to apply to both spaces and

metrics.

We also need to be [removed: a little ]cautious in generalizing about Finsler properties of [removed: F ∗ ]F∗ and the1520

geomorphic [removed: Hamiltonian. If ]surface Hamiltonian. For η < 1 and β < βc, the Hessian of [removed: H ]H is

not regular[removed: (for most of the parameter space all elements are negative) ], g is indefinite with mixed signature (the

eigenvalues are both positive and negative)[removed: and F ∗ is not strongly ], F∗ is not convex (Beem, 1971; Červený, 2002;

Giaquinta and Hildebrandt, 2004)[removed: : it would be ], and the Hamiltonian H is non-convex. For η > 1 but β > βc,

the Hamiltonian is similarly non-convex. Under these conditions, it is more appropriate to use the term pseudo-Finsler for1525

[removed: this ]the metric and its phase space (see Asanov, 1985, pp. 21, 44, 266) [removed: . ]

Having a Finsler[removed: (or ], or at least pseudo-Finsler[removed: ) ], geometry is important for several reasons. The

most immediate is the need to adopt a quadratic form of [removed: F ∗ ]F∗ as a Hamiltonian (Sect. [removed: ?? ]3.8),

because [removed: F ∗ ]F∗ cannot be Legendre transformed directly (e.g., Červený, 2002; Giaquinta and Hildebrandt, 2004,

p. 16). It also means [removed: we need to take extra care when attempting to ]that if we wish to solve erosion front motion1530

as an HJE, [removed: because the best available method of numerical solution – one-pass fast marching – ]we need to find

an alternative to the fast marching method, because this algorithm is limited to Riemannian anisotropic metrics (Mirebeau,

2014a, 2019; Mirebeau and Portegies, 2019) and to a small subset of Finsler metrics [removed: (Mirebeau, 2014b) ]whose

velocity-dependent, Randers type anisotropy (Mirebeau, 2014b) differs from that of the geomorphic Hamiltonian.

Appendix D: Finsler geometry and curved space1535

In geomorphology, we are used to dealing with equations that operate in a flat Euclidean geometry where the space is spanned

by Cartesian {x,y,z} coordinates. In such a space, distances [removed: can be ]are measured directly using Pythagoras’

theorem and the topology of curves across it is straightforward. Working in a flat space like this is fine for studies at the

catchment scale and is a good approximation even at the orogen scale.

There are scales, however, where use of such a flat space is inadequate. For example, what if we are interested in processes1540

on a global scale, and need to account for the spherical geometry of Earth’s surface? Switching to spheroidal coordinates is

only half the battle, because transport on a sphere is topologically different to that on a flat space: particles in locally straight

motion follow looping paths; these paths are great circles; sets of great circles always converge and intersect; and so on. In this
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example, we need to understand the consequences of working in a curved space and its consequences if we want to understand

physical phenomena acting at such scales.1545

The concept of curved spaces is relevant not just to processes on objects with topological curvature; in an abstract way, it

can also apply to the space in which the governing equations operate. For some types of process, the governing equations can

be mapped from Euclidean space into a non-flat phase space that both simplifies their solution and exposes their fundamental

properties and behaviour.

The geomorphic surface Hamiltonian [removed:H ]H, which arises from the transformation of an erosion equation, operates1550

in such a non-flat space. Distance and travel time are not Euclidean measures on this phase space, because the fundamental

metric function [removed: F ∗ that defines H ]F∗ that defines H has the properties described in Sect. [removed: ?? ]3.7.

The curved nature of non-Euclidean spaces lies in how distance is measured on them. The measurement of distance always

requires a yardstick of some kind (on a metric space, this is a tensor derived from [removed: F or F ∗ ]F or F∗, and an

associated inner product), but the yardstick used in Finsler geometry is not the equivalent of a simple ruler. It is not an isotropic1555

constant as it would be in a flat Euclidean space (where the metric tensor is a simple Kronecker delta). Nor is it an anisotropic,

possibly spatially variable, but otherwise static quantity as it would be in a curved Riemannian space (with a metric tensor

whose variable elements are a function of position r alone). Instead, the yardstick is a function both of position and of the

direction and magnitude of motion at that position, i.e., for [removed: F ∗ ]F∗, the metric tensor elements vary with both r and

p̃, not just with r. Instead of measuring distance with a single inner product at each point, there is a family of inner products1560

associated with each point (e.g., Shen, 2001).

This directional dependence of the “yardstick” or metric tensor is the defining characteristic of Finsler geometry (Bao et al.,

2000; Chern, 1996; Holm, 2011; Shimada and Sabau, 2000). To be precise, [removed: F ∗ ]F∗ specifies that the slowness

phase space is a co-Finsler or Cartan space, and its dual [removed: F ]F specifies that the velocity [removed: phase ]space is

a Finsler space. The practical consequence is that the time taken to travel an infinitesimal distance across the space (Bao, 2007)1565

at unit speed in a given direction is a function of that travel direction. Adding up such incremental times allows us to find the

shortest path across the space, but the directional dependence of erosion time measurement makes this calculation non-trivial.

