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Abstract. Data on grain sizes of pebbles in gravel-bed rivers are of key importance for the understanding of river systems. 

To gather these data efficiently, low-cost UAV (unmanned uncrewed aerial vehicle) platforms have been used to collect 10 

images along rivers. Several methods to extract pebble size data from such UAV imagery have been proposed. Yet, despite 

the availability of information on the precision and accuracy of UAV surveys as well as knowledge of errors from image-

based grain size measurements, open questions on how a systematic analysis of the uncertainties influence that might be 

introduced into the resulting grain size distributions still persistis still missing. 

Here we present the results of three close-range UAV surveys conducted along Swiss gravel-bed rivers with a consumer-15 

grade UAV. We measure grain sizes on these images by segmenting grains, and we assess the dependency of the results and 

their uncertainties on the photogrammetric models. We employ a combined bootstrapping and Monte Carlo (MC) modelling 

approach to model percentile uncertainties while including uncertainty quantities from the photogrammetric model. 

Our results show that uncertainty in the grain size dataset is controlled by counting statistics, the selected processed image 

orthoimage format, and the way the images are segmented. Therefore, our results highlight that grain size data are more 20 

precise and accurate, and largely independent on the quality of the photogrammetric model, if the data is extracted from 

single, undistorted nadir , undistorted orthoimages in opposition to orthophoto mosaics. In addition, they reveal that 

environmental conditions (e.g., exposure to light), which control the quality of the photogrammetric model, also influence 

the detection of grains during image segmentation, which can lead to a higher uncertainty in the grain size dataset. Generally, 

these results indicate that even relativerelatively imprecise and innot accurate UAV imagery can yield acceptable grain size 25 

data, under the conditions that the photogrammetric alignment was successful and that suitable image formats were selected 

(preferentially single, undistorted nadir orthoimages). 

1 Introduction 

Knowledge of the particle size distribution and the shape of channel bars in gravel-bed rivers offers a key to both a scientific 

understanding of fluvial systems and the ecological management of rivers. In addition, constraints on sediment caliber are 30 
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critical to understand the hydraulic conditions, the mechanisms of sediment transport and the grain-grain interaction during 

material entrainment, transport and deposition (Piégay et al., 2020; Tofelde et al., 2021). Information on grain size allows us 

to quantify the thresholds for material transport (e.g., Shields, 1936; Church et al., 1998), to understand and model the 

transport of sediment in rivers (e.g., Attal et al., 2015; Dunne and Jerolmack, 2018; Lamb and Venditti, 2016; Whittaker et 

al., 2010) or to characterize habitats (e.g., Kondolf and Wolman, 1993). It further allows prediction of predicting the 35 

probability of sediment entrainment (Schlunegger et al., 2020), and to assess the impact of infrastructure on the material 

transport (e.g., Grant, 2012). Standard methods that have been developed to quantify grain sizes of gravels in rivers involve 

time-intensive fieldwork (e.g., the Wolman (1954) point counting method of Wolman, 1954), which bears the risk of 

introducing biases that are rooted in the way the measurements in the field are conducted (e.g., Wolcott and Church, 1991; 

Bunte and Abt., 20019). To reduce the effort and time involved in collecting data by hand, and the possible biases therein, 40 

methods for grain size estimation based on image data have received more attention since the early 2000s (e.g., Carbonneau 

et al., 2004; Butler et al., 2001). These tools have developed into established methods for the quantification of grain sizes in 

recent years (Carbonneau et al., 2018; Purinton and Bookhagen, 2019; Detert and Weitbrecht, 2012). This development was 

assisted by the technological improvement of uncrewedunmanned aerial vehicles (UAVs) and low-cost photogrammetric 

software packages, which allow a large number of relatively high-resolution topographic data from images to be collected 45 

(e.g., Eltner et al., 2016; Woodget et al., 2018). In particular, the use of the Structure from Motion technique (SfM; Eltner 

and Sofia, 2020; Fonstad et al., 2013; James and Robson, 2012) has yielded various topographic datasets, such as digital 

elevation models (DEMs), orthoimages and orthoimage mosaics, and 3D point clouds. Such data has offered the basis to 

extract grain size information from fluvial gravel bars (Woodget et al., 2018). Several studies resulted in the development of 

methods for the grain size estimation that are tailored to specific UAV workflows and survey designs (e.g., Carbonneau et 50 

al., 2018; Vázquez-Tarrío et al., 2017; Woodget and Austrums, 2017). Consequently, over the last few years, significant 

effort has been directed toward quantifying and reducing the uncertainties related to SfM models (e.g., James and Robson, 

2014; James et al., 2017a, 2017b; O’Connor et al., 2017; Sanz-Ablanedo et al., 2020; Smith and Vericat, 2015). In contrast, 

relatively fewer studies have been conducted towards analyzinginvestigated the impact of these uncertainties on grain size 

results that are introduced by the design of the UAV survey, the selection of the image processing approach and the way in 55 

which grain size data is subsequently extracted from these images (Pearson et al., 2017; Woodget et al., 2018). Despite the 

fact that all data on grain size can only be as precise and accurate as the underlying image or topographic model, a systematic 

evaluation of the method of choice, which particularly considers the related uncertainties, is still scarce for such data (Piégay 

et al., 2020). Furthermore, recent work demonstrates that widely used survey strategies and camera lenses in UAV platforms 

might still introduce systematic biases to SfM data (James et al., 2020; Sanz-Ablanedo et al., 2020), thereby pointing to the 60 

need to re-evaluate some previous UAV survey recommendations (i.e., survey geometry, image acquisition format and some 

parameters for camera lens modelling).  

This paper addresses this challenge. Here we present the results of three close-range UAV surveys conducted along Swiss 

gravel-bed rivers (Fig. 1), for which we developed SfM topographic models. From these models, we extracted undistorted 
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nadir images, i.e., orthoimages, for grain size analysis and for estimates of model uncertainties. The Our focus is to assess 65 

the dependency of the grain size results on the UAV survey strategy. Consequently, we particularly assess the effect of (i) 

different image acquisition formats, (ii) specific survey designs recommended by previous authors, and (iii) geo-referencing 

methods on grain size data. We do so by first employing existing techniques for assessing the uncertainties in topographic 

models derived from SfM (James et al., 2017a, 2017b, 2020). We then propagate model these uncertainties introduced from 

the UAV survey through to the grain size measurements, which we conduct with an established method (Purinton and 70 

Bookhagen, 2019). In particular, we combine the effect of the different UAV and SfM models and their uncertainties with 

the statistical uncertainties related to the grain size measurements through a combined bootstrap and Monte Carlo (MC) 

approach. 
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Figure 1: Overview of the surveyed gravel bars along the selected Swiss rivers (see insert) as overview orthophoto mosaic from the most 75 
accurate topographic models (see text for discussion): a) Entle surveys (S9_5, S9_6), b) Luetschine survey (L2) and c) Kander survey 

(K1). Regions A and B, which are used for grain size measurements (both orthophoto mosaic and single, undistorted nadir  image) are 

indicated.  GCP = ground control point. 

