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Abstract: Proper knowledge of velocity is required in accurately determining the enormous destructive energy8

carried by a landslide. We present the first, simple and physics-based general analytical landslide velocity model9

that simultaneously incorporates the internal deformation (non-linear advection) and externally applied forces,10

consisting of the net driving force and the viscous resistant. From the physical point of view, the model stands11

as a novel class of non-linear advective − dissipative system where classical Voellmy and inviscid Burgers’12

equation are specifications of this general model. We show that the non-linear advection and external forcing13

fundamentally regulate the state of motion and deformation, which substantially enhances our understanding14

of the velocity of a coherently deforming landslide. Since analytical solutions provide the fastest, the most cost-15

effective and the best rigorous answer to the problem, we construct several new and general exact analytical16

solutions. These solutions cover the wider spectrum of landslide velocity and directly reduce to the mass point17

motion. New solutions bridge the existing gap between the negligibly deforming and geometrically massively18

deforming landslides through their internal deformations. This provides a novel, rapid and consistent method19

for efficient coupling of different types of mass transports. The mechanism of landslide advection, stretching and20

approaching to the steady-state has been explained. We reveal the fact that shifting, up-lifting and stretching21

of the velocity field stem from the forcing and non-linear advection. The intrinsic mechanism of our solution22

describes the fascinating breaking wave and emergence of landslide folding. This happens collectively as the23

solution system simultaneously introduces downslope propagation of the domain, velocity up-lift and non-linear24

advection. We disclose the fact that the domain translation and stretching solely depends on the net driving25

force, and along with advection, the viscous drag fully controls the shock wave generation, wave breaking,26

folding, and also the velocity magnitude. This demonstrates that landslide dynamics are architectured by27

advection and reigned by the system forcing. The analytically obtained velocities are close to observed values in28

natural events. These solutions constitute a new foundation of landslide velocity in solving technical problems.29

This provides the practitioners with the key information in instantly and accurately estimating the impact30

force that is very important in delineating hazard zones and for the mitigation of landslide hazards.31

1 Introduction32

There are three methods to investigate and solve a scientific problem: laboratory or field data, numerical33

simulations of governing complex physical-mathematical model equations, or exact analytical solutions of sim-34

plified model equations. This is also the case for mass movements including extremely rapid flow-type landslide35

processes such as debris avalanches (Pudasaini and Hutter, 2007). The dynamics of a landslide are primarily36

controlled by the flow velocity. Estimation of the flow velocity is key for assessment of landslide hazards, design37

of protective structures, mitigation measures and landuse planning (Tai et al., 2001; Pudasaini and Hutter,38

2007; Johannesson et al., 2009; Christen et al., 2010; Dowling and Santi, 2014; Cui et al., 2015; Faug, 2015;39

Kattel et al., 2018). Thus, a proper understanding of landslide velocity is a crucial requirement for an appro-40

priate modelling of landslide impact force because the associated hazard is directly and strongly related to the41

landslide velocity (Huggel et al., 2005; Evans et al., 2009; Dietrich and Krautblatter, 2019). So, the landslide42

velocity is of great theoretical and practical interest for both scientists and engineers. However, the mechanical43

controls of the evolving velocity, runout and impact energy of the landslide have not yet been understood well.44
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Due to the complex terrain, infrequent occurrence, and very high time and cost demands of field measurements,45

the available data on landslide dynamics are insufficient. Proper understanding and interpretation of the data46

obtained from the field measurements are often challenging because of the very limited nature of the material47

properties and the boundary conditions. Additionally, field data are often only available for single locations48

and determined as static data after events. Dynamic data are rare (de Haas et al., 2020). So, much of the49

low resolution measurements are locally or discretely based on points in time and space (Berger et al., 2011;50

Schürch et al., 2011; McCoy et al., 2012; Theule et al., 2015; Dietrich and Krautblatter, 2019). Therefore,51

laboratory or field experiments (Iverson et al., 2011; Iverson, 2012; de Haas and van Woerkom, 2016; Lu et52

al., 2016; Lanzoni et al., 2017, Li et al., 2017; Pilvar et al., 2019; Baselt et al., 2021) and theoretical modelling53

(Le and Pitman, 2009; Iverson and Ouyang, 2015; Pudasaini and Mergili, 2019) remain the major source of54

knowledge in landslide and debris flow dynamics. Recently, there has been a rapid increase in the numerical55

modelling for mass transports (McDougall and Hungr, 2005; Medina et al., 2008; Pudasaini, 2012; Cascini et56

al., 2014; Cuomo et al., 2016; Frank et al., 2015; Iverson and Ouyang, 2015; Mergili et al., 2020a,b; Pudasaini57

and Mergili, 2019; Qiao et al., 2019; Liu et al. 2021). However, to certain degree, numerical simulations are58

approximations of the physical-mathematical model equations.59

Although numerical simulations may overcome the limitations in the measurements and facilitate for a more60

complete understanding by investigating much wider aspects of the flow parameters, run-out and deposition,61

the usefulness of such simulations are often evaluated empirically (Mergili et al., 2020a, 2020b). In contrast,62

exact, analytical solutions (Faug et al., 2010; Pudasaini, 2011) can provide better insights into the complex flow63

behaviors, mainly the velocity, and their consequences. Moreover, analytical and exact solutions to non-linear64

model equations are necessary to elevate the accuracy of numerical solution methods (Chalfen and Niemiec,65

1986; Pudasaini, 2011, 2016; Pudasaini et al., 2018). For this reason, here, we are mainly concerned in pre-66

senting exact analytical solutions for the newly developed general landslide velocity model equation.67

Since Voellmy’s pioneering work, several analytical models and their solutions have been presented in the liter-68

ature for mass movements including extremely rapid flow-type landslide processes, avalanches and debris flows69

(Voellmy, 1955; Salm, 1966; Perla et al., 1980; McClung, 1983). However, on the one hand, all these solutions70

are effectively simplified to the mass point or center of mass motion. None of the existing analytical velocity71

models consider advection or internal deformation. On the other hand, the parameters involved in these models72

only represent restricted physics of the landslide material and motion. Nevertheless, a full analytical model that73

includes a wide range of essential physics of the mass movements incorporating important process of internal74

deformation and motion is still lacking. This is required for the more accurate description of landslide motion.75

In the recent years, different analytical solutions have been presented for mass transports. These include sim-76

ple and reduced analytical solutions for avalanches and debris flows (Pudasaini, 2011), two-phase flows (Ghosh77

Hajra et al., 2017, 2018), landslide and avalanche mobility (Pudasaini and Miller, 2013; Parez and Aharonov,78

2015), fluid flows in porous and debris materials (Pudasaini, 2016), flow depth profiles for mud flow (Di Cristo79

et al., 2018), simulating the shape of a granular front down a rough incline (Saingier et al., 2016), the granular80

monoclinal wave (Razis et al., 2018) and the mobility of submarine debris flows (Rui and Yin, 2019). However,81

neither a more general landslide model as we have derived here, nor the solution for such a model exists in82

literature.83

This paper presents a novel non-linear advective - dissipative transport equation with quadratic source term as84

a function of the state variable (the velocity) and their exact analytical solutions describing the landslide motion85

down a slope. The source term represents the system forcing, containing the physical/mechanical parameters86

and the landslide velocity. Our dynamical velocity equation largely extends the existing landslide models and87

range of their validity. The new landslide velocity model and its analytical solutions are more general and88

constitute the full description for velocities with wide range of applied forces and the internal deformation89

associated with the spatial velocity gradient. In this form, and with respect to the underlying physics and90

dynamics, the newly developed landslide velocity model covers both the classical Voellmy and inviscid Burgers91

equation as special cases, but it also describes fundamentally novel and broad physical phenomena. Impor-92

tantly, the new model unifies the Voellmy and inviscid Burgers’ models and extends them further.93
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It is a challenge to construct exact analytical solutions even for the simplified problems in mass transport94

(Pudasaini, 2011, 2016; Di Cristo et al., 2018; Pudasaini et al., 2018). In its full form, this is also true for95

the landslide velocity model developed here. In contrast to the existing models, such as Voellmy-type and96

Burgers-type, the great complexity in solving the new model equation analytically derives from the simultane-97

ous presence of the internal deformation (non-linear advection, inertia) and the quadratic source representing98

externally applied forces (in terms of velocity, including physical parameters). However, here, we advance99

further by constructing various analytical and exact solutions to the new general landslide velocity model by100

applying different advanced mathematical techniques, including those presented by Nadjafikhah (2009) and101

Montecinos (2015). We revealed several major novel dynamical aspects associated with the general landslide102

velocity model and its solutions. We show that a number of important physical phenomena are captured by103

the new solutions. Some special features of the new solutions are discussed in detail. This includes - landslide104

propagation and stretching; wave generation and breaking; and landslide folding. We also observed that dif-105

ferent methods consistently produce similar analytical solutions. This highlights the intrinsic characteristics106

of the landslide motion described by our new model. As exact, analytical solutions disclose many new and107

essential physics, the solutions derived in this paper may find applications in environmental, engineering and108

industrial mass transport down slopes and channels.109

2 Basic Balance Equation for Landslide Motion110

2.1 Mass and momentum balance equations111

A geometrically two-dimensional motion down a slope is considered. Let t be time, (x, z) be the coordinates112

and (gx, gz) the gravity accelerations along and perpendicular to the slope, respectively. Let, h and u be the113

flow depth and the mean flow velocity along the slope. Similarly, γ, αs, µ be the density ratio between the fluid114

and the particles (γ = ρf/ρs), volume fraction of the solid particles (coarse and fine solid particles), and the115

basal friction coefficient (µ = tan δ), where δ is the basal friction angle, in the mixture material. Furthermore,116

K is the earth pressure coefficient as a function of internal and the basal friction angles, and CDV is the viscous117

drag coefficient.118

We start with the multi-phase mass flow model (Pudasaini and Mergili, 2019) and include the viscous drag119

