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Abstract. Earthflows create landscape heterogeneity, increase local erosion rates, and heighten sediment loads in streams. 

These slow moving and fine-grained mass movements make up much of the Holocene erosion in the Teanaway River basin, 

central Cascade Range, Washington State, yet controls on earthflow activity and the resulting topographic impacts are 

unquantified. We mapped earthflows based on morphologic characteristics and relatively dated earthflow activity using a flow 

directional surface roughness metric called MADstd. The relative MADstd activity is supported by six radiocarbon ages, three 10 

lake sedimentation ages, and 16 cross-cutting relationships, indicating that MADstd is a useful tool to identify and relatively 

date earthflow activity, especially in heavily vegetated regions. Nearly all of the mapped earthflows are in the Teanaway and 

lower Roslyn formations, which compose just 32.7% of the study area. Earthflow aspect follows bedding planes in these units, 

demonstrating a strong lithologic control on earthflow location. Based on absolute ages and MADstd distributions, a quarter 

of the earthflows in the Teanaway Basin were active in the last few hundred years; the timing coincides with deforestation and 15 

increased land use in the Teanaway. Major tributaries initiate in earthflows and valley width is altered by earthflows that create 

wide valleys upstream and narrow constrictions within the earthflow zone. Although direct sediment delivery from earthflows 

brings fine sediment to the channel, stream power is sufficient to readily transport fines downstream. Based on our findings, 

over the Holocene—and particularly in the last few hundred years—lithologic-controlled earthflow erosion in the Teanway 

basin has altered valley bottom connectivity and increased delivery of fine sediments to tributary channels.  20 

1 Introduction 

Mass movement, including earthflows, transports debris from hillslopes to valley bottoms and can be crucial in creating and 

maintaining landscape heterogeneity, riparian refuge habitat, and spawning gravels for salmon (Beeson et al., 2018; May et 

al., 2013). Large wood (LW) transported by mass wasting into the channel results in channel roughness and the formation of 

resting pools and habitat complexity (Burnett et al., 2007). Deep-seated landslides are associated with wider valleys, a key 25 

landscape component for salmon and trout habitat (Beeson et al., 2018; Burnett et al., 2007; May et al., 2013). However, fine 

debris by landslides can present a habitat challenge as silt clogs the pores between stream cobbles and limits oxygen flow to 

redds (NFTWA, 1996), and landslides in narrow tributaries may dam the stream and temporarily kill off a small population 
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(Waples et al., 2008). In landslide-dominated landscapes, understanding the history of landsliding is crucial to reconstructing 

the development of valley bottom topography and maintenance of habitat.  

 55 

In particular, earthflows can have a long-lasting effect on topography, sediment supply, and habitat. Earthflows are fine-grained 

soil mass movements that move meters or less per year and persist for decades to centuries (Hungr et al., 2014). They tend to 

occur in clay-bearing rocks or weathered volcanic rocks with translational movement, and are commonly reactivated in 

response to increased precipitation or other disturbances that decrease shear resistance (Baum et al., 2003). Earthflow 

movement is correlated to climate and regolith production; over long timescales (101-104 years), earthflow movement is limited 60 

by the pace of regolith production as transport typically outpaces weathering rates (Mackey and Roering, 2011). At the annual 

to decadal scale, precipitation variability is correlated with earthflow speed, in which earthflows are observed to speed up—

following a lag of several weeks—after seasonal and annual precipitation increases (Coe, 2012; Handwerger et al., 2013). 

Droughts may prime earthflows by creating deep desiccation cracks that act as water conduits during ensuing wet conditions 

(McSaveney and Griffiths, 1987). Similar to deep seated landslides, earthflows can cause upstream channel aggradation and 65 

valley widening; Nereson and Finnegan (2018) note an order of magnitude increase in valley width upstream of the Oak Ridge, 

California, earthflow.  

 

Due to their persistence, earthflows can be major sources of sediment to channels, and therefore a significant disturbance to 

habitat and landscape evolution. Earthflows in the Eel River basin, although covering only 6% of the basin, account for half 70 

of the regional denudation rate with approximately 19,000 t/km/yr of sediment produced (Mackey and Roering, 2011). In 

stream sediment production is unsteady as annual to decadal precipitation conditions and sediment supply cause intermittent 

movement over the decades to centuries that the earthflow is active (Guerriero et al., 2017; Mackey and Roering, 2011). 

Additionally, earthflows can temporarily transition to debris flows, resulting in rapid transport of weathered material and debris 

to the channel (Malet et al., 2005). Lithologic controls on earthflow location in the Eel River results in isolated resistant 75 

sandstone outcrops and topographic highs, indicating earthflows can influence valley-scale topographic patterns (Mackey and 

Roering, 2011).  

 

Here, we examine the cause and timing of Holocene earthflows in the Teanaway Basin of the central Cascade Range of 

Washington State, located in the northwest corner of the continental USA. Geologic mapping of the region and recent lidar 80 

reveals extensive landsliding in the form of earthflows (Quantum Spatial, 2018, 2015; Tabor et al., 1982), but the cause and 

timing of these earthflows is unknown. We develop a relative dating curve for earthflows and apply it to the Teanaway basin 

to determine when the earthflows were active and discuss how this affected valley width, sediment supply, and habitat during 

the Holocene.  
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Figure 1. Geologic map of the Teanaway watershed (Tabor et al., 1982). Upper left inset shows location of Washington State in North 130 
America, and the location of the study area (star) within Washington State. Box shows location of Figure 2. 

