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Abstract.

The presence of ephemeral ponds and perennial lakes in the Sudano-Sahelian region of West Africa is strongly variable in

space and time. Yet, they have important ecological functions and societies are reliant on their surface waters for their lives

and livelihoods. It is essential to monitor and understand the dynamics of these lakes to assess past, present, and future water

resource changes. In this paper, we present an innovative approach to unravel the sediment and water balance of Lac Wégnia,5

a small ungauged lake in Mali near the capital of Bamako. The approach uses optical remote sensing data to identify the

shoreline positions over a period of 22 years (2000-2021) and then attributes water surface heights (WSHs) to each observation

using the lake bathymetry. We then present a novel methodology to identify and quantitatively analyze deposition and erosion

patterns at lake shores and in lake beds. The method therefore represents a significant advancement over previous attempts

to remotely monitor lakes in the West African drylands, since it considers not only changes in water depth to explain recent10

declining trends in lake areas, but also changes in the storage capacity. At Lac Wégnia, we recognize silting at the tributaries

to the lake, but overall, erosion processes are dominant and threaten the persistence of the lake because of progressive erosion

through the natural levee at the lake outlet. This factor contributes by 66±18% to the decreasing WSH trend, while 34±18%

of the dry-season lake level changes are explained by increasing evaporation from the lake and by possibly falling groundwater

tables. Due to the decreasing reservoir capacity of the lake, WSHs are declining even in the wet season, in spite of positive15

rainfall patterns.

1 Introduction

In arid and semi-arid areas of West Africa, small reservoirs and natural lakes improve the reliability of water supplies for

livestock and humans and allow the diversification of agricultural activities at the locale scale (Fowe et al., 2015). Wetlands

are important for biodiversity maintenance, ecosystem functioning and conservation (e.g. Brouwer et al., 2014). At the same20

time, water resources in Sub-Saharan West Africa are under increasing pressure due to climatic changes, population growth

and land degradation (Leblanc et al., 2008; Favreau et al., 2009; Oyebande and Odunuga, 2013). Changes in land use and land

cover can have unexpected consequences on the dynamics of surface waters. Famously, a phenomenon referred to as the "the
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Sahelian paradox" led to an increase in surface water despite a general precipitation decline during the last decades of the 20th

century. The phenomenon has been first reported for small watersheds in Burkina Faso by Albergel (1987), and later also for25

several other watersheds in the West African Sahel (Descroix et al., 2009; Amogu et al., 2010). Increasing runoff coefficients

because of overall vegetation decay due to the erosion of shallow soils and long drought periods have been identified as one

of the main drivers of the seemingly paradoxical eco-hydrological changes (Dardel et al., 2014; Gal et al., 2017). In addition,

the Sahel has seen a tendency toward rising daily precipitation extremes (Frappart et al., 2009; Panthou et al., 2014), and

increasingly concentrated runoff (Gal et al., 2017). The combination of all these effects leads to both higher inflow (Gal et al.,30

2016) and higher sediment input to Sahelian lakes. The first has been manifested by a spectacular increase in pond and lake

areas in the pastoral Sahel, such as the Gourma region in northern Mali (Gardelle et al., 2010; Gal et al., 2017), and the latter

by observations of increasing turbidity and suspended particulate matter in lakes and ponds of the western Sahel (Robert et al.,

2017).

While the water availability in some natural freshwater reservoirs in the arid and semi-arid regions of Sub-Saharan West35

Africa benefited from these changes in precipitation and runoff patterns, other lakes have seen strong declines in surface area.

As such, Lake Chad is the most famous example. The surface area of Lake Chad decreased by more than 90 percent between

the 1960s and the 1980s (Pham-Duc et al., 2020; Mahmood and Jia, 2019; Gao et al., 2011). The shrinkage of Lake Chad has

been attributed to severe droughts and increased irrigation withdrawals (Coe and Foley, 2001). The lake split in two parts in

1972. Because the southern pool receives more than 95% of river inflow, the northern pool ran completely dry in the 1980s and40

has hardly recovered since then (Lemoalle et al., 2012). Excess water spilling to the northern pool is not sufficient to maintain

a permanent free water surface and, even without irrigation, the current climatology does not favour a single lake (Gao et al.,

2011).

In the past decades, Lake Chad has become a symbol of ongoing climate change and thus has attracted a lot of research

attention. Meanwhile, hydrological change at thousands of small ephemeral ponds and perennial lakes in the region remains45

to be investigated (Haas et al., 2009). Such lakes are often located in isolated regions with no road access during the rainy

season, and the inflows to the vast majority of these water bodies are completely ungauged (Fowe et al., 2015; Gal et al., 2016).

The methods developed and applied to investigate Lake Chad changes are not easily transferable to small and ungauged water

bodies. Most commonly, satellite radar and laser altimetry have been used for determining variations in water surface heights

in time (Crétaux and Birkett, 2006; Zhu et al., 2017; Buma et al., 2018; Pham-Duc et al., 2020), but the method is restricted to50

large lakes (>50 km2) due to the poor density of altimetry tracks and the low revisit times (Crétaux et al., 2016; Avisse et al.,

2017). The lack of inflow observations in small water bodies in the Sahel makes the calibration of hydrological models for

simulating the effects of human water use and climate variability on water storage and surface area (Gao et al., 2011) or for

assessing streamflow trends (Mahmood and Jia, 2019) difficult, if not impossible.

Among the few studies that unravelled the water balance of small water bodies (<10 km2) in arid and semi-arid regions55

of Sub-Saharan West Africa, Fowe et al. (2015) measured rainfall, evaporation, and reservoir water level at a small reservoir

in Burkina Faso for a two-year period. They concluded that available water resources in the studied system were adequate to

fulfill existing demands. Soti et al. (2010) presented the application of a simple hydrological model to 98 seasonal ponds in
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North Senegal for water level simulations. The spatio-temporal dynamics of the ponds were successfully reproduced, but the

model required daily field data for calibration (rainfall, water level), and its performance strongly depended on the quality of60

available rainfall inputs. Gal et al. (2016) has combined area-volume (AV) relationships of three small Sahelian lakes with

daily evaporation and precipitation data to estimate water inflow to the lakes. They succeeded to quantify the processes behind

the Sahelian paradox by showing that the ratio between annual water inflow and precipitation has increased in the last 60

years. The study by Gal et al. (2016) demonstrated that it is possible to unravel the hydrology of small Sahelian lakes without

in-situ measurements. However, deriving inflows by empirical AV scaling relationships disregards the sedimentation of natural65

lakes. The Sahel region is marked by a high degree of weathering due to the climatic conditions (Nippes, 1984) and increasing

soil erosion due to land degradation and concentrated runoff (Karambiri et al., 2003; Amogu, 2009; Descroix et al., 2009).

Constant AV relationships are ignoring the fact that the reservoir capacity of Sahelian lakes may naturally change due to

sediment deposition and erosion.

The objectives of our study are: (1) to develop and test a new method for quantifying both the sediment and the water balance70

of an ungauged lake (Lac Wégnia in Mali) based on remote sensing information, (2) to quantify the evolution of water surface

elevation and surface area over the last twenty-two years in the lake, and (3) to attribute possible causes to observed changes

and identify adequate measures to safeguard the ecological balance and environmental equilibrium of the lake.

