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Abstract. The assessment of rainfall erosivity is one of the main inputs in determining soil erosion. To calculate mean annual 

rainfall erosivity (R), long-term high-resolution observed rainfall time series are required, which are often not available. To 

overcome the issue of limited data availability in space, four methods are employed: the direct regionalisation of R, the 15 

regionalisation of 5 minute rainfall, the disaggregation of daily rainfall into 5 minute timesteps, and the use of a regionalised 

stochastic rainfall model. In addition the minimum time series length necessary to adequately estimate R is investigated. The 

impact of station density is considered for each of the methods. The study is carried out using 159 recording and 150 non-

recording (daily) rainfall stations in the federal state of Lower Saxony, Germany. Results show that the direct regionalisation 

of mean annual erosivity leads to the best results in terms of relative bias and relative root mean square error (RMSE). This is 20 

followed by the regionalisation of the 5 minute rainfall data, which yields better results than the rainfall generation models, 

namely an alternating renewal model (ARM) and a multiplicative cascade model (Disagg). However, a key advantage of using 

regionalised rainfall models is the generation of rainfall time series that can be used for the estimation of the erosive event 

characteristics, which is not possible through the direct regionalisation of R. Using the stochastic ARM it can be shown that 

in most cases more than 60 years of data is needed in order to obtain a stable estimate of the annual rainfall erosivity. Estimation 25 

of soil erosion based on only 5 or 10 years of data can lead to uncertain values. Such short time series are often used when 

regionalisation is applied. Moreover, it was also found that resolution of measuring device has a significant effect on the 

rainfall erosivity and coarser data resolution can lead to high relative bias.  
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1 Introduction 

Intense soil erosion has a significant impact on the environment, for example it can present a major threat for agricultural 

production or lead to increased sedimentation and pollution in rivers, which can also affect aquatic organisms. Soil erosion 

modelling can be applied in order to detect the most critical areas and design suitable measures for soil loss reduction. One of 35 

the most frequently applied models for the soil erosion modelling is the Universal Soil Loss Equation (USLE) and in its follow-

up version named Revised Universal Soil Loss Equation (RUSLE) (e.g., Renard et al., 1997). In the scope of the RUSLE 

model, soil erosion is described with six factors, one of which is the rainfall erosivity factor R (in MJ mm ha-1 h-1, Renard et 

al., 1997). Rainfall erosivity is often characterised by large spatial and temporal variability (e.g., Bezak et al., 2020, 2021a, 

2021b; 2021c; Panagos et al., 2016, 2017; Petek et al., 2018), which means that rainfall erosivity estimations are not a 40 

straightforward task and require adequate temporal and spatial data resolution.  

In order to obtain robust rainfall erosivity values, high-resolution observed rainfall estimates are needed, ideally with a 1 or 5 

minute resolution (Dunkerley, 2019). However, rainfall data at this resolution is often only available for shorter periods of 

observation (e.g. 10 or 20 years) or not at all. A solution to overcome this shortcoming is the use of stochastic rainfall models 

that allows the generation of long time series of arbitrary length. A few studies have investigated the possibility of applying 45 

stochastic precipitation models to generate rainfall time series that can be used to estimate rainfall erosivity (e.g., Jebari et al., 

2012; Lobo et al., 2015; de Oliveira et al., 2018; Haas et al., 2018). Different methods have been developed for the generation 

of rainfall itself such as cluster-based models (e.g., Onof et al., 2000, Onof and Wang, 2020), cascade models (e.g., Molnar 

and Burlando, 2005; Müller and Haberlandt, 2018), method-of-fragments (e.g., Breinl and Di Baldassarre, 2019) or alternating 

renewal models (e.g., Callau Poduje and Haberlandt, 2017), or as part of weather generators (Peleg et al., 2016). The parameters 50 

of these methods are estimated based on observations and the complexity of the models depends on the selected time step of 

data. Thus, most studies are focused on daily data. For example, CLImate GENerator (CLIGEN) was applied to obtain daily 

rainfall estimates and calculate rainfall erosivity using daily data (e.g., de Oliveira et al., 2018; Lobo et al., 2015; Wang et al., 

2018). However, some shortcomings such as sensitivity to the selection of input parameters of the above mentioned models 

have been reported in the literature (e.g., Meyer et al., 2008; Haas et al., 2018). On the other hand, temporal high-resolution 55 

time series (i.e. 5 minutes) are not frequently generated using stochastic rainfall models, although, in recent years advancements 

have been made in terms of high frequency rainfall data simulations (e.g., Haberlandt et al., 2008; Vandenberghe et al., 2011; 

Vernieuwe et al., 2015, Callau Poduje and Haberlandt, 2017,  Müller-Thomy, 2020). 

