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Abstract: Proper knowledge of velocity is required in accurately determining the enormous destructive energy8

carried by a landslide. We present the first, simple and physics-based general analytical landslide velocity model9

that simultaneously incorporates the internal deformation (non-linear advection) and externally applied forces,10

consisting of the net driving force and the viscous resistant. From the physical point of view, the model stands11

as a novel class of non-linear advective − dissipative system where classical Voellmy and inviscid Burgers’12

equation are specifications of this general model. We show that the non-linear advection and external forcing13

fundamentally regulate the state of motion and deformation, which substantially enhances our understanding14

of the velocity of a coherently deforming landslide. Since analytical solutions provide the fastest, the most cost-15

effective and the best rigorous answer to the problem, we construct several new and general exact analytical16

solutions. These solutions cover the wider spectrum of landslide velocity and directly reduce to the mass point17

motion. New solutions bridge the existing gap between the negligibly deforming and geometrically massively18

deforming landslides through their internal deformations. This provides a novel, rapid and consistent method19

for efficient coupling of different types of mass transports. The mechanism of landslide advection, stretching and20

approaching to the steady-state has been explained. We reveal the fact that shifting, up-lifting and stretching21

of the velocity field stem from the forcing and non-linear advection. The intrinsic mechanism of our solution22

describes the fascinating breaking wave and emergence of landslide folding. This happens collectively as the23

solution system simultaneously introduces downslope propagation of the domain, velocity up-lift and non-linear24

advection. We disclose the fact that the domain translation and stretching solely depends on the net driving25

force, and along with advection, the viscous drag fully controls the shock wave generation, wave breaking,26

folding, and also the velocity magnitude. This demonstrates that landslide dynamics are architectured by27

advection and reigned by the system forcing. The analytically obtained velocities are close to observed values in28

natural events. These solutions constitute a new foundation of landslide velocity in solving technical problems.29

This provides the practitioners with the key information in instantly and accurately estimating the impact30

force that is very important in delineating hazard zones and for the mitigation of landslide hazards.31

1 Introduction32

There are three methods to investigate and solve a scientific problem: laboratory or field data, numerical simu-33

lations of governing complex physical-mathematical model equations, or exact analytical solutions of simplified34

model equations. This is also the case for mass movements including extremely rapid flow-type landslides such35

as debris avalanches (Pudasaini and Hutter, 2007). The dynamics of a landslide are primarily controlled by36

the flow velocity. Estimation of the flow velocity is key for assessment of landslide hazards, design of protective37

structures, mitigation measures and landuse planning (Tai et al., 2001; Pudasaini and Hutter, 2007; Johan-38

nesson et al., 2009; Christen et al., 2010; Dowling and Santi, 2014; Cui et al., 2015; Faug, 2015; Kattel et al.,39

2018). Thus, a proper understanding of landslide velocity is a crucial requirement for an appropriate modelling40

of landslide impact force because the associated hazard is directly and strongly related to the landslide velocity41

(Huggel et al., 2005; Evans et al., 2009; Dietrich and Krautblatter, 2019). However, the mechanical controls of42

the evolving velocity, runout and impact energy of the landslide have not yet been understood well.43

Due to the complex terrain, infrequent occurrence, and very high time and cost demands of field measurements,44
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the available data on landslide dynamics are insufficient. Proper understanding and interpretation of the data45

obtained from the field measurements are often challenging because of the very limited nature of the material46

properties and the boundary conditions. Additionally, field data are often only available for single locations47

and determined as static data after events. Dynamic data are rare (de Haas et al., 2020). So, much of the low48

resolution measurements are locally or discretely based on points in time and space (Berger et al., 2011; Schürch49

et al., 2011; McCoy et al., 2012; Theule et al., 2015; Dietrich and Krautblatter, 2019). Therefore, laboratory50

or field experiments (Iverson et al., 2011; de Haas and van Woerkom, 2016; Lu et al., 2016; Lanzoni et al.,51

2017, Li et al., 2017; Pilvar et al., 2019; Baselt et al., 2021) and theoretical modelling (Le and Pitman, 2009;52

Pudasaini, 2012; Pudasaini and Mergili, 2019) remain the major source of knowledge in landslide and debris53

flow dynamics. Recently, there has been a rapid increase in the comprehensive numerical modelling for mass54

transports (McDougall and Hungr, 2005; Medina et al., 2008; Cascini et al., 2014; Cuomo et al., 2016; Frank55

et al., 2015; Iverson and Ouyang, 2015; Mergili et al., 2020a,b; Qiao et al., 2019; Liu et al. 2021). However, to56

certain degree, numerical simulations are approximations of the physical-mathematical model equations. Their57

usefulness is often evaluated empirically (Mergili et al., 2020a, 2020b). In contrast, exact, analytical solutions58

(Faug et al., 2010; Pudasaini, 2011) can provide better insights into the complex flow behaviors, mainly the59

velocity. Moreover, analytical and exact solutions to non-linear model equations are necessary to elevate the60

accuracy of numerical solution methods (Chalfen and Niemiec, 1986; Pudasaini, 2011, 2016; Pudasaini et al.,61

2018). For this reason, here, we are mainly concerned in presenting exact analytical solutions for the newly62

developed general landslide velocity equation.63

Since Voellmy’s pioneering work, several analytical models and their solutions have been presented in the liter-64

ature for mass movements including extremely rapid flow-type landslide processes, avalanches and debris flows65

(Voellmy, 1955; Salm, 1966; Perla et al., 1980; McClung, 1983). However, on the one hand, all these solutions66

are effectively simplified to the mass point or center of mass motion. None of the existing analytical velocity67

models consider advection or internal deformation. On the other hand, the parameters involved in these models68

only represent restricted physics of the landslide material and motion. Nevertheless, a full analytical model that69

includes a wide range of essential physics of the mass movements incorporating important process of internal70

deformation and motion is still lacking. This is required for the more accurate description of landslide mo-71

tion. Moreover, recently presented simple analytical solutions for mass transports considered debris avalanches72

(Pudasaini, 2011), two-phase flows (Ghosh Hajra et al., 2017, 2018), landslide mobility (Pudasaini and Miller,73

2013; Parez and Aharonov, 2015), fluid flows in debris materials (Pudasaini, 2016), mud flow (Di Cristo et al.,74

2018), granular front down an incline (Saingier et al., 2016), granular monoclinal wave (Razis et al., 2018) and75

the submarine debris flows (Rui and Yin, 2019). However, neither a more general landslide model as we have76

derived here, nor the solution for such a model exists in literature.77

This paper presents a novel non-linear advective - dissipative transport equation with quadratic source term78

representing the system forcing, containing the physical/mechanical parameters as a function of the state vari-79

able (the velocity) and their exact analytical solutions describing the landslide motion. The new landslide80

velocity model and its analytical solutions are more general and constitute the full description for velocities81

with wide range of applied forces and the internal deformation. Importantly, the newly developed landslide82

velocity model covers both the classical Voellmy and inviscid Burgers’ equations as special cases, unifies and83

extends them further, but it also describes fundamentally novel and broad physical phenomena.84

It is a challenge to construct exact analytical solutions even for the simplified problems in mass transport85

(Pudasaini, 2011, 2016; Di Cristo et al., 2018; Pudasaini et al., 2018). In contrast to the existing models, such86

as Voellmy-type and Burgers-type, the great complexity in solving the new landslide velocity model analyti-87

cally derives from the simultaneous presence of the internal deformation (non-linear advection, inertia) and the88

quadratic source representing externally applied forces (in terms of velocity, including physical parameters).89

However, here, we construct various analytical and exact solutions to the new general landslide velocity model90

by applying different advanced mathematical techniques, including those presented by Nadjafikhah (2009) and91

Montecinos (2015). We revealed several major novel dynamical aspects associated with the general landslide92

velocity model and its solutions. We show that a number of important physical phenomena are captured by the93

new solutions. This includes - landslide propagation and stretching; wave generation and breaking; and land-94
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slide folding. We also observed that different methods consistently produce similar analytical solutions. This95

highlights the intrinsic characteristics of the landslide motion described by our new model. As exact, analytical96

solutions disclose many new and essential physics, the solutions derived in this paper may find applications in97

environmental, engineering and industrial mass transport down slopes and channels.98

2 Basic Balance Equation for Landslide Motion99

2.1 Mass and momentum balance equations100

A geometrically two-dimensional motion down a slope is considered. Let t be time, (x, z) be the coordinates101

and (gx, gz) the gravity accelerations along and perpendicular to the slope, respectively. Let, h and u be the102

flow depth and the mean flow velocity along the slope. Similarly, γ, αs, µ be the density ratio between the fluid103

and the particles (γ = ρf/ρs), volume fraction of the solid particles (coarse and fine solid particles), and the104

basal friction coefficient (µ = tan δ), where δ is the basal friction angle, in the mixture material. Furthermore,105

K is the earth pressure coefficient as a function of internal and the basal friction angles, and CDV is the viscous106

drag coefficient.107

We start with the multi-phase mass flow model (Pudasaini and Mergili, 2019) and include the viscous drag108

(Pudasaini and Fischer, 2020). For simplicity, we assume that the relative velocity between coarse and fine109

solid particles (us, ufs) and the fluid phase (uf ) in the landslide (debris) material is negligible, that is, us ≈110

ufs ≈ uf =: u, and so is the viscous deformation of the fluid. This means, for simplicity, we are considering111

an effectively single-phase mixture flow. Then, by summing up the mass and momentum balance equations112