(Pudasaini and Fischer, 2020). For simplicity, we first assume that the relative velocity between coarse and120

fine solid particles (us, ufs) and the fluid phase (uf ) in the landslide (debris) material is negligible, that is,121

us ≈ ufs ≈ uf =: u, and so is the viscous deformation of the fluid. This means, for simplicity, we are considering122

an effectively single-phase mixture flow. Then, by summing up the mass and momentum balance equations,123

we obtain a single mass and momentum balance equation describing the motion of a landslide as:124

∂h

∂t
+

∂

∂x
(hu) = 0, (1)

125

∂

∂t
(hu) +

∂

∂x

[
hu2 + (1− γ)αsgzK

h2

2

]
= h

[
gx − (1− γ)αsgzµ− gz {1− (1− γ)αs}

∂h

∂x
− CDV u2

]
, (2)

where − (1− αs) gz∂h/∂x emerges from the hydraulic pressure gradient associated with possible interstitial126

fluids in the landslide. Moreover, the term containing K on the left hand side and the other terms on the127

right hand side in the momentum equation (2) represent all the involved forces. The first term in the square128

bracket on the left hand side of (2) describes the advection, while the second term (in the square bracket)129

describes the extent of the local deformation that stems from the hydraulic pressure gradient of the free-130

surface of the landslide. The first, second, third and fourth terms on the right hand side of (2) are the gravity131

acceleration; effective Coulomb friction that includes lubrication (1− γ), liquefaction (αs) (because, if there132

is no or substantially low amount of solid, the mass is fully liquefied, e.g., lahar flows); the local deformation133

due to the pressure gradient; and the viscous drag, respectively. Note that the term with 1− γ or γ originates134

from the buoyancy effect. By setting γ = 0 and αs = 1, we obtain a dry landslide, grain flow or an avalanche135

motion. For this choice, the third term on the right hand side vanishes. However, we keep γ and αs also to136

include possible fluid effects in the landslide (mixture).137
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2.2 The landslide velocity equation138

The momentum balance equation (2) can be re-written as:139

h

[
∂u

∂t
+ u

∂u

∂x

]
+ u

[
∂h

∂t
+

∂

∂x
(hu)

]

= h

[
gx–(1− γ)αsgzµ–gz {((1− γ)K + γ)αs + (1− αs)}

∂h

∂x
− CDV u2

]
. (3)

Note that for K = 1 (which mostly prevails for extensional flows, Pudasaini and Hutter, 2007), the third term140

on the right hand side associated with ∂h/∂x simplifies drastically, because {((1− γ)K + γ)αs + (1− αs)}141

becomes unity. So, the isotropic assumption (i.e., K = 1) loses some important information about the solid142

content and the buoyancy effect in the mixture. Employing the mass balance equation (1), the momentum143

balance equation (3) can be re-written as:144

∂u

∂t
+ u

∂u

∂x
= gx–(1− γ)αsgzµ–gz {((1− γ)K + γ)αs + (1− αs)}

∂h

∂x
− CDV u2. (4)

The gradient ∂h/∂x might be approximated, say as hg, and still include its effect as a parameter that may be145

estimated. Here, we are mainly interested in developing a simple but more general landslide velocity model146

than the existing ones that can be solved analytically and highlight its essence to enhance our understanding147

of the landslide dynamics.148

Now, with the notation α := gx–(1− γ)αsgzµ–gz {((1− γ)K + γ)αs + (1− αs)}hg, which includes the forces:149

gravity; friction, lubrication and liquefaction; and surface gradient; and β := CDV , which is the viscous drag150

coefficient, (4) becomes a simple model equation:151

∂u

∂t
+ u

∂u

∂x
= α− βu2, (5)

where α and β constitute the net driving and the resisting forces in the system. We call (5) the landslide152

velocity equation.153

2.3 A novel physical−mathematical system154

Equation (5) constitutes a genuinely novel class of non-linear advective - dissipative system and involves dynamic155

interactions between the non-linear advective (or, inertial) term u∂u/∂x and the external forcing (source) term156

α − βu2. However, in contrast to the viscous Burgers’ equation where the dissipation is associated with the157

(viscous) diffusion, here, dissipation stems because of the viscous drag, −βu2. In the form, (5) is similar to the158

classical shallow water equation. However, from the mechanics and the material composition, it is much wider159

as such model does not exist in the literature. From the physical and mathematical point of view, there are160

two crucial novel aspects associated with model (5). First, it explains the dynamics of deforming landslide and161

thus extends the classical Voellmy model (Voellmy, 1955; Salm, 1966; McClung, 1983; Pudasaini and Hutter,162

2007) due to the broad physics carried by the model parameters, α, β; and the dynamics described by the new163

term u∂u/∂x. These parameters and the term u∂u/∂x control the landslide deformation and motion. Second,164

it extends the classical non-linear inviscid Burgers’ equation by including the non-linear source term, α− βu2,165

as a quadratic function of the unknown field variable, u, taking into account many different forces associated166

with the system as explained in Section 2.2.167

From the structure, (5) is a fundamental non-linear partial differential equation, or a non-linear transport168

equation with a source, where the source is the external physical forcing. Such an equation explains the non-169

linear advection with source term that contains the physics of the underlying problem through the parameters170

α and β. The form of this equation is very important as it may describe the dynamical state of many extended171

(as compared to the Voellmy and Burgers models) physical and engineering problems appearing in nature,172

science and technology, including viscous/fluid flow, traffic flow, shock theory, gas dynamics, landslide and173

avalanches (Burgers, 1948; Hopf, 1950; Cole, 1951; Nadjafikhah, 2009; Pudasaini, 2011; Montecinos, 2015).174
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3 The Landslide Velocity: Simple Solutions175

Exact analytical solutions to simplified cases of non-linear debris avalanche model equations are necessary to176

calibrate numerical simulations of flow depth and velocity profiles. These problem-specific solutions provide177

important insight into the full behavior of the system. Physically meaningful exact solutions explain the true178

and entire nature of the problem associated with the model equation, and thus, are superior over numerical179

simulations (Pudasaini, 2011; Faug, 2015).180

One of the main purposes of this contribution is to obtain exact analytical velocities for the landslide model (5).181

In the form (5) is simple. So, one may tempt to solve it analytically to explicitly obtain the landslide velocity.182

However, it poses a great mathematical challenge to derive explicit analytical solutions for the landslide velocity,183

u. This is mainly due to the new terms appearing in (5). Below, we construct five different exact analytical184

solutions to the model (5) in explicit form. In order to gain some physical insights into the landslide motion, the185

solutions are compared to each other. Equation (5) can be considered in two different ways: steady-state and186

transient motions, and both without and with (internal) deformation that is described by the term u∂u/∂x.187

3.1 Steady−state motion188

For a sufficiently long time and sufficiently long slope, the time independent steady-state motion can be devel-189

oped. Then, (5) reduces to a simplified equation for the landslide velocity down the entire slope:190

∂

∂x

(
1
2
u2
)

= α− βu2. (6)

Equivalently, this also represents a mass point velocity along the slope. Classically, (6) is called the center of191

mass velocity of a dry avalanche of flow type (Perla et al., 1980).192

3.1.1 Negligible viscous drag193

In situations when the Coulomb friction is dominant and the motion is slow, the viscous drag contribution can194

be neglected (βu2 ≈ 0), e.g., typically the moment after the mass release. Then, the solution to (6) is given by195

(Solution A):196

u(x;α) =
√

2α (x− x0) + u2
0, (7)

where x is the downslope travel distance, and u0 is the initial velocity at x0 (or, a boundary condition). Solution197

(7) recovers the landslide velocity obtained by considering the simple energy balance for a mass point in which198

only the gravity and simple dry Coulomb frictional forces are considered (Scheidegger, 1973), both of these199

forces are included in α. Furthermore, when the slope angle is sufficiently high or close to vertical, (7) also200

represents a near free fall landslide or rockfall velocity for which x changes to the vertical height drop.201

3.1.2 Viscous drag included202

In general, depending on the magnitude of the net driving force (that also includes the Coulomb friction), the203

viscous drag and the magnitude of the velocity, either α or βu2, or both can play dominant role in determining204

the landslide motion. Then, the more general solution for (6) than (7) takes the form (Solution B):205

u(x;α, β) =

√
α

β

[
1−

(
1− β

α
u2

0

)
1

exp(2β(x− x0))

]
, (8)

where, u0 is the initial velocity at x0. The velocity given by (8) can be compared to the Voellmy velocity and206

be used to calculate the speed of an avalanche (Voellmy, 1955; McClung, 1983). However, the Voellmy model207

only considers the reduced physical aspects in which α merely includes the gravitational force due to the slope208

and the dry Coulomb frictional force. This has been discussed in more detail in Section 3.2. As in (7), the209

solution (8) can also represent a near free fall landslide (or rockfall) velocity when the slope angle is sufficiently210

high or close to vertical, but now, it also includes the influence of drag, akin to the sky-jump.211
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Figure 1: The landslide velocity distributions down the slope as a function of position, for both without and
with drag given by (7) and (8), respectively. With drag, the flow attains the terminal velocity u

Tx ≈ 60.1 ms−1

at about x = 600 m, but without drag, the flow velocity increases unboundedly.