Thus, a few studies (e.g., De Oliveira et al., 2018; Haas et al., 2018) have investigated if stochastic rainfall models are able to 

correctly predict the rainfall erosivity pattern at specific locations. In the case that a stochastic rainfall model is able to mimic 60 

the rainfall erosivity characteristics, generated long-term high-resolution rainfall time series should allow a robust estimation 

of annual and monthly erosivity pattern. Similarly, a limited number of studies (e.g., Angulo-Martinez et al., 2009) have 

investigated the issue of observed high-resolution data in space. 
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Therefore, the main aim of this study is to evaluate and compare different rainfall generators and regionalisation approaches 

in order to obtain either directly or indirectly rainfall erosivity estimates for ungauged locations. Given a lack of high-resolution 65 

rainfall time series, the research question is whether these methods can adequately reproduce observed rainfall erosivity 

statistics. In addition, one further research question is posed. Given the existence of a high-resolution rainfall time series, how 

long should this time series be in order to obtain stable site rainfall erosivity statistics? 

All tests are performed via leave-one-out cross validation, as the premise of this study is that high-resolution time series are 

not widely available. Additionally, the effect of station density on the regionalisation performance is assessed by performing 70 

each test at five different station counts. To minimise the sampling uncertainty, 20 realisations of each test at each station 

density are performed. 

2 Data and study area 

High-resolution observed rainfall data for 159 stations in and around the northern German federal state of Lower Saxony (Fig. 

1) was acquired from the German Weather Service (DWD). The one minute source time series, from a combination of tipping 75 

bucket and later drop counter measurements, were aggregated to 5 minutes for use within this project. All data used for the 

project is restricted to the ten year period 2007-2016, as all 159 stations have at least 98% data availability for this period. The 

study area is dominated by lowland terrain, with the only mountains of significance being the south east lying Harz mountain 

range. The region is predominantly classified as having a temperate oceanic (Cfb) climate according to Köppen-Geiger (Kottek 

et al., 2006). The far eastern portion of the study area is categorised as temperate continental (Dfb) and the Harz mountain 80 

range as cool continental (Dfc). Fig. 2 displays the long-term seasonal rainfall and temperature variability averaged over the 

German federal state of Lower Saxony. Annual rainfall varies between 950 mm in the Harz mountain range to under 400 mm 

in lower lying areas east of the study area. 

3 Methods 

In this study, four different methods to calculate annual rainfall erosivity (R) for ungauged sites are applied (Fig. 3). The first 85 

and simplest is the direct regionalisation of observed mean annual rainfall erosivity (method Direct-R). The other three methods 

all generate rainfall time series first from which mean annual rainfall erosivity is subsequently calculated. The second is the 

regionalisation of the observed 5 minute rainfall time series (method Direct-P). The final two methods are stochastic rainfall 

models – one being a regionalised disaggregation model using regionalised daily rainfall as its source (method Disagg) (Müller-

Thomy, 2020) and the other a regionalised alternating renewal model (method ARM) (Callau Poduje and Haberlandt, 2017). 90 

Detailed descriptions of the applied methods are provided in sections 3.2 and 3.3 while section 3.1 provides details about the 

rainfall erosivity calculation. 
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3.1 Rainfall erosivity 

Rainfall erosivity is one of the factors that has the highest impact on soil erosion rates. Rainfall erosivity is characterised by 

multiple properties of rainfall events such as the kinetic energy of raindrops, rainfall intensity and rainfall duration. In order to 95 

calculate annual rainfall erosivity for a selected time span of M years, the following equation proposed by Renard et al. (1997) 

can be used: 