2 Study Site 

The Teanaway River is located in central Washington State, northwest USA, four miles east of Cle Elum, WA (Figure 1). This 

single-thread river has three main tributaries known as the West Fork, the Middle Fork, and the North Fork which all flow into 

the main Teanaway River about 10 miles upstream of its confluence with the Yakima River. The region receives between 980 135 

and 1230 mm of precipitation annually and is typically snow-covered during the winter (U.S. Geological Survey, 2012) with 

large fires occurring every 300-350 years (Agee, 1996; 1994), though high-intensity burns are limited to less than 1 km2 

(Wright and Agee, 2004). Mapped faults do not offset Quaternary alluvium and exhumation and Holocene denudation rates 

are low at 0.05 mm/yr and 0.08-0.17 mm/yr respectively (Moon et al., 2011; Reiners et al., 2003). The branches of the 

Teanaway River were splash dammed from 1892-1916 (Cle Elum Tribune, 1891; Kittitas County Centennial Committee, 1989) 140 

and the Pinus ponderosa forests were logged from the 1890s through the 1940s.  

 

The majority of rock units in the study area were deposited during the Eocene (Figure 1). The lower Eocene Swauk Formation, 

composed of dark sandstone with small amounts of siltstone and conglomerate, unconformably overlies the Jurassic Ingalls 

Complex and is ~4800 m thick (Tabor et al., 1984). The Swauk Formation is folded with dip directions generally to the south 145 
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(Tabor et al., 1982). The middle Eocene Teanaway Formation unconformably lies on the steeply tilted Swauk Formation. The 

Teanaway Formation ranges from 10 to 2500 m thick and is composed of basaltic and andesitic lava flows interbedded with 

tuff, breccia, and feldspathic sedimentary rocks (Tabor et al., 1984).  Because of its resistance to weathering, this formation 

forms most of the taller and more rugged peaks in the Teanaway area. Rhyolite flows from this formation have interbedded 

with the conformable upper Eocene Roslyn Formation and outcrop through the study area as dikes (Tabor et al., 1984). The 155 

youngest surficial rock unit, the Roslyn Formation, covers most of the lower-elevation study area. The unweathered white and 

weathered yellow immature sandstones were deposited conformably on the Teanaway Formation in the late Eocene (Tabor et 

al., 1984). The Roslyn and Teanaway formations lie relatively flat or gently tilted to the southwest compared to the Swauk 

Formation, and are very susceptible to erosion and sliding due to the interbedded tuffs, paleosols, clays, and silts (NFTWA, 

1996; Tabor et al., 1982).  160 

 

Overlying the Eocene units are glacial and mass wasting deposits. Glacial terraces originate from the Thorp and Kittitas 

glaciations at 600 ky and 120 ky, respectively (Porter, 1976). During drift deposition, glaciers from the Cle Elum catchment 

to the west overtopped the dividing ridge and entered the West Fork and lower Middle and North Fork Teanaway valleys. 

Thorp and Kittitas moraines, composed of poorly sorted gravels and cobbles, are present at the eastern edge of the study area 165 

near the outlet of the mainstem Teanaway into the Yakima River and on the ridges surrounding the West Fork Teanaway 

(Porter, 1976). The Thorp drift sediments are heavily eroded and therefore less visible than the Kittitas drift sediment, which 

has been modified by mass wasting (Porter, 1976).  

 

Geologic mapping has identified several Quaternary mass wasting deposits in the Roslyn and Teanaway formations (Figure 1) 170 

and subsequent reports have focused on landslides near stream banks (NFTWA, 1996). Landslides are as old as late Pliocene 

and are concentrated near rhyolite tuffs and a weathered surface in the Teanaway Formation, which form planes of weakness 

(NFTWA, 1996). Although closed depressions and ponds are visible in the lidar and suggest some recent activity, landslides 

are not easily distinguished in aerial photography or in the field. Lidar in 2015 and 2018 (Quantum Spatial, 2018, 2015) 

revealed the extent of these slides, but no studies since have quantified landslide volumes or constrained the timing or 175 

mechanism of sliding. 

3 Methods 

Our analysis focuses on the entirety of the Teanaway basin, though the majority of the earthflows are found within tributaries 

to the North Fork Teanaway River. To identify the temporal and spatial distribution of earthflows, we use geomorphic mapping 

in conjunction with a directional roughness metric to identify and relatively date earthflow activity in the Teanaway basin. 180 

Other studies (e.g., Mackey and Roering, 2011) use tree and object tracking to measure earthflow velocity; we attempted to 

do this but found the dense vegetation and high tree growth rates prevented us from accurately matching objects between 
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image pairs. Thus, we rely on surface roughness to give relative earthflow activity. We constrain the relative ages using 

radiocarbon and sedimentation ages, which both give maximum estimates of earthflow activity. 