The fact that the geomorphic surface Hamiltonian operates in a Finsler geometry has profound consequences for the con-

struction of erosion-driven equations of motion, for the variational principle that underlies how landscape shape evolves, and

for the concept of erosional anisotropy. These consequences are explored in the next sections.1570

For further information on Finsler geometry, a good introduction is the non-technical discussion in Gibbons and Warnick

(2011), which also touches on several other topics important to this paper. A more mathematical but surprisingly approach-

able introduction can be found in Bao (2007), while more comprehensive treatments are provided by Antonelli et al. (1993);

Antonelli (2000); Bao et al. (2000); Chern (1996); Giaquinta and Hildebrandt (2004); Mo (2006); Miron et al. (2002); Shen

(2001, 2013); Shimada and Sabau (2000).1575
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Appendix E: Lagrangian and geodesics

The Lagrangian method of ray tracing the motion of an erosion front is taken up in detail in [removed: ? ]Stark et al. (2022).

This alternate approach is important, because it demonstrates in practical terms how erosion rays are also geodesics, i.e.,

that they are solutions of the geodesic equation (Misner et al., 1973; Nolte, 2019) corresponding to the geomorphic surface

Hamiltonian. Although geodesics have cropped up before in geomorphology as a means of delineating drainage on DEMs1580

(Passalacqua et al., 2010a, b), their use in that context was a pragmatic means to an end, rather than a reflection of any

underlying physics. In the our theory, however, the geodesic equation has physical meaning in that it is synonymous with the

Euler-Lagrange equation of the geomorphic HJE; solutions to the geodesic equation follow the same paths of least time as

solutions to Hamilton’s ray tracing equations derived from the geomorphic surface Hamiltonian. This assertion is proved in

[removed: ? ]Stark et al. (2022).1585

Appendix F: HJE and Hamilton action

Ray tracing through integration of Hamilton’s equations is not the only way to solve for surface motion. In principle, we

could instead use the geomorphic surface Hamiltonian H(r, p̃) in its HJE form and solve erosion front propagation using

grid-based methods. In practice, numerical solution of this kind of eikonal equation is not straightforward (see Sect. 7.2

and Appendix C). The HJE is nevertheless instructive if we examine it in the context of some important concepts of1590

classical mechanics. For example, Hamilton’s principal function S(r, t), which is the Hamilton action Sγ (see Eq. 38) plus

a constant, is

S =

∫
Ldt ⇔ dS

dt
=L (F1)

Use of the Legendre transform (Eq. 37) yields

dS

dt
= piv

i−H (F2)1595

The total derivative of S(r, t) with respect to time t has

dS

dt
=
∂S

∂ri
∂ri

∂t
+
∂S

∂t
(F3)

Assuming the points {r} all lie on a path γ0 of least erosion time, we can write

dS

dt
=
∂S

∂ri
vi +

∂S

∂t
(F4)

Comparing this equation with Eq. (F2) leads to1600

pi =
∂S

∂ri
, −H=

∂S

∂t
(F5)

such that the Hamiltonian H (r, p̃) can be written as

H
(
r,
∂S

∂r

)
=−∂S

∂t
(F6)
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which is the standard form for the HJE. Now consider the arrival time function T (r), whose total time derivative is, given

Eqs. (22), (55), and ∂T
/
∂t= 0:1605

dT

dt
=
∂T

∂ri
∂ri

∂t
=
∂T

∂ri
vi = piv

i = 1 (F7)

Integration here gives the abbreviated action; by choosing to integrate along a path of least action γ0 we obtain the

shortest erosion time T (r):∫
piv

i dt =

∫
pi dr

i =

∫
dt = T(r) (F8)

Use of Eq. (34) and Eq. (F2) connects S(r, t) with T (r), H(r, p̃) and time t:1610

S = T−Ht = T− 1
2 t (F9)

Differentiation gives

∂S

∂r
=
∂T

∂r
= ∇T ,

∂S

∂t
=−1

2
(F10)

Substitution into the standard HJE in Eq. (F6) leads to

H(r,∇T) =
1

2
(F11)1615

In this form, the HJE prescribes how the erosion front T (r) has a locus (a set of points {r}) that propagates such that

the gradient ∇T (the directional density of T isochrones) satisfies the static Hamiltonian H= 1
2 .
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Table A1. Notation

t time
[removed: x ]Lc [removed: horizontal coordinate 0≤ x≤ x1 distance from the stream terminus ][removed: x1 ][removed: distance ]distance from stream terminus to the drainage divide [removed: from the terminus ]
x horizontal coordinate 0≤ x≤ Lc measured from stream terminus
y out-of-section horizontal coordinate
z vertical coordinate: distance above the terminus
[removed: i, j ∈ {x,z} ]{a},{b} [removed: covariant (lower) or contravariant (upper) indices ]sets of points definining successive erosion front surfaces
[removed: φ(x,y,z; t) ]Ta, Tb corresponding loci of erosion surfaces at successive times
T (r) isochrone of erosion surface at point r⇔ surface locus at T = t