𝑅 =
∑ 𝐸∙𝐼30𝑛

𝑀
    (1) 

where R is rainfall erosivity (MJ mm ha-1 h-1), I30 is the maximum 30 minute rainfall intensity for a specific rainfall event (mm 

h-1), E is the kinetic energy of the rainfall event (MJ ha-1 ) and n is the total number of erosive events. Equation 2 is used to 100 

derive the kinetic energy of the rainfall event: 

𝐸 = 𝑒𝐵 ∙ 𝐼 ∙ ∆𝑡    (2) 

where eB is specific kinetic energy (MJ ha-1 mm-1), I is rainfall intensity (mm h-1) for the event and ∆t is the time interval. 

Various equations for calculation of eB were developed for different parts of the world, where most often high frequency 

measurements using optical disdrometers are used in order to derive the eB – E relationship (e.g., Petan et al., 2010). One of 105 

the most frequently and globally used equations (e.g., Panagos et al., 2015, 2017) was proposed by Brown and Foster (1987): 

  𝑒𝐵 = 0,29 ∙ [1 − 0,72 ∙ 𝑒𝑥𝑝 (−0,05 ∙ 𝐼) ]    (3) 

This equation is also mentioned in the RUSLE Handbook (Renard et al., 1997), which means that it should be regarded as a 

standard method when one wants to estimate the soil erosion using the RUSLE method. Additionally, the equation has been 

already applied several times to similar climatic conditions (e.g., Panagos et al., 2015) and yielding meaningful results. This 110 

equation was also used in the presented study in order to calculate specific kinetic energy. The equation 3 is valid for the 

rainfall intensity in the range between 0 and 250 mm/h. 

Erosive rainfall events are defined according to the RUSLE methodology (Renard et al., 1997). A rainfall event is considered 

erosive if the total volume exceeds 12.7 mm of rain or if the maximum volume in 15 minutes is more than 6.35 mm. Here a 6 

hour period without rain is used in order to separate two consecutive erosive rainfall events. The monthly and annual rainfall 115 

erosivity values are then calculated based on the rainfall erosivity of all erosive events.  

3.2 Direct regionalisation methods 

3.2.1 Method Direct-R: direct regionalisation of mean annual rainfall erosivity R 

The direct interpolation of erosivity is carried out using geostatistical methods (see e.g. textbooks from Isaaks and Srivastava, 

1989 or Goovaerts, 1997). The spatial dependence of R is modelled using an isotropic spherical variogram model: 120 

𝛾(ℎ) =  𝑐0  +  𝑐 (
3

2

ℎ

𝑎
 −  

1

2

ℎ3

𝑎
) 𝑖𝑓 ℎ ≤ 𝑎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝛾(ℎ)  =  𝑐0  +  𝑐                 (4) 
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where c is 0.5, c0 is 0.3 and aeff is 30000 km. For interpolation ordinary kriging (OK) and external drift kriging (EDK) are 

applied. While OK assumes spatial stationarity, EDK relaxes the intrinsic hypothesis regarding the constant mean and assumes 

a linear relationship between the mean of the target variable Z and one or more additional variables Y: 

𝐸[𝑍(𝑢)|𝑌(𝑢)]  =  𝑎 +  ∑ 𝑏𝑖  𝑌𝑖(𝑢)𝑛
𝑖=1    (5) 125 

The coefficients a and bi need not be known explicitly, but are considered in building the kriging system. The additional 

variables Yi need to be provided for all points with observed erosivity and for all unobserved points to be interpolated, usually 

on a raster. Here, the following additional variables are used in the analyses: daily mean rainfall (Pmean), maximum daily 

rainfall (Pmax), the 90 and 99 percent quantiles of daily rainfall (Pq90, Pq99) and the yearly wet fractions of days with rainfall 

higher than 12.7 mm (based on the RUSLE methodology; Renard et al., 1997) and 1 mm thresholds (wfd12, wfd1). These 130 

variables are extracted from regionalised daily data in a spatial resolution of 1 km² (NLWKN, 2019), and are calculated as 

long-term averages from the period 2007-2016. The interpolation uses a minimum of 8 neighbours and a maximum of 12 

neighbours within a radius of 300 km. The R statistical software with the package “gstat” (Pebesma, 2004) is employed for 

the calculations. 