3.1 Earthflow mapping and maximum earthflow ages 

We first created a detailed earthflow map for the study region. All visually-identifiable landslides within the Teanaway basin 280 

were mapped in ArcGIS from one-meter resolution lidar (Quantum Spatial, 2018, 2015) at a scale of 1:5000. Earthflows were 

classified from this dataset based on: hourglass shape, narrow width and long length of slide zone, visible levees or shear zones 

at the edges, and flow-like morphologies (Baum et al., 2003; Nereson and Finnegan, 2018). These morphologic clues degrade 

over time and bias our earthflow mapping to younger slides; however, we focus our analysis on Holocene earthflow activity 

to minimize this bias.  285 

 

We dated select earthflows using buried charcoal found within the earthflow toe deposits. Long residence times of buried 

charcoal in landslides can result in radiocarbon ages >8000 years older than landslide activity (Struble et al., 2020); considering 

that earthflows can also have episodic activity which further complicates the relationship between timing of earthflow activity 

and radiocarbon age, we use our charcoal ages to loosely constrain maximum earthflow activity. Sampled earthflows were 290 

selected based on a visual estimate of roughness and potential for a fresh exposure via road or stream erosion. In the field, we 

removed 10-50 cm of material from the toes of earthflows exposed by stream cuts or roadcuts to find 2-5 grams of charcoal. 

We collected radiocarbon samples from seven different earthflows (Table 1); one sample (8-4-20-2) did not yield enough 

carbon material to date. The samples were sent to the Center for Applied Isotope Studies (CAIS) lab at the University of 

Georgia and were dated using Accelerated Mass Spectrometry (AMS); dates were calibrated to calendar years using Intcal20 295 

(Reimer et al., 2020).  

 

In three cases where earthflows dammed the valley and formed lakes, we estimated the onset of valley blockage and an 

approximate earthflow age by using the sedimentation age of the lake. We reconstructed a pre-earthflow valley bottom using 

the techniques in Struble et al. (2020) and subtracted this from the lidar surface elevation to give an estimate of the 300 

sedimentation volume post-earthflow. We used nearby mid-Holocene denudation rates of 0.08 and 0.17 mm/yr based on basins 

in Moon et al. (2011) with similar mean annual precipitation and glaciation. The upper and lower denudation bounds were 

combined with the upstream contributing drainage area and sedimentation volumes to calculate the range of plausible 

sedimentation ages, which approximate when the earthflow dammed the creek. Earthflow activity may continue after lake 

formation; thus, these sedimentation ages do not necessarily represent the most recent earthflow activity. 305 

3.2 Estimating earthflow activity using flow directional surface roughness  

To relatively date earthflow activity, we created a surface roughness age calibration model similar to that used to date rotational 

slides in Washington State (LaHusen et al., 2016; Booth et al., 2017). Active earthflows have a unidirectional flow morphology 
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that gradually diffuses to less directional roughness as activity ceases, in contrast to rotational slides which start with uneven 

roughness in all directions. To account for the unique flow morphology of earthflows, we used a flow directional Median 

Absolute Differences (MAD) index (Trevisani and Rocca, 2015). MAD is a bivariate geostatistical index that analyzes Digital 

Elevation Models (DEMs) on multiple dimensions (Trevisani and Cavalli, 2016), giving us a directional roughness index for 335 

each raster cell across the study area. This directional roughness is combined with flow directions derived from the DEM to 

analyze surface roughness relative to flow direction (Trevisani and Cavalli, 2016) in which a high MAD value represents very 

directional regions, while a low MAD represents relatively uniform regions. 

 

We first tested the relationship between MAD and earthflow age by extracting elevations from an earthflow along Jungle 340 

Creek where we obtained radiocarbon sample 8-1-20-1 (Figure 2, Table 1). We chose this earthflow because it has clear flow 

lines and blocks the majority of the stream valley with an outlet eroded through. This suggests the earthflow has been active 

recently to block the valley, yet is not so strongly active that the stream is permanently dammed. We applied two-dimensional 

diffusion to the earthflow surface, based on Eq (1): 
!"
!#
=	−Κ !"!

!!$
 ,             (1) 345 

where dz is change in elevation, dt is the timestep, and dx is the spatial resolution. The diffusion rate, Κ, is estimated as 0.002 

m2/yr based on regions in a similar climate (Martin, 2000), though we varied diffusion rate as low as 0.0002 m2/yr for 

landscapes experiencing creep (Martin, 2000). We also ran the diffusion model with and without stream erosion. Stream 

erosion is represented by Eq (2): 
!"
!#
=	𝐾%&𝐴'𝑆( ,             (2) 350 

where A is the upstream contributing drainage area, S is slope, and Ksp, m, and n are empirical coefficients related to drainage 

basin geometry, rock erodibility, channel hydraulics, and climate (Braun and Willett, 2013). The values of m and n are set at 

0.5 and 1, respectively, based on common values for mountain streams (Braun and Willett, 2013), and Ksp is estimated at 6e-

7 from empirical relationships of average denudation, A, and S along Jungle Creek. We ran the diffusion model for 10 ky and 

calculated MAD using the steps below every 2 ky.  355 

 

MAD is calculated using the residual roughness; we first smoothed the one-meter DEM over a 3x3 window followed by a 5x5 

window (Trevisani and Cavalli, 2016) and subtracted the smoothed DEM from the original DEM to obtain a residual raster of 

roughness elements. The MAD index (https://github.com/cageo/Trevisani-2015) was run with this residual raster and 

calculated the directional roughness over an 8 m radius window. We chose this window so that we examine a similar spatial 360 

scale as the 15x15 window used by LaHusen et al. (2016). We calculated flow direction across the smoothed DEM and created 

a raster with the MAD values in the direction of flow for each cell. Finally, we used Zonal Statistics to calculate the standard 

deviation of the directional roughness (MADstd) for each earthflow; from our diffusion model simulations, MADstd had the 

highest correlation with age (R2 = 0.98). 
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3.3 Valley width 

To examine the influence of landslides on habitat, we measured valley width along the tributaries of the North Fork Teanaway. 