The method we are proposing is based on the waterline method (Mason et al., 1995). The waterline (or shoreline) refers to

the water-land boundary and can be regarded as a contour line that connects points of equal elevation. The general methodology75

consists of detecting the ever-shifting edge of water bodies in remotely sensed images using image processing techniques and

assigning heights to shoreline points using water level information or bathymetry data. The method is a widely used technique

for constructing intertidal DEMs (Salameh et al., 2019). Morphological change can then be quantitatively estimated based on

DEMs generated for different years or seasons (e.g. Mason et al., 1999; Ryu et al., 2008; Heygster et al., 2010; Li et al., 2014;

Xu et al., 2016). Only in recent years, likely because of better data coverage and availability of remote sensing imagery, the80

method has been adapted to generate time-series of water surface heights (WSH) of lakes and reservoirs (Tseng et al., 2016;

Ma et al., 2019; Weekley and Li, 2019; Yue and Liu, 2019; Militino et al., 2020; Xu et al., 2020), or for water volume estimates

of desert lakes (Armon et al., 2020). The method is only applicable to recently filled reservoirs or other water bodies where the

water level has increased above the level at the time the elevation data were collected. The method has not yet been employed

in Sub-Saharan West Africa, despite the fact that the region is particularly suitable for an application of the method, because85

bathymetric surveys can be carried out towards the end of the dry season, when the lake levels are at their lowest.

For the present work we apply the waterline method with a digital elevation model (DEM) derived from an unmanned aerial

vehicle (UAV) survey in May 2019. The shorelines of Lac Wégnia are identified by leveraging the Landsat and Sentinel-2

image archives. A novel methodology is presented to identify and quantitatively analyze deposition and erosion patterns at the

lake shores and the lake bed by mapping the temporal evolution of shoreline position anomalies. Finally, reservoir capacity90

changes and storage variations are retrieved, which allows us to carry out a detailed water balance analysis of Lac Wégnia.
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2 Study site and climate

Lac Wégnia (13◦18’00"N, 08◦07’46"W) is located in south-west Mali, approximately 75 km north of Bamakao (Figure 1), in

the watershed of the Senegal River and more specifically in the watershed of the Baoulé River, the main tributary of Bakoy

River. With an average annual rainfall of about 850 mm the lake is at the boundary between the Sahelian and the Sudanian95

eco-climate. The climate is characterized by convective heavy rainfalls during the wet season resulting from the West-African

monsoon, and a long dry season. The rainy season is short, extending typically from late June to mid-September. The mor-

phology of the surrounding region is characterized by the predominance of sandstone plateaus often covered with ferruginous

crusts between 300 and 400 m altitude (de La Rocque and Renoullin, 2015).

In 2013 Lac Wégnia was designated as a RAMSAR site (Coulibaly et al., 2013) and is thus part of the RAMSAR list of100

wetlands of international importance. The entire RAMSAR site has an area of 3,900 ha and includes also several smaller lakes

and ponds in the vicinity of Lac Wégnia. The freshwater lakes and marshes of the Lac Wégnia RAMSAR site are unique in

the region for their ecological characteristics and natural state (Coulibaly et al., 2013). Lac Wégnia plays an essential role in

the natural control of floods. The seasonal water retention by the lake is important for the wetlands and the entire surrounding

area. About 12,000 people depend directly on the lake and its surroundings for food and for economic activities such as fishing,105

raising livestock and agriculture (DNEF/PAZU, 2018).

Lac Wégnia has two main tributaries (Figure 1), one from the south (catchment area 742 km2) and one from the east (384

km2). The entire catchment area of the lake is about 1157 km2. The lake drains at its northwestern end through a narrow gully,

but outflow from the lake is only activated during the wet season. During the entire dry season the river bed of the outlet and of

the tributaries are dry. Towards the end of the wet season the lake extends to an area of about 1500 ha, but then continuously110

decreases in size during the dry season. While at the beginning of the century the lake rarely decreased to areas of less than 200

ha, this is now common. In recent years the surface water area has decreased to less than 10 ha in late May and early June (de

La Rocque and Renoullin, 2015). To safeguard the ecological balance, there is urgent need to understand the causes of recent

water area trends and to assess the changes in lake water storage.

3 Data115

3.1 UAV data

The UAVs eBee and RTK from SenseFly were used for the realization of the aerial survey on 9/10 May 2019. The UAVs were

mounted with a senseFly S.O.D.A camera with a 20 megapixel sensor. Its lens was fixed at a focal length of 35 mm and the

altitude of the flights was 180 m. All the aerial photographs were processed using the commercial software Agisoft Photoscan

to generate the DEM. The orthomosaic images (Figure 1a) have a spatial resolution of 3.28 cm and the DEM a resolution of120

6 cm. Based on three ground control points, the mean error in X and Y direction was estimated to be 1.6 cm and 5.6 cm in Z

direction, respectively. More technical details on the topographic survey are provided by Vandemeulebrouck et al. (2019).
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Figure 1. Overview map of Lac Wégnia. a) Orthoimage mosaic from UAV on 9/10 May 2019. The waterline at level 330 m asl (based on

the UAV-DEM) and on the days of the UAV flights (328.7 m asl) are shown. The outflow is activated if the water level reaches above 329.8

m asl. b) Outline of the two main contributing catchments and location of Lac Wégnia in Mali.

3.2 Satellite remote sensing data

This research utilizes high spatial resolution remote sensing data from the following satellite missions: Landsat 5 (L5, 1984-

2012), Landsat 7 (L7, 1999-present), Landsat 8 (L8, 2013-present) and Sentinel-2 (2015-present). We process surface re-125

flectance images from all available scenes in the L5, L7, L8 and S2 archive from the study period October 1999 - May 2021 in

Google Earth Engine (GEE, Gorelick et al., 2017).

3.3 Meteorological data

Meteorological data used in this study is provided by various gridded datasets (Table 1). We use all seven precipitation products

that are available for the study region through the Earth Engine Data Catalog. Two out of the seven products also provide the130

necessary inputs for the calculation of evaporation rates from open water surfaces (Section 4.2: GLDAS (Rodell et al., 2004)

and ERA5 (Hersbach et al., 2020)). All datasets are characterized by a high spatial (5-25 km) and temporal (hourly-daily)

resolution.

In-situ observations are available from a station of the Trans-African Hydro-Meteorological Observatory (TAHMO) project

(van de Giesen et al., 2014) in Guioyo, approximately 25 km north-west of Lac Wégnia. We have set up the station in February135

2020 within a fenced school compound. The station measures precipitation, air temperature, incoming shortwave radiation,

relative humidity, atmospheric pressure, wind speed and wind direction with the ATMOS41 automatic weather station from

METER. Wind data from the station are not used because of the anomalous wind conditions within the enclosed school

compound where the station was set up. Furthermore, due to prolonged dry periods and bad maintenance, likely related to
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Table 1. Meteorological datasets used in this study. Also indicated are wet season precipitation trends for Lac Wégnia that are significant at

the 0.01 level (the values in brackets represent the precipitation change from 2000 to 2020 in percent). G: gauge; S: satellite; R: reanalysis; P:

precipitation; Ta: air temperature; Td: dewpoint temperature; W: wind, RAD: solar radiation, Qair: specific humidity; Pr: surface pressure;

NP: near present; POS: positive trend; N: no trend.