3.2.2 Method Direct-P: regionalisation of 5 minute rainfall 135 

A second approach for the regionalisation of the annual R, is to estimate the 5 minute rainfall time series for unobserved 

locations based on the information of nearby measured rainfall time series. In this study, the nearest neighbor approach (NN) 

is used for the regionalisation of the 5 minute rainfall time series from 2007-2016. This technique, also known as the Thiessen 

Polygon method (Thiessen, 1911), is a simple approach which assigns for each unobserved point the observed rainfall time 

series of the closest available rain gauge. Despite this being a basic interpolation method, a prior investigation of different 140 

interpolation techniques (nearest neighbor, inverse distance and ordinary kriging) led to the conclusion that this technique 

maintains the best temporal structure of rainfall at the 5 minute time scale and yields the lowest error for the calculation of 

erosivity. One reason for the superiority of NN compared to the other interpolation methods might be that NN is the only 

method which is not smoothing the extremes, which is important here for the estimation of erosive events. 

 3.3 Stochastic rainfall models 145 

3.3.1 Method ARM: an alternating renewal rainfall model 

The stochastic alternating renewal model (ARM) is based on the theory of renewal processes. Rainfall is described as a series 

of independent alternating wet and dry spells, described by the three variables: wet spell amount (WSA), wet spell duration 

(WSD) and dry spell duration (DSD) (Fig. 4). 

Probability distributions are fitted to observations of these variables, with observed rainfall events being limited by a minimum 150 

WSA (1 mm) and DSD (60 min). Synthetic rainfall time series of arbitrary length can be generated by producing random 

variates of the distributions.  
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Additionally, the temporal distribution of rainfall within a wet spell is described by a double exponential function conditioned 

on the wet spell time to peak (WSTP - modelled using a uniform distribution) and wet spell peak intensity (WSPI - modelled 

using a copula, see below), and WSA (Fig. 5). Full details of the model can be found in Callau and Haberlandt (2017), with 155 

the following alterations which have been found to provide a better model performance, especially when considering 

regionalisation: 

• an Khoudraji Gumbel copula describes the dependence between WSA and WSD 

• a Tawn copula describes the dependence between WSD and the ratio WSPI:WSA 

• the three parameter Weibull distribution is used instead of the four parameter Kappa distribution for the variables 160 

DSD and WSA, being more robust in a regionalisation setting. 

3.3.2 Method Disagg: cascade model 

Another possibility to generate high-resolution rainfall time series is to disaggregate daily time series, which exist most often 

for longer time periods and with higher station densities. For this study the micro-canonical cascade model after Müller-Thomy 

(2019, 2020) is applied due to its performance in previous studies (e.g. Müller and Haberlandt, 2015, 2018). The general 165 

cascade model scheme with disaggregating one coarse time step into “b” finer time steps is illustrated in Fig. 6. From daily 

rainfall amounts three time steps with 8 h duration are generated (b=3). For all further disaggregation steps b=2 is applied, 

resulting in temporal resolutions of Δt={4h, 2h, 1h, 30 min, 15 min, 7.5 min}. To achieve Δt=5 min, a linear transformation is 

applied. The rainfall amount is conserved exactly in each disaggregation step. For a detailed description of the cascade model 

the reader is referred to the description of the preceding cascade model in Müller-Thomy (2020). 170 

The cascade model parameters are estimated by the aggregation of observed 5 min time series of the recording stations 

available in each density scenario. As daily time series the aggregated 5 min time series of all 159 stations are used, independent 

of the applied density scenario. To investigate how suitable is the disaggregation of daily information for unobserved locations, 

a regionalisation of the daily precipitation is done prior to the application of the cascade model. Here ordinary kriging approach 

(OK) was used for the regionalisation of daily rainfall time series from 2007-2016. The interpolation uses an isotropic 175 

exponential variogram as in Eqn. 6, a minimum of 4 neighbours and a maximum of 12 neighbours within a radius of 150 km.  

𝛾(ℎ)  =  𝑐0  +  𝑐 [1 − 𝑒𝑥𝑝(−
ℎ

𝑎
) ]                                         (6) 

where c0 is 0.4, c is 1.5 and aeff is 186280 km. 