The mainstem and three forks of the Teanaway all have wide valleys that are unaffected by earthflows. In contrast, the tributary 

valleys of the North Fork are altered by earthflows. We extracted valley width from Jungle, Rye, Dickey, Middle, Indian, Jack, 

and an unnamed creek (Figure 1) by defining the valley floor as being less than 5% slope. We used an automated process in 380 

ArcGIS to extract a valley centerline, create transects every 100 m, and measure valley width. 

 

 
Figure 2. Earthflows mapped in the study area; earthflows are colored by their MADstd value. Radiocarbon locations and dates, in 
calibrated yr BP, are shown with white stars. Black crosses indicate locations of earthflow-dammed lakes where sedimentation ages 385 
are derived: a – unnamed creek; b – Rye Creek; and c – Indian Creek. Extent of region is shown in Figure 1. Background elevation 
data from Quantum Spatial (2015; 2018). 

4 Results 

4.1 Landslide mapping 

We mapped 187 earthflows in the lower Teanaway basin (Figure 2). Mapped earthflows are mostly all north of the mainstem 390 

and Middle Fork of the Teanaway River, with the exception of eight small earthflows south of the Main Fork. The southern 
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edge of the earthflow area appears to be bound by the extent of Pleistocene glaciation (Figure 1); perhaps glaciation removed 

pre-existing earthflows or the muted topography from glacial erosion is less prone to mass movement. To the north, the 

earthflow domain is bound by the start of the Swauk Formation, which has little to no mappable landslides in it. 470 

 

Earthflows spatially cluster in the Teanaway and lower Roslyn formation. Just over half (51%) of mapped earthflows are in 

the Teanaway Formation, which is composed of basalt and rhyolite interbedded flows and conformably grades upwards into 

the lower Roslyn Formation, in which 42% of earthflows are found. The remaining 7% are split between the Swauk and middle 

Roslyn Formations.  475 

 

 

Figure 3. Average earthflow aspect, binned by 10 degrees. Contours indicate number of earthflows in each bin. 

 

We extracted slope and aspect for each earthflow. The slope distribution, measured based on the smoothed one-meter lidar, 480 

was similar between earthflows and intact hillslopes of the Lower and Middle Roslyn Formations with modal slopes of 10 to 

15 degrees. The average earthflow aspect shows strong preference for the southwest quadrant, with 45% of earthflows (Figure 

3). The northwest and southeast quadrants were similarly populated with 20 and 21%, respectively, while the remaining 

earthflows are found in the northeast quadrant.  

 485 
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 490 

Figure 4. Valley width of the North Fork tributaries compared to upstream contributing drainage area (A-G). Tributaries are 
arranged counter clockwise from the northwest (see Figure 1 for locations). Colored circles indicate valley width measurements 
where one valley wall is an earthflow; colors indicate MADstd relative to earthflows within that tributary in which red are high 
MADstd and light pink are low MADstd. Panels H-J show examples of earthflows interacting with valley bottoms; earthflow color 
corresponds to MADstd value using same color scheme as panels A-G. Blue arrows show direction of water flow. 495 

4.2 Valley width 

Valley width generally increases with drainage area for the seven tributaries we examined, although the increase is not 

consistent (Figure 4). Jungle Creek has its narrowest width, equivalent to the channel width, halfway up the valley where a 

high MADstd earthflow pinches the valley. The valley width immediately upstream is 100 m wide, comparable to the widest 

part of the valley at the mouth of Jungle Creek. Similarly, Rye Creek’s valley is pinched to the channel width at 2 km upstream 500 

(drainage area = 7.5e6 m2) and widens immediately upstream to the widest values noted along the tributary. Similar trends of 

narrowed valleys with wider sections immediately upstream are seen in the other tributaries, though the trends are less strong. 

Rye, Middle, Indian, and the unnamed creek are confined by earthflows in the upper 1-2 km; these earthflows form the valley 

walls and bottom and constrain the valley width to the active channel width.  

 505 
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Figure 5. Comparison of maximum age estimates and MADstd values. Range of maximum earthflow ages from lake sedimentation 
are shown as orange bars and radiocarbon ages are shown with blue probability distribution functions. Inset shows the MADstd 510 
values calculated with a 5m moving window for the earthflow complex creating the unnamed lake. Note the relatively low MADstd 
in blue despite dense Pinus ponderosa forest covering earthflow surface. Yellow outline shows a possible re-activation of part of the 
complex, which raises the MADstd associated with lake formation from 0.087 to 0.137.  