It is important to reveal the dynamics of viscous drag in the landslide motion. The major aspect of viscous212

drag is to bring the velocity (motion) to a terminal velocity (steady, uniform) for a sufficiently long travel213

distance. This is achieved by the following relation obtained from (8):214

lim
x→∞u =

√
α

β
=: u

Tx , (9)

where u
Tx stands for the terminal velocity of a deformable mass, or a mass point motion (Voellmy), along the215

slope that is often used to calculate the maximum velocity of an avalanche (Voellmy, 1955; McClung, 1983;216

Pudasaini and Hutter, 2007).217

In what follows, unless otherwise stated, we use the plausibly chosen physical parameters for rapid mass218

movements: slope angle of about 50◦, γ = 1100/2700, αs = 0.65, δ = 20◦ (Mergili et al., 2020a, 2020b;219

Pudasaini and Fischer, 2020). This implies the model parameters α = 7.0, β = 0.0019. In reality, based220

on the physics of the material and the flow, the numerical values of these model parameters should be set221

appropriately. However, in principle, all of the results presented here are valid for any choice of the parameter222

set {α, β}. For simplicity, u0 = 0 is set at x0 = 0, which corresponds to initially zero velocity at the position223

of the mass release. Figure 1 displays the velocity distributions of a landslide down the slope as a function224

of the slope position x. The magnitudes of the solutions presented here are mainly for reference purpose,225

which, however, are subject to scrutiny with laboratory or field data as well as natural events. For the order of226

magnitudes of velocities of natural events, we refer to Section 3.2.2. The velocities in Fig. 1 with and without227

drag, equations (7) and (8), respectively, behave completely differently already after the mass has moved a228

certain distance. The difference increases rapidly as the mass slides further down the slope. With the drag,229

the terminal velocity (u
Tx =

√
α/β ≈ 60.1 ms−1) is attained at a sufficient distance (about x = 600 m). But,230

without drag, the velocity increases forever, which is less likely for a mass propagating down a long distance.231

We note that as β → 0, the solution (8) approaches (7). For relatively small travel distance, say x ≤ 50 m,232

these two solutions are quite similar as the viscous drag is not sufficiently effective yet. However, for a long233

travel distance, x � 50 m, when the viscous drag in not included, the landslide velocity increases steadily234

without any control, whilst it increases only slowly, and remains almost unchanged for x ≥ 500 m when the235

viscous drag effect is involved.236
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3.2 A mass point motion237

Assume no or negligible local deformation (e.g., ∂u/∂x ≈ 0), or a Lagrangian description. Both are equivalent238

to the mass point motion. In this situation, only the ordinary differentiation with respect to time is involved,239

and ∂u/∂t can be replaced by du/dt. Then, the model (5) reduces to240

du

dt
= α− βu2. (10)

Perla et al. (1980) also called (10) the governing equation for the center of mass velocity, however, for a dry241

avalanche of flow type. This is a simple non-linear first order ordinary differential equation. This equation242

can be solved to obtain exact analytical solution for velocity of the landslide motion in terms of a tangent243

hyperbolic function (Solution C):244

u(t;α, β) =
√
α

β
tanh


√αβ (t− t0) + tanh−1



√
β

α
u0




 , (11)

where, u0 = u (t0) is the initial velocity at time t = t0. Equation (11) provides the time evolution of the velocity245

of the coherent (without fragmentation and deformation) sliding mass until the time it fragments and/or moves246

like an avalanche. This transition time is denoted by tA (or, tF ) indicating fragmentation, or the inception of247

the avalanche motion due to fragmentation or large deformation. So, (11) is valid for t < tA. For t > tA, we248

must use the full dynamical mass flow model (Pudasaini, 2012; Pudasaini and Mergili, 2019), or the equations249

(1) and (2). For more detail on it, see Section 6.1.250

For sufficiently long time, or in the limit as the viscous force brings the motion to a non-accelerating state251

(steady, uniform), from (11) we obtain:252

lim
t→∞

u =
√
α

β
=: u

Tt , (12)

where u
Tt stands for the terminal velocity of the motion of a point mass.253

The landslide position: Since u(t) = dx/dt, (11) can be integrated to obtain the landslide position as a254

function of time:255

x(t;α, β) = x0 +
1
β

ln


cosh




√
αβ (t− t0)− tanh−1



√
β

α
u0








− 1

β
ln


cosh



− tanh−1



√
β

α
u0








 , (13)

where x0 corresponds to the position at the initial time t0.256

Figure 2 displays the velocity profile of a landslide down the slope as a function of the time as given by (11).257

For simplicity, u0 = 0 is set as initial condition at t0 = 0, which corresponds to initially zero velocity at the time258

of the landslide trigger. The terminal velocity
(
u

Tt =
√
α/β

)
is attained at a sufficiently long time (∼ 15 s).259

We note that, in the structure, the model (10) and its solution (11) exists in literature (Pudasaini and Hutter,260

2007) and is classically called Voellmy’s mass point model (Voellmy, 1955), or Voellmy-Salm model (Salm,261

1966) that disregards the position dependency of the landslide velocity (Gruber, 1989). But, (1− γ), αs, and262

the term associated with hg are new contributions and were not included in the Voellmy model, and K = 1263

therein, while in our consideration α, K can be chosen appropriately. Thus, the Voellmy model corresponds to264

the substantially reduced form of α, with α = gx − gzµ.265

3.2.1 The dynamics controlled by the physical and mechanical parameters266

Solutions (8) and (11) are constructed independently, one for the velocity of a deformable mass as a function267

of travel distance, or the velocity of the center of mass of the landslide down the slope, and the other for the268

velocity of a mass point motion as a function of time. Unquestionable, they have their own dynamics. However,269
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Figure 2: Time evolution of the landslide velocity down the slope with drag given by (11). The motion attains
the terminal velocity at about t = 15 s.

for sufficiently long distance and sufficiently long time, or in the space and time limits, these solutions coincide270

and we obtain a unique relationship:271

u
Tx = u

Tt =
√
α

β
. (14)

So, after a sufficiently long distance or a sufficiently long time, the forces associated with α and β always272

maintain a balance resulting in the terminal velocity of the system,
√
α/β. This is a fantastic situation.273

Intuitively this is clear because, one could simply imagine that sufficiently long distance could somehow be274

perceived as sufficiently long time, and for these limiting (but fundamentally different) situations, there exists275

a single representative velocity that characterizes the dynamics. This has exactly happened, and is an advanced276

understanding. This has been shown in Fig. 3 which implicitly indicates the equivalence between (8) and (11).277

In fact, this can be proven, because, for the mass point or the center of mass motion,278

du

dt
=
du

dx

dx

dt
= u

du

dx
=
du

dx

(
1
2
u2
)

=
∂u

∂x

(
1
2
u2
)
, (15)

is satisfied.279

In Fig. 3, both velocities have the same limiting values, but their early behaviours are quite different. In space,280

the velocity shows hyper increase after the incipient motion. However, the time evolution of velocity is slow281

(almost linear) at first, then fast, and finally attains the steady-state,
√
α/β = 60.1 ms−1, the common value282

for both the solutions.283

3.2.2 The velocity magnitudes284

Importantly, for a uniformly inclined slope, the landslide reaches its maximum or the terminal velocity after a285

relatively short travel distance, or time with value on the order of 50 ms−1. These are often observed scenarios,286

e.g., for snow or rock-ice avalanches (Schaerer, 1975; Gubler, 1989; Christen et al., 2002; Havens et al., 2014).287

The velocity magnitudes presented above are quite reasonable for fast to rapid landslides and debris avalanches288

and correspond to several natural events (Highland and Bobrowsky, 2008). The front of the 2017 Piz-Chengalo289

Bondo landslide (Switzerland) moved with more than 25 ms−1 already after 20 s of the rock avalanche release290

(Mergili et al., 2020b), and later it moved at about 50 ms−1 (Walter et al., 2020). The 1970 rock-ice avalanche291

event in Nevado Huascaran (Peru) reached mean velocity of 50 - 85 ms−1 at about 20 s, but the maximum292

velocity in the initial stage of the movement reached as high as 125 ms−1 (Erismann and Abele, 2001; Evans et293
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Figure 3: Evolution of the landslide velocity down the slope as a function of space (top) given by (8), and
time (bottom) given by (11), respectively, both with drag. The flow attains the terminal velocity at about
x = 600 m and t = 15 s.

al., 2009; Mergili et al. 2018). The 2002 Kolka glacier rock-ice avalanche in the Russian Kaucasus accelerated294

with the velocity of about 60 - 80 ms−1, but also attained the velocity as high as 100 ms−1, mainly after the295

incipient motion (Huggel et al., 2005; Evans et al., 2009).296

3.2.3 Accelerating and decelerating motions297

Depending on the magnitudes of the involved forces, and whether the initial mass was released or triggered298

with a small (including zero) velocity or with high velocity, e.g., by a strong seismic shacking, (11) provides299

fundamentally different but physically meaningful velocity profiles. Both solutions asymptotically approach300 √
α/β, the lead magnitude in (11). For notational convenience, we write Sn (α, β) =

√
α/β, which has the301

dimension of velocity,
√
α/β and is called the separation number (velocity) as it separates accelerating and302

decelerating regimes. Description for deceleration is given below. Furthermore, Sn includes all the involved303

forces in the system and is the function of the ratio between the mechanically known forces: gravity, friction,304

lubrication and surface gradient; and the viscous drag force. Thus, Sn fully governs the ultimate state of the305

landslide motion.306
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Figure 4: The influence of the model parameters α and β on the landslide velocity. Colorbar shows velocity
distributions in ms−1.