3.4 Regionalisation schemes and station selection 

In order to adequately test the performance of the different methods, all regionalisations have been performed in a cross 180 

validation mode at varying station densities. Five station densities were chosen – 20% (N=32), 40% (N=64), 60% (N=96), 

80% (N=128) and 100% (N=159) of the total available station count. Stations were selected at random and are consistent 

across the different testing methods presented above. Important to note is that the cross validation is only performed on the 

stations chosen at the 20% level (N=32) – the higher densities only add further supplementary stations available for the 
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regionalisation, with the assumption that the regionalisation performance will improve at a higher available station count. 185 

Furthermore, 20 realisations are performed for each density to minimise the influence of station selection on the results. This 

scheme is illustrated graphically in Fig. 7. 

3.5 Effect of time series length on the calculation or mean annual R 

One further research question of interest is how long a rainfall time series must be in order to achieve a stable (i.e. robust) 

result of mean annual rainfall erosivity. The importance of such a research question lies in the fact that rainfall series used to 190 

calculate annual erosivity are often of limited length. Therefore, using only a few years of data could perhaps lead to uncertain 

estimations of rainfall erosivity, which could affect the estimated soil erosion (i.e. under- or overestimation).  

Using the alternating renewal rainfall model described in section 3.3.1, it is investigated how many years of data are needed 

in order to obtain stable estimations of the annual rainfall erosivity. For this purpose, 18 stations with the longest observation 

time series length are selected to achieve better model fitting. For each station the ARM model described in section 3.3.1 is 195 

fitted. Afterwards, 200 years of synthetic rainfall time series are generated 50 times for all 18 stations. The effect of time series 

length is investigated by calculating mean annual rainfall erosivity for each station and for each realisation using separately 2, 

5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180 and 200 years of data. Results within ±20% of the mean annual 

erosivity calculated for 200 years are considered stable. 

3.6 Evaluation criteria 200 

To assess the relative performance of the four different methods (Fig. 3), three different evaluation criteria are chosen. The 

first is the Pearson correlation coefficient rxy between the annual rainfall erosivity calculated from observed rainfall and the 

estimated mean annual erosivity, i.e. regionalised by the different methods, at a given station density scenario across all 

realisations and the 32 reference stations. It is worth remembering that this measure is an indication of linear correlation only. 

It is given by the formula: 205 

rxy = 𝑐𝑜𝑣(𝑥, 𝑦)/𝜎(𝑥) ∗ 𝜎(𝑦)   (7) 

where cov is the covariance and 𝜎(𝑥) and 𝜎(𝑦) are the standard deviations of x and y (rainfall erosivity calculate from observed 

and simulated data), respectively. The second is the relative root mean square error (RMSE) of the mean annual rainfall 

erosivity for a given station density scenario across all realisations and stations, given by equation 8: 

𝑅𝑀𝑆𝐸 = √1

𝑁
∑ [

𝑦−𝑥

𝑥
]

2
𝑁
𝑛=1    (8) 210 

where x refers to mean annual rainfall erosivity estimated from observations, y is the estimated mean annual rainfall erosivity 

estimated by the different methods proposed in this work and N is the number of stations. The third is the median relative bias 

rBmed of the mean annual erosivity. For a given station density scenario the relative bias rB is calculated over all 32 stations 

for one realisation, and the median relative Bias rBmed is provided as summarizing result (referred to as relative Bias in the 

following): 215 
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 𝑟𝐵𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(
𝑦−𝑥

𝑥
)    (9) 

Additionally, a comparison using absolute rainfall erosivity values is also provided. 