(Pudasaini and Mergili, 2019; Pudasaini and Fischer, 2020), we obtain a single mass and momentum balance113

equation describing the motion of a landslide as:114

∂h

∂t
+

∂

∂x
(hu) = 0, (1)

115

∂

∂t
(hu) +

∂

∂x

[
hu2 + (1− γ)αsg

zK
h2

2

]
= h

[
gx − (1− γ)αsg

zµ− gz {1− (1− γ)αs}
∂h

∂x
− CDV u2

]
, (2)

where − (1− αs) gz∂h/∂x emerges from the hydraulic pressure gradient associated with possible interstitial116

fluids in the landslide. Moreover, the term containing K on the left hand side, and the other terms on the117

right hand side in the momentum equation (2) represent all the involved forces. The first term in the square118

bracket on the left hand side of (2) describes the advection, while the second term (in the square bracket)119

describes the extent of the local deformation that stems from the hydraulic pressure gradient of the free-120

surface of the landslide. The first, second, third and fourth terms on the right hand side of (2) are the gravity121

acceleration; effective Coulomb friction which includes lubrication (1− γ), liquefaction (αs) (because, if there122

is no or substantially low amount of solid, the mass is fully liquefied, e.g., lahar flows); the term associated123

with buoyancy and the fluid-related hydraulic pressure gradient; and the viscous drag, respectively. Note that124

the term with 1 − γ or γ originates from the buoyancy effect. By setting γ = 0 and αs = 1, we obtain a dry125

landslide, grain flow or an avalanche motion. For this choice, the third term on the right hand side vanishes.126

However, we keep γ and αs also to include possible fluid effects in the landslide (mixture).127

2.2 The landslide velocity equation128

The momentum balance equation (2) can be re-written as:129

h

[
∂u

∂t
+ u

∂u

∂x

]
+ u

[
∂h

∂t
+

∂

∂x
(hu)

]
= h

[
gx–(1− γ)αsg

zµ–gz {((1− γ)K + γ)αs + (1− αs)}
∂h

∂x
− CDV u2

]
. (3)

Note that for K = 1 (which mostly prevails for extensional flows, Pudasaini and Hutter, 2007), the third term130

on the right hand side associated with ∂h/∂x simplifies drastically, because {((1− γ)K + γ)αs + (1− αs)}131
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becomes unity. So, the isotropic assumption (i.e., K = 1) loses some important information about the solid132

content and the buoyancy effect in the mixture. Employing the mass balance equation (1), the momentum133

balance equation (3) can be re-written as:134

∂u

∂t
+ u

∂u

∂x
= gx–(1− γ)αsg

zµ–gz {((1− γ)K + γ)αs + (1− αs)}
∂h

∂x
− CDV u2. (4)

The gradient ∂h/∂x might be approximated, say as hg, and still include its effect as a parameter that may be135

estimated. Here, we are mainly interested in developing a simple but more general landslide velocity model136

than the existing ones that can be solved analytically and highlight its essence to enhance our understanding137

of the landslide dynamics.138

Now, with the notation α := gx–(1− γ)αsg
zµ–gz {((1− γ)K + γ)αs + (1− αs)}hg, which includes the forces:139

gravity; friction, lubrication and liquefaction; and surface gradient; and β := CDV , which is the viscous drag140

coefficient, (4) becomes a simple model equation:141

∂u

∂t
+ u

∂u

∂x
= α− βu2, (5)

where α and β constitute the net driving and the resisting forces in the system. We call (5) the landslide142

velocity equation.143

2.3 A novel physical−mathematical system144

Equation (5) constitutes a novel class of non-linear advective - dissipative system and involves dynamic in-145

teractions between the non-linear advective (or, inertial) term u∂u/∂x and the external forcing (source) term146

α − βu2. However, in contrast to the viscous Burgers’ equation where the dissipation is associated with the147

(viscous) diffusion, here, dissipation stems because of the viscous drag, −βu2. In the form, (5) is similar to the148

classical shallow water equation. However, from the mechanics and the material composition, it is much wider149

as such model does not exist in the literature. From the physical and mathematical point of view, there are150

two crucial novel aspects associated with model (5). First, it explains the dynamics of deforming landslide and151

thus extends the classical Voellmy model (Voellmy, 1955; Salm, 1966; McClung, 1983; Pudasaini and Hutter,152

2007) due to the broad physics carried by the model parameters, α, β; and the dynamics described by the new153

term u∂u/∂x. These parameters and the term u∂u/∂x control the landslide deformation and motion. Second,154

it extends the classical non-linear inviscid Burgers’ equation by including the non-linear source term, α− βu2,155

as a quadratic function of u, taking into account many different forces.156

From the structure, (5) is a fundamental non-linear partial differential equation, or a non-linear transport equa-157

tion with a source, where the source is the external physical forcing. Such an equation explains the non-linear158

advection with source term that contains the physics of the underlying problem through the parameters α and159

β. The form of this equation is very important as it may describe the dynamical state of many extended (as160

compared to the Voellmy and Burgers models) physical and engineering problems appearing in nature, science161

and technology, including viscous/fluid flow, traffic flow, shock theory, gas dynamics, landslide and avalanches162

(Burgers, 1948; Hopf, 1950; Cole, 1951; Nadjafikhah, 2009; Pudasaini, 2011; Montecinos, 2015).163

3 The Landslide Velocity: Simple Solutions164

Exact analytical solutions to simplified cases of non-linear debris avalanche model equations provide important165

insight into the full behavior of the system, and are necessary to calibrate numerical simulations. Physically166

meaningful exact solutions explain the true and entire nature of the problem associated with the model equation167

(Pudasaini, 2011; Faug, 2015), and thus, should be developed, analyzed and properly understood prior to168

numerical simulations. These exact analytical solutions provide important insights into the full flow behavior169

of the complex system (Pudasaini and Krautblatter, 2021), and are often needed to calibrate and validate the170

numerical solutions (Pudasaini, 2016) as a prerequisite before running numerical simulations based on complex171

numerical schemes. This is very useful to interpret complicated simulations and/or avoid mistakes associated172
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with numerical simulations.173

One of the main purposes of this contribution is to obtain exact analytical velocities for the landslide model (5).174

In the form (5) is simple. So, one may tempt to solve it analytically to explicitly obtain the landslide velocity.175

However, it poses a great mathematical challenge to derive explicit analytical solutions for the landslide velocity,176

u. This is mainly due to the new terms appearing in (5). Below, we construct five different exact analytical177

solutions to (5) in explicit form. The solutions are compared to each other. Equation (5) can be considered178

in two different ways: steady-state and transient motions, and both without and with (internal) deformation179

that is described by the term u∂u/∂x.180

3.1 Steady−state motion181

For a sufficiently long time and sufficiently long slope, the time independent steady-state motion can be devel-182

oped. Then, (5) reduces to a simplified equation for the landslide velocity down the entire slope:183

∂

∂x

(
1

2
u2
)

= α− βu2. (6)

Equivalently, this also represents a mass point velocity along the slope. Classically, (6) is called the center of184

mass velocity of a dry avalanche of flow type (Perla et al., 1980) for γ = 0, αs = 1, K = 1, and for negligible185

free-surface pressure gradient. This will be discussed in detail at Section 3.2.186

3.1.1 Negligible viscous drag187

In situations when the Coulomb friction is dominant and the motion is slow, the viscous drag contribution can188

be neglected (βu2 ≈ 0), e.g., typically the moment after the mass release. Then, the solution to (6) is given by189

(Solution A):190

u(x;α) =
√

2α (x− x0) + u20, (7)

where u0 is the initial velocity at x0 (or, a boundary condition). Solution (7) recovers the landslide velocity191

obtained by considering the simple energy balance for a mass point in which only the gravity and simple dry192

Coulomb frictional forces are considered (Scheidegger, 1973), both of these forces are included in α. Further-193

more, when the slope angle is sufficiently high or close to vertical, (7) also represents a near free fall landslide194

or rockfall velocity.195

3.1.2 Viscous drag included196

In general, depending on the magnitude of the net driving force (that also includes the Coulomb friction), the197

viscous drag and the magnitude of the velocity, either α or βu2, or both can play important role in determining198

the landslide motion. Then, the more general solution for (6) than (7) takes the form (Solution B):199

u(x;α, β) =

√
α

β

[
1−

(
1− β

α
u20

)
1

exp(2β(x− x0))

]
, (8)

where, u0 is the initial velocity at x0. We note that as β → 0, the solution (8) approaches (7). The velocity200

given by (8) can be compared to the Voellmy velocity and be used to calculate the speed of an avalanche201

(Voellmy, 1955; McClung, 1983). However, the Voellmy model only considers the reduced physical aspects in202

which α merely includes the gravitational force due to the slope and the dry Coulomb frictional force. This203

will be discussed in more detail in Section 3.2. As in (7), the solution (8) can also represent a near free fall204

landslide (or rockfall) velocity when the slope angle is sufficiently high, but now, it also includes the influence205

of drag, akin to the sky-jump.206

The major aspect of viscous drag is to bring the velocity (motion) to a terminal velocity (steady, uniform) for207

a sufficiently long travel distance. This is achieved by the following relation obtained from (8):208

lim
x→∞

u =

√
α

β
=: u

Tx , (9)
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Figure 1: The landslide velocity distributions down the slope as a function of position, for both without and
with drag given by (7) and (8), respectively. With drag, the flow attains the terminal velocity u