For initial velocity less than Sn, i.e., u0 < Sn, the landslide velocity increases rapidly just after its release,307

then ultimately (after a sufficiently long time) it approaches asymptotically to the steady state, Sn (Fig. 2).308

This is the accelerating motion. On the other hand, if the initial velocity was higher than Sn, i.e., u0 > Sn,309

the landslide velocity would decrease rapidly just after its release, then it ultimately would asymptotically310

approaches to Sn. This is the decelerating motion (not shown here).311

We have now two possibilities. First, we can describe u(t;α, β) as a function of time with α, β as parameters.312

This corresponds to the velocity profile of the particular landslide characterized by the geometrical, physical313

and mechanical parameters α and β as time evolves. This has been shown in Fig. 2 for u0 < Sn. A similar314

solution can be displayed for u0 > Sn for which the velocity would decrease and asymptotically approach to315

Sn.316

3.2.4 Velocity described by the space of physical parameters317

Second, we can investigate the control of the physical parameters on the landslide motion for a given time. This318

is achieved by plotting u(α, β; t) as a function of α and β, and considering time as a parameter. Figure 4 shows319

the influence of the parameters α and β on the evolution of the velocity for a landslide motion for a typical320

time t = 35 s. The parameters α and β enhance or control the landslide velocity completely differently. For a321

set of parameters {α, β}, we can now provide an estimate of the landslide velocity. As mentioned earlier, the322

landslide velocity as high as 125 ms−1 have been reported in the literature with their mean and common values323

in the range of 60 - 80 ms−1 for rapid motions. This way, we can explicitly study the influence of the physical324

parameters on the dynamics of the velocity field and also determine their range of plausible values. This325

answers the question on how would the two similar looking, but physically differently characterized landslides326

move. They may behave completely differently.327

3.2.5 A model for viscous drag328

There exist explicit models for the interfacial drags between the particles and the fluid (Pudasaini, 2020) in329

the multiphase mixture flow (Pudasaini and Mergili, 2019). However, there exists no clear representation330

of the viscous drag coefficient for landslide which is the drag between the landslide and the environment.331

Often in applications, the drag coefficient (β = CDV ) is prescribed and is later calibrated with the numerical332

simulations to fit with the observation or data (Kattel et al., 2016; Mergili et al., 2020a, 2020b). Here, we333

explore an opportunity to investigate on how the characteristic landslide velocity (14) offers a unique possibility334
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to define the drag coefficient. Equation (14) can be written as335

β =
α

u2
max

, (16)

where, umax represents the maximum possible velocity during the motion as obtained from the (long-time)336

steady-state behaviour of the landslide. Equation (16) provides a clear and novel definition (representation) of337

the viscous drag in mass movement (flow) as the ratio of the applied forces to the square of the steady-state338

(or a maximum possible) velocity the system can attain. With the representative mass m, (16) can be written339

as340

β =
1
2mα

1
2mu

2
max

. (17)

Equivalently, β is the ratio between the one half of the “system-force”, 1
2mα (the driving force), and the341

(maximum) kinetic energy, 1
2mu

2
max, of the landslide. With the knowledge of the relevant maximum kinetic342

energy of the landslide (Körner, 1980), the model (17) for the drag can be closed.343

3.2.6 Landslide motion down the entire slope344

Furthermore, we note that following the classical method by Voellmy (Voellmy, 1955) and extensions by Salm345

(1966) and McClung (1983), the velocity models (8) and (11) can be used for multiple slope segments to346

describe the accelerating and decelerating motions as well as the landslide run-out. These are also called the347

release, track and run-out segments of the landslide, or avalanche (Gubler, 1989). However, for the gentle slope,348

or the run-out, the frictional force may dominate gravity. In this situation, the sign of α in (5) changes. Then,349

all the solutions derived above must be thoroughly re-visited with the initial condition for velocity being that350

obtained from the lower end of the upstream segment. This way, we can apply the model (5) to analytically351

describe the landslide motion for the entire slope, from its release, through the track and the run-out, as well352

as to calculate the total travel distance. These methods can also be applied to the general solutions derived in353

Section 4 and Section 5.354

4 The Landslide Velocity: General Solution - I355

For shallow motion the velocity may change locally, but the change in the landslide geometry may be param-356

eterized. In such a situation, the force produced by the free-surface pressure gradient can be estimated. A357

particular situation is the moving slab for which hg = 0, otherwise hg 6= 0. This justifies the physical signifi-358

cance of (5).359

The Lagrangian description of a landslide motion is easier. However, the Eulerian description provides a bet-360

ter and more detailed picture of the landslide motion as it also includes the local deformation due to the361

velocity gradient. So, here we consider the model equation (5). Without reduction, conceptually, this can362

be viewed as an inviscid, non-homogeneous, dissipative Burgers’ equation with a quadratic source of system363

forces, and includes both the time and space dependencies of u. Exact analytical solutions for (5) can still364

be constructed, however, in more sophisticated forms, and is very demanding mathematically. First, for the365

notational convenience, we re-write (5) as:366

∂u

∂t
+ g(u)

∂u

∂x
= f(u), (18)

where, g(u) = u, and f(u) = α − βu2 correspond to our model (5). Here, g and f are sufficiently smooth367

functions of u, the landslide velocity. Next, we construct exact analytical solution to the generic model (18).368

For this, first we state the following theorem from Nadjafikhah (2009).369

Theorem 4.1: Let f and g be invertible real valued functions of real variables, f is everywhere away from zero,370

φ(u) =
∫ 1
f(u)

du is invertible, and l(u) =
∫ (
g
(
φ−1(u)

))
du. Then, x = l(φ(u)) + F [t− φ(u)] is the solution371

of (18), where F is an arbitrary real valued smooth function of t− φ(u).372
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To our problem (5), we have constructed the solution (below in Section 4.1), and reads as (Solution D):373

x =
1
β

ln
[
cosh

(√
αβ φ(u)

)]
+ F [t− φ(u)] ; φ(u) =

1
2

1√
αβ

ln

[√
α/β + u√
α/β − u

]
. (19)

It is important to note, that in (19), the major role is played by the function φ that contains all the forces of374

the system. Furthermore, the function F includes the time-dependency of the solution. The amazing fact with375

the solution (19) is that any smooth function F with its argument (t− φ(u)) is a valid solution of the model376

equation. This means that, different landslides may be described by different F functions. Alternatively, a377

class of landslides might be represented by a particular function F . This is substantial.378

4.1 Derivation of the solution to the general model equation379

Here, we present the detailed derivation of the solution (19) to the landslide velocity equation (5). We derive380

the functions φ, φ−1, l and loφ that are involved in constructing the analytical solution in Theorem 4.1 for our381

model (5). The first function φ is given by382

φ(u) =
∫ 1
f(u)

du =
∫ 1
α− βu2

du =
1

2
√
αβ

ln

[√
α/β + u√
α/β − u

]
. (20)

With the substitution, τ = φ(u) (which implies u = φ−1 (τ)), we obtain,383

φ−1 (τ) =
√
α

β

[
exp

(
2
√
αβ τ

)− 1
exp

(
2
√
αβ τ

)
+ 1

]
=
√
α

β
tanh

(√
αβ τ

)
. (21)

So, now the second function φ−1 can be written in terms of u. However, we must be consistent with the physical384

dimensions of the involved variables and functions. The quantities u,
√
αβ,

√
α/β and τ have dimensions of385

ms−1, s−1, ms−1 and s. Thus, for the dimensional consistency, the following mapping introduces a new multiplier386

λ with the dimension of 1/ ms−2. Therefore, we have387

φ−1 (u) =
√
α

β
tanh

(√
λαβ u

)
. (22)

With this, the third function l(u) yields:388

l(u) =
∫
g
(
φ−1 (u)

)
du =

∫
φ−1 (u) du =

√
α

β

∫
tanh

(√
λαβ u

)
du =

1
λβ

ln
[
cosh

(
λ
√
αβ u

)]
. (23)

The fourth function l (φ (u)) = (loφ)(u) is instantly achieved:389

l (φ (u)) =
(
χ

λ

)
1
β

ln
[
cosh (ξλ)

√
αβ φ(u)

]
, (24)

where, as before, the multipliers χ and ξ emerge due to the transformation and for the dimensional consistency,390

they have the dimensions of 1/ms−2 and ms−2, respectively. The nice thing about the groupings (χ/λ) and391

(ξλ) is that they are now dimensionless and unity.392

Utilizing these functions in Theorem 4.1, we finally constructed the exact analytical solution (19) to the model393

equation (5) describing the temporal and spatial evolution of the landslide velocity.394

4.2 Recovering the mass point motion395

The amazing fact is that the newly constructed general analytical solution (19) is strong and includes both396

the mass point solutions for velocity (11) and the position (13). Below we prove, that for a special choice of397

the function F , (19) directly implies both (11) and (13). For this, consider a particular form of F such that398
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F (0) ≡ 0, which is called a vacuum solution. First, F (0) ≡ 0 implies that t = φ(u). Then, with the functional399

relation of φ(u) in (19), and after some simple algebraic operations, we obtain:400

u =
√
α

β
tanh

[√
αβ t

]
. (25)

Up to the constant of integration parameters (with u0 = 0 at t0 = 0), (25) is (11). So, the first assertion is401

proved. Second, using F (0) ≡ 0 and φ(u) = t in (19), immediately yields402

x =
1
β

ln
[
cosh

(√
αβ t

)]
. (26)

Again, up to the constant of integration parameters (with x0 = 0, and u0 = 0 at t0 = 0), (26) is (13). This403

proves the second assertion.404

Moreover, we mention that (25) and (26) can also be obtained formally. This proves that the conditions used405

on F are legitimate. To see this, we differentiate (19) with respect to t to yield406

u =
dx

dt
=
√
α

β
tanh

[√
αβ φ(u)

] dφ
dt

+ F ′ [t− φ(u)]
(

1− dφ

dt

)
. (27)

But, differentiating φ in (19) with respect to t and employing (10), we obtain dφ/dt = 1, or φ = t. Now, by407

substituting these in (27) and (19) we respectively recover (25) and (26).408

However, we note that F in (19) is a general function. So, (19) provides a wide spectrum of analytical solutions409

for the landslide velocity as a function of time and space, much wider than (11) and (13).410

4.3 Some particular exact solutions411

Here, we present some interesting particular exact solutions of (19) in the limit as β → 0. For this purpose,412

first we consider (5) with β → 0, and introduce the new variables t̃ = αt, x̃ = αx. Then, (5) can be written as:413

∂u

∂t̃
+ u

∂u

∂x̃
= 1. (28)

Note that each term in this equation is dimensionless. We apply Theorem 4.1 and the underlying techniques to414