4 Results and discussion 

4.1 Mean annual erosivity R 

The main focus of this study is to evaluate the performance of the four different tested methods in reproducing observed mean 220 

annual erosivity. For the direct regionalisation of erosivity (Direct-R), EDK with mean annual precipitation (Pmean) as external 

drift was found to provide the best performance. The direct regionalisation provides the best results overall, both in terms of 

accuracy and precision. The Pearson correlation (Fig. 8) by this method is larger than for the other three methods, which show 

more or less the same result. Its root mean square error is also lower than the other methods (Fig. 8). The rBmed is the only 

performance criteria where this method is not clearly better (Fig. 8). In terms of rBmed the Direct-R method is followed by 225 

Direct-P. ARM and Disagg in most cases yield relative bias larger than 10 and 20%, respectively. In terms of relative RMSE 

and Pearson Correlation the ARM and Disagg methods perform relatively similarly. The median result over all realisations 

shows slightly better results for the direct regionalisation of rainfall (Direct-P) compared to stochastic rainfall models, although 

the range of results is greater than for Direct-R. The disaggregation model performs worse than the other methods with a >20% 

underestimation of mean annual erosivity. With increasing station density, the median result is generally improved, in 230 

particular for the Pearson correlation (Fig. 8). This is less noticeable for rBmed, as bias likely indicates the inherent ability of 

the underlying method to replicate the mean annual R (Fig. 8). Moreover, it seems that for ARM and Direct-P the results 

change greatly between realisations (i.e. larger spread of the results), meaning that the station setting is more decisive, with 

Direct-P being the most affected. The Direct-R and Disagg methods seem to be more robust in terms of station setting, which 

indicates their usage for regions with low station densities. Thus, it seems that for areas similar to that of Lower Saxony (i.e. 235 

relatively flat areas with small changes in erosivity), the Direct-R method is preferred in case that one needs to estimate the 

rainfall erosivity for the ungauged locations. The application of this method is also the simplest of the four methods (Fig. 3), 

especially when compared to the ARM and Disagg methods, since these two methods require development of the stochastic 

rainfall models and estimation of the model parameters. Thus, in terms of mean annual rainfall erosivity, the use of stochastic 

rainfall models does not provide an improvement of the results in terms of performance in space (Fig. 8). In terms of the 240 

number of stations needed to provide good estimates of rainfall erosivity for the ungauged locations, it is clear that higher 

station counts available for the regionalisation yield better results, which could be expected (Fig. 8). Thus, for the Direct-R the 

performance D100>D80>D60>D40>D20 (Fig. 8) with somewhat diminishing improvements in performance above D80. 

Similar conclusions can be made for the Direct-P method while for the ARM and Disagg this relationship is not so evident for 

the rBmed and RMSE (Fig. 8). Therefore, even for topographically relatively homogeneous areas (compared to for example 245 
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Alpine area) such as Lower Saxony, the accuracy of rainfall erosivity maps greatly depends on the number of stations used for 

the interpolation. 

4.2 Erosive event characteristics 

Although the main focus of the study is the calculation of the mean annual erosivity R, in some specific applications more 

details about the rainfall erosivity at a location might be required. For example, studies that investigate changes in erosivity 250 

patterns in time (i.e. climate change studies) might be interested in changes in the number of erosive events or erosive events 

characteristics. In such a case the Direct-R method cannot be used since this method is only able to provide estimates of the 

mean annual rainfall erosivity and does not provide a time series of erosive events. Naturally a similar procedure as in the case 

for Direct-R (section 3.2.1) could be used for any other variable of interest (e.g. number of erosive events, mean duration of 

the erosive events). However, the EDK setup used for mean annual R is unlikely to be optimal for other variables, which means 255 

that an optimal EDK setup would need to be investigated for each variable of interest separately and thus could be considered 

as relatively time consuming.  

However, three of the four methods presented in this study, namely Direct-P, ARM and Disagg, are able to reproduce erosive 

events themselves from which the mean annual R is calculated. How well the three methods reproduce erosive event 

characteristics is explored in this section. Fig. 9 displays the median relative bias of different erosive event variables. The mean 260 

annual event count and precipitation sum (first two box plots) is best represented by the Direct-P method. Whereas the median 

error is close to zero, the range of errors is well over 100% when one considers outliers. The Disagg method represents the 

event count well but underestimates the annual volume slightly, whereas the ARM method underestimates both the annual 

count and volume (Fig. 9). Performance improves slightly for all methods with increasing station density (not shown). 