Tx ≈ 60.1 m
s−1 at about x = 600 m, but without drag, the flow velocity increases unboundedly.

where u
Tx stands for the terminal velocity of a deformable mass, or a mass point motion (Voellmy), along the209

slope that is often used to calculate the maximum velocity of an avalanche (Voellmy, 1955; McClung, 1983;210

Pudasaini and Hutter, 2007).211

In what follows, unless otherwise stated, we use the plausibly chosen physical parameters for rapid mass212

movements: slope angle of about 50◦, γ = 1100/2700, αs = 0.65, δ = 20◦ (Mergili et al., 2020a, 2020b;213

Pudasaini and Fischer, 2020). This implies the model parameters α = 7.0, β = 0.0019. However, in principle,214

all of the results presented here are valid for any choice of the parameter set {α, β}. For simplicity, u0 = 0 is set215

at x0 = 0 at the position of the mass release. Figure 1 displays the velocity distributions of a landslide down216

the slope as a function of the slope position x. The magnitudes of the solutions presented here are mainly for217

reference purpose. For the order of magnitudes of velocities of natural events, we refer to Section 3.2.2. The218

velocities in Fig. 1 with and without drag behave completely differently already after the mass has moved a219

certain distance. For relatively small travel distance, say x ≤ 50 m, these two solutions are quite similar as the220

viscous drag is not sufficiently effective yet. The difference increases rapidly as the mass slides further down221

the slope. With the drag, the terminal velocity is attained at a sufficient distance. But, without drag, the222

velocity increases forever, which is less likely for a mass propagating down a long distance.223

3.2 A mass point motion224

Assume no or negligible local deformation (e.g., ∂u/∂x ≈ 0), or a Lagrangian description, both are equivalent225

to the mass point motion. In this situation, only the ordinary differentiation with respect to time is involved,226

and ∂u/∂t can be replaced by du/dt. Then, the model (5) reduces to227

du

dt
= α− βu2. (10)

Perla et al. (1980) also called (10) the governing equation for the center of mass velocity, however, for a dry228

avalanche of flow type. This is a simple non-linear first order ordinary differential equation. This equation can229

be solved to obtain exact analytical solution for the landslide velocity in terms of a tangent hyperbolic function230

(Solution C):231

u(t;α, β) =

√
α

β
tanh

√αβ (t− t0) + tanh−1

√β

α
u0

 , (11)
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Figure 2: Time evolution of the landslide velocity down the slope with drag given by (11). The motion attains
the terminal velocity at about t = 15 s.

where, u0 = u (t0) is the initial velocity at time t = t0. Equation (11) provides the time evolution of the velocity232

of the coherent (without fragmentation and substantial deformation) sliding mass until the time it fragments233

and/or moves like an avalanche. After that, we must use the full dynamical mass flow model (Pudasaini,234

2012; Pudasaini and Mergili, 2019), or the equations (1) and (2). For more detail on it, see Section 6.1. For235

sufficiently long time, the viscous force brings the motion to a non-accelerating state (steady, uniform). Then,236

from (11) we obtain:237

lim
t→∞

u =

√
α

β
=: u

Tt , (12)

where u
Tt stands for the terminal velocity of the motion of a point mass.238

The landslide position: Since u(t) = dx/dt, (11) can be integrated to obtain the landslide position as a239

function of time:240

x(t;α, β) = x0+
1

β
ln

cosh

√αβ (t− t0)− tanh−1

√β

α
u0


− 1

β
ln

cosh

− tanh−1

√β

α
u0


 , (13)

where x0 corresponds to the position at the initial time t0. Figure 2 displays the velocity profile of a landslide241

as a function of the time as given by (11). The terminal velocity
(
u

Tt =
√
α/β

)
is attained at a sufficiently242

long time (∼ 15 s). In the structure, the model (10) and its solution (11) exists in literature (Pudasaini and243

Hutter, 2007) and is classically called Voellmy’s mass point model (Voellmy, 1955), or Voellmy-Salm model244

(Salm, 1966) that disregards the position dependency of the landslide velocity (Gruber, 1989). But, (1−γ), αs,245

and the term associated with hg are new contributions and were not included in the Voellmy model, and K = 1246

therein, while in our consideration α, K can be chosen appropriately. Thus, the Voellmy model corresponds to247

the substantially reduced form of α, with α = gx − gzµ.248

3.2.1 The dynamics controlled by the physical and mechanical parameters249

Solutions (8) and (11) are constructed independently, one for the velocity of a deformable mass as a function250

of travel distance, or the velocity of the center of mass of the landslide down the slope, and the other for the251

velocity of a mass point motion as a function of time. Unquestionable, they have their own dynamics. However,252

for sufficiently long distance and sufficiently long time, or in the space and time limits, these solutions coincide253
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and we obtain a unique relationship:254

u
Tx = u

Tt =

√
α

β
. (14)

So, after a sufficiently long distance or a sufficiently long time, the forces associated with α and β always255

maintain a balance resulting in the terminal velocity of the system,
√
α/β. This is remarkable. Intuitively this is256

clear because, one could simply imagine that sufficiently long distance could somehow be perceived as sufficiently257

long time, and for these limiting (but fundamentally different) situations, there exists a single representative258

velocity that characterizes the dynamics. This has exactly happened, and is an advanced understanding. This259

has been shown in Fig. 1 and Fig. 2 which implicitly indicates the equivalence between (8) and (11). In fact,260

this can be proven, because, for the mass point or the center of mass motion,261

du

dt
=
du

dx

dx

dt
= u

du

dx
=
du

dx

(
1

2
u2
)

=
∂u

∂x

(
1

2
u2
)
, (15)

is satisfied.262

In Fig. 1 and Fig. 2, both velocities (with drag) have the same limiting values. The flow attains the terminal263

velocity at about x = 600 m and t = 15 s, but their early behaviours are quite different. In space, the velocity264

shows hyper increase after the incipient motion. However, the time evolution of velocity is slow (almost linear)265

at first, then fast, and finally attains the steady-state,
√
α/β = 60.1 m s−1, the common value for both the266

solutions.267

3.2.2 The velocity magnitudes268

Landslide can reach its maximum or the terminal velocity after a relatively short travel distance, or time with269

value on the order of 50 m s−1 (Schaerer, 1975; Gubler, 1989; Christen et al., 2002; Havens et al., 2014). The270

velocity magnitudes presented above are quite reasonable for fast to rapid landslides and debris avalanches271

(Highland and Bobrowsky, 2008). The front of the 2017 Piz-Chengalo Bondo landslide moved with more than272

25 m s−1 already after 20 s of the rock avalanche release (Mergili et al., 2020b), and later it moved at about 50273

m s−1 (Walter et al., 2020). The 1970 rock-ice avalanche event in Nevado Huascaran reached mean velocity of274

50 - 85 m s−1 at about 20 s, but the maximum velocity in the initial stage of the movement reached as high as275

125 m s−1 (Erismann and Abele, 2001; Evans et al., 2009; Mergili et al. 2018). The 2002 Kolka glacier rock-ice276

avalanche accelerated with the velocity of about 60 - 80 m s−1, but also attained the velocity as high as 100 m277

s−1, mainly after the incipient motion (Huggel et al., 2005; Evans et al., 2009).278

3.2.3 Accelerating and decelerating motions279

Depending on the magnitudes of the involved forces, and whether the initial mass was triggered with a small280

(including zero) velocity or with high velocity, e.g., by a strong seismic shacking, or when a high potential281

energy is available and is converted quasi-instantaneously into kinetic energy (the situation prevails when the282

vertical height drop of the detachment area is huge and the slope angle of the terrain is high), (11) provides283

fundamentally different but physically meaningful velocity profiles. Both solutions asymptotically approach284 √
α/β, the lead magnitude in (11). For notational convenience, we write Sn (α, β) =

√
α/β, which has the285

dimension of velocity,
√
α/β and is called the separation number (velocity) as it separates accelerating and286

decelerating regimes. Furthermore, Sn includes all the involved forces in the system and is the function of the287

ratio between the mechanically known forces: gravity, friction, lubrication and surface gradient; and the viscous288

drag force coefficient. Thus, Sn fully governs the ultimate state of the landslide motion. For initial velocity289

less than Sn, i.e., u0 < Sn, the landslide velocity increases rapidly just after its release, then ultimately (after290

a sufficiently long time) it approaches asymptotically to the steady state, Sn (Fig. 2). This is the accelerating291

motion. On the other hand, if the initial velocity was higher than Sn, i.e., u0 > Sn, the landslide velocity would292

decrease rapidly just after its release, then it ultimately would asymptotically approaches to Sn. This is the293

decelerating motion (not shown here).294
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Figure 3: The influence of the model parameters α and β on the landslide velocity. Colorbar shows velocity
distributions in m s−1.