(28). So, f(u) = 1 implies φ(u) = u, l(u) = u2/2, and l(φ(u)) = u2/2. Following the procedure as for (19), we415

obtain the solution to (28) as: x̃ =
u2

2
+ F

(
t̃− u). However, the direct application of φ(u) = u in (19) leads416

to the solution (that is more complex in its form): x̃ =
1
β

ln
[
cosh

(√
βu
)]

+ F
(
t̃− u). Then, in the limit, we417

must have:418

lim
β→0

1
β

ln
[
cosh

(√
βu
)]

=
u2

2
. (29)

This is an important mathematical identity we obtained as a direct consequence of Theorem 4.1 and (19).419

Furthermore, the identity (29) when applied to (26) implies:420

lim
β→0

x = lim
β→0

1
β

ln
[
cosh

(√
αβ t

)]
= lim

β→0

1
β

ln
[
cosh

{√
β
(√
α t
)}]

=
1
2
αt2. (30)

Thus, x = 1
2αt

2, which is the travel distance in time when the viscous drag is absent. So, (29) is a physically421

important identity.422

Moreover, with the definition of x̃, for the particular choice of F ≡ 0, x̃ =
u2

2
+ F

(
t̃− u) results in u(x;α) =423

√
2αx, which is the solution given in (7). Furthermore, with the choice of x̃ = 0, and F = t̃ − u, we obtain424

u = 1 −
√

1− 2αt, which for small t, can be approximated as u ≈ αt. But, in the limit as β → 0, (11) brings425

about u = αt, which however, is valid for all t values. Thus, (19) generalizes both solutions (7) and (11) in426

numerous ways.427
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Figure 5: Velocity distribution given by (34).

4.4 Reduction to the classical Burgers’ equation428

Interestingly, by directly taking limit as β → 0, from (19) we obtain429

x =
u2

2α
+ F

(
t− u

α

)
, (31)

which can be written as430

u2 + 2αF
(
t− u

α

)
− 2αx = 0. (32)

Importantly, for any choice of the function F , (32) satisfies431

∂u

∂t
+ u

∂u

∂x
= α, (33)

which reduces to the classical inviscid Burgers’ equation when α→ 0.432

4.5 Some explicit expressions for u in (19)433

For a properly selected function F , (19) can be solved exactly for u. For example, consider a constant F ,434

F = Λ. Then, an explicit exact solution is obtained as:435

u =
√
α

β
tanh

[
1
2

exp
{

2 cosh−1 (exp(β(x− Λ)))
}]
. (34)

Figure 5 shows the velocity distribution given by (34) with u ≈ 28 ms−1 at x = 0 and Λ = 0, which reaches436

the steady-state at about x = 150 m, much faster than the solution given by (8) in Fig. 3.437

However, other more general solutions could be found by considering different F functions in (19). One such438

case is presented here. For the choice F =
1
β

ln
[
c cosh

{√
αβ(t− φ(u))

}]
, where c is a constant, (19) can be439

solved explicitly for u in terms of x and t, which, after lengthy algebra, takes the form:440

u =
√
α

β
tanh

[
1
2

{
cosh−1

(
2
c

exp(βx)− cosh
(√

αβ t
))

+
√
αβ t

}]
. (35)

The velocity profile along the slope as given by (35) is presented in Fig. 6 for t = 1 ms−1 and c = 1. This441

solution is quite different to that in Fig. 3 produced by (8) which does not consider the local time variation of442

14

https://doi.org/10.5194/esurf-2021-81
Preprint. Discussion started: 30 November 2021
c© Author(s) 2021. CC BY 4.0 License.



0 500 1000 1500

Travel distance: x [m]

0

10

20

30

40

50

60

70
V

e
lo

c
it
y
: 

u
 [

m
s

-1
]

Mass point velocity

General velocity

Figure 6: Evolution of the velocity field along the slope as given by (35) for general velocity against the mass
point (or, center of mass) velocity corresponding to (8).
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Figure 7: Time evolution of the velocity field as given by (35).

the velocity. From the dynamical perspective, the solution (35) is better than the mass point solution (8). The443

important observation is that the solution given by (8) substantially overestimates the legitimate more general444

solution (35) that includes both the time and space variation of the velocity field. The lower velocity with (35)445

corresponds to the energy consumption due to the deformation associated with the velocity gradient ∂u/∂x in446

(5). This will be discussed in more detail in Section 4.5 and Section 4.6.447

Furthermore, Fig. 7 presents the time evolution of the velocity field given by (35) for x = 25 m, c = −2.448

This corresponds to the decelerating flow down the slope that starts with a very high velocity and finally449

asymptotically approaches to the steady-state velocity of the system. Similar situation has also been discussed450

at Section 3.2.3, but for a mass point motion.451
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Figure 8: The velocity profiles for a landslide with the mass point motion as given by (11), and the motion in-
cluding the internal deformation as given by the general solution (19). The two solutions behave fundamentally
differently.

4.6 Description of the general velocity452

A crucial aspect of a complex analytical solution is its proper interpretation. The general solution (19) can453

be plotted as a function of the travel distance x and the travel time t. For the purpose of comparing the454

results with those derived previously, we select F as: F = [Fk(t− φ(u))]pw + Fc with parameter values,455

Fk = 5000, Fc = −500, pw = 1/2. Furthermore, x is a parameter while plotting the velocity as a function456

of time. In these situations, in order to obtain physically plausible solution, the space parameter is selected457

as x0 = −600. To match the origin of the mass point solution, in plotting, the time has been shifted by -2.458

Figure 8 depicts the two solutions given by (11) for the mass point motion, and the general solution given by459

(19) that also includes the internal deformation of the landslide associated with the velocity gradient or the460

non-linear advection u∂u/∂x in (5). They behave essentially differently right after the mass release. The mass461

point model substantially overestimates landslide velocity derived by the more realistic general model.462

4.7 A fundamentally new understanding463

The new general solution (19) and its plot in Fig. 8 provides a fundamentally new aspect in our understanding464

of landslide velocity. The physics behind the substantially, but legitimately, reduced velocity provided by the465

general velocity (19) as compared to the mass point velocity (11) is revealed here for the first time. The gap466

between the two solutions increases steadily until a substantially large time (here about t = 20 s), then the gap467

is reduced slowly. This is so because, after t = 20 s the mass point velocity is close to its steady value (about468

60.1 ms−1). In the meantime, after t = 20 s, the general velocity continues to increase but slowly, and after a469

long time, it also tends to approach the steady-state. This substantially lower velocity in the general solution470

is realistic. Its mechanism can be explained. It becomes clear by analysing the form of the model equation471

(5). For the ease of analysis, we assume the accelerating flow down the slope. For such a situation, both u and472

∂u/∂x are positive, and thus, u∂u/∂x > 0. The model (5) can also be written as473

∂u

∂t
=
(
α− βu2

)
− u∂u

∂x
. (36)

Then, from the perspective of the time evolution of u, the last term on the right hand side can be interpreted474

as a negative force additional to the system (10) describing the mass point motion. This is responsible for the475

substantially reduced velocity profile given by (19) as compared to that given by (11). The lower velocity in476
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(19) can be perceived as the outcome of the energy consumed in the deformation of the landslide associated477

with the spatial velocity gradient that can also be inferred by the negative force attached with −u∂u/∂x in478

(36). Moreover, u∂u/∂x in (5) can be viewed as the inertial term of the system (Bertini et al., 1994). However,479

after a sufficiently long time the drag is dominant, resulting in the decreased value of ∂u/∂x. Then, the effect480

of this negative force is reduced. Consequently, the difference between the mass point solution and the general481

solution decreases. However, these statements must be further scrutinized.482

5 The Landslide Velocity: General Solution - II483

Below, we have constructed a further analytical solution to our velocity equation based on the method of484

Montecinos (2015). Consider the model (5) and assign an initial condition:485

∂u

∂t
+ u

∂u

∂x
= α− βu2, u(x, 0) = s0(x). (37)

This is a non-linear advective - dissipative system, and can be perceived as an inviscid, dissipative, non-486

homogeneous Burgers’ equation. First, we note that, H(x) is a primitive of a function h(x) if
dH(x)
dx

= h(x).487

Then, we summarize the Montecinos (2015) solution method in a theorem:488

Theorem 5.1: Let
1

f(u)
be an integrable function. Then, there exists a function E (t, s0(y)) with its primitive489

F (t, s0(y)), such that, the initial value problem490

∂u

∂t
+ u

∂u

∂x
= f(u), u(x, 0) = s0(x), (38)

has the exact solution u(x, t) = E (t, s0(y)), where y satisfies x = y + F (t, s0(y)).491

Following Theorem 5.1, after a bit lengthy calculation (below in Section 5.1), we obtain the exact solution492

(Solution E) for (37):493

u(x, t) =
√
α

β
tanh


√αβ t+ tanh−1





√
β

α
s0(y)






 , (39)

where y = y(x, t) is given by494

x = y +
1
β

ln


cosh




√
αβ t+ tanh−1





√
β

α
s0(y)










− 1

β
ln


cosh



tanh−1





√
β

α
s0(y)










 , (40)

and, s0(x) = u(x, 0) provides the functional relation for s0(y). In contrast to (19), (39)-(40) are the direct495

generalizations of the mass point solutions given by (11) and (13). This is an advantage.496

The solution strategy is as follows: Use the definition of s0(y) in (40). Then, solve for y. Go back to the497

definition of s0(y) and put y = y(x, t) in s0(y). This s0(y) is now a function of x and t. Finally, put498

s0(y) = f(x, t) in (39) to obtain the required general solution for u(x, t). In principle, the system (39)-(40) may499

be solved explicitly for a given initial condition. One of the main problems in solving (39)-(40) lies in inverting500

(40) to acquire y(x, t). Moreover, we note that, generally, (19) and (39)-(40) may provide different solutions.501

5.1 Derivation of the solution to the general model equation502

The solution method involves some sophisticated mathematical procedures. However, here we present a compact503

but a quick solution description to our problem. The equivalent ordinary differential equation to the partial504

differential equation system (37) is505

dû

dt
= α− βû2, û(0) = s(0), (41)
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which has the solution506