Name GEE Code Data Sources Variables Used
Temporal Temporal Spatial P Trend

Coverage Resolution Resolution Wet Season

CHIRPS UCSB-CHG/CHIRPS/DAILY S, R, G P 1981-NP daily 0.05° POS (+23.4%)

ERA5 ECMWF/ERA5_LAND/HOURLY R P, Ta, Td, W, RAD 1981-NP hourly 0.25° POS (+34.1%)

GLDAS NASA/GLDAS/V021/NOAH/G025/T3H S, G P, Ta, W, RAD, Qair, Pr 2000-NP 3-Hourly 0.25° N

GPM NASA/GPM_L3/IMERG_V06 S, R, G P 2000-NP 3-Hourly 0.1° N

GSMaP
JAXA/GPM_L3/GSMaP/v6/reanalysis S, R, G P 2000-2013 hourly 0.1°

POS (+24.1%)
JAXA/GPM_L3/GSMaP/v6/operational S, R, G P 2014-NP hourly 0.1°

PERSIANN-CDR NOAA/PERSIANN-CDR S, G P 1983-NP daily 0.25° N

TRMM 3B42 TRMM/3B42 S, G P 1998-2019 3-Hourly 0.25° N

Ensemble-mean P 2000-2020 POS (+21.2%)

school closings during the Covid-19 pandemic, dust accumulated on the shortwave radiation sensor. Solar radiation data from140

the station were therefore also not used.

4 Methods

4.1 Lake water balance

The equation of lake level change over a given period is defined as follows (Eq. 1):

∆h =

t2∑
i=t1

(Ei +Pi +Qi) (1)145

where ∆h is the change in WSH (mm) over a time period t1 to t2 and Ei, Pi and Qi (mm/day) are the daily evaporation,

precipitation and net inflow to the lake, respectively. The methodology to derive ∆h, Ei and Pi is described below. In the

absence of discharge measurements, Qi is used to close the water balance and includes all fluxes at the subsurface or surface,

such as interactions with groundwater, surface water in- and outflow, and water losses due to human and animal consumption.

The water balance components are identified for 22 dry seasons between October 1999 to May 2021. The analysis focuses150

on the loss part of the year to explain the ecologically most critical conditions for the lake. The period of analysis was fixed

from 1 October to 15 May (227 days) to ensure comparability between years.

4.2 Evaporation from open water

The Penman equation is commonly used in the literature to estimate evaporation from lake surfaces (e.g. Gal et al., 2016;

Schulz et al., 2020). This equation is based on the energy balance and aerodynamic constraints. We use the 1948 version of the155
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Penman model (Penman, 1948) implemented in the R package ’Evapotranspiration’ (Guo et al., 2016). Open-water evaporation

is estimated using the function ET.Penman(), whereas the arguments are set so that (1) the time-step for calculation is daily;

(2) the Penman 1948 wind function (Penman, 1948) is used to estimate the mass transfer component in the Penman model

that influences the rate of movement of water vapor away from the evaporating surface; and (3) the evaporative surface is open

water (albedo = 0.08, roughness height = 0.001m). The required inputs are solar radiation (RAD), relative humidity (RH),160

air-temperature (Ta) and wind speed (W ). Due to the unavailability of nearby station data for the entire study period we assume

that the weather data above the lake can be best approximated by the data from gridded products (Table 1).

For the present study these inputs are provided through the GLDAS and ERA5 datasets, respectively. The following ERA5

climate variables are used in the computation of evaporation: Ta, RAD, 2 m dew point temperature (Td) and wind speed at 10

m above ground level. Relative humidity is calculated from Ta and Td via the Magnus approximation (Alduchov and Eskridge,165

1996). To compute GLDAS evaporation, the same variables are used except that relative humidity is converted from specific

humidity, near surface air pressure and Ta. Each variable is validated against station data if available from the TAHMO station

in Guioyo. The Penman model is then applied separately with inputs from each of the two datasets. The final time series of

open-water evaporation is obtained by taking the arithmetic mean of the two datasets.

4.3 Precipitation170

We use the gridded rainfall products (Table 1) to estimate precipitation at Lac Wégnia, and the TAHMO station data of 2020

for validation. It can be expected that the different gridded products have a substantially different performance in representing

the spatio-temporal rainfall patterns (Dembélé et al., 2020). Here, we only assess the water balance of the dry period, where

rainfall is scarce and where the different products generally agree well with each other (Figure 2). We therefore use the daily

ensemble-mean of all 8 available products as an input for the precipitation component of the water balance.175

4.4 Water surface heights (WSH)

WSH identification is developed below and implemented as a fully automated processing chain in GEE. The procedure involves

the following main steps: i) remote sensing image selection and pre-processing, ii) water surface detection, iii) shoreline

detection and iv) surface elevation retrieval.

4.4.1 Remote sensing image pre-processing180

All satellite images with a cloud percentage over the study area greater than 30% are excluded from the analysis. The remaining

satellite images are co-registered with the orthoimage of the UAV survey in a step-wise manner. First, we select an S2 image that

was taken approximately on the same day as the UAV survey (11 May 2019). This image is co-registered with the orthoimage.

We then assume that the misalignment of images within the set of images from the same sensor is negligible (Storey et al.,

2016; Nguyen et al., 2020) and apply the same displacement to all S2 images. For the Landsat sensors no images are available185

from the date of the UAV survey. L7 and L8 images are thus co-registered with already aligned S2 images on the same day (25
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Figure 2. Climate diagram for Guioyo (located 25 km north-west of Lac Wégnia) with data from the period March 2020 - February 2021.

’Station’ refers to the TAHMO station data and ’Gridded’ refers the ensemble-mean of the gridded global datasets (Table 1). The error bars

represent the full range of values among gridded datasets.

April 2020 and 11 November 2020, respectively). The L5 and S2 mission periods do not overlap. In a final step L5 images are

thus co-registered with a L7 image (9 June 2007).

4.4.2 Water surface detection

Water absorbs most radiation at near-infrared wavelengths and beyond. As a result, water can be easily detected by using190

spectral indices. Here we use the modification of the normalized difference water index (MNDWI) for land-water classification

(Xu, 2006):

MNDWI = (Green−MIR)/(Green+MIR) (2)

where MIR is reflectance in the middle infrared band, and Green is reflectance in the green band. The MNDWI has been

extensively applied for water mapping (e.g. Donchyts et al., 2016; Tseng et al., 2016; Ma et al., 2019) and its good performance195

has been shown for both Landsat and Sentinel-2 images (Kwang et al., 2017; Yang et al., 2020).