3.2.4 Velocity described by the space of physical parameters295

We have now two possibilities. First, we can describe u(t;α, β) as a function of time with α, β as parameters.296

This corresponds to the velocity profile of the particular landslide characterized by the geometrical, physical297

and mechanical parameters α and β as time evolves. This has been shown in Fig. 2. Second, we can investigate298

the control of the physical parameters on the landslide motion for a given time. This is achieved by plotting299

u(α, β; t) as a function of α and β, and considering time as a parameter. Figure 3 shows the influence of α300

and β on the evolution of the velocity for a landslide motion for a typical time t = 35 s. The parameters α301

and β enhance or control the landslide velocity completely differently. For a set of parameters {α, β}, we can302

now provide an estimate of the landslide velocity. As mentioned earlier, the landslide velocity as high as 125 m303

s−1 have been reported in the literature with their mean and common values in the range of 60 - 80 m s−1 for304

rapid motions. This way, we can explicitly study the influence of the physical parameters on the dynamics of305

the velocity field and also determine their range of plausible values. This answers the question on how would306

the two similar looking, but physically differently characterized landslides move. They may behave completely307

differently.308

3.2.5 A model for viscous drag309

There exist explicit models for the interfacial drags between the particles and the fluid (Pudasaini, 2020) in310

the multiphase mixture flow (Pudasaini and Mergili, 2019). However, there exists no clear representation311

of the viscous drag coefficient for landslide which is the drag between the landslide and the environment.312

Often in applications, the drag coefficient (β = CDV ) is prescribed and is later calibrated with the numerical313

simulations to fit with the observation or data (Kattel et al., 2016; Mergili et al., 2020a, 2020b). Here, we314

explore an opportunity to investigate on how the characteristic landslide velocity (14) offers a possibility to315

define the drag coefficient. Equation (14) can be written as316

β =
α

u2max
, (16)

where, umax represents the maximum possible velocity during the motion as obtained from the (long-time)317

steady-state behaviour of the landslide. Equation (16) provides a clear and novel definition (representation) of318

the viscous drag in mass movement (flow) as the ratio of the applied forces to the square of the steady-state319

(or a maximum possible) velocity the system can attain. With the representative mass m, (16) can be written320

9



as321

β =
1
2mα

1
2mu

2
max

. (17)

Equivalently, β is the ratio between the one half of the “system-force”, 1
2mα (the driving force), and the322

(maximum) kinetic energy, 1
2mu

2
max, of the landslide. With the knowledge of the relevant maximum kinetic323

energy of the landslide (Körner, 1980), the model (17) for the drag can be closed.324

3.2.6 Landslide motion down the entire slope325

Furthermore, we note that following the classical method by Voellmy (Voellmy, 1955) and extensions by Salm326

(1966) and McClung (1983), the velocity models (8) and (11) can be used for multiple slope segments to327

describe the accelerating and decelerating motions as well as the landslide run-out. These are also called the328

release, track and run-out segments of the landslide, or avalanche (Gubler, 1989). However, for the gentle slope,329

or the run-out, the frictional force may dominate gravity. In this situation, the sign of α in (5) changes. Then,330

all the solutions derived above must be thoroughly re-visited with the initial condition for velocity being that331

obtained from the lower end of the upstream segment. This way, we can apply the model (5) to analytically332

describe the landslide motion for the entire slope, from its release, through the track and the run-out, as well333

as to calculate the total travel distance. These methods can also be applied to the general solutions derived in334

Section 4 and Section 5.335

We mention that, for two-dimensional cycloidal or parabolic tracks, Gauer (2018) presented analytical velocities336

for the mass block motions with simple dry Coulomb or constant energy dissipation along the track. For such337

idealized path geometries he found an important relationship, that the maximum front-velocity, Umax, of major338

snow avalanches scales with the total drop height of the track, Hsc: Umax ∼
√
gHsc/2, where g is the gravity339

constant. Within its scope, this simple relationship may be applied to estimate the maximum velocity in (17).340

4 The Landslide Velocity: General Solution - I341

For shallow motion the velocity may change locally, but the change in the landslide geometry may be param-342

eterized. In such a situation, the force produced by the free-surface pressure gradient can be estimated. A343

particular situation is the moving slab for which hg = 0, otherwise hg 6= 0. This justifies the physical signifi-344

cance of (5).345

The Lagrangian description of a landslide motion is easier. However, the Eulerian description provides a better346

and more detailed picture as it also includes the local deformation due to the velocity gradient. So, here we347

consider the model equation (5). Without reduction, conceptually, this can be viewed as an inviscid, non-348

homogeneous, dissipative Burgers’ equation with a quadratic source of system forces, and includes both the349

time and space dependencies of u. Exact analytical solutions for (5) can still be constructed, however, in more350

sophisticated forms, and is very demanding mathematically. For the notational convenience, we re-write (5)351

as:352

∂u

∂t
+ g(u)

∂u

∂x
= f(u), (18)

where, g(u) = u, and f(u) = α − βu2 correspond to our model (5). Here, g and f are sufficiently smooth353

functions of u, the landslide velocity. We construct exact analytical solution to the generic model (18). For354

this, first we state the following theorem from Nadjafikhah (2009).355

Theorem 4.1: Let f and g be invertible real valued functions of real variables, f is everywhere away from zero,356

φ(u) =

∫
1

f(u)
du is invertible, and l(u) =

∫ (
g
(
φ−1(u)

))
du. Then, x = l(φ(u)) + F [t− φ(u)] is the solution357

of (18), where F is an arbitrary real valued smooth function of t− φ(u).358

To our problem (5), we have constructed the exact analytical solution (in Section 4.1), and reads as (Solution359
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D):360

x =
1

β
ln
[
cosh

(√
αβ φ(u)

)]
+ F [t− φ(u)] ; φ(u) =

1

2

1√
αβ

ln

[√
α/β + u√
α/β − u

]
, (19)

describing the temporal and spatial evolution of the landslide velocity. It is important to note, that in (19),361

the major role is played by the function φ that contains all the forces of the system. Furthermore, the function362

F includes the time-dependency of the solution. The amazing fact with the solution (19) is that any smooth363

function F with its argument [t− φ(u)] is a valid solution of the model equation. This means that, different364

landslides may be described by different F functions. Alternatively, a class of landslides might be represented365

by a particular function F . This is substantial.366

4.1 Derivation of the solution to the general model equation367

Here, we present the detailed derivation of the analytical solution (19) to the landslide velocity equation (5).368

We derive the functions φ, φ−1, l and loφ that are involved in Theorem 4.1. The first function φ is given by369

φ(u) =

∫
1

f(u)
du =

∫
1

α− βu2
du =

1

2
√
αβ

ln

[√
α/β + u√
α/β − u

]
. (20)

With the substitution, τ = φ(u) (which implies u = φ−1 (τ)), we obtain,370

φ−1 (τ) =

√
α

β

[
exp

(
2
√
αβ τ

)
− 1

exp
(
2
√
αβ τ

)
+ 1

]
=

√
α

β
tanh

(√
αβ τ

)
. (21)

So, now the second function φ−1 can be written in terms of u. However, we must be consistent with the physical371

dimensions of the involved variables and functions. The quantities u,
√
αβ,

√
α/β and τ have dimensions of m372

s−1, s−1, m s−1 and s. Thus, for the dimensional consistency, the following mapping introduces a new multiplier373

λ with the dimension of 1/ m s−2. Therefore, we have374

φ−1 (u) =

√
α

β
tanh

(√
λαβ u

)
. (22)

With this, the third function l(u) yields:375

l(u) =

∫
g
(
φ−1 (u)

)
du =

∫
φ−1 (u) du =

√
α

β

∫
tanh

(√
λαβ u

)
du =

1

λβ
ln
[
cosh

(
λ
√
αβ u

)]
. (23)

The fourth function l (φ (u)) = (loφ)(u) is instantly achieved:376

l (φ (u)) =

(
χ

λ

)
1

β
ln
[
cosh (ξλ)

√
αβ φ(u)

]
, (24)

where, as before, the multipliers χ and ξ emerge due to the transformation and for the dimensional consistency,377

they have the dimensions of 1/(m s−2) and m s−2, respectively. The nice thing about the groupings (χ/λ) and378

(ξλ) is that they are now dimensionless and unity.379

Utilizing these functions in Theorem 4.1, we finally constructed the exact analytical solution (19).380

4.2 Recovering the mass point motion381

The amazing fact is that the newly constructed general analytical solution (19) is strong and includes both the382

mass point solutions for velocity (11) and the position (13). For this, consider a vacuum solution F (0) ≡ 0383

which implies t = φ(u). Then, with the functional relation of φ(u) in (19), we obtain:384

u =

√
α

β
tanh

[√
αβ t

]
. (25)
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Up to the constant of integration parameters (with u0 = 0 at t0 = 0), (25) is (11). So, the first assertion is385

proved. Second, using F (0) ≡ 0 and φ(u) = t in (19), immediately yields386

x =
1

β
ln
[
cosh

(√
αβ t

)]
. (26)

Again, up to the constant of integration parameters (with x0 = 0, and u0 = 0 at t0 = 0), (26) is (13). This387

proves the second assertion.388

Moreover, we mention that (25) and (26) can also be obtained formally. This proves that the conditions used389

on F are legitimate. To see this, we differentiate (19) with respect to t to yield390

u =
dx

dt
=

√
α

β
tanh

[√
αβ φ(u)

] dφ
dt

+ F ′ [t− φ(u)]

(
1− dφ

dt

)
. (27)

But, differentiating φ in (19) with respect to t and employing (10), we obtain dφ/dt = 1, or φ = t. Now, by391

substituting these in (27) and (19) we respectively recover (25) and (26).392

However, we note that F in (19) is a general function. So, (19) provides a wide spectrum of analytical solutions393

for the landslide velocity as a function of time and space, much wider than (11) and (13).394

4.3 Some particular exact solutions395

Here, we present some interesting particular exact solutions of (19) in the limit as β → 0. For this purpose,396

first we consider (5) with β → 0, and introduce the new variables t̃ = αt, x̃ = αx. Then, (5) can be written as:397

∂u

∂t̃
+ u

∂u

∂x̃
= 1. (28)