û(t) = E (t, s(0)) =
√
α

β
tanh


√αβ t+ tanh−1





√
β

α
s(0)






 . (42)

Consider a curve x in the x− t plane that satisfies the ordinary differential equation507

dx

dt
= E (t, s0(y)) =

√
α

β
tanh


√αβ t+ tanh−1





√
β

α
s0(y)






 , x(0) = y. (43)

Solving the system (43), we obtain,508

x = y + F (t, s0(y))

= y +
1
β

ln


cosh




√
αβ t+ tanh−1





√
β

α
s0(y)










− 1

β
ln


cosh



tanh−1





√
β

α
s0(y)










 . (44)

So, the exact solution to the problem (37) is given by509

u(x, t) = E (t, s0(y)) =
√
α

β
tanh


√αβ t+ tanh−1





√
β

α
s0(y)






 , (45)

where y satisfies (44).510

5.2 Recovering the mass point motion511

It is interesting to observe the structure of the solutions given by (39)-(40). For a constant initial condition,512

e.g., s0(x) = λ0, s0(y) = λ0, (39) and (40) are decoupled. Then, (39) reduces to513

u(x, t) =
√
α

β
tanh


√αβ t+ tanh−1



√
β

α
λ0




 . (46)

For t = 0, u(x, 0) = u0(x) = λ0, which is the initial condition. Furthermore, (40) takes the form:514

x = x0 +
1
β

ln


cosh




√
αβ t+ tanh−1



√
β

α
λ0








− 1

β
ln


cosh



tanh−1



√
β

α
λ0








 , (47)

from which we see that for t = 0, x = y = x0, which is the initial position. With this, we observe that (46) and515

(47) are the mass point solutions (11) and (13), respectively.516

5.3 A particular solution517

For the choice of the initial condition s0(x) =
√
α

β
tanh

[
cosh−1 {exp(βx)}

]
, combining (39) and (40), after a518

bit of algebra, leads to519

u(x, t) =
√
α

β
tanh

[
cosh−1 {exp(βx)}

]
, (48)

which, surprisingly, is the same as the initial condition. However, we can now legitimately compare (48) with520

the previously obtained solution (8), which is the steady-state motion with viscous drag. These two solutions521

have been presented in Fig. 9. The very interesting fact is that (8) and (48) turned out to be the same. For a522

real valued parameter β and a real variable x, this reveals an important mathematically identity, that523

tanh
[
cosh−1 {exp(βx)}

]
=
√

1− exp(−2βx). (49)
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Figure 9: The velocity profile down a slope as a function of position for a landslide given by (39)-(40) reduced
to the steady-state (48) against the steady-state solution with viscous drag given by (8). They match perfectly.

This means, the very complex function on the left hand side can be replaced by the much simpler function on524

the right hand side. Moreover, taking the limit as β → 0 in (48) and comparing it with (7), we obtain another525

functional identity:526

lim
β→0

1√
β

tanh
[
cosh−1 {exp(βx)}

]
=
√

2x. (50)

These identities have mathematical significance.527

5.4 Time marching general solution528

Any initial condition can be applied to the solution system (39)-(40). For the purpose of demonstrating the529

functionality of this system, here we consider two initial conditions: s0(x) = x0.50 and s0(x) = x0.65. The530

corresponding results are presented in Fig. 10. This figure clearly shows time marching of the landslide motion531

that also stretches as it slides down. Such deformation of the landslide stems from the term u∂u/∂x and the532

applied forces α−βu2 in our primary model (5). We will elaborate on this later. This proves our hypothesis on533

the importance of the non-linear advection and external forcing on the deformation and motion of the landslide.534

The mechanism and dynamics of the advection, stretching and approaching to the steady-state can be explained535

with reference to the general solution. For this, consider the lower panel with initial condition s0(x) = x0.65. At536

t = 0.0 s, (40) implies that y = x, then from (39), u(x, t) = s0(x), which is the initial condition. Such a velocity537

field can take place in relatively early stage of the developed motion of large natural events (Erismann and538

Abele, 2001; Huggel et al., 2005; Evans et al., 2009; Mergili et al., 2018). This is represented by the t = 0.0 s539

curve. For the next time, say t = 2.0 s, the spatial domain of u expands and shifts to the right as defined by540

the rule (40). It has three effects in (39). First, due to the shift of the spatial domain, the velocity field u is541

relocated to the right (down stream). Second, because of the increased t value, and the spatial term associated542

with tanh−1, the velocity field is elevated. Third, as the tanh function defines the maximum value of u (about543

60.1 ms−1), the velocity field is controlled (somehow appears to be rotated). This dynamics also applies for544

t > 2.0 s. These jointly produce beautiful spatio-temporal patterns in Fig. 10. Since the maximum of the545

initial velocity was already close to the steady-state value (the right-end of the curve), the front of the velocity546

field is automatically and strongly controlled, limiting its value to 60.1 ms−1. So, although the rear velocity547

increases rapidly, the front velocity remains almost unchanged. After a sufficiently long time, t ≥ 15 s, the rear548

velocity also approaches the steady-steady value. Then, the entire landslide moves downslope virtually with549

the constant steady-state velocity, without any substantial stretching. We can similarly describe the dynamics550
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Figure 10: Time evolution of velocity profiles of propagating and stretching landslides down a slope, and as
functions of position including the internal deformations as given by the general solution (39)-(40) of (5).
The profiles correspond to the initial conditions s0(x) = x0.50 (top panel) and s0(x) = x0.65 (bottom panel),
respectively.

for the upper panel in Fig. 10. However, these two panels reveal an important fact that the initial condition551

plays an important role in determining and controlling the landslide dynamics.552

5.5 Landslide stretching553

The stretching (or, deformation) of the landslide propagating down the slope depends on the evolution of its554

front and rear positions with maximum and minimum speeds, respectively. This has been shown in Fig. 11555

corresponding to the initial condition s0(x) = x0.65 in Fig. 10. It is observed that the rear position evolves556

strongly non-linearly whereas the front position advances only weakly non-linearly.557

In order to better understand the rate of stretching of the landslide, in Fig. 12, we also plot the difference558

between the front and rear positions as a function of time. It shows the stretching (rate) of the rapidly deforming559

landslide. The stretching dynamics is determined by the front and rear positions of the landslide in time, as560

has been shown in Fig. 11. In the early stages, the stretching increases rapidly. However, in later times (about561
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Figure 11: Time evolution of the front and rear positions of the landslide as it moves down the slope including
the internal deformation given by the general solution (39)-(40) of (5), corresponding to the initial condition
s0(x) = x0.65 in Fig. 10.
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Figure 12: Time stretching of the landslide down the slope including the internal deformation given by the
general solution (39)-(40) of (5), corresponding to the initial condition s0(x) = x0.65 in Fig. 10.

t ≥ 15 s) it increases only slowly, and after a sufficiently long time, (the rate of) stretching vanishes as the562

landslide has already been fully stretched. This can be understood, because after a sufficiently long time, the563

motion is in steady-state. The two panels in Fig. 10 also clearly indicate that the stretching (rate) depends on564

the initial condition.565

5.6 Describing the dynamics566

The dynamics observed in Fig. 10 and Fig. 12 can be described with respect to the general model (5) or (37)567

and its solution given by (39)-(40). The nice thing about (39) is that it can be analyzed in three different568

ways: with respect to the first or second or both terms on the right hand side. If we disregard the first term569

involving time, then we explicitly see the effect of the second term that is responsible for the spatial variation570
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of u for each time employed in (40). This results in the shift of the solution for u to the right, and in the mean571

time, the solution stretches but without changing the possible maximum value of u (not shown). Stretching572

continues for higher times, however, for a sufficiently long time, it remains virtually unchanged. On the other573

hand, if we consider both the first and second terms on the right hand side of (39), but use the initial velocity574

distribution only for a very small x damain, say [0, 1], then, we effectively obtain the mass point solutions given575

in Fig. 3 top and bottom panels corresponding to (8) and (11), respectively for the spatial and time evolutions576

of u. This is so, because now the very small initial domain for x essentially defines the velocity field as if it was577

for a center of mass motion. Then, as time elapses, the domain shifts to the right and the velocity increases.578

Now, plotting the velocity field as a function of space and time recovers the solutions in Fig. 3. In fact, if we579

collect all the minimum values of u (the left end points) in Fig. 10 (bottom panel) and plot them in space and580

time, we acquire both the results in Fig. 3. These are effectively the mass point solutions for the spatial and581

time variation of the velocity field, because these results only focus on the left end values of u, akin to the mass582

point motion. This means, (40) together with (39) is responsible for the dynamics presented in Fig. 10, Fig. 11583

and Fig. 12 corresponding to the term u∂u/∂x and α−βu2 in the general model (5) or (37). So, the dynamics584

is specially architectured by the advection u∂u/∂x and controlled by the system forcing α− βu2, through the585

model parameters α and β. This will be discussed in more detail in Section 5.7 - Section 5.9. This is a fantastic586

situation, because, it reveals the fact that the shifting, stretching and lifting of the velocity field stems from587

the term u∂u/∂x in (37). After a long time, as drag strongly dominates the other system forces, the velocity588

approaches the steady-state, practically the velocity gradient vanishes, and thus, the stretching ceases. Then,589

the landslide just moves down the slope at a constant velocity without any further dynamical complication.590

5.7 Rolling out the initial velocity591

It is compelling to see how the solution system (39)-(40) rolls out an initially constant velocity across specific592

curves. For this, consider an initial velocity s0(x) = 0 in a small domain, say [0, 3], and take a point in it.593

Then, generate solutions for different times, beginning with t = 0.0 s, with 2.0 s increments. As shown in594