1.1 Approaches to collect grain size data from digital images 

Historically, the collection of grain size data from gravel-bed rivers has relied on time-consuming and laborious physical 80 

measurements of clasts in the field (Wolman, 1954; Wohl et al., 1996; Bekaddour et al., 2013; van der Berg and 
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Schlunegger, 2012; Pitlick et al., 2021). Early image-based grain size measurements were conducted with a ‘photo-sieving’ 

approach (e.g., Ibekken and Schleyer, 1986), which relied on the visual identification of clasts in images from ground-based 

cameras. The next step in the improvement of the method was accomplished using two different strategies., which The first 

strategy encompassed (i) methods where grain sizes are inferred from statistical properties of image parameters (e.g., image 85 

texture, image spectral or frequency content, point cloud roughness; Woodget et al., 2018). Whereas the second strategy uses 

and (ii) approaches where the sizes of individual grains are measured through image segmentation, which refers in this case 

to the partitioning of an image into multiple image segments, each thereby representing a single grain and thereby belonging 

to the group of instance segmentation  (e.g., Detert and Weitbrecht, 2012; Purinton and Bookhagen, 2019; and references 

therein).  90 

Most grain size datasets that were collected with the first set of methods were mainly based on a variety of statistical image 

parameters, such as semivariance (e.g., Carbonneau et al., 2005), inertia, entropy, grey-level co-occurrence matrices (e.g., 

Carbonneau et al., 2004; Woodget et al., 2018; Woodget and Austrums, 2017) and autocorrelation (e.g., Rubin, 2004; 

Buscombe, 2008; Buscombe et al., 2010). In this context, other approaches have exploited the roughness pattern of 

topographic models from 3D point cloud datasets to estimate grain sizes (e.g., Brasington et al., 2012; Woodget and 95 

Austrums, 2017). All of these methods require an on-site metric calibration in the field (e.g., with a differential GPS or a 

meters stick) and only deliver a single percentile of a grain size distribution (Purinton and Bookhagen, 2019). Here, an 

exception is offered by the wavelet decomposition approach of Buscombe (2013), which is able to determine the entire grain 

size distributions from images without a field-based calibration. However, this only works in a reliable way if grains have 

nearly the same size and shape. In general, however, the grain size percentile values that resulted from surveys have been 100 

found to be highly variable, which depends on the sorting, the shape and the bedding of the target gravels (Pearson et al., 

2017). Such variability in grain size data thus violates the condition of nearly equally sized grains, which is required if one 

aims to apply the Buscombe (2013) method. Recently, Buscombe (2020) and Lang et al. (2021) have shown that the use of 

deep learning frameworks allow to avoid the time consuming calibration in the field, which facilitates the remote 

measurements of grain sizes from scaled or geo-referenced images. However, these machine-learning models so far do not 105 

allow scales to be transferred to new data, with the consequence that the effort that is needed to train the model for a new 

setting is quite large (Lang et al., 2021). 

Methods based on the segmentation and delineation of individual grains in images constitute the second set of tools. 

Common approaches rely on edge detection and watershed segmentation (e.g., Butler et al., 2001; Graham et al., 2005; 

Detert and Weitbrecht, 2012). or Mmost recently on edge detection and k-means clustering (Purinton and Bookhagen, 2019) 110 

or watershed segmentation using deep learning assisted semantic segmentation have also been used (Chen et al., 2022). 

Grain size measurement through image segmentation is challenging for images with a high visual complexity, i.e., 

overlapping grains, irregularly shaped, coloured or textured grains, and vegetation or extensive shadows on the images 

(Purinton and Bookhagen, 2019). However, the delineation of individual grains in images has the advantage that the result is 
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a continuous grain size distribution. This approach additionally allows the analysis of sub-regions and has the potential to 115 

obtain grain size data of individual clast populations, and it offers the possibility to measure clast orientations. 

1.2 Uncertainties related to the photogrammetric structure from motion technique 

The rise of widely available and cheap UAV platforms, equipped with stabilizing gimbals and easy-to-use operating 

applications in combination with low-cost and user-friendly photogrammetric software packages, has resulted in the 

generation of high-resolution topographic data for various research applications (e.g., Carbonneau et al., 2003; Eltner et al., 120 

2016; Eltner and Sofia, 2020; Fonstad et al., 2013). In this context, the uncertainties and resolution of data processed through 

SfM (Structure from Motion technique) especially from UAV images can be predicted from photogrammetric principles. 

They critically depend on technical (i.e., flight geometry, camera angles, usage of ground control points, camera parameters) 

and environmental parameters, the latter of which are beyond the operator’s control (i.e., lightning conditions, local 

topography, vegetation, weather, GNSS signal strength). The uncertainties in topographic SfM models consist can be 125 

summarizedof by three components including i) the external accuracy of the reference framework (i.e., scaling, rotation or 

offset of the entire model) ii) the internal consistency of the expected variance of model points  model (i.e., the 3D tie point 

variance, sometimes called ‘precision’) and iii) a systematic uncertainty component arising from the photogrammetric 

principle processing itself (i.e., ‘doming’ or ‘bowling’). We refer the reader to James et al. (2020), James et al. (2017a, 

2017b) and Carbonneau and Dietrich (2017) for a detailed discussion of these uncertainty components. The use of ground 130 

control points (GCPs) or the application of differential on-board RTK GNSS (real-time kinematic positioning for global 

navigation satellite systems) techniques for direct geo-referencing effectively increases the accuracy of the reference 

framework (James, Robson and Smith, 2017; Sanz-Ablanedo et al., 2020). Image quality and camera calibration parameters 

control the level of internal precision (sometimes called ‘shape’ precision; James et al., 2017a). The use of GCPs together 

with an improved survey geometry and a pre-calibrated camera can significantly increase the internal precision (Carbonneau 135 

and Dietrich, 2017; James et al., 2017; O’Connor, Smith and James, 2017; Griffiths and Burningham, 2019). In contrast, the 

occurrence of a systematic uncertainty can only be detected with GCPs and is still a common problem within SfM 

processing (e.g., Eltner and Sofia, 2020). The successful mitigation of such systematic biases requires a careful choice of the 

image network geometry, such as the inclusion of oblique camera angles (James and Robson, 2014) and a successful camera 

lens modelling during the subsequent generation of a model (e.g., James et al., 2020). Finally, it is noteworthy that most 140 

uncertainties in models and data from any SfM workflow are derived from the photogrammetric alignment of the images 

during the generation of the sparse point cloud. Therefore, the uncertainty in the sparse cloud data already includes all these 

uncertainties of the SfM model, independent on the type of the final data model. However, some errors, such as interpolation 

errors, missing texture or incorrect matches might occur during densification or raster generation, thereby affecting some 

formats only, e.g., orthophoto mosaics. 145 

Despite the possible drawbacks and limitations as outlined above, UAV images have been processed with SfM workflows 

over the last decade for various research purposes in the fields of fluvial geomorphology and sedimentology (for an overview 
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see Carrivick and Smith, 2019), including grain size measurements in fluvial systems (e.g., Woodget et al., 2018). 

Specifically, for automated grain size measurements, Carbonneau et al. (2018) developed the ‘robotic photosieving’ concept, 

which is based on the use of close range, single UAV images that have been processed with a specific SfM pipeline (direct 150 

geo-referencing, the use of pre-calibrated camera lens models, and surveys with a second flight altitude to better estimate the 

camera positions). Accordingly, in such an approach, only the image distance is effectively used for scaling. Other methods 

use orthophotos and orthophoto-mosaics (Woodget et al., 2018) or 3D point cloud roughness (Woodget and Austrums, 2017) 

to measure the sizes of gravels. The applications of these methods have shown that single images are most accurate for grain 

size estimations while image textures or 3D point clouds yield measurement results that are less accurate (Woodget et al., 155 

2018). Unfortunately, no systematic evaluation of uncertainties introduced by the UAV SfM approach on such grain size 

estimations exists so far. 