We apply Theorem 4.1 to (28). So, f(u) = 1 implies φ(u) = u, l(u) = u2/2, and l(φ(u)) = u2/2. Following the398

procedure as for (19), we obtain the solution to (28) as: x̃ =
u2

2
+ F

(
t̃− u

)
. However, the direct application of399

φ(u) = u in (19) leads to the solution (that is more complex in its form): x̃ =
1

β
ln
[
cosh

(√
βu
)]

+ F
(
t̃− u

)
.400

Then, in the limit, we must have:401

lim
β→0

1

β
ln
[
cosh

(√
βu
)]

=
u2

2
. (29)

This is an important mathematical identity we obtained as a direct consequence of Theorem 4.1 and (19).402

Furthermore, the identity (29) when applied to (26) implies:403

lim
β→0

x = lim
β→0

1

β
ln
[
cosh

(√
αβ t

)]
= lim

β→0

1

β
ln
[
cosh

{√
β
(√
α t
)}]

=
1

2
αt2. (30)

Thus, x = 1
2αt

2, which is the travel distance in time when the viscous drag is absent.404

Moreover, with the definition of x̃, for the particular choice of F ≡ 0, x̃ =
u2

2
+ F

(
t̃− u

)
results in u(x;α) =405

√
2αx, which is (7). Furthermore, with the choice of x̃ = 0, and F = t̃− u, we obtain u = 1−

√
1− 2αt, which406

for small t, can be approximated as u ≈ αt. But, in the limit as β → 0, (11) brings about u = αt, which407

however, is valid for all t values. Thus, (19) generalizes both solutions (7) and (11) in numerous ways.408

4.4 Reduction to the classical Burgers’ equation409

Interestingly, by directly taking limit as β → 0, from (19) we obtain410

x =
u2

2α
+ F

(
t− u

α

)
, (31)
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Figure 4: Velocity distribution given by (34).

which can be written as411

u2 + 2αF

(
t− u

α

)
− 2αx = 0. (32)

Importantly, for any choice of the function F , (32) satisfies412

∂u

∂t
+ u

∂u

∂x
= α, (33)

which reduces to the classical inviscid Burgers’ equation when α→ 0.413

4.5 Some explicit expressions for u in (19)414

For a properly selected function F , (19) can be solved exactly for u. For example, consider a constant F ,415

F = Λ. Then, an explicit exact solution is obtained as:416

u =

√
α

β
tanh

[
1

2
exp

{
2 cosh−1 (exp(β(x− Λ)))

}]
. (34)

Figure 4 shows the velocity distribution given by (34) with u ≈ 28 m s−1 at x = 0 and Λ = 0, which reaches417

the steady-state at about x = 150 m, much faster than the solution given by (8) in Fig. 1.418

However, other more general solutions could be found by considering different F functions in (19). For example419

with F =
1

β
ln
[
c cosh

{√
αβ(t− φ(u))

}]
, where c is a constant, (19) can be solved explicitly for u in terms of420

x and t:421

u =

√
α

β
tanh

[
1

2

{
cosh−1

(
2

c
exp(βx)− cosh

(√
αβ t

))
+
√
αβ t

}]
. (35)

The velocity profile along the slope as given by (35) is presented in Fig. 5 for t = 1 m s−1 and c = 1. This422

solution is quite different to that in Fig. 1 produced by (8). From the dynamical perspective, the solution423

(35) is better than the mass point solution (8). The important observation is that the solution given by (8)424

substantially overestimates the legitimate more general solution (35) that includes both the local time and425

space variation of the velocity field. The lower velocity with (35) corresponds to the energy consumption due426

to the deformation associated with the velocity gradient ∂u/∂x in (5). This will be discussed in more detail in427

Section 4.6 and Section 4.7.428

Furthermore, Fig. 6 presents the time evolution of the velocity field given by (35) for x = 25 m, c = −2.429
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Figure 6: Time evolution of the velocity field as given by (35).

This corresponds to the decelerating motion down the slope that starts with a very high velocity and finally430

asymptotically approaches to the steady-state velocity.431

4.6 Description of the general velocity432

A crucial aspect of a complex analytical solution is its proper interpretation. The general solution (19) can be433

plotted as a function of x and t. For the purpose of comparing the results with those derived previously, we434

select F as: F = [Fk(t− φ(u))]pw +Fc with parameter values, Fk = 5000, Fc = −500, pw = 1/2. Furthermore, x435

is a parameter while plotting the velocity as a function of t. In these situations, in order to obtain a physically436

plausible solution, x0 = −600 is selected. To match the origin of the mass point solution, in plotting, the437

time has been shifted by -2. Figure 7 depicts the two solutions given by (11) for the mass point motion,438

and the general solution given by (19) that also includes the internal deformation associated with u∂u/∂x439

in (5). They behave essentially differently right after the mass release. The mass point model substantially440
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Figure 7: The velocity profiles for a landslide with the mass point motion as given by (11), and the motion
including the internal deformation as given by the general solution (19).

overestimates landslide velocity derived by the more realistic general model. However, the reduced dimensional441

models and solutions considered here may give upper bounds to reality because they do not account for the442

lateral spreading of the landslide mass. Such problems can only be solved comprehensively by considering the443

numerical simulations on a full three-dimensional digital terrain model (Mergili et al., 2020a, 2020b; Shugar et444

al., 2021) by employing the full dynamical mass flow model equations (Pudasaini and Mergili, 2019) without445

constraining the lateral spreading.446

4.7 A fundamentally new understanding447

The new general solution (19) and its plot in Fig. 7 provides a fundamentally new aspect in our understanding448

of landslide velocity. The physics behind the substantially, but legitimately, reduced velocity provided by the449

general velocity (19) as compared to the mass point velocity (11) is revealed here for the first time. The gap450

between the two solutions increases steadily until a substantially large time (here about t = 20 s), then the gap451

is reduced slowly. This is so because, after t = 20 s the mass point velocity is close to its steady value (about452

60.1 m s−1). In the meantime, after t = 20 s, the general velocity continues to increase but slowly, and after a453

long time, it also tends to approach the steady-state. This substantially lower velocity in the general solution454

is realistic. Its mechanism can be explained. It becomes clear by analysing the form of the model equation455

(5). For the ease of analysis, we assume the accelerating flow down the slope. For such a situation, both u and456

∂u/∂x are positive, and thus, u∂u/∂x > 0. The model (5) can also be written as457

∂u

∂t
=
(
α− βu2

)
− u∂u

∂x
. (36)

Then, from the perspective of the time evolution of u, the last term on the right hand side can be interpreted458

as a negative force additional to the system (10) describing the mass point motion. This is responsible for the459

substantially reduced velocity profile given by (19) as compared to that given by (11). The lower velocity in460

(19) can be perceived as the outcome of the energy consumed in the deformation of the landslide associated461

with the spatial velocity gradient that can also be inferred by the negative force attached with −u∂u/∂x in462

(36). Moreover, u∂u/∂x in (5) can be viewed as the inertial term of the system (Bertini et al., 1994). However,463

after a sufficiently long time the drag is dominant, resulting in the decreased value of ∂u/∂x. Then, the effect464

of this negative force is reduced. Consequently, the difference between the mass point solution and the general465

solution decreases. However, these statements must be further scrutinized.466
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5 The Landslide Velocity: General Solution - II467

Below, we have constructed a further exact analytical solution to our velocity equation based on the method468

of Montecinos (2015). Consider the model (5) and assign an initial condition:469

∂u

∂t
+ u

∂u

∂x
= α− βu2, u(x, 0) = s0(x). (37)

This is a non-linear advective - dissipative system, and can be perceived as an inviscid, dissipative, non-470

homogeneous Burgers’ equation. First, we note that, H(x) is a primitive of a function h(x) if
dH(x)

dx
= h(x).471

Then, we summarize the Montecinos (2015) solution method in a theorem:472

Theorem 5.1: Let
1

f(u)
be an integrable function. Then, there exists a function E (t, s0(y)) with its primitive473

F (t, s0(y)), such that, the initial value problem474

∂u

∂t
+ u

∂u

∂x
= f(u), u(x, 0) = s0(x), (38)

has the exact solution u(x, t) = E (t, s0(y)), where y satisfies x = y + F (t, s0(y)).475

Following Theorem 5.1, we obtain (in Section 5.1) the exact analytical solution (Solution E) for (37):476

u(x, t) =

√
α

β
tanh

√αβ t+ tanh−1


√
β

α
s0(y)


 , (39)

where y = y(x, t) is given by477

x = y +
1

β
ln

cosh

√αβ t+ tanh−1


√
β

α
s0(y)



− 1

β
ln

cosh

tanh−1


√
β

α
s0(y)



 , (40)

and, s0(x) = u(x, 0) provides the functional relation for s0(y). In contrast to (19), (39)-(40) are the direct478

generalizations of the mass point solutions given by (11) and (13). This is an advantage.479

The solution strategy is as follows: Use the definition of s0(y) in (40). Then, solve for y. Go back to the480

definition of s0(y) and put y = y(x, t) in s0(y). This s0(y) is now a function of x and t. Finally, put481

s0(y) = f(x, t) in (39) to obtain the required general solution for u(x, t). In principle, the system (39)-(40) may482

be solved explicitly for a given initial condition. One of the main problems in solving (39)-(40) lies in inverting483

(40) to acquire y(x, t). Moreover, we note that, generally, (19) and (39)-(40) may provide different solutions.484