4.3 Maximum earthflow ages 

Age results from radiocarbon dating range from 370 to 36,750 carbon-14 years before present, or 460 ± 34 to 41,665 ± 237 515 

calibrated years before present (yr BP) (Table 1, Figure 5). Samples were taken from the toe of earthflows, and represent 

charcoal that was originally deposited in regolith then transported through earthflow movement. Thus, the age given by 

radiocarbon dating is a measure of 1) the inherited age of the charcoal, 2) regolith development, 3) earthflow transport, and 4) 

deposition at the earthflow toe. We cannot use our ages to directly date the last earthflow activity, but it does provide a 

maximum estimate of earthflow age.  520 

 

Based on a range of denudation rates of 0.08 to 0.17 mm/yr, the lake formed along Indian Creek (Figure 2) took approximately 

267 and 567 years to fill to the current level (Figure 5), indicating the earthflow has been constricting Indian Creek for at least 

that long. The lake along Rye Creek, formed just upstream of earthflow carbon site 8-3-20-3, took between 204 and 433 years 

to fill with sediment to the modern level, and the lake along the unnamed creek took approximately 159 to 337 years to fill.  525 
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The ages we derived from sedimentation rates and lake volume do not directly date earthflow activity, though the relationship 

is more complex than the radiocarbon ages. The lake itself formed when the earthflow initially dammed the valley, and so 

represents a maximum age. However, all lakes are currently filled with sediment and an outlet stream has eroded through the 550 

damming earthflow, which indicates the sedimentation age is a minimum estimate of the lake’s age.  Based on the observation 

that the outlet stream is still forming a knickpoint in the earthflow and has not yet incised through the lake fill, we believe the 

sedimentation age is close to the age of the lake and thus these ages more closely estimate the maximum earthflow age.  

 

We were able to get a radiocarbon age and a sedimentation age for one earthflow: the Rye Creek earthflow was dated with 555 

charcoal to 4353 yr BP but has a sedimentation age of 204 to 433 years. These ages indicate upwards of 4000 years of residence 

time for charcoal in the earthflow, similar to values found for rotational landslides in the Oregon Coast Range (Struble et al., 

2020), and a maximum estimate of earthflow activity to approximately 204 to 433 years ago. The other earthflows creating 

lakes are similarly young, with maximum ages in the last 500 years; radiocarbon ages support relatively recent earthflow 

activity with maximum age estimates of less than 1000 years for four of the six dated earthflows.  560 

 

Table 1. Radiocarbon dates 

Lab ID Tributary name Latitude Longitude 
C-14 yrs BP 

(2 sigma) 
calibrated yr BP              

(2 sigma) 
MAD
std 

8-3-20-1 Jungle Creek 47.34689 -120.87804 790 ± 20 702 ± 25 0.142 

8-3-20-2 unnamed tributary 

to Jungle Creek 

47.33463 -120.87036 640 ± 20 577 ± 20 (p = 0.57) 0.138 

     
643 ± 18 (p = 0.43) 

 

8-3-20-3 Rye Creek 47.31456 -120.87959 3910 ± 20 4353 ± 64 0.141 

8-3-20-4 Middle Creek 47.29731 -120.84273 73 0 ± 20 670 ± 15 0.116 

8-4-20-1 Indian Creek 47.31481 -120.82517 36750 ± 20 41665 ± 237 0.15 

8-4-20-3 Dickey Creek 47.28752 -120.84302 370 ± 20 460 ± 34 (p = 0.61) 0.094 
     

349 ± 29 (p = 0.39) 
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 565 
Figure 6. MADstd values for simulated diffusion across the Jungle Creek earthflow. Inset images shows the Jungle Creek slide with 
modern (simulation time = 0) MAD values where yellow are high directional MAD and blue are low. Star shows location of sample 
8-3-20-1. For all diffusion values, linear regressions give an r-squared of >0.98.  

4.4 Verification of MADstd relative dating 

Simulated diffusion across the Jungle Creek earthflow shows a strong linear relationship between MADstd and earthflow age 570 

(Figure 6) with an r-squared fit of >0.98 for all four hillslope diffusion values tested. When simulations were run with stream 

erosion, resulting MADstd values were very similar with less than 5% difference in values and a median difference of 0.2%. 

Therefore, whether stream erosion is considered or not is negligible to the MADstd value. The linear decrease in MADstd 

values with time supports our initial theory that as earthflows stop moving, the directional roughness becomes more similar 

across the earthflow surface. Soil diffusion creates a more multi-directional surface with lower variation in flow directional 575 

roughness. When earthflows are active, orthogonal flow off the flow features and scarps creates a highly variable MAD and 

thus a high MADstd.  

 

While our simulations give equations relating age and MADstd, we do not apply this equation to the study area because the 

relationship is highly dependent on the soil diffusion value. We do not know the site-specific diffusion rate, and even slight 580 

differences between K = 0.0002 and 0.0004 give widely different age estimates (Figure 6). We also do not know how the 

diffusion rate changed over the late Quaternary in our study area. However, we can assume that the diffusion rate and associated 

variations are similar across our study area, where climatic and biotic forcings are relatively uniform and earthflow source 

lithology is either lower Roslyn or Teanaway formation. Thus, we should be able to use MADstd to relatively date earthflow 

activity.  585 

 

When we apply the MADstd value to mapped earthflows (Figure 2), topographic relationships support the relative dating 

technique (Figure 7). In our study area, there are 22 instances of earthflows clearly overlapping with another, in which 
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morphologic clues can be used to relatively date them. Of these, 16 had MADstd values consistent with the cross-cutting 

relationship. In cases where the MADstd gave incorrect relative ages, five were on earthflow complexes. MADstd appears to 680 

not work as well across large earthflow complexes where there is more heterogeneity in activity and less defined flow lines 

and scarps. If we disregard earthflow complexes, then only one of 17 cross-cutting relationships are not reflected by the relative 

MADstd values.  