2 Methods 

We acquired UAV images (Sect. 2.1) from rivers situated in the Swiss Alps with a widely used platform following 

established survey strategies, which we processed with an established SfM software package (Sect. 2.2). We then used this 160 

output to measure the sizes of grains and the uncertainty associated with this (Sect. 2.3). The steps of this workflow (Sect. 

2.4) are described below. 

2.1 UAV surveys 

We chose study sites along the Luetschine (referred to as L2 surveys), Entle (S9 surveys) and Kander (K1 surveys) Rivers 

that are all situated in the Swiss Alps (Fig. 1). We selected river reaches where gravel bars can be readily identified on 165 

satellite images and where the local topography offers the opportunity to operate the UAV at in different conditions and with 

different challenges, i.e. due to a vegetation cover, narrow gorges and steep lateral valley borders. We conducted close-range 

surveys with a flight altitude between 5 and 7m above ground to ensure a ground-sampling distance of ~1.5 mm (Table 1). 

The close-range setup was employed to study grain size trends on an intra- and inter-bar scale in small mountainous streams. 

In general, we targeted a lateral and frontal overlap between individual images in the order of 80%. We distributed GCPs 170 

over the target gravel bars and measured them with a Leica Viva GS14 or a Leica Zeno GG04 plus – GNSS antenna, with a 

real-time online Swipos-GIS/GEO RTK correction. These setups have a horizontal precision of 2 cm and a vertical precision 

of 4 cm (for 2 sigma) under ideal conditions (Swisstopo, 2022). All GCPs and their uncertainties used in this survey can be 

found in Table S1. 

We diversified the strategy for image acquisition to produce a large range of models, which is considered to resemble a 175 

variety of practical scenarios and strategies (Fig. 2). These scenarios are based on recommendations to include oblique angle 

camera positions (e.g., James and Robson, 2014), images from a second altitude level (e.g., Carbonneau and Dietrich, 2017), 

and referencing strategies with and without GCPs (e.g., James et al., 2017). All these scenarios and models are summarised 
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in Figure 2 for the three study areas. Some scenarios are expected to produce topographic models with low accuracy and 

large systematic uncertainty (e.g., single level grid with no GCPs as control points). All images were taken with a DJI 180 

Phantom 4 Pro v2 on-board camera (DJI FC6310), which utilizes a mechanical global shutter. For most flights, images were 

simultaneously taken in a JPEG and raw (i.e., the unprocessed DNG) image format using the VC Technology’s flylitchi 

application (v2.10.0), except for the S9 surveys. There we used two UAV flight plans, for which we acquired the images first 

as JPEG files and then, during a second flight, in the DNG format. At the L2 and K1 sites, we first acquired a single grid line 

map. Subsequently, images were taken with oblique and convergent cameras with a pitch of > 20° at the same survey 185 

altitude. At site S9, both surveys were done with oblique and convergent camera angles (> 20°) at a higher flight altitude 

(~10 m). This higher altitude included an additional set of nadir images. TheseThe images that were taken at a higher altitude 

and with an oblique view were acquired during manual flying at all sites. A summary of the survey characteristics is 

provided in Table 1. 

The K1 site at the Kander river offers a setting that is ideal for close-range UAV image acquisition, with little peripheral 190 

vegetation and little potential GNSS signal obstruction. In contrast, the L2 site at Luetschine represents challenging UAV 

survey conditions, due to vegetation and infrastructure limiting the flight area, and because of the narrow valley potentially 

inhibiting the receipt of GNSNS signals. The two surveys at Entle (S9) specifically allow us to test the inter-survey 

comparability and whether a rapid change in the external parameters such as lighting conditions or moving vegetation 

introduce a bias, and if such a bias would contribute to the uncertainties in the grain size estimation. 195 

 

Figure 2: Strategies for UAV surveys and Structure from Motion (SfM) model setups (upper row = Entle surveys, lower row = Luetschine 

and Kander surveys). We used a one-level grid of nadir camera positions as backbone geometry, which we complemented with oblique 

angle camera positions (James and Robson, 2014). At the Entle (S9), we took nadir images at a second altitude (e.g., Carbonneau et al., 

2018). We created different models during processing by first including all images and GCPs (i.e. resulting in models with “C1” labels) 200 
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and then leaving out the oblique images or the GCPs. For the Entle (S9) models we also tested the option where we used the GCP targets 

in the images as reference markers only, resulting in two additional models that are labelled with “C2” and “C5”. Colours indicate similar 

model strategies. For flight altitude, nominal camera angles see Table 1. GCPs = ground control points. 

 

River Date 

Net 

duration  

Flight 

height 

nominal  

Camera 

angle 

nominal 

[number of 

images] 

Number 

of 

flights 

Number 

of 

images 

Images 

after 

QA, 

[model 

name] 

Image 

format 

Ground 

sampling 

distance 

Number 

of used 

GCPs 

(Survey)  (minutes) (m) (°)     (mm)  

Kander 

(K1) 

06.08. 

2021 
50 6 

nadir 

[271], 

 20° [129] 

3 401 400 
JPEG & 

DNG 
1.6 16 

Luetschine 

(L2) 

04.05. 

2021 
32 5 

nadir [64], 

20° [20+1], 

50-65° [7] 

2 119 

95 

[L2_2], 

87 

[L2_1] 

JPEG & 

DNG 
1.4 13 

Entle 

(S9_5) 

28.02. 

2021 
23 5, 10 

nadir 

[217], 25° 

[24] 

2 304 241 DNG 1.4 14 

Entle 

(S9_6) 

28.02. 

2021 
19 6, 14 

nadir 

[251], 25° 

[16] 

1 278 267 JPEG 1.6 10 

Table 1: Summary of the field surveys. QA = quality assessment. Here we removed images that (i) were blurred, (ii) hard to align 205 
because of an insufficient depth of field due to too oblique camera angles, or (iii) under- or overexposed., GCP = ground control 

point. 

2.2 Photogrammetric processing 

We generated all topographic SfM models following the same workflow (Fig. 3). We used the Agisoft Metashape (v1.6 Pro; 

formerly PhotoScan) software, licensed to the Institute of Geological Sciences, University of Bern. We chose this software 210 

because of its wide spread use in geomorphic studies (e.g., Eltner et al., 2016), its well-studied systematics (James et al., 

2020 and references therein), and the good agreement of results with those obtained with comparable software packages, 

e.g., Pix4D (Sanz-Ablanedo et al., 2020) or VMS (James et al., 2020). We followed the standard bundle adjustment 

procedure within this software package and refer to see Eltner and Sofia (2020) and James et al. (2019) for principal 

descriptions and guidelines of such workflows, or to Over et al. (2019) for a detailed example.. Our model generation (Fig. 215 

3a) always included (i) the manual removal of blurred images, (ii) the selection of the ‘highest quality’ settings within 

Metashape for the initial alignment and (iii) the subsequent filtering of tie point clouds. In general, we used self-referencing 

and GCPs for the alignment and standard camera modelling, which included all standard parameters except the for focal 

length (f), radial distortion (k1, k2, k3), the offset of the principal point (cx, cy) and one decentring parameter (p1; we did not 

include p2 in order to avoid introducing an additional systematic bias for some models (see James et al., 2020). Only when 220 

the camera modelling failed, we employed a pre-calibrated normal camera model. For these pre-calibrated camera models, 
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we used the in-built camera calibration routine in Metashape, for which we took images of the ‘chessboard’ pattern from 

different angles with camera distances of 1 to 2 m. For models calibrated with GCP (ground control points), we included 

50% of the GCPs for the alignment of the images, and we kept the remaining GCPs as checkpoints. For the ‘weak GCPs’ 

scenario, we used the GCP targets in an attempt to improve the image alignment without using the information on the 225 

position that was independently measured. 