For both the mean event duration and volume (Fig. 9, last two box plots), the results again show that the Direct-P method is 265 

the most efficient. The Disagg method significantly overestimates the event duration and at the same time underestimates the 

event volume. However, its overall performance is achieved already for the low density scenarios (not shown here). An 

overestimation of the erosive events duration is to be expected as previously identified by Jebari et al. (2012) with 

underestimations higher than 40%. Here the overestimations are higher as the disaggregation inherits the errors caused by the 

regionalization of the daily rainfall. Because of the unbiased estimator, OK tends to smoothen the spatial structures of the 270 

rainfall, leading to overestimation of the low intensities (explaining the longer event durations) and underestimation of the 

extreme ones (explaining the lower event volumes). The performance of the disaggregation may improve if another 

regionalization method that captures better the temporal variability is employed.   

The ARM method underestimates both mean event duration and mean event volume, which explains the underestimation in 

both annual number of events and their volume. Thus, it can be seen that Direct-P outperforms the ARM and Disagg methods 275 

not only in terms of annual rainfall erosivity but also in terms of specific events characteristics. In case that one would like to 

obtain characteristics of the erosive events for the ungauged sites the Direct-P method should be preferred since it is able to 

produce acceptable results and yields better performance compared with the two tested stochastic rainfall models. 
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4.3 Annual rainfall erosivity – data length sensitivity 

Despite the fact that Direct-R and Direct-P methods yield better performance than the evaluated stochastic rainfall models, the 280 

benefit of the latter is the ability to generate long time series of arbitrary length of high-resolution data for (almost) unobserved 

areas, where Direct-R and Direct-P are not applicable at all. The goal of this section is to investigate how long the synthetic 

time series should be in order to obtain a stable estimate of the mean annual rainfall erosivity, which is most frequently used 

as an input to the soil erosion models (Panagos et al., 2015; 2017). Using the ARM model and the methodology described in 

section 3.5 it is investigated how many years of data is needed in order to obtain stable annual rainfall erosivity estimation. 285 

Important to remember is that the ARM model performance is better than what was shown in sections 4.1 and 4.2 as the ARM 

model in this section is fitted directly to observations and not regionalised. Fig. 10 shows results of this investigation. It can 

be seen that the variability between different realizations is quite high (Fig. 10). Moreover, investigation of the intersection 

between the 5 and 95% quantile values and +-20% variation of the mean annual rainfall erosivity indicates that in case of 5% 

quantile in most cases 60 years of data are needed in order to obtain a value that is between the +-20% interval (Fig. 10). This 290 

indicates that calculations of the annual rainfall erosivity for the soil erosion modelling using USLE or RUSLE (e.g., Renard 

et al., 1997; Panagos et al., 2017) using only a limited sample size (e.g., less than 5 or 10 years) will likely result in a greater 

than +-20% difference to the long term mean. Consequently, a similar impact (i.e. over- or under-estimation) on the calculated 

soil erosion rates will be obtained if one applies the RUSLE equation for the prediction. 

5 Conclusions 295 

This study evaluates four methods that can be used to estimate the annual mean erosivity (R) in space. Based on the presented 

results the following conclusions can be drawn: 

1. Both tested direct regionalisation methods (Direct-R and Direct-P) outperform the tested stochastic rainfall models 

(ARM and Disagg), with slightly better results for Direct-R. Furthermore, in terms of method complexity, this can 

be regarded as the simplest since it does not require the fitting of any model parameters. Differences among tested 300 

methods are relatively large, for example, in relative bias up to 25%. 

The main drawback of the Direct-R method is that it cannot be used to estimate the number of erosive events or mean event 

duration without applying the model to every variable separately (e.g., number of erosive events, annual rainfall erosivity). 

Therefore, the Direct-P method has the advantage that it is able to generate high-resolution time series of erosive events for 

ungauged sites. Therefore, information about the number of erosive events and the characteristics of erosive events can be 305 

determined as well.  

2. In terms of the characteristics of the erosive events, the Direct-P method yields better performance than both tested 

stochastic rainfall models. 

3. Both rainfall generators have proven their applicability in the field of soil erosion modelling since they are able to 

produce long synthetic series of the high-resolution data. 310 

4. Cross validation methodology using multiple density scenarios (Fig. 7) has indicated that performance of all methods 

slightly increases with increasing station density.  
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Investigation of the impact of time series length on the annual rainfall erosivity for 18 stations is carried out using the ARM 

model: 

5. More than 60 years of data is required in the case that one would like to obtain rainfall erosivity estimates within 315 

20% of the actual long-term mean annual rainfall erosivity.  