Fig. 13, the space and time evolutions of the velocity fields for a mass point motion given by (8) and (11)595

have been exactly rolled-up and covered by the system (39)-(40) by transporting the initial velocity along these596

curves (indicated by the star symbols). As explained earlier, the mechanism is such that, in time, (40) shifts597

the solution point (domain) to the right and (39) up-lifts the velocity exactly lying on the mass point velocity598

curves designed by (8) and (11). So, the system (39)-(40) generalizes the mass point motion in many different599

ways.600

5.8 Breaking wave and folding601

Next, we show how the new model (5) and its solution system (39)-(40) can mould the breaking wave in602

mass transport and describe the folding of a landslide. For this, consider a sufficiently smooth initial velocity603

distribution given by s0(x) = 5 exp(−x2/50). Such a distribution can be realized, e.g., as the landslide starts604

to move, its center might have been moving at the maximum initial velocity due to some localized strength605

weakening mechanism (examples include liquefaction, frictional strength loss; blasting; seismic shaking), and606

the strength weakening diminishes quickly away from the center. This later leads to a highly stretchable607

landslide from center to the back, while from center to the front, the landslide contracts strongly. The time608

evolution of the solution has been presented in Fig. 14. The top panel for the usual drag as before (β = 0.0019),609

while the bottom panel with higher drag (β = 0.019). The drag strongly controls the wave breaking and folding,610

and also the magnitude of the landslide velocity. Here, we focus on the top panel, but similar analysis also611

holds for the bottom panel.612

Wave breaking and folding are often observed important dynamical aspects in mass transport and formation613

of geological structures. Figure 14 reveals a thrilling dynamics. The most fascinating feature is the velocity614

wave breaking and how this leads to the emergence of folding of the landslide. This can be explained with615

respect to the mechanism associated with the solution system (39)-(40). As u∂u/∂x is positive to the left616

and negative to the right of the maximum initial velocity, the motion to the left of the maximum initial617

velocity overtakes the velocity to the right of the maximum position. As the position of the maximum velocity618
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Figure 13: Spatial (top) and temporal (bottom) transportations of the initial velocity (u = 0) of the landslide
down the slope by the general solution system (39)-(40) as indicated by the star markings for times t = 0.0 s,
with 2.0 s increments. These solutions exactly fit with the space and time evolutions of the velocity fields for
the mass point motions given by (8) and (11).

accelerates downslope with the fastest speed, after a sufficiently long time, a kink around the front of the619

velocity wave develops, here after t = 2 s. This marks the velocity wave breaking (shock wave formation) and620

the beginning of the folding. However, the rear stretches continuously. Although mathematically a folding may621

refer to a singularity due to a multi-valued function, here we explain the folding dynamics as a phenomenon622

that can appear in nature. In time, the folding intensifies, the folding length increases, but the folding gap623

decreases. After a long time, virtually the folding gap vanishes and the landslide moves downslope at the624

steady-state velocity with a perfect fold in the frontal part (not shown), while in the back, it maintains a625

single large stretched layer. This happened collectively as the system (39)-(40) simultaneously introduced626

three components of the landslide dynamics: downslope propagation, velocity up-lift and breaking or folding in627

the frontal part while stretching in the rear. This physically and mathematically proves that the non-uniform628

motion (with its maximum somewhere interior to the landslide) is the basic requirement for the development629

of the breaking wave and the emergence of landslide folding. This is a seminal understanding.630
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Figure 14: The breaking wave and folding as a landslide propagates down a slope. The top panel with drag
β = 0.0019, while the bottom panel with higher drag, β = 0.019, which strongly controls the wave breaking
and folding, and also the magnitude of the landslide velocity.

5.9 Recovering Burgers’ model631

As the external forcing vanishes, i.e., as α → 0, β → 0, the landslide velocity equation (5) reduces to the632

classical inviscid Burgers’ equation. Then, for α → 0, β → 0, one would expect that the general solution633

(39)-(40) should also reduce to the formation of the shock wave and wave breaking generated by the inviscid634

Burgers’ equation. In fact, as shown in Fig. 15, this has exactly happened. For this, the solution domain635

remains fixed, and the solution are not uplifted. This proves that Burgers’ equation is a special case of our636

model (5).637

5.10 The viscous drag effect638

It is important to understand the dynamic control of the viscous drag on the landslide motion. For this, we set639

α→ 0, but increased the value of the viscous drag parameter by one and two orders of magnitude. The results640

are shown in Fig. 16. In connection to Fig. 15, there are two important observations. First, the translation641

and stretching of the domain is solely dependent on the net driving force α, and when it is set to zero, the642

domain remains fixed. Second, the viscous drag parameter β effectively controls the magnitude of the velocity643
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Figure 15: Recovering the Burgers’ shock formation and breaking of the wave by the solution system (39)-(40)
of the new model (5) in the limit of the vanishing external forcing, i.e., α→ 0, β → 0.

field and the wave breaking. Depending on the magnitude of the viscous drag coefficient, the generation of644

the shock wave and the wave breaking can be dampened (top panel) or fully controlled (bottom panel). The645

bottom panel further reveals, that with properly selected viscous drag coefficient, the new model can describe646

the deposition process of the mass transport and finally brings it to a standstill. In contrast to the classical647

inviscid Burgers’ equation, due to the viscous drag effect, our model (5) is dissipative, and can be recognized648

as a dissipative inviscid Burgers’ equation. However, here the dissipation is not due to the diffusion but due to649

the viscous drag.650

6 Discussions651

Analytical solutions of the underlying physical-mathematical models significantly improve our knowledge of the652

basic mechanism of the problem. On the one hand, exact, analytical solutions disclose many new and essential653

physics, and thus, may find applications broadly in environmental and engineering mass transport down natural654

slopes or industrial channels. The reduced and problem-specific solutions provide important insights into the655

full behavior of the complex landslide system, mainly the landslide motion with non-linear internal deformation656

together with the external forcing. On the other hand, exact analytical solutions to simplified cases of non-657

linear model equations are necessary to calibrate numerical simulations (Chalfen and Niemiec, 1986; Pudasaini,658

2011, 2016; Ghosh Hajra et al., 2018). For this reason, this paper is mainly concerned about the development of659

a new general landslide velocity model and construction of several novel exact analytical solutions for landslide660

velocity.661

Analytical solutions provide the fastest, cheapest, and probably the best solution to a problem as measured662

from their rigorous nature and representation of the dynamics. Proper knowledge of the landslide velocity663

is required in accurately determining the dynamics, travel distance and enormous destructive impact energy664

carried by the landslide. The velocity of a landslide is associated with its internal deformation (inertia) and the665

externally applied system forces. The existing influential analytical landslide velocity models do not include666

many important forces and internal deformation. The classical analytical representation of the landslide velocity667

appear to be incomplete and restricted, both from the physics and the dynamics point of view. No velocity668

model has been presented yet that simultaneously incorporates inertia and the externally applied system forces669

that play crucial role in explaining important aspects of landslide propagation, motion and deformation.670

We have presented the first-ever, analytically constructed simple, but more general landslide velocity model.671
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Figure 16: The control of the viscous drag on the dynamics of the landslide. The net driving force is set
to zero, i.e., α = 0. The viscous drag has been amplified by one and two orders of magnitudes in the top
(β = 0.019) and bottom (β = 0.19) panels, showing dampened or complete prevention of shock formation and
wave breaking, respectively.

There are two main collective model parameters: the net driving force and drag. By rigorous derivations of672

the exact analytical solutions, we showed that incorporation of the non-linear advection and external forcing673

is essential for the physically correct description of the landslide velocity. In this regard, we have presented674

a novel dynamical model for landslide velocity that precisely explains both the deformation and motion by675

quantifying the effect of non-linear advection and the system forces.676

Different exact analytical solutions for landslide velocity constructed in this paper independently support each677

other and are compatible with the physics of landslide motion. These physically meaningful solutions can678

potentially be applied to calculate the complex non-linear velocity distribution of the landslide. Our new679

results reveal that solutions to the more general equation for the landslide motion are wide-ranging and include680

the classical mass point Voellmy and Burgers models for mass transport as special cases.681

The new landslide velocity model and and its advanced exact solutions made it possible now to analytically682

study the complex landslide dynamics, including non-linear propagation, stretching, wave breaking and folding.683

Moreover, these results clearly indicate that the proper knowledge of the model parameters α and β is crucial684
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in reliable prediction of the landslide dynamics.685

6.1 Advantages of the new model and its solutions686

The new model may describe the complex dynamics of many extended physical and engineering problems687

appearing in nature, science and technology - connecting different types of complex mass movements and688

deformations. Specifically, the advantage of the new model equation is that the more general landslide velocity689

can now be obtained explicitly and analytically, that is very useful in solving relevant engineering and applied690

problems and has enormous application potential. Broadly speaking, this is the first-ever physics-based model691

to do so.692

There are three distinct situations in modelling the landslide motion: (i) The spatial variation of the flow693

geometry and velocity can be negligible for which the entire landslide effectively moves as a mass point without694

any local deformation. This refers to the classical Voellmy model. (ii) The geometric deformation of the695

landslide can be parameterized or neglected, however, the spatial variation of the velocity field may play a696

crucial role in the landslide motion. In this circumstance, the landslide motion can legitimately be explained697

by the full form of the new landslide velocity equation (5). The constructed general solutions (19) and (39) -698

(40) of this model have revealed many important features of the dynamically deforming and advecting landslide699

motions. (iii) Both the landslide geometry and velocity may substantially change locally. Then, no assumptions700

on the spatial gradient of the geometry and velocity can be made. For this, only the full set of the basic model701

equations (1) - (2) can explain the landslide motion. While models and simulation techniques for situations (i)702

and (iii) are available in the literature, (ii) is entirely new, both physically and mathematically. It is evident703

that dynamically (ii) plays an important role, first in making the bridge between the two limiting solutions, and704

second, by providing the fastest, cheapest and the most efficient solution of the underlying problem. Solutions705