 

 

Figure 3: Workflow for grain size estimations from UAV-derived images. (a) Structure from motion workflow with PebbleCountsAuto 

(Purinton and Bookhagen, 2019) for grain size estimation. (b) Quantities used for estimating the uncertainty of the grain sizes. Quantities 230 
in squares denote image/survey-specific values, while variables in circles/ellipses are represented by a probability density function (pdf). 

Dashed arrows indicate quantities only used for uncertainty estimation in orthomosaics. For variable explanation, see Sect. S2.4 3 in the 

main text. 
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We evaluated the accuracy of the SfM model with GCP residuals uncertainty, expressed as root mean square error (RMSE) 

between measured and estimated checkpoints. For the calculation of both horizontal (x,y direction) and vertical (z direction) 235 

RMSE values we used the program Metashape. To assess the model precision, we used the method (and the python script) of 

James et al. (2020) to export and evaluate the sparse point cloud precision from Metashape, which uses Metashape's sparse 

point coordinate variance as estimates for the precision of oriented and scaled point coordinates. Furthermore, we determined 

the systematic uncertainty (‘doming’) with the method of James et al. (2020). Their approach is to model the systematic error 

in z direction from GCP errors, expressed as a function with a squared radial term, tilting along the horizontal distance, 240 

relative to the centroid of the tie points.  and We report the amplitudes of the modelled doming in the z direction, which are 

calculated over horizontal distances of 20 m (K1), 12 m (L2), 30 m (S9_5) and 20 m (S9_6), in Sect. 3. 

For each generated model, we produced dense point clouds and orthophoto mosaics. This densification was done with the 

‘high quality’ and ‘mild depth filtering’ settings. The subsequent orthophoto mosaic generation was accomplished using the 

‘hole filling’ option and default blending (‘Mosaic’) in Metashape. Orthophoto mosaics were generated with a pixel 245 

resolution of 1 mm and were cut with the corresponding camera footprint. We also exported single nadir images, which were 

undistorted by using the specific camera model from the photogrammetric alignment. We will refer to these single, 

undistorted nadir images throughout the text as single images. We further estimated the camera height for these images as 

distance of the camera centre to the horizontally closest 100 corresponding centre tie points points on the images using 

Euclidian distances. All imageries (both orthophoto mosaics and single  imagesimages) were exported from Metashape as 250 

JPEG file, with initial DNG images that were converted by using the camera white balance. We note here that we did not 

employ any further image processing, such as changing the contrast value for DNG images, to avoid introducing any bias 

from such approaches. For each study site, we selected specific areas , representingin the model regions (i.e., regions A and 

B hereafter), for which we then finally determined the grain size distributions. For L2 and S9 we selected areas with 

expected relative  lowhigher and high lower model confidence model quality, with respect to image multiplicity, tie point 255 

precision and image noise due to water(i.e., regions A and B hereafter), for which we then finally determined the grain size 

distributions. However, for K1 we opted for overlapping regions to test for effects related to the variability between different 

images and to allow a comparison of results to those from field measurements. 

2.3 Grain size measurements  

We measured grain sizes automatically on all processed images with the open-source and python-based PebbleCounts (i.e., 260 

PebbleCountsAuto) software of Purinton and Bookhagen (2019). We employed this software package because of two 

reasons, namely that it yields sizes for individual grain instances and that it allows measuring large numbers of grains in an 

automated way. First, only the measurement of individual grain instances (which means that each grain is identified, 

delineated and recorded) allows to propagatemodelling specific uncertainty quantities (see Sect. 2.4 below, Fig. 3) taken 

from UAV/SfM  surveys to grain size data. This prohibits the use of texture-based approaches sensu latu, e.g., DGS 265 

(Buscombe, 2013), SediNet (Buscombe, 2019), GrainNet (Lang et al., 2021) among others, to measure grain sizes for the 
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purpose of this study. Second, other segmentation-based approaches, e.g., Basegrain (Detert and Weitbrecht, 2012) or 

manual segmentation (Sulaiman, 2014), require manual processing of each image and are therefore not suitable for the large 

number of processed images as is the case in this study. We acknowledge that there are known shortcomings of 

PebbleCounts, and we refer to Chardon et al. (2021) for a comparison with other software results, and to Purinton and 270 

Bookhagen (2021) for mitigation strategies of some shortcomings. 

In detail, this program segments images and subsequently fits ellipsoids around detected instances of grains, thereby 

recording the lengths of the a- and b-axes of these ellipsoids, of which we report the b-axis values throughout the study for 

simplicity purposes. Key software input parameters were an ‘otsu_threshold’ of 50 and ‘first_nl_denoise’ of 2, and no sand 

or vegetation mask was used (for further details we refer to Burinton and Bookhagen, 2019). A detection limit of a minimum 275 

of 12 pixels for a grain and the default of 30% as a maximum misfit were kept constant for all measurements. This results in 

a minimum detection threshold for grains (i.e., a cut-off) that is image specific. For the processed images, this threshold lies 

around 18 mm given the image pixel resolutions of c. 1.5 mm px-1. The image resolution, and thus the scale of single images, 

was estimated individually for undistorted and scaled single images. To do so, we applied the calculate_camera_resolution 

script of Purinton and Bookhagen (2019) together with the camera model parameters and the camera distance estimation 280 

from the corresponding SfM model. For orthophoto mosaicsmosaics, the resolution was up-sampled to 1 mm px-1. We cut all 

grain size data below 18 mm to achieve comparable data sets. 

For the Kander survey (K1) we additionally measured the b-axis of 250 grains with the approach of Wolman (1954), thereby 

using a household calliper and a measuring tape. This data was collected as ground truth to compare grain size data 

measured in the UAV imagery. Yellow rulers in Figure 4 indicate the area where grain sizes were manually measured. 285 

2.4 Uncertainty estimation  

For uncertainty estimation, we used a combined bootstrapping and Monte Carlo modelling approach. We first statistically 

resampled each grain size distribution (GSD) through random resampling with replacement, i.e. through bootstrapping. We 

applied 104 iterations to estimate the effect of the sample size. We modelled the one-dimensional uncertainty of each b-axis 

within these resampled GSD by using uncertainty metrics from the SfM models (Fig. 3b; see also Sect. 2.2), thereby 290 

considering that:  

𝑏𝑠𝑖𝑚 =  (𝑏𝑖 ±  𝜀𝑙𝑒𝑛𝑔𝑡ℎ ) ∗ 𝜀𝑠𝑐𝑎𝑙𝑒.         (1) 

Here, 𝑏𝑖  is a randomly resampled b-axis value from the measured grain size distribution, 𝜀𝑙𝑒𝑛𝑔𝑡ℎ  represents thea 

measurement error on along the axis length, which can be positive or negative. This error depends on the resolution of the 

final images that are used for segmentation. 𝜀𝑠𝑐𝑎𝑙𝑒 includes the systematic errors, the precision and the accuracy related to the 295 