We use a non-parametric unsupervised method based on the Canny edge filter and Otsu thresholding to distinguish between

water and non-water pixels, following Donchyts et al. (2016). The Otsu algorithm (Otsu, 1979) is a widely-used dynamic

threshold method (e.g. Ma et al., 2019; Asfaw et al., 2020; Yang et al., 2020). The method identifies an optimal threshold

to distinguish two image classes by maximising the inter-class variance computed from a normalized image histogram. This200

requires a bimodal histogram distribution. If land dominates the image over water, the histograms are unbalanced. The Canny

edge filter is thus used to reduce the sampling region only to those areas near water-land edges. The Canny method first uses a

Gaussian filter to smooth the image in order to remove the noise and then finds edges by looking for local maxima of the image

intensity gradients. We use the Canny edge algorithm with the following parameters to process all images: σ = 0.7 (standard
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deviation of the Gaussian smoothing kernel), th = 0.7 (threshold used to define the sensitivity of the gradient magnitude filter),205

an image pixel resolution of 30 m and a buffer around the edges of 60 m.

Binary water images are obtained at the native resolution of the sensors (30 m for Landsat, 10 m for Sentinel-2). The area of

Lac Wégnia can be obtained from these images after gap-filling. A simple focal mode filter is applied to fill data gaps and void

stripes in Landsat 7 images. Note that gap filling is not required for WSH retrieval, which is another advantage of the method

over AV scaling.210

4.4.3 Shoreline detection and elevation retrieval

The shoreline is defined as the water/land boundary of the binary water image. To retrieve the elevation of the shoreline, a

10-m buffer is added on both sides of the edge. Within this buffer we sample all DEM pixel values at a 10-m resolution, and

use the median to calculate a single WSH. Weekley and Li (2019) obtained slightly better results using the mean instead of the

median. However, the median is less sensitive to noise and shoreline elevation anomalies (see Section 4.5).215

A variety of factors such as local slope, mixed pixels, and water detection accuracy can impact the accuracy of the retrieved

WSH (Tseng et al., 2016; Weekley and Li, 2019). Because surface water may not be correctly identified under canopies, we

mask all boundary pixels that are adjacent to lush vegetation (NDVI > 0.5). Note that at Lac Wégnia this situation only occurs

during the wet season, when the lake is completely filled. Pixels where the retrieved mean erosion/deposition rate exceeds 10

mm/year are also removed from calculating the final WSH (see Section 4.5 below). Unfortunately, no in-situ water level data220

are available for Lac Wégnia for a validation of the retrieved WSH data. We therefore only assess the relative accuracy of the

approach by comparing WSH data obtained for the same or subsequent days from different images (acquired by Landsat and

Sentinel-2 satellites, respectively).

4.5 Sediment balance

The waterline method is based on the assumption of common heights of geocoded waterline pixels (Salameh et al., 2019).225

However, this assumption is only valid if either the elevation information is available exactly for the time of the lake boundary

acquisition, or if the bathymetry of the lake does not change over time. In our case a DEM is only available for May 2019,

and it is very likely that over the study period 1999-2021 there are changes in the lake lake shore and bed topography due to

sediment deposition and erosion. Deposition occurs preferentially on sediment deposit cones, while lake shore erosion may take

place where the banks are not protected by littoral vegetation and where rills and gullies are formed. Such local topographic230

changes become visible by comparing the waterlines of two scenes which represent approximately the same water level. At

sediment deposition cones the waterline of the older scene bends much more inland than the more recent scene (Figure 3a),

and vice versa at erosion zones. If such ’shoreline anomalies’ are not too numerous, the median of all shoreline pixel elevations

still provides a valid estimate of the water surface elevation, even if the lake boundary of an older scene is projected on the

recent lake bathymetry. The difference between the median elevation of all shoreline pixels and a pixel elevation at a shoreline235

anomaly is then equal to the elevation change that has occurred at that point. In the following, we call these deviations from

the median ’shoreline elevation anomalies’ (SEAs):
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SEAi,t =WSHt −SEi,t (3)

SEAi,t in Eq. 3 is the SEA at time t at pixel i, SEi,t is the shoreline elevation at pixel i according to the current bathymetry,

and WSHt is the median of all shoreline pixel elevations. If a SEA is positive, then erosion has since occurred, and if it is240

negative, deposition has occurred.

SEAs also occur if the scenes providing the lake boundaries are not well aligned with the DEM, or if the shoreline delineation

is erroneous. For this reason it is important to look at the evolution of SEAs over time to get a robust picture of the nature of

geomorphic change on the lake shoreline. SEAs should be continuously changing over time at deposition or erosion zones.

While individual dates’ SEA values may represent noise, the longer-term trend in SEA values (∆SEA, units mm/year) point245

to deposition and erosion processes. Robustly increasing or decreasing SEA slopes can then be assumed to be equivalent to

sediment deposition or erosion rates, respectively. Furthermore, SEAs may occur because of topographic slopes within the

±10m buffer that is used for sampling shoreline pixels. For this reason, SEAs extracted at 10m pixel resolution are smoothed

by applying a morphological mean filter within 30m square kernels.

The complete procedure to extract maps of ∆SEA can be summarized as follows: 1) Identifying the WSH of a given scene250

as described in Section 4.4.3. 2) Mapping of SEAs within the ±10-m buffer of each lake boundary. 3) Smoothing of SEAs

with the morphological mean filter. 4) Taking the mean of all SEAs over a given pixel for a given hydrological year, resulting

in 22 annual SEA maps (hydrological years 2000-2021). 5) Applying a non-parametric Sen’s slope estimator calculate ∆SEA.

Sen’s slope is less sensitive to outliers than the common least squares estimate using linear regression (Sen, 1968).

The validity of the procedure depends on the assumption that the median shoreline pixel elevation is a robust estimator of255

actual WSH. To test this assumption, steps 1-5 above are applied iteratively, by always masking out in step 1 those areas where

absolute ∆SEA exceeds 10 mm/year. Therefore, locations where anomalies occur get excluded from calculating WSH. After

each iteration the average ∆SEA within the lake bed is calculated (hereafter referred to as the ’sediment balance’), as well as

the fraction of the area where absolute ∆SEA does not exceed 10 mm/year. If both indicators converge to stable values after

10 iterations, the resulting ∆SEA map can be used to identify the deposition and erosion areas that need to be masked for the260

calculations of the final WSH values.

Because Lac Wégnia is not an ephemeral lake but shrinks to a small size each dry season, ∆SEA cannot be calculated for

those lake bed pixels which are rarely or never dry. We apply a minimum threshold of six annual SEA values ( 30%) that need

to be available in order to calculate ∆SEA. Data gaps in the map (Figure 3b) are filled with a focal mean filter (Figure 3c) if

pixels with ∆SEA values are present within a two-pixel (20m) radius.265

4.6 Trend analysis

We look for trends in the seasonal mean values of each water balance component (Eq. 1). Regression slopes are estimated using

the method of Theil (1950) and Sen (1968), thereafter called Sen’s slopes, and uncertainty ranges are provided by the 95% CI
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Figure 3. a) Shoreline elevation anomalies of a Landsat-7 scene from 8 April 2002. b) Slope of shoreline elevation anomalies (∆SEA)

2000-2021 in meter per year. Shown are all all 10-m pixels where data points are available from at least six years. c) Gap filled and outlier

corrected map of ∆SEA 2000-2021. Red and blue pixels point to sediment deposition and erosion, respectively. This map is used to calculate

the sediment balance of Lac Wégnia. The background image is a Google Earth image from 23 March 2013 (© Google Earth 2021).