(19) and (39)-(40) include the local deformation associated with the velocity gradient. However, except for706

parameterization, (19) and (39)-(40) do not explicitly include the geometrical deformation. As long as the707

spatial change in the landslide geometry is insignificant, we can use (19) or (39)-(40) to describe the landslide708

motion. These solutions also include mass point motions, and are valid before the fragmentation and/or the709

significant to large large geometric deformations. However, when the geometric deformations are significant,710

we must use (1) and (2) and solve them numerically with some high resolution numerical methods (Tai et al.,711

2002; Mergili et al., 2017, 2020a,b).712

The model (19) or (39)-(40) and (1)-(2) are compatible and can be directly coupled. Such a coupling between713

the geometrically negligibly- or slowly- deforming landslide motion described by (19) or (39)-(40) and the full714

dynamical solution with any large to catastrophic deformations described by (1)-(2) is novel. First, this allows715

us to consistently couple the negligible or slowly deformable landslide with a fast (or, rapidly) deformable716

flow-type landslide (or, debris flow). Second, our method provides a very efficient simulation due to instant717

exact solution given by (19) or (39)-(40) prior to the large external geometric deformation that is then linked718

to the full model equations (1)-(2). The computational software such as r.avaflow (Mergili et al., 2017, 2020a,719

2020b; Pudasaini and Mergili, 2019) can substantially benefit from such a coupled solution method. Third,720

importantly, this coupling is valid for single-phase or multi-phase flows, because the corresponding model (5)721

is derived by reducing the multi-phase mass flow model (Pudasaini and Mergili, 2019).722

Burgers’ equation has no external forcing term. The solution domain remains fixed and does not stretch and723

propagate downslope. So, the initial velocity profile deforms and the wave breaks within the fixed domain.724

In contrast, our model (5) is fundamentally characterized and explained simultaneously by the non-linear725

advection u∂u/∂x and external forcing, α−βu2. The first designs the main dynamic feature of the wave, while726

the later induces rapid downslope propagation, stretching of the wave domain and quantification of the wave727

form and magnitude. These special features of our model are often observed phenomena in mass transport,728

and are freshly revealed here.729
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6.2 Compatibility, reliability and generality of the solutions730

Within their scopes and structures, many of the analytical solutions constructed in Sections 3 - 5 are similar.731

This effectively implies the physical aspects of our general landslide velocity model (5), and also the compat-732

ibility and reliability of all the solutions. We have seen that the solutions (19) and (39)-(40) recover all the733

mass point motions given by (11) and (13). However, the analyses presented in Sections 3 - 5 reveal that from734

the physical and dynamical point of view, the velocity profiles given by (19) and (39)-(40) as solutions of the735

general model for the landslide velocity (5) are much wider and better than those given by (11) and (13) as736

solutions of the mass point model (10).737

Structurally, the solutions presented in Section 3 are only partly new, yet they are physically substantially738

advanced. However, in Section 4 and 5 we have presented entirely novel solutions, both physically and struc-739

turally. From physical and mathematically point of view, particularly important is the form of the general740

velocity model (5). First, it extends the classical Voellmy mass point model (Voellmy, 1955) by including: (i)741

much wider physical aspects of landslide types and motions, and (ii) the landslide dynamics associated with742

the internal deformation as described by the spatial velocity gradient associated with the advection. Second,743

the model (5) is the direct extension of the inviscid Burgers’ equation by including a (quadratic) non-linear744

source as a function of the state variable. This source term contains all the applied forces appearing from the745

physics and mechanics of the landslide motion.746

Moreover, as viewed from the general structure of the model (5), all the solutions constructed here can be747

utilized for any physical problems that can be cast and represented in the form (5), but independent of the748

definition of the model parameters α and β. These parameters, and the initial (or, boundary) condition are749

dependent on the physics of the problem under consideration.750

6.3 Importance and implications751

A further important feature is the construction of the general and particular exact analytical solutions to the752

model (5) and the description of their physical significance and application in quickly and efficiently solving753

technical problems. So, in short, the new model (5) and its solutions have broad implications, mathematically,754

physically and technically.755

By deriving a general landslide velocity model and its various analytical exact solutions, we made a break-756

through in correctly determining the velocity of a deformable landslide that is controlled by several applied757

forces as it propagates down the slope. We achieve a novel understanding that the inertia and the forcing758

terms ultimately regulate the landslide motion and provide physically more appropriate analytical description759

of landslide velocity, dynamic impact and inundation. This addresses the long-standing scientific question of760

explicit and full analytical representation of velocity of deformable landslides. Such a description of the state761

of landslide velocity is innovative.762

As the analytically obtained values well represent the velocity of natural landslides, technically, this provides763

a very important tool for the landslide engineers and practitioners in quickly and accurately determining the764

landslide velocity. The general solutions presented here reveal an important fact that accurate information765

about the mechanical parameters, state of the motion and the initial condition is very important for the proper766

description of the landslide motion. We have extracted some interesting particular exact solutions from the767

general solutions. As direct consequences of the new general solutions, some important and non-trivial math-768

ematical identities have been established that replace very complex expressions by straightforward functions.769

7 Summary770

While existing analytical landslide velocity models cannot deal with the internal deformation and mostly fail to771

integrate a wide spectrum of externally applied forces, we developed a simple but general analytical model that772

is capable of including both of these important aspects. In this paper, we (i) derived a general landslide velocity773

model applicable to different types of landslide motions with internal deformations, and (ii) solve it analytically774
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to obtain several exact solutions as a function of space and time for landslide motion, and highlight the essence775

of the new model to enhance our understanding of landslide dynamics. The model is developed by reducing776

a multi-phase mass flow equations (Pudasaini and Mergili, 2019) and includes the internal (local) deformation777

due to non-linear advection (inertia), and the external forcing consisting of the extensive net driving force778

and viscous drag. The model describes a dissipative system and involves dynamic interactions between the779

advection and external forcing that control the landslide deformation and motion. In the form, our model780

constitutes a unique and new class of non-linear advective - dissipative system with quadratic external forcing781

as a function of state variable, containing all system forces. The new model is a more general formulation, but782

can also be viewed as an extended inviscid, non-homogeneous, dissipative Burgers’ equation. The form of the783

new equation is important as it may describe the dynamical state of many extended physical and engineering784

problems appearing in nature, science and technology. From the physical and mathematical point of view,785

there are two crucial novel aspects: First, it extends the classical Voellmy model due to the broad physics786

carried by the model parameters and additionally explains the dynamics of deforming landslide described by787

advection. So, our model provides a better and more detailed picture of the landslide motion by including the788

local deformation. Second, it extends the classical inviscid Burgers’ equation by including the non-linear source789

term, as a quadratic function of the field variable. The source term accommodates the mechanics of underlying790

problem through the physical parameters, the net driving force and the dissipative viscous drag.791

Due to the non-linear advection and quadratic forcing, the new general landslide velocity model poses a great792

mathematical challenge to derive explicit analytical solutions. We focused on constructing several new and793

general exact analytical solutions in more sophisticated forms. These solutions are strong, recover all the mass794

point motions and provide much wider spectrum for the landslide velocity than the classical Voellmy and795

Burgers’ solutions. We have illustrated that the new system of solutions generalize the mass point motion in796

many different ways. The major role is played by the non-linear advection and system forces. The general797

solutions provide essentially new aspects in our understanding of landslide velocity. We have analytically798

proven that after a sufficiently long distance or time, the net driving force and drag always maintain a balance,799

resulting in the terminal velocity. We have also presented a new model for the viscous drag as the ratio between800

one half of the system-force and the relevant kinetic energy.801

With the general solution, we revealed that different classes of landslides can be represented by different802

solutions under the roof of one velocity model. General solutions allowed us to simulate the progression and803

stretching (deforming) of the landslide as it slides down. Such deformation stems from the non-linear advection804

in our primary model. This proves our hypothesis on the importance of advection term on the deformation805

and motion. The mechanisms of advection, stretching and approaching to the steady-state have been explained806

with reference to the general solution. We disclose the fact that the shifting and stretching of the velocity field807

stem from the external forcing and non-linear advection. Also after a long time, as drag strongly dominates808

the system forces, the velocity approaches the steady-state, practically the velocity gradient vanishes, and thus,809

the stretching ceases. Then, the landslide propagates down the slope just at a constant velocity.810

We have shown, that the general solution system can generate complex breaking waves in advective mass811

transport and describe the folding process of a landslide. Such phenomena have been presented and described812

mechanically for the first-time. The most fascinating feature is the dynamics of the wave breaking and the813

emergence of folding. These have been explained with respect to the intrinsic mechanism of our solution.814

This happened collectively as the solution system simultaneously introduces three important components of815

the landslide dynamics: downslope propagation and stretching of the domain, velocity up-lift, and breaking or816

folding in the frontal part while stretching in the rear. This physically proves that the non-uniform motion is817

the basic requirement for the development of breaking wave and emergence of the landslide folding. This is a818

novel understanding. We disclosed the fact that the translation and stretching of the domain, and lifting of819

the velocity field solely depends on the net driving force. Similarly, the viscous drag fully controls the shock820

wave generation, wave breaking and folding, and also the magnitude of the landslide velocity. Furthermore,821

with properly selected system force and viscous drag, the new model can describe the deposition or the halting822

process of the mass transport. As the external forcing vanishes, general solutions automatically reduce to the823

classical shock wave generated by the inviscid Burgers’ equation but without domain translation, stretching824
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and lifting. So, in contrast to the classical inviscid Burgers’ equation, due to the viscous drag, our model825

is dissipative. This proves that the inviscid Burgers’ equation is a special case of our general model. The826

theoretically obtained velocities are close to the often observed values in natural events including landslides827

and debris avalanches. This indicates the broad application potential of the new landslide velocity model and828

its exact analytical solutions in quickly solving engineering and technical problems in accurately estimating the829

impact force that is very important in delineating hazard zones and for the mitigation of landslide hazards.830
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