SfM model. . The We approximate the 𝜀𝑙𝑒𝑛𝑔𝑡ℎ -term for single orthoimages is determined by the resolutionwith square pixels 

by taking the pixel diagonal of 2𝑎√2, where 𝑎 is the average pixel length, multiplied by two, thereby assuming that at each 

end of a measured axis represents an error of one pixel. To achieve a randomization in the single image data, we 
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conservatively parametrized 𝜀𝑙𝑒𝑛𝑔𝑡ℎ as normal distribution centered on zero and with 2𝑎√2 as one standard deviation. For 

the orthophoto mosaics, we employed the same approach to quantify model the measurement errors. However, due to the 300 

nature of being a mosaic, an additional error that is sourced in the image alignment might arise since we cannot assume that 

each pixel is in its correct position in relation to its neighbourneighbor. Therefore, we additionally used a the average pixel 

shape error of the model (𝑝𝑥) expressed in number of pixels, estimated from GCP checkpoints (Table S2), which we convert 

into length units with the average image resolution estimated from the image distance (see below). Thereby, Eq. 1 changes 

for values measured in orthophoto mosaics to: 305 

𝑏𝑠𝑖𝑚 = (𝑏𝑖 ± 𝑝𝑥) ∗ 𝜀𝑠𝑐𝑎𝑙𝑒 + 𝜀𝑙𝑒𝑛𝑔𝑡ℎ        

  (2) 

Here 𝑎 represents the orthomosaic resolution, which might be up- or down-sampled. Therefore, our parametrization scales 

the axis length after adding the uncertainty from the mosaicking, which itself bases on the native image resolution for length 

scaling. Therein our reconstruction uncertainty (𝜀𝑙𝑒𝑛𝑔𝑡ℎ) is solely governed by the resolution of the final orthophoto mosaic. 310 

Furthermore, for the randomization of the shape error, We consider we use a normal distribution this average pixel 

errorcentered on the average pixel error of the model as approximation, while we as normally distributed and used the RMS 

re-projection error (𝜎𝑅𝑀𝑆) as one standard deviation of it upon randomization.  . 𝜀𝑠𝑐𝑎𝑙𝑒 includes the systematic errors, the 

precision and the accuracy related to the SfM model. 

The 𝜀𝑠𝑐𝑎𝑙𝑒 factor, which accounts for the SfM model accuracy, precision and systematic error (‘doming’), consists of three 315 

scaling components. This is parametrized as 

𝜀𝑠𝑐𝑎𝑙𝑒 = 1 +∗
𝜎𝑑 + 𝜎𝑝𝑡.  𝑝𝑟𝑒𝑐. + 𝜎𝑑𝑜𝑚𝑖𝑛𝑔

𝑑
.        (3) 

Generally, the scale of a nadir imageorthoimages is controlled by the distance between the camera and the ground (𝑑) and 

the uncertainty associated with this distance. For single images, we estimated the individual camera distance by taking the 

mean distance in z direction to the 100 sparse cloud points that are closest to the camera center point. We used a python 320 

script (Supporting information Code S1) for this selection. For randomization, we used this mean as 𝑑 and its standard 

deviation as 𝜎𝑑. For orthophoto mosaics, we used the mean distance of all cameras and the associated standard deviation, 

respectively. We did so to be conservative and to account for differences between the observation distances of several 

cameras. We used the mean value of the sparse point cloud precisions in z direction over the whole survey. We determined 

used the 3D point coordinate variance of the sparse point cloud within Metashape, which we exported from the program 325 

using the this value with the methodscript of James et al. (2020). We used its average in z-direction, and we  and we 

considered it as the standard deviation of a normal distributionit to randomize 𝜎𝑝𝑡.  𝑝𝑟𝑒𝑐. , both for single images and 

orthomosaics. Finally, we considered the effects related to the systematic errors through the use of half of the doming 

amplitude in z direction, which we fitted with the method of James et al. (2020). We used this value as standard deviation for 

a uniform distribution for 𝜎𝑑𝑜𝑚𝑖𝑛𝑔, both for single images and orthomosaics. We implemented a randomization of these 330 

components through truncated normal distributions to avoid ending up with grains that are smaller than the detection limit or 
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the that have negative length values. We note here that our one-dimensional approach requires a camera model to correct 

image distortion to a level of residuals being ~1 pixel or less. We thereby consider the condition that the camera model 

sufficiently allows for distortion modelling. While it is possible to increase quantities, i.e., the shape error uncertainty for 

orthophoto mosaics or the 𝜀𝑙𝑒𝑛𝑔𝑡ℎ uncertainty to values greater than two pixels for single images, to mitigate the effect of 335 

large doming/bowling or high camera model residuals, we currently refrain from such efforts. We do so because we argue 

that 1) it might be more useful to improve the photogrammetric alignment and 2) such errors show strong variations in space, 

and therefore our one-dimensional approach might not be suitable anymore. Here, a two-dimensional approach (or even 3D 

if one attempts to estimate grain size and shape by point cloud segmentation), which would use spatial discretized 

uncertainties might be more useful. Such an approach, in addition to our considered errors, could also include spatially 340 

distributed camera model errors (e.g., Hastedt et al., 2021). For the time being, we did not implement such an approach 

because of the expected higher computational costs and the expected much higher contribution of counting statistics and 

segmentation performance to grain size uncertainty. 

From the randomized grain size distribution (GSD), we calculated percentile values for grain sizes. Accordingly, for each 

grain size percentile such as the D50, D84, and others, we report the median percentile along with percentiles 2.5 and 97.5 345 

across the 104 GSDs, which represents the 95% confidence interval of the respective percentile. 

3 Results 

In this section, we first present the results of the UAV field surveys, before proceeding to the results of the photogrammetric 

models. Finally, we present grain size results, both for full grain size distributions and for key percentile values, and results 

of field measurements. 350 

3.1 UAV surveys and imagery 

The field surveys were successfully completed under sunny and calm (Kander), overcast and turbulent (Luetschine) and 

rapidly changing weather conditions (Entle). Difficult flying conditions (changing light and wind) decreased the image 

quality, which contributed to the need to exclude a significant number of images for the Luetschine (up to 27%) and Entle 

(up to 20%) surveys (Table 1). The excluded images were mostly from the boundaries of the survey areas. For the Entle site 355 

we removed nadir images taken from the higher altitude, and for the Luetschine reach we excluded images that were 

acquired with strongly oblique view angles (>50°). Noteworthy, most of them were taken during manual flight and, for the 

Entle case, from the higher altitude level. Removing these images was necessary for a successful image matching during the 

photogrammetric alignment.Acquiring images in the raw format (DNG) required significant reduction of flight velocity due 

to the low flying altitude. It also required a change of acquisition mode that allowed the UAV to hover for 4 to 5 seconds at 360 

each image position. This was needed to enable the saving the large image file to memory. This resulted in net flight times of 

> 30 minutes for each of our survey sites (Table 1), which exceeded two battery charges for our platform.  
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The obtained UAV images displayed a range of differences in image content and light conditions (Fig. 4). Sunny situations 

result in more interstitial shadows (K1, S9), while overcast conditions with changing light led to occasional overexposure 

(L2). Of note here is site S9, which features more sandy areas then the other sites. Generally, UAV on-board image 365 

corrections tend to yield a higher saturation and contrast in the resulting imagery, which was persistent after 

photogrammetric processing (Fig. 4). 

 

Figure 4: UAV imagery results illustrated by a selected range of images, for both image acquisition formats (JPEG and DNG) that we 

used for grain size estimation. The photos showcase survey-specific image conditions, e.g., shadows, exposure, saturation and contrast as 370 
well as site specific variations, e.g. grain shape, colour or sand content. Please note that all these images, not only orthophoto mosaics 

(OM), are results that were achieved after photogrammetric processing, i.e. single images (SI) are undistorted with a camera model. All 

images in this figure were extracted from SfM models, which include GCPs and oblique camera angles in the bundle adjustment. 