 

 685 

Figure 7. A) Cross cutting relationships compared to MADstd relative age relationships and B-D) examples of cross cutting 
relationships underlain by a lidar hillshade (Quantum Spatial, 2015; 2018).  

 

Valley bottom impingement also supports the MADstd ages. Active earthflows are more likely to block tributary valleys in 

contrast to older, less active earthflows whose deposits can be eroded by the stream to re-form a wide valley. Earthflows that 690 

completely block valleys, or narrow valleys to the channel width, have higher MADstd values than earthflows that only 

partially block valleys (Figure 4H-J). One outlier to this is the 4-6 kilometers along Rye Creek and the unnamed creek (Figure 

4B, C) with a low MADstd but strong effect on valley width. Both of these earthflows are large earthflow complexes (3-4 km2) 

and the MADstd value of the entire complex may not represent the locally active portions that affect the two creeks.  

 695 

Although MADstd appears to work to relatively date earthflows across the study area, comparing lake sedimentation ages and 

MADstd indicates that earthflows active at a similar time may display a range of MADstd values. Lakes along Rye and Indian 

Creek have sedimentation ages of 204 to 433 and 267 to 567 years, respectively, with MADstd values of associated valley-

blocking earthflows of 0.141 and 0.146 (Figure 5). Given the error in sedimentation ages, we consider these lakes to have 
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formed at approximately the same time, thus indicating that MADstd values can range by at least 0.005 for earthflows with 

similar activity history. 

 

The sedimentation age for the lake along the unnamed creek is an outlier, with the youngest range of sedimentation ages (159 

to 337 years) yet the lowest MADstd of 0.087 which represents the least active earthflow of the three studied lakes. The 0.087 800 

value comes from a large earthflow complex that borders the western and southern edge of the lake. When MADstd is 

calculated using a moving window of 5m, variations in MADstd across the earthflow complex become clear (Figure 5 inset). 

In particular, a higher MADstd region can be identified at the base of the lake, where a sharper headscarp and an offset logging 

road indicate reactivation of this part of the earthflow complex. The MADstd of the reactivated portion is 0.137, much higher 

than the 0.087 value for the earthflow complex as a whole. When the new value is used, we see that the three lakes cluster in 805 

a range of MADstd values of 0.137 to 0.146 with an age of approximately 250-500 years. Therefore, we conclude that 

earthflows active in the last few hundred years may have a range of MADstd of 0.137 to 0.146. When relatively dating 

earthflow activity, we should use MADstd differences of >0.01 to differentiate separate periods of earthflow activity. 

 

 810 

Figure 8. Distribution of MADstd values by lithology, binned by 0.05. 

4.5 Relative earthflow activity 

We analyze relative earthflow age by underlying lithology. Soil diffusion is the primarily control on the relationship between 

MADstd and earthflow activity (Figure 6); diffusion is set by climate (Sweeney et al., 2015) and lithology (Johnstone and 
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Hilley, 2015) which determine the rate of soil movement as well as soil thickness. The study area experiences similar climate, 815 

and so we can compare earthflows within each lithologic unit to contrast relative earthflow activity. Only five and eight 

earthflows are sourced in the Swauk or Middle Roslyn formations, respectively, and MADstd values range from 0.07 to 0.21 

(Figure 6). The majority of earthflows (n=96) are underlain by the volcanic Teanaway Formation. MADstd values are clustered 

around 0.10, with a small frequency peak near 0.17. Unlike the mostly unimodal distribution in the Teanway Formation, 

earthflows in the lower Roslyn Formation have a bimodal MADstd distribution with peaks at 0.08 and 0.13.  820 

 

Absolute ages suggest that earthflows active in the last few hundred years have MADstd values of 0.13 to 0.15, approximately 

(Figure 5), and that differences of >0.01 MADstd are necessary to distinguish between relative earthflow ages. Based on this, 

the earthflows underlain by the Teanaway Formation are mostly inactive but do contain some earthflows that have been active 

in the last few hundred years; 24 (25%) earthflows have MADstd of >0.13. For earthflows underlain by the Roslyn Formation, 825 

a similar percentage were likely active in the last few hundred years, with 20 (25%) earthflows with a MADstd of >0.13.  

 

That the MADstd values for the lower Roslyn Formation are bimodal indicates the prevalence of active earthflows with 

MADstd of >0.13 is unlikely to be due to a preservation bias, nor to constant earthflow activity. Instead, the sharp break 

between active earthflows and the cluster of older earthflows around 0.08 MADstd suggests a history of: initial earthflow 830 

activity, followed by a cessation in which soil diffusion acted across earthflows, then re-activation or new earthflow formation 

of 25% of the earthflows in the study area.  

