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General Comments

[ am supportive of this interesting paper. It definitely should be added to the conversation
regarding how we conceptualize and formally describe the motions of eroding surfaces/lines.
Please know that, whereas I am mostly familiar with the concepts and some of the mathe-
matics presented, parts of the presentation are unfamiliar to me. I have attempted to work
through the logical progressions to my satisfaction at numerous points in the text (there
are many moving parts in the analyses), but I must acknowledge that I have not carefully
checked all elements of the work. That said, my experience suggests that the authors are
careful in their work, and things seem to be in order.

The authors are asking the readers to absorb the essentials of level sets, the idea of a
Hamiltonian, Hugyens’s principle, geodesics, etc. Those who have a background in these
topics might be fine with the presentation. But I suspect some of this material will be quite
unfamiliar to many ESD readers. This is a deep read, and it likely will require more than
one sitting for many readers (as it did in my case). For this reason, my recommendations
starting with the next paragraph are aimed at helping make the material more accessible
to a broader audience — assuming this is the intention rather than just being aimed at a
restricted group of readers.

The Abstract reasonably describes the key elements of the paper, whereas the informa-
tion content of the Introduction (Section 1) is sparse. Following this, I suspect that some if
not many will stop reading, with eyes glazed over, somewhere within Sections 2.4 through
2.14. The material in these sections comes fast, and although the authors attempt to make
connections with descriptions of Earth surfaces/lines, my reading suggests that these sec-
tions risk confusing readers without offering a clear idea of why it is important for readers to
grasp these relatively unfamiliar concepts and techniques. As one who repeatedly struggles
with the question of how to best present (oftentimes) unfamiliar mathematical material in
papers, I suggest the following possibility.

Offer an example (or examples), with clear diagram(s), right up front in the Introduction.
Show the elements of what the analysis is describing about the motion of a surface/line and
what the motion implies. Describe what is happening with reference to qualitative descrip-
tions of the level set(s), normal motion, asymmetry, etc. Such diagrams could be simplified
versions of material contained in diagrams that appear later. The relatively familiar problem
presented in Figure 8 might be a good candidate, notable given that the rays computed from
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the Hamiltonian description are directly compared and explained relative to what is obtained
from the conventional approach (Section 4.3). Then — and importantly — state the impli-
cations of the analysis relative to what is normally envisioned /modeled, including what the
analysis reveals that otherwise is not accessible from conventional analyses, including key
material selected from the Discussion section. In other words, explain at the outset what the
specific merits of a mostly unfamiliar style of analysis are. I suspect that such a “preview”
might well help readers with the subsequent primer that unfolds the technical material. I
further suggest that this sort of introductory material deserves to be reasonably thorough if
it is to be effective. That said, please know that I will not be offended if the authors prefer
to reject these recommendations, as I do not imagine that my role as a reviewer involves
telling authors what they ought to present (and how) in lieu of the presentation they wish
to make. (Note that I recently added a section of this sort, for similar reasons, to one of my
own papers in response a reviewer suggestion. I think it helped a lot.)

The authors are clear about the idea that the “rate of change of surface geometry is solely
a function of surface geometry... [thus imposing a] geometric self-constraint” that leads to
the Hamiltonian description (Section 3.4 and elsewhere). They then use the familiar erosion
model embodied in Eq. (24) to highlight the description and its implications. Meanwhile,
the science is moving beyond this simplistic formulation of erosion, except perhaps as a rough
indication of large scale landscape behavior. I therefore suggest that the value of this exam-
ple mostly resides in its familiarity, whereas I would like to imagine that the analyses in the
paper are aimed more generally at providing a different perspective on describing motions
of eroding surfaces/lines. That said, I also am thinking that the class of such formulations
of erosion (satisfying the geometric self-constraint condition) is a small set. Partly for these
reasons, I pose a problem concerning river meandering at the end of this review.

Specific Comments

Line 34: Is there a compelling reason to “unify” them if they are described with respect
to the physics involved? Unified in what sense?” There may be merit in pulling key items
offered in the discussion (Section 6.1) to clarify what is intended.

Lines 64 and 249, and in reference to Line 515: To “drive” evolution implies physics, whereas
a “least time” argument is a geometrical outcome of the variational analysis, as elaborated
in the vicinity of Line 950. (The attention given in Section 6.3 to the issue of uncritically
appealing to an energy interpretation is appreciated, as summarized in the Abstract.)

Line 70: h(z,y,t)

Line 75: Such problems are numerical rather than mathematical, however? The overhang
idea, of course, is a restriction.



Lines 108-109: Changes in attributes(?) or effects(?) of vegetation and precipitation are
easy to incorporate? Hmm...

Lines 850-855: As the authors describe here, in the Abstract, and elsewhere, the idea of
“geometric self-constraint” suggests that the analysis is in fact restricted to those situations
in which the formulation of erosion specifically satisfies this constraint, setting aside the
added complexities of what the authors are calling “non-locality” with changes in contribut-
ing area/length. Given that this is the core premise of the work (Line 906), it probably
merits description in the introductory example(s) described above (if the authors decide to
offer such a “preview” at the outset). Regarding the final sentences: “...this is the variational
principle that governs geomorphic surface erosion. It appears that energy dissipation need
not be invoked, and that instead all that matters is geometry,” the word ‘governs’ is strong.
After all, physics does the erosion whereas the described outcome arises from the geometric
self-constraint — which is only presumed to adequately represent the physics.
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Now I'm going to gently throw a wrench into the works, not because I want the wrench to
stop the spinning of the machinery, but rather, because I am curious to see whether the
machinery absorbs the wrench and continues to whir along.

The paper focuses on examples in which the surfaces are embedded within a Cartesian
coordinate system, where ray trajectories are well defined starting from a set of points on
the initial surface/line. Now consider, instead, the problem of a freely meandering river over
long time scales. It is now conventional to choose a curvilinear coordinate system in which
the primary (intrinsic) coordinate coincides with the sinuous channel centerline. The prin-
ciple reasons for this choice are to ensure that local channel attributes (direction, curvature,
etc.) are single-valued functions for high-amplitude bends, and because the equations of fluid
motion can be readily, naturally adapted to this system. In turn, the local rate of channel
(centerline) migration is taken to be normal to the centerline. Typically this local rate is
expressed as a convolution of upstream (and sometimes downstream) channel geometrical
states (i.e., curvature), thus satisfying the geometric self-constraint condition. However, this
description of the system means that, with reference to a suitable origin or to two selected
initial points on the centerline, the arc length of the deforming coordinate system continu-
ously changes such that the centerline coordinate distance of a local position defined at time
t changes at time ¢ + dt, whether the “point” at this position remains fixed, or changes, with
respect to a global Cartesian system.

So... setting aside the severe complication arising from meander cutoffs, how might one
approach this problem using the variational methods/techniques? Is this even possible?
Might it reveal information that we otherwise would not discern from conventional analyses
(including numerical simulations of meandering)?



Please know that these questions merely reflect my curiosity. I am not suggesting that
they need to be addressed in the paper. Rather, it would be interesting to hear what the
authors might have to say about this problem.
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