of the Sen’s slope estimate computed using the Gilbert (1987) modification of the Theil/Sen Method. The significance of the

trend is assessed by Kendall’s nonparametric test for a monotonic trend (Kendall, 1975).270

To explain the observed lake level trends we perform an attribution analysis. Three main factors determine the lake level at

the end of the dry season: i) the initial lake level, ii) the mean rate at which the lake level decreases over the dry season and iii)

the length of the dry season. Changes in these three independent factors over the last 22 years can explain the observed lake

level trends:

∆htot =∆hrate +∆hini +∆h∆t ≈∆hobs (4)275

whereas ∆hrate represents the lake level change that is due to the change in the rate at which the lake level decreases over

the dry season. ∆hini is the change in initial lake levels, and ∆h∆t represents the lake level change due to changes in the timing

of the wet season. The sum of all effects (∆htot) should be approximately equal to the observed difference in dry-season lake

levels (∆hobs). Each factor is quantified based on the available WSH time-series as explained in Sections 4.6.1 - 4.6.3 below.
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4.6.1 Dry-season lake level change rates280

The number of available WSH data points varies between years due to clouds and dust storms and due to the different mission

periods of the satellites. To enable comparison of WSH change rates it is therefore necessary to homogenize the WSH time

series. For each hydrological year, the available data are extrapolated to cover the full dry season period from 1 October to

15 May. The steps for extrapolation of the data are the following: 1) Smoothing the WSH time-series with a 7-day window

running-mean filter. 2) Calculation of the WSH change rate (∆h, units mm/day) between all subsequent dry-season data285

points that are separated by 8-16 days (16 days is the usual Landsat overpass interval). 3) The day of the year (DOY) of the

last day of each interval is attributed to each available data point. The cloud of points is converted into a time series of average

∆h seasonality by smoothing again with a 7-day window running-mean filter. 4) Data gaps are filled by using the average ∆h

seasonality as follows:

∆hgap =

t2∑
i=t1

∆hrefi ×
∆hobst3−t4∑t4
i=t3

∆hrefi
(5)290

where ∆hgap is the interpolated WSH change (units in mm) for a given time period of missing data between t1 to t2. ∆hrefi
is the reference WSH change (units in mm/day) described by the average ∆h seasonality for a given DOY, and ∆hobst3−t4

is the observed WSH difference between t3 to t4. The time period t3 to t4 has to cover at least 50% of the entire period 1

October to 15 May. Hydrological years for which less than 50% of the dry period is covered by available WSH observations

are not considered for the ∆hrate trend analysis. For all other hydrological years, an average ∆hrate is calculated based on the295

gap filled dry-season WSH difference. The Sen’s slope test is applied to assess the multi-year trend in ∆hrate. The gap filled

dry-season WSH difference is also used together with E and P to derive ∆Q for each hydrological year based on Eq. 1.

4.6.2 Initial lake levels

During the wet season, when the lake is completely full, the lake level raises above the elevation of the outlet and consequently

the outflow becomes activated. However, shortly after the end of the wet season, due to the lack of further inflow into the lake,300

the lake level equals the elevation of the outlet (hereafter also called the ’dead storage level’) and runoff from the lake dries

up. This dead storage level can be seen as the initial water level at the beginning of each dry season. The dead storage level

may change over time because of geomorphological changes of the natural levee at the lake outlet, at scales that are however

too fine to resolve with our sediment balance approach. No direct measurements of the dead storage level are available except

for 2019, where the minimum elevation of the outflow channel was 329.8 m asl. As a proxy for past dead storage levels we305

thus determine the initial dry-season lake levels of each hydrological year. The October 1st WSHs of the homogenized WSH

time series (see Section 4.6.1) are used for this purpose. The Sen’s slope test is then applied to assess the changes in initial lake

levels (∆hini).
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4.6.3 Timing of the wet season

To determine the beginning and the end of the wet season we calculate weekly totals of open-water evaporation and compare310

them with the precipitation sum of each calendar week. The beginning of the wet season is then defined as the first week in the

year where the weekly precipitation sum exceeds the weekly evaporation. Accordingly, the dry season starts the week after the

last week in the year where weekly P exceeds weekly ET. Changes in the DOY of the dry season onset are assessed by applying

the Sen’s slope test. To translate these changes into millimeters of water (∆h∆t), the Sen estimate of the slope is multiplied by

the multi-annual mean daily lake level change calculated based on the average ∆h seasonality (see Section 4.6.1).315

If the lake level decreases below 328.64 m asl the lake level cannot be determined because the bathymetry below that level

is unknown. For some years we therefore have data gaps in the WSH time series in late May and June. For this reason, the

effect of changes in the timing of the onset of the wet season on water levels is not assessed quantitatively. Because such data

gaps rarely occur before May 15th, only WSH data points until that day are considered for assessing the change in end-of-dry

season lake levels.320

5 Results

5.1 Validation of gridded datasets

The following variables from the gridded datasets can be validated against station data from Guioyo: precipitation, air tem-

perature and relative humidity (Figure 2). Precipitation and relative humidity reveal a strong seasonality with a peak around

August. From November to April precipitation is practically zero. Temperature is relatively constant throughout most of the325

year (July to January), with slightly higher values towards the end of the dry season (April/May). The gridded datasets repro-

duce this seasonality very well (Figure 2). Also in terms of absolute differences the gridded datasets agree well with the station

data: the mean monthly absolute difference between the ensemble of gridded datasets and the measurements is only 0.6◦C

(temperature), 12 mm (precipitation) and 8% (relative humidity), respectively.

5.2 Lake water areas330

In total, 541 satellite images from 527 days within the period 1 October 1999 to 30 June 2021 fulfill the quality criteria and are

available to extract WSH data (Figure 4a). The number of available scenes per year increases strongly in the year 2013, when

Landsat 8 was launched, and again in 2016, when Sentinel-2 data became available. The minimum number of scenes available

per year is 4 (years 2001 and 2004), whereas the maximum is 70 (year 2020).

The extracted lake areas reveal a strong seasonality in lake extent, ranging between 1 ha and 157 ha (Figure 4a). The lake335

has never fallen entirely dry in the study period (de La Rocque and Renoullin, 2015).

81.9 % of the 10 m pixels within the maximum lake extent area represented the shoreline in at least one scene over the entire

study period. For 5.8 % of the area no data are available because of data gaps in the DEM. The remaining 12.3 % of the area
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Figure 4. Time Series of a) lake area and b) lake water level retrieved from Landsat 5/7/8 and Sentinel-2 optical satellite imagery for the

period 1 October 1999 until 30 June 2021. N is the number of scenes available from each sensor. In total 541 scenes are represented. c)

Annual average quarterly lake areas and b) lake levels and associated linear trend lines. Lake levels from 15 May in (d) represent the level at

the approximate end of the dry season and are identified based on extrapolated lake levels (Figure 10).

either never represented the shoreline or were masked from the DEM because of adjoining canopies below which the shoreline

could not be seen.340

5.3 Sediment deposition and erosion areas

The iterative approach to identify shoreline elevation anomalies converged to stable solutions after about five iterations (Figure

5). After 10 iterations, the fraction of the area where absolute ∆SEA does not exceed 10 mm/year converged to about 67%.