5 Discussion 

5.1 Drivers of earthflow motion 

Our aspect analysis showed a strong preference for earthflows to be oriented towards the southwest quadrangle (Figure 3), and 835 

we hypothesize that this reflects a bedding plane control on earthflow location. The Roslyn and Teanaway Formations are 

gently dipping to the southwest with dip angles ranging from 10 to 30 degrees (Tabor et al., 1982), comparable to the modal 

and median earthflow slopes. There is some variability in the bedding orientation as the Teanaway and Roslyn formations 

curve to the west, but only 8.5 percent of earthflows by area are located in this southeast-dipping region. Southeast aspects 

account for 21% of mapped earthflows; this mismatch implies not all earthflows are directly aligned to underlying bedding 840 

planes. Possibly, southerly aspects could be preferential due to vegetation and evaporation conditions that affects hillslope 

stabilization. However, the hillslopes in our study area are uniformly Pinus ponderosa dominated forest. The preponderance 

of SW facing earthflows thus indicates that most earthflows are lithologically controlled.  Since the Roslyn and Teanaway are 

conformable, the bedding plane orientation also reflects the mid-Eocene landscape surface, and therefore the orientation of 

paleosols within the two units. Previous work has noted that paleosols and volcanic flows interspersed in the Teanaway and 845 

Roslyn formations form planes of weakness for landslides (NFTWA, 1996). That our observed slopes and aspects match the 
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bedding orientation supports this finding and indicates the bedding provides a first-hand control on the orientation of earthflows 

in the Teanaway basin.  

 

Further support for a lithologic control is the prevalence of earthflows in the Teanaway and lower Roslyn Formations, with 850 

94% of mapped earthflows in these two units that make up 32.7% of the study area. The southern edge of mapped earthflows 

does align with the extent of Pleistocene glaciations, which overtopped the western drainage boundary and flowed in through 

the West Fork Teanaway. Although earthflows likely postdate the 120ky glaciation, the muted topography resulting from 

glacial erosion may be less prone to earthflows. The glacial extent overlaps both the middle and lower Roslyn Formation 

(Figure 2), and earthflows in the lower Roslyn Formation stop at the low relief topography left by glacial erosion. Thus, glacial 855 

erosion, in addition to underlying lithology, appears to control the extent of glaciation. At the southern edges of the study area, 

glacial erosion is minimal and topographic relief increases. However, only eight small earthflows were mapped in this region, 

which is underlain by middle and upper Roslyn Formation. Although conformable, the middle and upper Roslyn Formation 

members lack rhyolite interbeds and are finer grained in comparison to the lower member (Tabor et al., 1984). Likely, the 

interbedded rhyolite allows planes of weakness to form (NFTWA, 1996) that promote earthflow formation.  860 

 

Our absolute and relative ages indicate approximately 25% (n = 46) of the mapped earthflows were active within the last few 

hundred years; however, we do not have strong age control for the remaining 141 earthflows. Earthflow activity is often 

correlated to climate, with wetter periods driving earthflow motion (Baum et al., 2003) and drier periods creating desiccation 

cracks that prime the landscape for deep water infiltration (McSaveney and Griffiths, 1987). The last few hundred years in the 865 

Teanaway basin were climatically characterized by the Little Ice Age, which caused about 1°C cooler conditions (Graumlich 

and Brubaker, 1986). This temperature change is unlikely to significantly alter weathering rates and regolith production 

(Marshall et al., 2015; Schanz et al., 2019), and precipitation rates remained low. However, human modification since 1890 

may have contributed to earthflow activity. Starting c 1890, large scale deforestation and road building began (Kittitas County 

Centennial Committee, 1989), which would decrease evapotranspiration and root strength, leading to greater water infiltration 870 

and weaker soil cohesion; conditions that promote earthflow movement. Similar patterns are seen in the Waipaoa River basin, 

New Zealand, where deforestation in the last two hundred years has resulted in mass movements and increased sediment loads 

(Cerovski-Darriau and Roering, 2016).  

5.2 Landscape disturbance 

Earthflows in the Teanaway basin alter valley bottom topography and hillslope erosion rates, which affects habitat zones and 875 

Holocene denudation rates. In the Teanaway forks and mainstem, no earthflows encroach on the valley bottoms, but all of the 

North Fork tributaries examined in Figure 4 initiate on an earthflow or earthflow complex, with the exception of Jack and 

Dickey creeks. Only a relatively small number (10 of 187) of mapped earthflows in the North Fork tributaries are in direct 
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contact with streams; these earthflows range in size from a large earthflow complex of 4 km2 to smaller flows of 14,000 m2 

and show mostly recent (<200 years) activity.  880 

 

Increased sediment flux from earthflows appears to be mostly fine sediment; grain size surveys indicate high amounts of fine 

sediment and moderate coarse sediment loads in the North Fork tributaries with no significant difference between tributaries 

draining Teanaway and lower Roslyn formations, despite a rock strength difference between the basalt and friable sandstone 

(NFTWA, 1996). In a similar sandstone formation, Fratkin et al. (2020) found significant variation in surface and subsurface 885 

grain size when compared to adjacent tributaries draining basalt; most bedload in their study area was delivered by debris 

flows and landslides. However, earthflows tend to incorporate highly weathered material and regolith; in the Eel River, 90% 

of earthflow colluvium is smaller than 76 mm (Mackey and Roering, 2011). Field observations in the Teanaway at earthflow 

toes and exposed surfaces were of sand and silt size fractions, with a few small gravels, even at radiocarbon site 8-4-20-2, 

which had insufficient carbon to produce an age but is from an earthflow sourced entirely from the Teanaway Formation basalt. 890 

Thus, the abundant fine sediment and lack of significant grain size difference between tributaries in the Teanaway and lower 

Roslyn formation may reflect large sediment contributions from earthflows, which preferentially transport weathered regolith.. 