5.1 Derivation of the solution to the general model equation485

The solution method involves some sophisticated mathematical procedures. However, here we present a compact486

but a quick solution description to our problem. The equivalent ordinary differential equation to the partial487

differential equation system (37) is488

dû

dt
= α− βû2, û(0) = s(0), (41)

which has the solution489

û(t) = E (t, s(0)) =

√
α

β
tanh

√αβ t+ tanh−1


√
β

α
s(0)


 . (42)

Consider a curve x in the x− t plane that satisfies the ordinary differential equation490

dx

dt
= E (t, s0(y)) =

√
α

β
tanh

√αβ t+ tanh−1


√
β

α
s0(y)


 , x(0) = y. (43)
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Solving the system (43), we obtain,491

x = y + F (t, s0(y))

= y +
1

β
ln

cosh

√αβ t+ tanh−1


√
β

α
s0(y)



− 1

β
ln

cosh

tanh−1


√
β

α
s0(y)



 . (44)

So, the exact solution to the problem (37) is given by492

u(x, t) = E (t, s0(y)) =

√
α

β
tanh

√αβ t+ tanh−1


√
β

α
s0(y)


 , (45)

where y satisfies (44).493

5.2 Recovering the mass point motion494

It is interesting to observe the structure of the solutions given by (39)-(40). For a constant initial condition,495

e.g., s0(x) = λ0, s0(y) = λ0, (39) and (40) are decoupled. Then, (39) reduces to496

u(x, t) =

√
α

β
tanh

√αβ t+ tanh−1

√β

α
λ0

 . (46)

For t = 0, u(x, 0) = u0(x) = λ0, which is the initial condition. Furthermore, (40) takes the form:497

x = x0 +
1

β
ln

cosh

√αβ t+ tanh−1

√β

α
λ0


− 1

β
ln

cosh

tanh−1

√β

α
λ0


 , (47)

from which we see that for t = 0, x = y = x0, which is the initial position. With this, we observe that (46) and498

(47) are the mass point solutions (11) and (13), respectively.499

5.3 A particular solution500

For the choice of the initial condition s0(x) =

√
α

β
tanh

[
cosh−1 {exp(βx)}

]
, combining (39) and (40) leads to501

u(x, t) =

√
α

β
tanh

[
cosh−1 {exp(βx)}

]
, (48)

which, surprisingly, is the same as the initial condition. However, we can now legitimately compare (48) with502

the previously obtained solution (8), which is the steady-state motion with viscous drag. These two solutions503

have been presented in Fig. 8. The very interesting fact is that (8) and (48) turned out to be the same. For a504

real valued parameter β and a real variable x, this reveals an important mathematically identity, that505

tanh
[
cosh−1 {exp(βx)}

]
=
√

1− exp(−2βx). (49)

This means, the very complex function on the left hand side can be replaced by the much simpler function on506

the right hand side. Moreover, taking the limit as β → 0 in (48) and comparing it with (7), we obtain another507

functional identity:508

lim
β→0

1√
β

tanh
[
cosh−1 {exp(βx)}

]
=
√

2x. (50)

These identities have mathematical significance.509
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Figure 8: The velocity profile down a slope as a function of position for a landslide given by (39)-(40) reduced
to the steady-state (48) against the steady-state solution with viscous drag given by (8). They match perfectly.

5.4 Time marching general solution510

Any initial condition can be applied to the solution system (39)-(40). For the purpose of demonstrating the511

functionality of this system, here we consider two initial conditions: s0(x) = x0.50 and s0(x) = x0.65. The512

corresponding results are presented in Fig. 9. This figure clearly shows time marching of the landslide motion513

that also stretches as it slides down. Such deformation of the landslide stems from the term u∂u/∂x and the514

applied forces α−βu2 in our primary model (5). We will elaborate on this later. This proves our hypothesis on515

the importance of the non-linear advection and external forcing on the deformation and motion of the landslide.516

The mechanism and dynamics of the advection, stretching and approaching to the steady-state can be explained517

with reference to the general solution. For this, consider the lower panel with initial condition s0(x) = x0.65. At518

t = 0.0 s, (40) implies that y = x, then from (39), u(x, t) = s0(x), which is the initial condition. Such a velocity519

field can take place in relatively early stage of the developed motion of large natural events (Erismann and520

Abele, 2001; Huggel et al., 2005; Evans et al., 2009; Mergili et al., 2018). This is represented by the t = 0.0 s521

curve. For the next time, say t = 2.0 s, the spatial domain of u expands and shifts to the right as defined by522

the rule (40). It has three effects in (39). First, due to the shift of the spatial domain, the velocity field u is523

relocated to the right (downstream). Second, because of the increased t value, and the spatial term associated524

with tanh−1, the velocity field is elevated. Third, as the tanh function defines the maximum value of u (about525

60.1 m s−1), the velocity field is controlled (somehow appears to be rotated). This dynamics also applies for526

t > 2.0 s. These jointly produce beautiful spatio-temporal patterns in Fig. 9. Since the maximum of the527

initial velocity was already close to the steady-state value (the right-end of the curve), the front of the velocity528

field is automatically and strongly controlled, limiting its value to 60.1 m s−1. So, although the rear velocity529

increases rapidly, the front velocity remains almost unchanged. After a sufficiently long time, t ≥ 15 s, the rear530

velocity also approaches the steady-steady value. Then, the entire landslide moves downslope virtually with531

the constant steady-state velocity, without any substantial stretching. We can similarly describe the dynamics532

for the upper panel in Fig. 9. However, these two panels reveal an important fact that the initial condition533

plays an important role in determining and controlling the landslide dynamics.534

5.5 Landslide stretching535

The stretching (or, deformation) of the landslide propagating down the slope depends on the evolution of its536

front (xf ) and rear (xr) positions with maximum and minimum speeds, respectively. This is shown in Fig.537

10 corresponding to the initial condition s0(x) = x0.65 in Fig. 9. It is observed that the rear position evolves538
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Figure 9: Time evolution of velocity profiles of propagating and stretching landslides down a slope, and as
functions of position including the internal deformations as given by the general solution (39)-(40) of (5). The
profiles evolve based on the initial conditions s0(x) = x0.50 (top panel, t = 0.0 s) and s0(x) = x0.65 (bottom
panel, t = 0.0 s), respectively.

strongly non-linearly whereas the front position advances only weakly non-linearly.539

In order to better understand the rate of stretching of the landslide, in Fig. 11, we also plot the difference540

between the front and rear positions as a function of time. It shows the stretching (rate) of the rapidly deforming541

landslide. The stretching dynamics is determined by the front and rear positions of the landslide in time, as542

has been shown in Fig. 10. In the early stages, the stretching increases rapidly. However, in later times (about543

t ≥ 15 s) it increases only slowly, and after a sufficiently long time, (the rate of) stretching vanishes as the544

landslide has already been fully stretched. This can be understood, because after a sufficiently long time, the545

motion is in steady-state. Nevertheless, the ways the two solutions reach the steady-state are different. The546

two panels in Fig. 9 also clearly indicate that the stretching (rate) depends on the initial condition.547
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Figure 10: Time evolution of the front and rear positions of the landslide as it moves down the slope including
the internal deformation given by the general solution (39)-(40) of (5), corresponding to the initial condition
s0(x) = x0.65 in Fig. 9.
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Figure 11: Time stretching of the landslide down the slope including the internal deformation given by the
general solution (39)-(40) of (5), corresponding to the initial condition s0(x) = x0.65 in Fig. 9.

5.6 Describing the dynamics548

The dynamics observed in Fig. 9 and Fig. 11 can be described with respect to the general model (5) or (37)549

and its solution given by (39)-(40). The nice thing about (39) is that it can be analyzed in three different550

ways: with respect to the first or second or both terms on the right hand side. If we disregard the first term551

involving time, then we explicitly see the effect of the second term that is responsible for the spatial variation552

of u for each time employed in (40). This results in the shift of the solution for u to the right, and in the mean553

time, the solution stretches but without changing the possible maximum value of u (not shown). Stretching554

continues for higher times, however, for a sufficiently long time, it remains virtually unchanged. On the other555

hand, if we consider both the first and second terms on the right hand side of (39), but use the initial velocity556

distribution only for a very small x damain, say [0, 1], then, we effectively obtain the mass point solutions557
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given in Fig. 1 and Fig. 2 corresponding to (8) and (11), respectively for the spatial and time evolutions of u.558

This is so, because now the very small initial domain for x essentially defines the velocity field as if it was for a559

center of mass motion. Then, as time elapses, the domain shifts to the right and the velocity increases. Now,560

plotting the velocity field as a function of space and time recovers the solutions in Fig. 1 and Fig. 2. In fact,561

if we collect all the minimum values of u (the left end points) in Fig. 9 (bottom panel) and plot them in space562

and time, we acquire both the results in Fig. 1 and Fig. 2. These are effectively the mass point solutions for563

the spatial and time variation of the velocity field, because these results only focus on the left end values of u,564

akin to the mass point motion. This means, (40) together with (39) is responsible for the dynamics presented565

in Fig. 9, Fig. 10 and Fig. 11 corresponding to the term u∂u/∂x and α − βu2 in the general model (5) or566

(37). So, the dynamics is specially architectured by the advection u∂u/∂x and controlled by the system forcing567

α− βu2, through the model parameters α and β. This will be discussed in more detail in Section 5.7 - Section568