This means that 33% of the pixels for which ∆SEA estimates are available represent deposition or erosion areas that needed

to be masked for obtaining the final WSHs. The sediment balance 2000-2021 of the lake bed below the dead storage level in345

May 2019 converged to a value of -44 mm (Figure 5). The negative sign means that there is more erosion than deposition in

the lake bed. The sediment balance could also be determined for some areas that are presently located above the dead storage

level - because they were at a lower level in the past or because they represented the shoreline during the wet season when the
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Figure 5. Lake sediment balance for the period 2000-2021 (average ∆SEA within the lake bed) as well as the fraction of the area where

absolute ∆SEA does not exceed 10 mm/year, as a function of the iteration number.

lake outflow was activated. Here, the sediment balance was +44 mm, meaning there is more deposition than erosion. Overall,

the average of all pixels where the point sediment balance could be determined is -12 mm in 21 years.350

Areas where we observe erosion are distributed over a larger area (20% of all pixels with a valid result) than the areas where

we observe deposition (13%). The average net sediment deposition rate at locations with more deposition than erosion is 28

mm/year, whereas at locations with net erosion the average rate is -16 mm/year. Net sediment deposition is concentrated at a

few locations such as the river deltas of the southern and eastern tributaries (Figure 3c). The highest average deposition rates

are identified at the western shore of the lake, where the southern tributary flows into the lake (up to +62 mm/year). The erosion355

areas, on the other hand, are stretched along nearly the entire lake shore (Figure 3c), whereas the average erosion rates per pixel

never exceed -20 mm/year.

5.4 Lake water surface heights

The maximum WSH of the entire study period is 330.98 m asl, reached on October 17, 2002. Assuming that the minimum

level was not much below the minimum detectable WSH of 328.64 m asl, the lake levels vary within a range of not more than360

2.5 meters (Figure 4b).

The annual average quarterly lake levels reveal negative trends across all seasons (Figure 4d). All trends are significant at the

0.01 level except the Q3 trend (July-September; p-value = 0.028). The Sen slope of the linear trend lines indicates an average

WSH decrease between -0.46 m (Q3) and -0.71 m (Q2: April-June) over the 22-year study period.

20 out of the 541 scenes represent a lake extent that was equal or smaller than on 9/10 May 2019. Such data points repre-365

senting a lake level below 328.64 m asl still needed to be considered for the calculation of quarterly average lake levels. For

the sake of simplicity a WSH of 328.64 m asl was assigned to such scenes.
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Figure 6. Analysis of the relative error between Water Surface Heights (WSH) extracted from Landsat 7/8 scenes and Sentinel-2 scenes. a)

Box-plot of the absolute WSH error between scenes of the same (∆t = 0 days) and of subsequent days (∆ t = 1 day). N is the number of scene

pairs available for comparison. The central mark of each box is the median, the edges are the 25th and 75th percentiles, the whiskers extend

to the most extreme data points. b) Average slopes of waterline pixels and absolute WSH error between scenes of the same or subsequent

days (∆ t ≤ 1 day).

More than one satellite image is available for 14 days, and from another 43 days satellite imagery are available from the

subsequent day. Excluding two days where the exact water level could not be determined because of the holes in the DEM, we

obtain in total 55 pairs of scenes suitable for analyzing the WSH error. Overall, the absolute WSH errors vary between 0.2 and370

161 mm. The median absolute WSH error between scenes from the same day (∆t = 0 days, N = 13) is 25 mm, and 33 mm if

the scenes are from subsequent days (∆t = 1, N = 42; Figure 6a). If the slope at the waterline was less or equal than 1◦, the

median absolute WSH error is only 15 mm (∆t ≤ 1, N = 17), and 51 mm if the slope was above 1◦ (∆t ≤ 1, N = 38).

5.5 Water balance components

Of the four water balance components, evaporation rates (E) and daily WSH changes (∆hrate) show the most pronounced375

seasonality over the course of the dry season (Figure 7). Daily rates of E increase from about 7 mm/d in October to about 10

mm/d in April. ∆hrate shows a similar behaviour, but the rates are about 2 mm/d lower than the daily rates of E. Because

P is usually zero during the dry season, the difference between E and ∆hrate is made up by net inflow (Q). Net inflow is

positive, which means that inflow is higher than outflow. Only at the beginning of the dry season, in October, outflow from the

lake might be still higher than inflow (Q<0mm/d), but the uncertainty in the calculated rates is high (Figure 7).380

The average seasonality of ∆hrate that is described above is used to fill data gaps in the WSH time series and therefore

enabling us to calculate average rates for the dry season of each hydrological year 2000 to 2021 (Figure 8). Only in two years

(2000 and 2004) the available observations cover less than 50% of the dry season, and WSHs of these years were therefore not
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Figure 8. Average daily rates of water balance components estimated for the dry seasons 2000-2021 (lake level change: ∆hrate, net inflow:

Q, precipitation: P , evaporation: E). The transparent areas show the 95% CI of the linear regression slope.

extrapolated. The Sen’s slopes of the remaining 19 annual values indicate a positive trend in daily rates of E and ∆hrate, a

negative trend in Q and no trend in P (Figure 8).385

5.6 Attribution analysis

The accelerating dry-season WSH decrease leads to lower lake levels at the end of the dry season. The observed trends in

∆hrate cause a decrease in end-of-dry-season lake levels between 37 mm and 406 mm over the 22-year period (Figure 9),
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considering the 95% confidence interval (CI) of the Sen slope of the linear regression (Figure 8). The accelerating lake level

decrease can be explained by the increase in direct evaporation from the lake, explaining 62 to 186 mm of the observed negative390

trend in lake levels. Likely, also a decrease in net inflow contributed to a decrease in WSHs. However, according to the test for

a monotonic trend, there is a probability of 14% that net inflow has increased rather than decreased. The 95% CI ranges from

an impact on the lake level between +50 mm to -338 mm that is due to changes in net inflow (Figure 9).

The observed lake level decrease over the 22-year period is much higher than what can be explained by the changes in

dry-season water balance components. The average lake levels of the months January-March decreased by 644 mm (Figure395

4c and Figure 9, 95% CI: 451-865 mm). The extrapolated lake levels for May 15th (Figure 10a) decreased by 414-845 mm

(Figure 4c). Even the average lake levels of the wet season decreased by 458 mm (Q3 in Figure 4c), but the uncertainty of the

regression is high (95% CI: 33-853 mm). Variations in the timing of the dry season can also not explain the observed lake level

trends (Figure 11).The test for a monotonic trend does not indicate that an earlier or later end of the wet season has a significant

impact on the multi-year trend in WSH (∆h∆t in Figure 9).400

In spite of an increasing trend in wet season precipitation (ensemble-mean of all precipitation products; see Table 1), the

initial lake levels at the beginning of the dry season have been decreasing over time (Figure 10). The decreasing initial lake

levels explain 260-647 mm of the observed overall dry-season lake level decrease (95% CI, ∆hini in Figure 9).