 

These effects on sediment flux and valley width are likely to disturb in-stream habitat. Heighted fine sediment delivery can 

clog pore spaces in spawning gravels; however, slopes in the Teanaway basin are high and sufficient to quickly transport sands 895 

and finer material downstream (NFTWA, 1996; Schanz et al., 2019). Floodplain habitat is reduced where earthflows narrow 

the valley (Figure 4), though valley widths are abnormally large just upstream of earthflows in Jungle, Rye and Dickey creeks. 

Valley width is a key landscape characteristic for salmon habitat (Burnett et al., 2007) and wider valleys are often associated 

with heterogeneous channel features (Montgomery and Buffington, 1997) and flood refuge habitat (May et al., 2013). That 

Teanaway earthflows can create heterogeneity in valley widths implies they exert a direct influence on riparian habitat.  900 

5.3 MADstd as relative dating tool 

Our lake sedimentation ages showed very little relationship between MADstd and earthflow activity for recent earthflows; 

however, this finding is consistent with other studies of landslide surface roughness. Comparing three surface roughness 

metrics on landslides spanning ~200 years of activity, Goetz et al. (2014) found no relationship between surface roughness 

and age. Booth et al. (2017) suggest surface roughness is more appropriately used to distinguish landslide ages at the scale of 905 

thousands of years. Thus, the limitations of MADstd are similar to other surface roughness metrics in that we cannot distinguish 

relative earthflow activity of <200 years.  

 

Yet, MADstd is able to identify flow features and differentiate between forest terrain, which gives it an advantage over some 

other roughness metrics. The original flow directional MAD metric picks up flow features such as scarps, debris flows, and 910 

channels that are missed by isotropic roughness metrics (Trevisani and Cavalli, 2016). In the case of earthflows, high and low 
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flow directional MAD values are associated with the strong lineations; as flow follows the crests and hollows, the >1 m 

lineations also direct flow orthogonal to crests (Figure 6 inset). By taking the standard deviation, we can highlight the parallel 

and orthogonal flow that is characteristic of >1 m scale lineations; however, it is important to note that this method would not 

work if the elevation model resolution is greater than the lineation scale. Compared to other metrics applied to landslides, the 955 

MADstd includes a flow directional roughness and detrends the data, both of which have been found to improve landslide 

identification accuracy (Berti et al., 2013; McKean and Roering, 2004). Previously used surface roughness metrics often have 

trouble capturing the top of earthflows and differentiating between rough, forested terrain and landslide roughness (Berti et 

al., 2013). When the MADstd is calculated over a moving 5 m radius window, rather than over a single earthflow, forested 

hillslopes are clearly delineated from earthflows. The roughness elements from trees are isotropic and give MADstd values 960 

near zero (Figure 5 inset). The scarp, flowlines, and toe produce strong lineations in the landscape that light up in the MADstd 

plots, due to the parallel and orthogonal flow over the 1 m DEM. Even smaller earthflows, of approximately 3600 m2, are 

identified with the 5 m moving window MADstd. This advantage over previous, isotropic methods of calculating surface 

roughness and identifying landslides indicates MADstd is an appropriate method for use in identifying and mapping 

earthflows, though we caution that the DEM resolution size must be less than the scale of earthflow lineations. 965 

 

Further, the decay of MADstd with age shows potential, particularly if it can be used as an absolute age when combined with 

other dating methods. As time since earthflow activity increases, MADstd decreases in a strongly correlated (r-squared > 0.98) 

linear relationship. Any error in the linear relationship remains similar despite the time frame considered. In contrast, other 

surface roughness metrics like standard deviation of slope (SDS) have an exponential relationship with landslide age. When 970 

calibrated to absolute dating, exponential relationships can result in errors are up to ±1 ky for landslides that are 10 ky old 

(LaHusen et al., 2016). Although we were unable to convert the MADstd relationship to an absolute age relationship for the 

Teanaway, the MADstd roughness metric has potential as a more precise method to date older mass movements (~10 ky or 

greater).  

6 Conclusion 975 

To examine controls on earthflow activity and resulting topographic disturbance in the Teanaway basin, we mapped and dated 

earthflows using 1 m lidar and a new relative dating method that relies on flow directional surface roughness. The MADstd 

metric appears well-suited to identifying and relatively dating earthflows, as it picks up linear roughness elements such as 

lateral shear zones and levees, and is able to ignore the influence of dense vegetation on the elevation model. This is particularly 

useful for densely vegetated areas, where other roughness metrics have difficulty and where object tracking is problematic to 980 

apply. In addition to MADstd relative ages, we used radiocarbon and sedimentation ages to provide a few constraining absolute 

ages; these ages indicate that 25% of earthflows in the Teanaway basin were active in the last few hundred years. Nearly all 

(94%) of earthflows occur in the Teanaway and lower Roslyn formations, which contain interbedded basalt and rhyolite flows 
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along with paleosols and coarse sandstone. Slide aspect and slope roughly follow the orientation of the paleosol and volcanic 

flow dip angles, suggesting a strong lithologic control on earthflow location and orientation. Most tributaries in the Teanaway 

initiate on earthflow complexes, and experience valley width changes due to earthflow damming and associated upstream 

widening. Despite some variability in source lithology, the selective transport of regolith and weathered material by earthflows 1130 

results in delivery of fine sediments. While this fine sediment poses a potential hazard for instream habitat, stream power is 

sufficient to transport it downstream; therefore, the largest habitat disturbance provided by the earthflows is heterogeneity in 

valley width.  
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