Furthermore, these images only show parts of the corresponding images that were used for grain size estimation. For location reference, 

see Fig. 1. 375 
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3.2 Topographic models 

In total, we produced 28 topographic models with the SfM approach. For all sites, the resulting models show large variations 

(Table 2) in absolute accuracies, sparse point cloud precisions and systematic errors (‘doming’).  Vertical accuracy (RMSEz, 

estimated for checkpoints only) ranges from 5.4 cm to 5.6 m for the K1 survey, from 1.8 cm to 63 m for the L2 survey and 

from 3.9 cm to >200 m for the S9 surveys. Horizontal accuracy (RMSEx,y) ranges from 0.9 cm to 2.4 m for K1 models, from 380 

2.1 cm to 2.2 m for the L2 models and from 3.3 cm to 4.9 m for S9 models. All model accuracy metrics can be found in 

Table S2. Model precision errors estimated from the sparse point clouds are generally highest in the vertical z-direction (see 

Table S3 for precision of all results), and therefore, precision estimates are only presented here for the z direction (Table 2). 

Precision ranges from 0.4 cm to 0.4 m for K1 models, from 1 cm to 1 m for L2 models and 1 cm to 0.7 m for S9 models, 

spanning a range of up to two orders of magnitude. Systematic errors estimated from GCP residuals and expressed as 385 

doming amplitudes in z direction ranges from 3 cm to 0.9 m for K1 models, from 5 cm to 1.1 m for L2 models, and from 3 

cm to 3.1 m for S9 models.  

In general, the uncertainty is smallest across all metrics for model setups for surveys that included GCPs and oblique camera 

angles (C1 suffix for all surveys). The only exceptions are those models where GCPs and only grid-aligned cameras were 

used (C2 suffix for K1, L2 surveys and C3 suffix for S9 surveys), thereby resulting in a sometimes slightly higher point 390 

precision (Table 2). Overall, models with no GCPs, and where cameras were only orientated in a grid fashion (suffix C4 for 

K1 and L2 surveys, and suffix C6 for S9 surveys), produce the highest uncertainties across all metrics. Models that are based 

on raw format images (K1_1, L2_1 and S9_5 models) yield overall smaller uncertainties for all metrics than models where 

the UAV on-board pre-processed JPEG images were used (K1_2, L2_2, S9_6 models). Only for L2 JPEG models with 

GCPs (L2_2_C1, _C2) the RMSE and vertical precision values are slightly smaller than or similar to the related values of 395 

comparable DNG models (L2_1_C1, _C2). 

Model 

 

Check point 

accuracy 

Point 

precision 

Doming/ 

Bowling 

amplitude 
Model 

 

Check point 

accuracy 

Point 

precision 

Doming/ 

Bowling 

amplitude 

RMSEx,y 

(mm) 

RMSEz 

(mm) 

z Mean 

(mm) (m) 

RMSEx,y 

(mm) 

RMSEz 

(mm) 

z Mean 

(mm) (m) 

Raw (DNG)  image format JPEG image format 

K1_1_C1 13 54 6 0.027 K1_2_C1 9 106 10 0.460 

K1_1_C2 15 66 4 -0.081 K1_2_C2 18 186 9 -0.618 

K1_1_C3 1035 967 167 -0.020 K1_2_C3 1719 5289 276 0.496 

K1_1_C4 2129 4275 170 -0.136 K1_2_C4 2389 5592 402 -0.894 

L2_1_C1 24 22 10 -0.047 L2_2_C1 21 18 10 0.083 

L2_1_C2 41 51 20 0.152 L2_2_C2* 25 82 13 -0.135 

L2_1_C3 1854 7.E+04 978 -0.106 L2_2_C3 1854 7.E+04 650 0.165 

L2_1_C4 2033 7.E+04 972 0.403 L2_2_C4* 2127 7.E+04 730 1.050 

S9_5_C1 64 39 13 0.050 S9_6_C1 40 143 21 0.033 
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S9_5_C2 1555 2.E+05 205 1.538 S9_6_C2 4565 2.E+05 654 3.589 

S9_5_C3* 57 211 9 -0.780 S9_6_C3* 33 214 12 -0.535 

S9_5_C4 1700 2.E+05 221 -0.256 S9_6_C4* 4762 2.E+05 197 -0.486 

S9_5_C5 1556 2.E+05 202 1.528 S9_6_C5 4566 2.E+05 640 3.105 

S9_5_C6 1699 2.E+05 219 0.970 S9_6_C6* 4917 2.E+05 215 -0.546 

Table 2: Summary of topographic model uncertainty (i.e., SfM model quality). Colours indicate model setup (Fig. 2 serves as 

legend). An * indicates a models with a pre-calibrated camera models. We note here that the accuracy values for directly 

referenced models include systematic GNSS errors of up to 200 m (S9) for the UAV platform, an issue that has been reported for 

the UAV platform family used in our study (e.g., Cook and Dietze, 2019). 400 

3.3 Grain size distributions 

Here we report the results of our grain size measurements from images as grain size distributions (GSDs) and the respective 

modelled uncertainties, which encompass both statistical uncertainties and errors introduced by topographic models. We 

successfully measured grain sizes of pebbles from all 28 SfM models, resulting in 112 complete GSDs (for each topographic 

model we measured in two regions, both in single images and orthophoto mosaics, respectively) with b-axes that range in 405 

size from the cut-off of 18 mm to > 35 cm. The number of identified grains ranges for the Kander survey (K1) from 902 to 

1600 (single images; SI) and 353 to 1142 (orthophoto mosaics; OM), for the Luetschine survey (L2) from 130 to 633 (SI) 

and 136 to 570 (OM), and for the Entle surveys (S9) from 333 to 1451 (SI) and 160 to 1058 (OM). In all surveys and in most 

cases, more grains are recovered after segmentation in single images compared to the number of grains found in orthophoto 

mosaics (Table S4; see also Figs. 5 and 6). Grain size distributions with uncertainties for each percentile can successfully be 410 

modelled with the bootstrapping and MC approach for all models (e.g., Figs. 5 and 6). The difference between the median of 

all photo-measured and all modelled percentiles ranges from 2.0 to 3.5% (SI) and 2.5 to 5.7% (OM) for survey K1, from 0.9 

to 3.6% (SI) and 1.4 to 4.1% (OM) for survey L2, and from 0.9 to 8.9% (SI) and 2.6 to 9.2% (OM) for both S9 surveys. 

These values are relative to the photo-measured percentile values. We note that even the maximum difference between the 

photo-measured percentiles and the modelled median for the percentiles is generally <10% for most percentiles. The only 415 

exceptions are some models of K1_2 (SI: 11 to 17%), L2_1 (SI: 25 to 47%; OM: 10 to 16%) and L2_2 (SI: 31 to 36%; OM: 

11 to 20%; see Table S4 for all results). Therefore, recovered grain size distributions from imagery are internally consistent 

within the modelled 95% CI (confidence interval) for each percentile and for all topographic models (e.g., Figs. 5 and 6), 

despite some variations in magnitude of uncertainty and a varying degree of agreement across models within surveys. 