The sum of the Sen’s slope for ∆hini, ∆hrate and ∆h∆t results in a reconstructed lake level decrease of 631 mm (95% CI:

377-958 mm, ∆htot in Figure 9), which is very similar to the measured lake level decrease (644±207 mm, ∆hmeas in Figure405

9). Changes in ∆hrate explain about 34±18% of the decrease, ∆h∆t explains 0±11%, and the changes in initial lake levels

explains the largest portion of the reconstructed dry-season lake level changes (66±18%).

6 Discussion

The careful separation of the lake sediment and the lake water balance allows us to unambiguously attribute causes to the

observed trend of an ever more diminishing lake surface (Figure 4c). The average over all grid points is negative (-43±1 mm410

over the period 2000-2021), which means that there is more erosion than deposition, and therefore silting is not the cause of

the observed lake area decrease (minus 22-54 ha across all seasons, see Figure 4c). Still, as expected, net sediment deposition

is evident at the depositional plains downstream of the two tributaries. With the derived sedimentation and erosion rates for

each pixel we can reconstruct the bathymetry of Lac Wégnia from the beginning of the century, and compare the lake areas

for given WSHs. If the WSH is between 329.4 and 329.9 m asl, the lake area today is up to 4.5 ha smaller than 21 years ago415

(Figure 12a), which represents about 5% area loss.

At an elevation range between 328.7 and 329.3 m asl the lake has seen a net erosion of the lake bed (Figure 12). According

to the sediment balance, about 40,000 m3 of soil eroded from this zone over the last 21 years. The areas which see a net erosion

of the ground are characterized by gentle slopes and are frequently visited by livestock for watering. The bare silty soil dries

out during the dry season, gets mobilized by the cattle and then gets suspended in the water when the water is rising again.420
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Figure 9. Impacts of hydrological changes on end-of-dry-season lake levels (95% CI). ∆hrate represents the increasing rate of WSH decline

during the dry season that is due to changes in precipitation (P ), open-water evaporation (E) and net inflow (Q). ∆hini represents the impact

of lower initial lake levels at the beginning of the dry season and ∆h∆t represents the lake level change due to changes in the timing of the

wet season. ∆htot is the sum of ∆hrate, ∆hini and ∆h∆t. ∆hmeas is the measured difference in dry-season lake levels between 2000 and

2021 (Q1 in Figure 4).

Our calculations cannot clarify if from there the sediments are moved to deeper areas of the lake where they deposit again, or

if they get flushed away during the wet season. Given the fine grain size of the material we suspect that the latter is the case.

The attribution analysis has revealed that the main cause of the decreasing dry-season water level trend are lower initial lake

levels at the beginning of the dry season (Figure 9. The initial lake levels are crucial for the persistence of the lake during

the dry season, because the lake does not see any surface water inflow over a period of about eight months. Less than 30%425

of the water that evaporates is replaced by net inflow through groundwater exchange (Figure 8). Decreasing initial lake levels

therefore imperatively lead to decreasing WSHs at the end of the dry season. The lake might even run completely dry in the

future, which is something that has never occurred in the past decades.

The lake levels at the end of the wet season mainly depend on the base level at the outflow, which defines the dead storage

volume of the lake. The sediment balance around the location of the outlet indicate net erosion rates of 10±13 mm per year,430

which is less than the 20±3 mm per year obtained for ∆hini (Figure 9). However, the outflow channel is only about 5 m wide,

and therefore below the pixel resolution of the sediment balance map (Figure 3c). A hand-made dam with a height of about 50

cm made out of sand bags was present at the location during field visits in 2019 and 2020 (Figure 13). According to information

from local residents, the dam is not able to withstand the speed of the water leaving the lake during the rainy season and thus

collapses, but has been rebuilt each year since 2009 to reduce the outflow of water from the lake. As a consequence of the435

collapse of the dam, the flow velocities increase, which leads to temporarily higher erosion rates. The step between 2010 and

2011 in the time series of the October 1st water level (Figure 10b) coincides with the timing of the first construction of the

dam. The average reconstructed water levels are 29 cm higher at the beginning of the dry seasons 1999-2010 than over the
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Figure 10. a) Dry-season water levels for each hydrological year 2000-2021. The crosses indicate the extrapolated WSH on October 1st,

which is used as a proxy for the floor level at the outflow. Values above 330.4 m asl are considered as outliers and are not considered for

extrapolation. b) Time-series of extrapolated WSH on October 1st. Error bars represent the range of values obtained by considering the

uncertainty in the rates used for extrapolation (Figure 7). The transparent area indicates the 95% CI of the linear regression slope. The dotted

red line shows an alternative interpretation of the data, speculating that a single strong erosive event in 2011 may have lowered the outflow

level by approximately 29 cm.

period 2011-2020 (Figure 10b). The intervention in the river bed in 2009 may thus have entailed a strong erosive event during

the wet season of the year 2011.440

Of course, lower WSHs at the beginning of the dry season could also be caused by changes in the wet-season water balance.

However, the lake exceeded a level of 329.8 m asl during each wet season of the observation period (Figure 4b). The lake thus

continues to exceed the dead storage level of May 2019, which means that during the wet season, the lake recovers from the

low WSHs at the end of the dry season. The duration of the wet season did also not change significantly over the observation

period (Figure 11). Our analysis even reveals positive wet-season precipitation trends for Lac Wégnia (Table 1), confirming445

recent findings by e.g. Nouaceur and Murarescu (2020) or Bodian et al. (2020). These findings do not suggest that the observed

changes in initial WSH at the beginning of the dry season depend on wet-season water balance changes. On the other hand,
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Figure 11. Date of the beginning of the dry season based on gauge-corrected satellite data (black line). The dry season is defined as the

portion of the year where open-water evaporation (E) exceeds precipitation. Weeks with sufficient precipitation to satisfy E are marked in

grey. The dotted red line indicates the linear regression line based on the Sen’s slope estimator.

a lower dead storage level can explain the tendency of lower WSHs during the wet season (Figure 4d), because with a lower

base level at the outflow, much higher inflows would be required to reach the same water levels. Following this interpretation,

according to Figure 10b, the dead storage level of Lac Wégnia has decreased by 0.3 to 0.6 meters. This is equivalent to a450

storage volume loss of 300,000 to 700,000 m3. About 25% to 50% of the storage capacity has therefore been lost since the

beginning of the century.

The present study also indicates a possible decrease of net inflow to the lake during the dry season, and an increase of direct

evaporation from the lake (Figure 9. Increasing evaporation may be related to increasing air-temperature (Touré Halimatou

et al., 2017). Since net inflow is predominantly positive (Figure 7), but there is no surface inflow to the lake during the dry455

season, the inflow enters the lake through groundwater exchange. If the groundwater levels are dropping then this contribution

is reducing and the lake levels gradually decrease. Groundwater is not continuously monitored in the region, and it is therefore

not possible to validate this finding. Our findings highlight the need for the monitoring of groundwater in the region, which has

an important ecological role and which is an important resource for human activities.