5.9. This is fascinating, because, it reveals the fact that the shifting, stretching and lifting of the velocity field569

stems from the term u∂u/∂x in (37). After a long time, as drag strongly dominates the other system forces,570

the velocity approaches the steady-state, practically the velocity gradient vanishes, and thus, the stretching571

ceases. Then, the landslide just moves down the slope at a constant velocity without any further dynamical572

complication.573

5.7 Rolling out the initial velocity574

It is compelling to see how the solution system (39)-(40) rolls out an initially constant velocity across specific575

curves. For this, consider an initial velocity s0(x) = 0 in a small domain, say [0, 3], and take a point in it.576

Then, generate solutions for different times, beginning with t = 0.0 s, with 2.0 s increments. As shown in577

Fig. 12, the space and time evolutions of the velocity fields for a mass point motion given by (8) and (11)578

have been exactly rolled-up and covered by the system (39)-(40) by transporting the initial velocity along these579

curves (indicated by the star symbols). As explained earlier, the mechanism is such that, in time, (40) shifts580

the solution point (domain) to the right and (39) up-lifts the velocity exactly lying on the mass point velocity581

curves designed by (8) and (11). So, the system (39)-(40) generalizes the mass point motion in many different582

ways.583

5.8 Breaking wave and folding584

Next, we show how the new model (5) and its solution system (39)-(40) can mould the breaking wave in585

mass transport and describe the folding of a landslide. For this, consider a sufficiently smooth initial velocity586

distribution given by s0(x) = 5 exp(−x2/50). Such a distribution can be realized, e.g., as the landslide starts587

to move, its center might have been moving at the maximum initial velocity due to some localized strength588

weakening mechanism (examples include liquefaction, frictional strength loss; blasting; seismic shaking), and589

the strength weakening diminishes quickly away from the center. This later leads to a highly stretchable590

landslide from center to the back, while from center to the front, the landslide contracts strongly. The time591

evolution of the solution has been presented in Fig. 5.8. The top panel for the usual drag as before (β = 0.0019),592

while the bottom panel with higher drag (β = 0.019). The drag strongly controls the wave breaking and folding,593

and also the magnitude of the landslide velocity. Here, we focus on the top panel, but similar analysis also594

holds for the bottom panel.595

Wave breaking and folding are often observed important dynamical aspects in mass transport and formation596

of geological structures. Figure 5.8 reveals a thrilling dynamics. The most fascinating feature is the velocity597

wave breaking and how this leads to the emergence of folding of the landslide. This can be explained with598

respect to the mechanism associated with the solution system (39)-(40). As u∂u/∂x is positive to the left599

and negative to the right of the maximum initial velocity, the motion to the left of the maximum initial600

velocity overtakes the velocity to the right of the maximum position. As the position of the maximum velocity601

accelerates downslope with the fastest speed, after a sufficiently long time, a kink around the front of the602

velocity wave develops, here after t = 2 s. This marks the velocity wave breaking (shock wave formation) and603

the beginning of the folding. However, the rear stretches continuously. Although mathematically a folding may604

refer to a singularity due to a multi-valued function, here we explain the folding dynamics as a phenomenon605
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Figure 12: Spatial (top) and temporal (bottom) transportations of the initial velocity (u = 0) of the landslide
down the slope by the general solution system (39)-(40) as indicated by the star markings for times t = 0.0
s, with 2.0 s increments. These solutions exactly fit with the space and time evolutions of the velocity fields
(curves) for the mass point motions given by (8) and (11).

that can appear in nature. In time, the folding intensifies, the folding length increases, but the folding gap606

decreases. After a long time, virtually the folding gap vanishes and the landslide moves downslope at the607

steady-state velocity with a perfect fold in the frontal part (not shown), while in the back, it maintains a608

single large stretched layer. This happened collectively as the system (39)-(40) simultaneously introduced609

three components of the landslide dynamics: downslope propagation, velocity up-lift and breaking or folding in610

the frontal part while stretching in the rear. This physically and mathematically proves that the non-uniform611

motion (with its maximum somewhere interior to the landslide) is the basic requirement for the development612

of the breaking wave and the emergence of landslide folding.613

5.9 Recovering Burgers’ model614

As the external forcing vanishes, i.e., as α → 0, β → 0, the landslide velocity equation (5) reduces to the615

classical inviscid Burgers’ equation. Then, for α → 0, β → 0, one would expect that the general solution616

(39)-(40) should also reduce to the formation of the shock wave and wave breaking generated by the inviscid617
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Figure 13: The breaking wave and folding as a landslide propagates down a slope. The top panel with lower
drag, while the bottom panel with higher drag, showing the drag strongly controls the wave breaking and
folding, and also the magnitude of the landslide velocity.

Burgers’ equation. In fact, as shown in Fig. 14, this has exactly happened. For this, the solution domain618

remains fixed, and the solution are not uplifted. This proves that Burgers’ equation is a special case of our619

model (5).620

5.10 The viscous drag effect621

It is important to understand the dynamic control of the viscous drag on the landslide motion. For this, we set622

α→ 0, but increased the value of the viscous drag parameter by one and two orders of magnitude. The results623

are shown in Fig. 15. In connection to Fig. 14, there are two important observations. First, the translation624

and stretching of the domain is solely dependent on the net driving force α, and when it is set to zero, the625

domain remains fixed. Second, the viscous drag parameter β effectively controls the magnitude of the velocity626

field and the wave breaking. Depending on the magnitude of the viscous drag coefficient, the generation of627

the shock wave and the wave breaking can be dampened (top panel) or fully controlled (bottom panel). The628

bottom panel further reveals, that with properly selected viscous drag coefficient, the new model can describe629
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Figure 14: Recovering the Burgers’ shock formation and breaking of the wave by the solution system (39)-(40)
of the new model (5) in the limit of the vanishing external forcing, i.e., α→ 0, β → 0.

the deposition process of the mass transport and finally brings it to a standstill. In contrast to the classical630

inviscid Burgers’ equation, due to the viscous drag effect, our model (5) is dissipative, and can be recognized631

as a dissipative inviscid Burgers’ equation. However, here the dissipation is not due to the diffusion but due to632

the viscous drag.633

6 Discussions634

Exact analytical solutions of the underlying physical-mathematical models significantly improve our knowledge635

of the basic mechanism of the problem. On the one hand, such solutions disclose many new and essential636

physics, and thus, may find applications in environmental and engineering mass transports down natural slopes637

or industrial channels. The reduced and problem-specific solutions provide important insights into the full638

behavior of the complex landslide system, mainly the landslide motion with non-linear internal deformation639

together with the external forcing. On the other hand, exact analytical solutions to simplified cases of non-640

linear model equations are necessary to calibrate numerical simulations (Chalfen and Niemiec, 1986; Pudasaini,641

2011, 2016; Ghosh Hajra et al., 2018). For this reason, this paper is mainly concerned about the development of642

a new general landslide velocity model and construction of several novel exact analytical solutions for landslide643

velocity.644

Analytical solutions provide the fastest, cheapest, and probably the best solution to a problem as measured645

from their rigorous nature and representation of the dynamics. Proper knowledge of the landslide velocity646

is required in accurately determining the dynamics, travel distance and enormous destructive impact energy647

carried by the landslide. The velocity of a landslide is associated with its internal deformation (inertia) and the648

externally applied system forces. The existing influential analytical landslide velocity models do not include649

many important forces and internal deformation. The classical analytical representation of the landslide velocity650

appear to be incomplete and restricted, both from the physics and the dynamics point of view. No velocity651

model has been presented yet that simultaneously incorporates inertia and the externally applied system forces652

that play crucial role in explaining important aspects of landslide propagation, motion and deformation.653

We have presented the first-ever, physics-based, analytically constructed simple, but more general landslide654

velocity model. There are two main collective model parameters: the net driving force and drag. By rigorous655

derivations of the exact analytical solutions, we showed that incorporation of the non-linear advection and656

external forcing is essential for the physically correct description of the landslide velocity. In this regard, we657
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Figure 15: The control of the viscous drag on the dynamics of the landslide. The net driving force is set to
zero, i.e., α = 0. The viscous drag has been amplified by one and two orders of magnitudes in the top and
bottom panels, showing dampened or complete prevention of shock formation and wave breaking, respectively.