The magnitude of grain size uncertainty varies for surveys and the orthoimage image format used for grain size 420 

measurements. Generally, the modelled percentile uncertainty, i.e., the modelled 95% confidence interval (CI), is smaller for 

all GSDs from imagery of the K1 survey (e.g., Figs. 5a to d) than for GSDs from the L2 survey (e.g., 5e to h). A similar 

trend of survey specific grain size uncertainty is also visible when comparing results from S9_5 (Figs. 6a, b) to data from 

S9_6 (Figs. 6c, d). This is also observable in the CI as relative uncertainty, which varies from 6.5 to 9.4% (SI) and 7.7 to 

15% (OM; Figs. 5b, d) for K1. Similarly, albeit with a generally larger magnitude, the modelled percentile uncertainty for L2 425 

spans from 15.6 to 41.5% (SI) and 15.6 to 37.2% (OM), whereas it ranges from 7.6 to 21% (SI) and 8.2 to 28.7% (OM) for 
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the S9 surveys. However and importantly, the agreement of data from models within a survey (i.e., C1 to C6; see Sect. 2.2 

for details) is higher for grains measured in single images (e.g., Figs. 5a, c, e, g and Figs. 6a, c), compared to grains 

measured in their orthomosaic counterparts (e.g., Figs 5b, d, f, h and Figs. 6b, d). 

 430 
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Figure 5: Selected grain size (i.e., b-axis length) distributions measured in different images (SI = single orthoimage, OM = orthophoto 

mosaic) from various UAV models (see Fig. 2 for model characteristics and colour legend) with the modelled 95% confidence interval 

(CI) for each percentile. All Kander (K1) data (a-d) in this figure refer to the region A, while all Luetschine (L2) data (e-h) correspond to 

the respective region B A (see Fig. 1 for location). DNG = raw image acquisition format, JPEG = JPEG image acquisition format; D50, D84 

= Percentiles 50 and 84, respectively; ngrains = Number of segmented grains. 435 

 

Figure 6: Grain size distributions and percentile uncertainty (modelled 95% confidence interval; CI) for the Entle surveys (S9) for 

different UAV imagery (SI = single orthoimage, OM = orthophoto mosaic; see Fig. 2 for model characteristics and colour legend)). All 

data refer to the region A (see Fig. 1 for location). D50, D84 = Percentiles 50 and 84, respectively; ngrains = Number of segmented grains. 

Please note that S9_5 (a, b) was acquired in raw image fromat (DNG) while S9_5 images (c, d) were acquired as JPEG images. 440 

3.4 Key grain size percentiles 

Overall, modelled percentile medians for commonly used percentile values, i.e., D50, D84 and D96, are in agreement with the 

photo-measured percentile values for all results and averaged across all models (Table 3; see Table S5 for more details). 

However, the modelled estimations for the D50, D84 and D96, and their respective uncertainties, here reported for a 95% CI, 

vary considerably between individual surveys (Table 3), regions within surveys (Fig. 7), and the format of the images that 445 

are used for measuring the grain sizes (Fig. 8). 

For all grain sizes measured in the K1 survey the mean D50 with (3.1 - 3.2) ± (0.1 – 0.2) cm, the median D84 with (6.6 – 6.9) 

± (0.6 – 0.8) cm and the median D96 with (12.1 – 13.8) ± (1.4 – 1.9) cm are consistent and in close agreement (Table 3). This 

is true irrespective of the image region (Figs. 7a, b), the image format used for grain size measurement or the UAV image 
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acquisition format (Figs. 8a, b). Percentiles from the L2 survey, e.g., the D50 with 4.7 ± (0.6 – 0.8) cm for region A and with 450 

(3.7 – 3.9) ± (0.3 – 0.4) cm for region B, are consistent within regions (Table 3). However, the modelled uncertainties are too 

large to establish differences in percentiles between regions (e.g., Figs 7c, d), or between model reference strategies, UAV 

image acquisition formats or between imagery formats (Figs. 8c, d). For percentiles from data for the S9 surveys, the 

situation is different. Here, key percentile values are only agreeing within regions when extracted from single images (Figs. 

7e, g), e.g., yielding a clearly distinguishable D50 of 3.4 ± 0.2 cm for region A and 4.1 ± 0.4 cm for region B. Thus, the 455 

averaged percentile values from orthomosaics (Table 3) would yield biased information, effectively prohibiting a distinction 

of different grain size signals of the regions (Figs. 7f, h). A closer inspection reveals that within the data from orthomosaics 

only imagery from SfM models, referenced without GCPs (i.e., C5 and C6; see also Fig. 2), and for one single region (B), is 

responsible for the inconsistent data. 

  Single Images (SI) Orthophotoimage mosaics (OM) 

D 

Grain 

size 

region 

median 

D (mm) 

mean D 

(mm) 

mean 

95% CI 

(mm) 

relative. 

Uncertainty 

(%) 

median 

D (mm) 

mean D 

(mm) 

mean 

95% CI 

(mm) 

relative 

Uncertainty 

(%) 

D50 
K1 A 32 31 3 8 33 32 4 11 

K1 B 32 31 2 8 32 31 3 11 

D84 
K1 A 65 66 11 16 67 66 15 22 

K1 B 70 69 11 16 68 67 14 21 

D96 
K1 A 122 121 28 23 121 123 38 31 

K1 B 137 138 35 25 122 125 37 30 

D50 
L2 A 48 47 15 32 47 47 12 26 

L2 B 36 37 6 17 39 39 8 20 

D84 
L2 A 119 120 41 35 115 113 31 27 

L2 B 98 95 30 31 93 94 26 28 

D96 
L2 A 202 197 79 39 179 178 51 29 

L2 B 195 184 61 31 171 164 53 31 

D50 
S9 A 34 33 3 10 34 32 4 13 

S9 B 41 40 8 20 36 35 8 22 

D84 
S9 A 67 66 10 15 64 63 13 20 

S9 B 109 107 26 24 83 83 27 32 

D96 

 

S9 A 114 114 32 28 103 104 33 32 

S9 B 185 183 52 28 138 143 52 37 
 Table 3: Key modelled percentile results (i.e., D50, D84 and D96) averaged over all models for each grain size region. 460 



21 

 

 

Figure 7: Modelled median grain size percentile D50 plotted against the D84 for all surveys: Kander (a, b), Luetschine (c, d), Entle (e-h) 

and regions of grain size sampling (A and B). For locations of the regions, see Fig. 1. OM = orthophoto mosaics, SI = single images. 

 

Figure 8: Modelled median values for percentiles D50, D84 and D96 from single orthoimages (SI) and orthophoto mosaics (OM) for 465 
selected regions of the survey sites. Different SfM model setups are colour-coded,coded; please see Fig. 2 for detailed legend. Displayed 

uncertainties represent modelled 95% confidence intervals. Please note the logarithmic scale. 
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3.5 Field measurements at the Kander site (K1) 

The manual measurements of grains sizes >1.8 cm in the field with the Wolman method yielded 224 b-axis values for K1. 

The resulting key percentile lengths are 2.8 cm (D50), 5.3 cm (D84) and 10.2 cm (D96). For direct comparison, we measured 470 

grain sizes in cropped subsections of all K1 imagery, which returned 162 to 302 (SI) and 189 to 486 (OM) grains. The 

median of the relative percentile uncertainty (95% CI) ranged from 14.4 to 19.5% (SI) and from 12.7 to 21.9% (OM). Mean 

modelled key percentile values ranged between 3.0 ± 0.3 cm (SI; rel. 16 - 17%) and 3.2 ± 0.3 cm (OM; rel. 16 - 17%) for the 

D50. The mean modelled ranged D84 between (5.9 – 6.1) ± (1.0 – 1.1) cm (SI; rel. 33 – 36%) and (6.5 – 6.7) ± (1.0 – 1.1) cm 

(OM; rel. 30 - 31%), while the mean modelled D96 ranged between (11.6 – 12.2) ± (3.0 – 3.4) cm (SI; rel. 48 - 57%) and 475 

(11.5 – 12.0) ± (2.4 – 2.8) cm (OM; rel. 42 – 45%). These values are in good agreement with modelled results for whole 

regions (see Sect. 3.4 above and Table 3). 