Thus, this conclusion is of critical importance for soil erosion studies where rainfall erosivity estimates are used as input, since 

in most cases the high-resolution data used to estimate rainfall erosivity is much shorter than 60 years. So in cases where only 

5-10 years of observed rainfall data is available, the estimated mean annual rainfall erosivity can be up to ±100% in comparison 

to the actual long-term mean annual rainfall erosivity, which can be reduced by the application of one of the here used rainfall 320 

generators.   

It should be noted that the approaches presented in this paper should be applied and tested for further case studies with different 

rainfall and topographical characteristics than for Lower Saxony, which is mostly flat and without major orographic obstacles. 

Additionally, some study limitations and lessons learned can also be made based on the presented results and conclusions such 

as that resolution of the measurement device, which has evolved in the recent decades, has a significant effect on the calculated 325 

rainfall erosivity and relative bias (Supplement; Fig. S1). 
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 440 

Figure 1: Location of all recording stations (N=159). Pie charts indicate relative annual volume (radius) and percentage split between 

summer (red) and winter (blue) precipitation. 

 

 

Figure 2: Long-term climate (1881-2019) averaged across the German federal state of Lower Saxony that is investigated in the scope 445 
of this study. Source: German Weather Service (DWD) Climate Data Center (CDC) (CDC, 2020). 
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Figure 3: Overview of the estimation of the annual rainfall erosivity (R) including all applied methods (dashed boxes) and data sets 

(solid boxes, italic written represent input data sets) [‘TS’ are rainfall time series; ‘*’ indicates data sets affected by the station 450 
density scenarios]. 

 

 

Figure 4: Schematic of the external structure of the ARM model. The black boxes describe rainfall events derived from observations. 

 455 
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Figure 5: Internal structure of ARM model according to the Callau and Haberlandt (2017). 

 

 

Figure 6: General scheme of the cascade model for the first two disaggregation steps with exemplary rainfall amounts for a daily 460 
total of 12 mm (blue boxes = wet time steps). 
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Figure 7: Five different station density scenarios shown for two realisations. The red stations are used for the cross validation for all 

station densities. The additional stations (blue) provide supplementary information for the regionalisation. 465 
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Figure 8: Pearson’s Correlation Coefficient, Relative Bias and Relative RMSE results for the four tested methods. Box plots show 

the relevant statistic for the 20 realisations (N = 20) at each density scenario (eg. D20 corresponds to the 20% station density 

scenario). 470 
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Figure 9: Relative bias of all stations (N=32) for all realisations (N=20) and density scenarios (N=5) for different erosive event 

variables (for each box plot, N = 3200).  Annual number of erosive events, annual number of all erosive events volume, erosive event 

duration and erosive event volume are shown. Outliers are excluded for clarity. 475 

 

 

Figure 10: Relationship between mean annual rainfall erosivity and number of years used in the rainfall erosivity calculation. a) 

shows 50 different realizations (grey lines) together with mean annual value that is calculated using all 50 realisations with 200 years 

of data (solid red line) and +-20% of this mean value (dotted red line). b) shows 5% and 95% quantile values (black line) calculated 480 
based on 50 realizations shown in a) and intersections between these quantile values and +-20% interval. c) shows boxplots of 

intersection points for 17 stations for the 5% and 95% quantile. a) and b) are shown for station ID = 10113. 
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Table 1: Median values over all reference stations (N=32) and realisations (N=20). Simulated values are given for the 100% density 

scenario. 

 

Annual 

Erosive 

Events  

[-] 

Annual Erosivity R 

[MJ.mm.ha-1.h-1] 

Annual Erosive 

Rainfall Volume 

[mm] 

Mean Event 

Duration  

[hrs] 

Mean Event 

Volume  

[mm] 

Observed 14.5 642.7 303.2 22.5 21.1 

Direct-R - 653.8 - - - 

Direct-P 14.6 647.7 303.6 22.6 21.0 

ARM 11.6 580.4 227.1 12.0 16.8 

Disagg 14.2 475.5 277.8 35.9 19.6 

 485 
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