β = 0.019

β = 0.19

have presented a novel dynamical model for landslide velocity that precisely explains both the deformation and658

motion by quantifying the effect of non-linear advection and the system forces.659

Different exact analytical solutions for landslide velocity constructed in this paper independently support each660

other. These physically meaningful solutions can potentially be applied to calculate the complex non-linear661

velocity distribution of the landslide. Our new results reveal that solutions to the more general equation for662

the landslide motion are widely applicable. The new landslide velocity model and its advanced exact solutions663

made it possible now to analytically study the complex landslide dynamics, including non-linear propagation,664

stretching, wave breaking and folding. Moreover, these results clearly indicate that the proper knowledge of665

the model parameters α and β is crucial in reliable prediction of the landslide dynamics.666

6.1 Advantages of the new model and its solutions667

The new model may describe the complex dynamics of many extended physical and engineering problems668

appearing in nature, science and technology - connecting different types of complex mass movements and669
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deformations. Specifically, the advantage of the new model equation is that the more general landslide velocity670

can now be obtained explicitly and analytically, that is very useful in solving relevant engineering and applied671

problems and has enormous application potential.672

There are three distinct situations in modelling the landslide motion: (i) The spatial variation of the flow673

geometry and velocity can be negligible for which the entire landslide effectively moves as a mass point without674

any local deformation. This refers to the classical Voellmy model. (ii) The geometric deformation of the675

landslide can be parameterized or neglected, however, the spatial variation of the velocity field may play a676

crucial role in the landslide motion. In this circumstance, the landslide motion can legitimately be explained677

by the full form of the new landslide velocity equation (5). The constructed general solutions (19) and (39) -678

(40) of this model have revealed many important features of the dynamically deforming and advecting landslide679

motions. (iii) Both the landslide geometry and velocity may substantially change locally. Then, no assumptions680

on the spatial gradient of the geometry and velocity can be made. For this, only the full set of the basic model681

equations (1) - (2) can explain the landslide motion. While models and simulation techniques for situations (i)682

and (iii) are available in the literature, (ii) is entirely new, both physically and mathematically. It is evident683

that dynamically (ii) plays an important role, first in making the bridge between the two limiting solutions,684

and second, by providing the most efficient solution. Solutions (19) and (39)-(40) include the local deformation685

associated with the velocity gradient. However, except for parameterization, (19) and (39)-(40) do not explicitly686

include the geometrical deformation. As long as the spatial change in the landslide geometry is insignificant,687

we can use (19) or (39)-(40) to describe the landslide motion. These solutions also include mass point motions,688

and are valid before the fragmentation and/or the significant to large geometric deformations. However, when689

the geometric deformations are significant, we must use (1) and (2) and solve them numerically with some high690

resolution numerical methods (Tai et al., 2002; Mergili et al., 2017, 2020a,b).691

The model (19) or (39)-(40) and (1)-(2) are amicable and can be directly coupled. Such a coupling between692

the geometrically negligibly- or slowly- deforming landslide motion described by (19) or (39)-(40) and the full693

dynamical solution with any large to catastrophic deformations described by (1)-(2) is novel. First, this allows694

us to consistently couple the negligible or slowly deformable landslide with a fast (or, rapidly) deformable695

flow-type landslide (or, debris flow). Second, our method provides a very efficient simulation due to instant696

exact solution given by (19) or (39)-(40) prior to the large external geometric deformation that is then linked697

to the full model equations (1)-(2). The computational software such as r.avaflow (Mergili et al., 2017, 2020a,698

2020b; Pudasaini and Mergili, 2019) can substantially benefit from such a coupled solution method. Third,699

importantly, this coupling is valid for single-phase or multi-phase flows, because the corresponding model (5)700

is derived by reducing the multi-phase mass flow model (Pudasaini and Mergili, 2019).701

Burgers’ equation has no external forcing term. The solution domain remains fixed and does not stretch and702

propagate downslope. So, the initial velocity profile deforms and the wave breaks within the fixed domain.703

In contrast, our model (5) is fundamentally characterized and explained simultaneously by the non-linear704

advection u∂u/∂x and external forcing, α−βu2. The first designs the main dynamic feature of the wave, while705

the later induces rapid downslope propagation, stretching of the wave domain and quantification of the wave706

form and magnitude. These special features of our model are often observed phenomena in mass transport,707

and are freshly revealed here.708

6.2 Compatibility, reliability and generality of the solutions709

Within their scopes and structures, many of the analytical solutions constructed in Sections 3 - 5 are similar.710

This effectively implies the physical aspects of our general landslide velocity model (5), and also the compat-711

ibility and reliability of all the solutions. The solutions (19) and (39)-(40) recover all the mass point motions712

given by (11) and (13). From the physical and dynamical point of view, the velocity profiles given by (19) and713

(39)-(40) as solutions of the general model for the landslide velocity (5) are much wider and better than those714

given by (11) and (13) as solutions of the mass point model (10).715

Structurally, the solutions presented in Section 3 are only partly new, yet they are physically substantially716

advanced. However, in Section 4 and 5 we have presented entirely novel solutions, both physically and struc-717
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turally. From physical and mathematically point of view, particularly important is the form of the general718

velocity model (5). First, it extends the classical Voellmy mass point model (Voellmy, 1955) by including: (i)719

much wider physical aspects of landslide types and motions, and (ii) the landslide dynamics associated with720

the internal deformation as described by the spatial velocity gradient associated with the advection. Second,721

the model (5) is the direct extension of the inviscid Burgers’ equation by including a (quadratic) non-linear722

source as a function of the state variable. This source term contains all the applied forces appearing from the723

physics and mechanics of the landslide motion.724

Moreover, as viewed from the general structure of the model (5), all the solutions constructed here can be725

utilized for any physical problems that can be cast and represented in the form (5), but independent of the726

definition of the model parameters α and β, and the state variable u (Faraoni, 2022).727

6.3 Implications728

The new model (5) and its solutions have broad implications, mathematically, physically and technically. By729

deriving a general landslide velocity model and its various analytical exact solutions, we made a breakthrough730

in correctly determining the velocity of a deformable landslide that is controlled by several applied forces as it731

propagates down the slope. We achieve a novel understanding that the inertia and the forcing terms ultimately732

regulate the landslide motion and provide physically more appropriate analytical description of landslide ve-733

locity, dynamic impact and inundation. This addresses the long-standing scientific question of explicit and734

full analytical representation of velocity of deformable landslides. Such a description of the state of landslide735

velocity is innovative.736

As the analytically obtained values well represent the velocity of natural landslides, technically, this provides737

a very important tool for the landslide engineers and practitioners in quickly, efficiently and accurately de-738

termining the landslide velocity. The general solutions presented here reveal an important fact that accurate739

information about the mechanical parameters, state of the motion and the initial condition is very important for740

the proper description of the landslide motion. We have extracted some interesting particular exact solutions741

from the general solutions. As direct consequences of the new general solutions, some important and non-742

trivial mathematical identities have been established that replace very complex expressions by straightforward743

functions.744

7 Summary745

While existing analytical landslide velocity models cannot deal with the internal deformation and mostly fail746

to integrate a wide spectrum of externally applied forces, we developed a simple but general analytical model747

that is capable of including both of these important aspects. In this paper, we (i) derived a general landslide748

velocity model applicable to different types of landslide motions, and (ii) solve it analytically to obtain several749

exact solutions as a function of space and time for landslide motion, and highlight the essence of the new model.750

The model includes the internal deformation due to non-linear advection, and the external non-linear forcing751

consisting of the extensive net driving force and viscous drag. The model describes a dissipative system and752

involves dynamic interactions between the advection and external forcing that control the landslide deformation753

and motion. Our model constitutes a unique and new class of non-linear advective - dissipative system with754

quadratic external forcing as a function of state variable, containing all system forces. The new equation755

may describe the dynamical state of many extended physical and engineering problems appearing in nature,756

science and technology. There are two crucial novel aspects: First, it extends the classical Voellmy model757

and additionally explains the dynamics of locally deforming landslide providing a better and more detailed758

picture of the landslide motion. Second, it is a more general formulation, but can also be viewed as an759

extended inviscid, non-homogeneous, dissipative Burgers’ equation by including the non-linear source term, as760

a quadratic function of the field variable. The source term accommodates the mechanics of underlying problem761

through the net driving force and the dissipative viscous drag.762

Due to the non-linear advection and quadratic forcing, the new general landslide velocity model poses a great763
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mathematical challenge to derive explicit analytical solutions. Yet, we constructed several new and general764

exact analytical solutions in more sophisticated forms. These solutions are strong, recover all the mass point765

motions in many different ways and provide much wider spectrum for the landslide velocity than the classical766

Voellmy and Burgers’ solutions. The major role is played by the non-linear advection and system forces. The767

general solutions provide essentially new aspects in our understanding of landslide velocity. We have also768

presented a new model for the viscous drag as the ratio between one half of the system-force and the relevant769

kinetic energy.770

With the general solution, we revealed that different classes of landslides can be represented by different771

solutions under the roof of one velocity model. General solutions allowed us to simulate the progression and772

stretching of the landslide. We disclose the fact that the shifting and stretching of the velocity field stem773

from the external forcing and non-linear advection. After a long time, as drag strongly dominates the system774

forces, the velocity gradient vanishes, and thus, the stretching ceases. Then, the landslide propagates down the775

slope just at a constant (steady-state) velocity. The general solution system can generate complex breaking776

waves in advective mass transport and describe the folding process of a landslide. Such phenomena have been777

presented and described mechanically for the first-time. The most fascinating feature is the dynamics of the778

wave breaking and the emergence of folding. This happens collectively as the solution system simultaneously779

introduces three important components of the landslide dynamics: downslope propagation and stretching of780

the domain, velocity up-lift, and breaking or folding in the frontal part while stretching in the rear. This781

physically proves that the non-uniform motion is the basic requirement for the development of breaking wave782

and emergence of the landslide folding. This is a novel understanding. We disclosed the fact that the translation783

and stretching of the domain, and lifting of the velocity field solely depends on the net driving force. Similarly,784

the viscous drag fully controls the shock wave generation, wave breaking and folding, and also the magnitude785

of the landslide velocity. Furthermore, the new model can describe the deposition or the halting process of the786

mass transport. As the external forcing vanishes, general solution automatically reduces to the classical shock787

wave generated by the inviscid Burgers’ equation. This proves that the inviscid Burgers’ equation is a special788

case of our general model.789

The theoretically obtained velocities are close to the often observed values in natural events including landslides790

and debris avalanches. This indicates the broad application potential of the new landslide velocity model and791

its exact analytical solutions in quickly solving engineering and technical problems in accurately estimating the792

impact force that is very important in delineating hazard zones and for the mitigation of landslide hazards.793
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