r [removed: level-set function ]point vector on erosion front surface, i.e., point on erosion ray
[removed: n ]v = ṙ [removed: surface-normal unit vector ]tangent velocity vector of point moving along erosion ray
[removed: nx,nz ]p̃ covector of normal slowness of erosion front
rx,rz horizontal, vertical components of [removed: surface-normal unit ]ray point vector [removed: n ] r
rx0 ,rz0 boundary values of components of r
vx,vz horizontal, vertical components of tangent ray velocity vector v
px,pz horizontal, vertical components of p̃
p= |p̃| surface normal slowness aka reciprocal erosion rate
px0 ,pz0 boundary values of components of p̃
α ray angle, aka angle of v from horizontal
αext limit ray angle (maximum for η < 1, minimum for η > 1)
β angle of p̃ from vertical; also surface slope angle from horizontal
βc critical surface slope angle
β0 boundary value of surface slope angle
F(r,v) 1-homogeneous Finsler fundamental function
F∗(r, p̃) 1-homogeneous co-Finsler (Cartan) fundamental function
H(r, p̃) 2-homogeneous Hamiltonian
ψ erosional anisotropy = α− β+ 90◦

h(x) elevation as a 1+1D function of horizontal distance upstream
φ(x,y,z; t) level-set function
ξ erosion velocity vector; [removed: also, ]generic velocity function in level-set equation
ξx, ξz horizontal, vertical components of erosion velocity vector ξ
ξ⊥ surface-normal erosion rate (speed)
ξ→ horizontal (positive right) erosion rate
ξ↓ vertical (positive down) erosion rate
ξ↓0 boundary value of vertical (positive down) erosion rate
[removed: p̃ ]n [removed: covector of normal slowness of erosional wavefront ]surface-normal unit vector
[removed: px,pz ]nx,nz horizontal, vertical components of surface-normal unit vector [removed: p̃ ] n
[removed: p= |p̃| ]η [removed: surface normal slowness aka reciprocal erosion rate ]gradient-scaling exponent in surface-normal erosion model
[removed: px0 ,pz0 ]µ [removed: boundary values of components of ]upstream area-scaling exponent in surface-normal erosion model [removed: p̃ ]
[removed: r ]λ [removed: point vector on erosional wavefront surface, i.e., point on erosion ray ]a real scalar
[removed: rx,rz ]L(r,v) [removed: horizontal, vertical components of ray point vector ]2-homogeneous Lagrangian [removed: r ]
[removed: rx0 ,rz0 ]i, j ∈ {x,z} [removed: boundary values of components of ]covariant (lower) or contravariant (upper) indices [removed: r ]
[removed: v ]γ(t) [removed: tangent velocity vector of point moving along erosion ray ]potential erosion ray path (parameterized by time t
[removed: vx,vz ]γ0(t) [removed: horizontal, vertical components of tangent ray velocity vector ]erosion ray path of least time [removed: v ]
[removed: T (r) ]Sγ [removed: isochrone of erosion surface at point r⇔ locus of surface at time T = t ][removed: α ][removed: angle of ]action functional for erosion ray paths [removed: v from horizontal ]
[removed: β ]Sγ0 [removed: angle of ]least action⇔ (half) least erosion time [removed: p̃ ][removed: from vertical; also surface slope angle from horizontal ]
[removed: β0 ]n [removed: boundary value of surface slope angle ][removed:m ][removed: upstream area ]gradient-scaling exponent in vertical erosion model (SPIM)
[removed: µ ]m upstream [removed: area exponent in surface-normal erosion model ][removed: n ][removed: gradient exponent in ]area-scaling exponent in vertical erosion model (SPIM)
[removed: η ][removed: slope exponent in surface-normal erosion model ]ϕ(x) spatial component of rate of erosion at distance x upstream
ϕ0 base rate in flow component of erosion model
ε relative flow component rate at zero upstream area
[removed: λ ]t→0 [removed: a real scalar ]horizontal erosion time scale for (computed from boundary rates)
[removed: k ]t̂, x̂, ẑ [removed: an integer ray index ]non-dimensionalized coordinates
[removed: F (r,v) ]r̂, r̂x, r̂z [removed: 1-homogeneous Finsler fundamental function ][removed: F∗(r, p̃) ][removed: 1-homogeneous co-Finsler (Cartan) fundamental function ]non-dimensionalized position variables
[removed:H(r, p̃) ]p̂, p̂x, p̂z [removed: 2-homogeneous Hamiltonian ]non-dimensionalized slowness variables
[removed: L(r,v) ]Ci [removed: 2-homogeneous Lagrangian ]dimensionless boundary erosion rate
[removed: γ ]k [removed: potential erosion ray path ]ray index
[removed: γ0 ]t→Lc

[removed: erosion ray path of least time ]time scale for erosion to traverse the domain
[removed: Sγ ]hLc [removed: action functional for erosion ray paths ]height scale of time-invariant topographic profile
[removed: Sγ0 ]gij∗ [removed: least action⇔ (half) least erosion time ]co-metric tensor
S Hamilton’s principal function
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