7 Uncertainty assessment460

Shallow slopes greatly increase the accuracy of the waterline approach (Tseng et al., 2016). The steeper the slope, the larger

the elevation range within a Landsat or Sentinel-2 pixel that represents the lake shore. The average slope of shoreline pixels

at Lac Wégnia is between 0.2◦ and 2.25◦ per scene, with an average of 1.06◦ across all scenes that represent a WSH below

outflow level (329.8 m asl). Assuming a horizontal error of the waterline position of one pixel (i.e., 30 m for Landsat scenes

and 10 m for Sentinel-2 scenes), and a slope of 1.06◦, we obtain vertical errors of 0.56 m (Landsat) and 0.18 m (Sentinel-2),465
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Figure 12. a) Difference in lake area in function of water surface height (WSH), based on the bathymetries for May 2019 and May 2000,

respectively. The error bars reflect the 95% CI of the sediment erosion and deposition rates that were used to reconstruct the bathymetry of

the year 2000. b) Lake contour lines for a WSH of 328.8 m asl and 329.6 m asl, respectively, considering the bathymetries of the year 2000

and 2019.

Figure 13. Photo of the hand-made dam at the outlet of Lac Wégnia (9 February 2020, Source: Tobias Siegfried).

respectively. The average number of 10-m shoreline pixels per scene is n=671 (WSH below 329.8 m asl, excluding masked

pixels). Assuming that the vertical error estimates above represents the standard deviation (σ) of each pixel-wise WSH estimate,

we obtain a standard error of the WSH equal to σ/
√
n, and therefore 21 mm (Landsat) and 7 mm (Sentinel-2), respectively.

These theoretical errors agree well with the identified relative errors (Figure 6), and demonstrate that the waterline approach

provides sufficient accuracy for the purpose of identifying WSHs at Lac Wégnia.470
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For the shoreline elevation anomalies the same considerations on accuracy apply as for the WSH estimates. The accuracy of

the sediment balance estimates then mainly depends on the adequacy of the regression slopes fitted to the SEAs. For individual

pixels, the average 1-σ CI of the Sen’s slope is quite large (±7.8 mm/year, resulting in an uncertainty of the pixel-wise

sediment balance of ±163 mm over 21 years). Sediment balances of individual pixels should therefore be interpreted with

care. However, the total number of pixels for which sediment balances could be calculated is n=10,790, and the standard error475

of the lake sediment balance is therefore only 1.6 mm. The resulting deposition/erosion patterns (Figure 3) agree well with the

expected patterns (see section above), which demonstrates the suitability of the approach.

The point sediment balances at individual pixels are sensitive to errors in the coregistration. According to Nguyen et al.

(2020), the random offset differences between Landsat 8 and Sentinel-2 can be reduced to less than 2 m in most of the pixels

with the displacement() function in GEE. We thus tested the sensitivity of the lake sediment balance to a random error in480

coregistration by adding a random error with a normal distribution (µ=0, σ=2 m) to the determined displacements (both in x

and y direction). The resulting lake sediment balance over the 22 years study period changed by +9 mm from -44 mm to -35

mm, which can be considered as an acceptable error range.

The uncertainty assessment above confirms the findings of previous studies (e.g., Tseng et al., 2016) that the accuracy of

the waterline method greatly benefits from shallow slopes at the waterline, a sufficiently large number of shoreline pixels,485

and a low shoreline positioning uncertainty. Furthermore, our analysis benefits from a high relative vertical accuracy of the

DEM, cloud-free meteorological conditions during the dry season, and strong natural fluctuations of the water level. With the

exception of the availability of a high-resolution DEM, the factors named above are valid for hundreds of water bodies in the

Sahel and beyond. Assuming similar boundary conditions for other water bodies in the region and an acceptable sediment

balance standard error of 10 mm, our approach can also be applied to ponds and reservoirs that are up to 40 times smaller than490

Lac Wégnia (i.e., average surface water areas of up to 2.5 hectares).

Regarding the availability of lake bathymetries, our study has shown that a single UAV survey is sufficient to satisfy this

point. However, We recognize that UAV surveys are impractical in many locations due to security concerns and the remoteness

of the water bodies in the region. Satellite altimetry can therefore be a promising alternative for data collection in the field.

Armon et al. (2020) have shown that determining the bathymetry of shallow desert lakes using ICESat-2 altimetric tracks is495

possible. For Lac Wégnia, however, ICESat-2 cross-sections are not yet available for the central part of the lake.

8 Conclusions

This work has demonstrated the utility of the waterline method for extracting the water levels of Lac Wégnia, a Malian lake at

the boundary between the Sahelian and the Sudanian eco-climate. 541 WSH data points were obtained for the period October

1999 to June 2021. The data reveal that the lake is dwindling at alarming rates, with a decrease of the seasonal average500

WSH between 22 mm/year and 33 mm/year, which translates to a wet-season area loss of 17% and an end-of-dry-season

area decrease of 64% between 2000 and 2021. Based on gridded global datasets and the observed WSH changes we have

successfully unravelled the dry-season water balance of the lake. The analysis revealed that a change in the water balance
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components explains only 34±18% of the overall lake level decrease, while the reduction of the initial storage volume at the

beginning of the dry season explains 66±18% of the observed changes. Erosion through the natural levee at the outlet of505

the lake is identified as the main cause of this storage volume loss. An estimated 25% to 50% of the water storage capacity

of Lac Wégnia has been lost since the beginning of the century. Future interventions for safeguarding the wetlands of the

RAMSAR site should focus on preventing erosion at the outlet channel. In this respect, efforts by local villagers to artificially

raise the water table of the lake through improvised dams may be counterproductive, as they increase erosion rates if they are

not properly constructed.510

The waterline method was further developed in this study to identify shoreline elevation anomalies, which indicate locations

with significant sediment erosion or deposition. This novel contribution to the waterline method enables the calculation of

sediment balances for pixels that are frequently representing the shoreline. Moreover, accounting for SEAs allows to unam-

biguously separate lake level and terrain height changes. We could show that no significant silting had taken place within the

study period of 21 years. When contemplating the sedimentation and erosion of natural lakes, important parallels can be drawn515

for the planning of reservoirs. The proposed method and the presented results have therefore numerous potential applications.

A remarkable finding of this study is that the lake levels are decreasing in spite of precipitation trends that indicate a possible

increase of wet season precipitation. This conclusion does not lack a certain irony, because large areas of the Sahel region saw

a surface water increase despite a general precipitation decline during the last decades of the 20th century. While the ’first’

Sahelian paradox could be related to large-scale eco-hydrological changes, the paradox reported in this study has its main520

cause in the local management of the lake. However, the present study also indicates a possible decrease of net inflow to the

lake during the dry season, and an increase of direct evaporation from the lake. Both factors could also negatively impact the

persistence of other water bodies in the region. While the present study can be a showcase for monitoring Sahelian lakes using

remote sensing, it is hoped that the hydrological trends at Lac Wégnia are not symptomatic for the entire region.

Data availability. The pixel sediment balances of Lac Wégnia can be accessed and visualized through an Earth Engine application (https:525

//hydrosolutions.users.earthengine.app/view/wegnia-sb). This application allows users to click on any point in the lake to view the annual

SEAs and the fitted regression slopes. The application also provides access to all available water surface area and WSH data points. The

sediment balance script along with the input data that are required to apply it to Lac Wégnia can be freely accessed from https://github.com/

hydrosolutions/GEE-SedimentBalance.
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