4 Discussion  

Measurements of grain sizes in imageries obtained by an UAV need to be accompanied by a photogrammetric processing of 

the imageries to correct for camera lens distortion and to reference the images. Therefore, we begin by discussing the quality 480 

of our models and UAV imagery, as well as the conditions encountered in the field. We emphasize here that the aim of this 

study is not to optimise or review UAV strategies or SfM processing, thus, we restrict ourselves to report only noteworthy 

observations and their implications in Sect. 4.1. For more in depth discussions of UAV and SfM workflows, we refer to the 

dedicated literature (e.g., James et al., 2017b; O’Connor et al., 2017; Carbonneau and Dietrich, 2017; Eltner and Sofia, 2020, 

James et al., 2020). Furthermore, we emphasize that our survey design is tailored to close range studies for the scale of 485 

individual gravel bars, which means that while our findings in many ways are transferable to other scales, our survey design 

might not be applicable for larger scale surveys (e.g., Marchetti et al., 2022). Then Next, we focus on the process for 

measuring grain sizes and for modelling the uncertainties. Finally, we compare the results where grains were measured on 

images and in the field with the Wolman (1954) method. We then end with a discussion of how grain size data and their 

uncertainty depend on the various processing steps from UAV image acquisition to estimates of percentile values. 490 

4.1 UAV imagery and SfM model quality 

We successfully created topographic models from the image sets collected at the three survey sites. The topographic models 

are generally better for the Kander (K1) survey compared to the Luetschine (L2) and Entle (S9) surveys (Table 1). as 

comparatively fewer K1 images had to be excluded from the photogrammetric processing due to poor image quality (e.g., 

overexposure, blurred photos etc., as explained above). We attribute this to the better light and flight conditions (i.e., 495 

constantly sunny and weak wind), to lower RTK GNSS (real-time kinematic positioning for global navigation satellite 

systems) uncertainties and the more favourable angle and distribution of oblique camera positions (i.e., oblique cameras at 

the same altitude as the nadir positions and with an angle of 20°). In our specific case, vegetation seemed to have a lower 
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impact on the precision of the SfM model quality, since the site K1 was characterized by the highest vegetation density on 

the bar (Fig. 1), yet the resulting models had the overall highest quality for all metrics. However, our different referencing 500 

strategies (Fig. 2) allowed us to create topographic models with varying precision, accuracy and systematic errors for all 

surveys (Table 2), in which we find some noteworthy SfM characteristics.  

First, some SfM models (see Table 2) failed to successfully reference the images, i.e., they specifically failed to model the 

camera lens, thereby yielding completely wrong focal length estimations (>50% rel. difference), which then resulted in 

camera altitudes that were > 50% lower than the actual flight altitude. This occurred only in models with one flight level, a 505 

gridded flight-path and no oblique angle camera positions. We do not find this outcome as surprising, because such a 

condition produces the weakest network geometry, even if GCPs are included in the surveys (i.e., S9_5_C3 and S9_6_C3; 

see also James et al., 2017b; 2020). Interestingly, significantly more camera models failed for those surveys where the 

images were acquired in the JPEG format than compared to those models that base on images in the DNG format (5 

compared to 1). We suspect that this is a consequence of the UAV on-board pre-processing of images with a generic camera 510 

model, which results in camera modelling failure during the bundle adjustment (for a detailed discussion see James et al., 

2020).  

Second, surveys where images were referenced with GCPs, and where images taken with oblique camera positions were 

included, produced the most accurate and most precise models (see Fig. 2 and Table 2). In contrast, surveys without GCPs 

and with only single level grids produced the worst results. These results fit with our current understanding of SfM 515 

uncertainty (e.g., James et al., 2020; Sanz-Ablanedo et al., 2020). Specifically, this means that for those SfM models where 

the images were calibrated with GCPs both precision and accuracy are orders of magnitudes higher than for the models 

where the images were only directly geo-referenced (Table 2). We note here that the accuracy values reported in Table 2 for 

directly referenced models include systematic GPS errors of up to 200 m (S9) for the UAV platform, an issue that has been 

reported for the UAV platform family used in our study (e.g., Cook and Dietze, 2019). Furthermore, we can confirm that the 520 

selection of two flight altitudes, as proposed in some workflows for direct georeferencing (e.g., Carbonneau et al., 2018), 

seems not to improve the quality of the SfM model (see also Sanz-Ablanedo et al., 2020). In fact, the quality actually 

decreases as evidenced by the results where we used a large number (>10) of images from a second altitude. These had then 

to be removed from the S9 models.  

Finally, the use of images that were taken with cameras at oblique angles significantly improved the model quality, i.e., it 525 

resulted in lower systematic errors, as demonstrated by James and Robson (2014) James et al. (2020), or Sanz-Ablanedo et 

al. (2020). Here, we highlight that for the K1 survey, models that are based on images taken in the JPEG format have a 

significantly larger systematic error, expressed both as ‘doming’ and ‘bowling’, which is in stark contrast to the models 

where the images were taken in the DNG image format (Table 2).  This was even the case for those models that included 

oblique camera positions and that were geo-referenced with GCPs. This effect was not observed in the results of the L2 530 

survey. However, when comparing similar models (suffix _C1 and _C3) we identified a smaller systematic error for the 

models that base on images in the DNG format, both for L2 and K1. We note that we cannot use the S9 models for such a 
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comparison, since for these models separated flights were used to acquire the JPEG and DNG images (Table 1). 

Nevertheless, the aforementioned results suggest that the image acquisition format affects the quality of the SfM model, as 

already suggested found by James et al. (2020), at least for some survey geometriesand even inhibit an alignment for weak 535 

image network geometries. Accordingly, the format of image acquisition should might be considered during UAV survey 

planning, and we propose that as the DNG format can indeed yield better results  than images in the JEPEG format. 

4.2 Precision and consistency of grain size measurements 

The approach where we automatically segmented the images and where we fitted the ellipsoids with PebbleCounts (Purinton 

and Bookhagen, 2019) yielded consistent results when measuring grain sizes, both within surveys and between surveys 540 

(Figs. 5 and 6; Tables S4, S5). The combined bootstrapping and Monte Carlo (MC) approach allowed us to estimate the 

difference between the modelled and the photo-measured median percentile value, which is less than 5% for single 

orthophotos images and 10% for orthophoto mosaics for all percentiles (Table S5). Thus, both the modelled median and 95% 

confidence intervals are representative of the grain size distributions measured on the photos. The median of the modelled 

percentile uncertainty (95% CI) relative to the photo-measured percentile varied between survey sites (~7 to 15% for K1, 545 

~16 to 42% for L2 and ~8 to 29% for S9; Table S4). Similarly, the mean relative uncertainties (95% CI) for individual 

percentiles, such as the D50, varied from ~8 to 11% for K1, ~17 to 32% for L2 and ~10 to 22% for S9 (Table 3). Relative 

uncertainty values for the D84 and D96 increased, compared to the D50, but followed the same trends with up to a 39% relative 

uncertainty for the D96 in L2. These results allow us to successfully identify two different grain size populations for regions 

A and B, respectively, in the S9 surveys (Table 3 and Figs. 7e-h). For K1 where the sampling regions were almost identical 550 

(Fig. 1), all grain size results were consistent (Table 3 and Figs. 7a, b; see also Table S5). For L2, the large uncertainties 

prevent us from drawing such inferences (Figs. 7c, d). At a closer inspection, these findings have some interesting 

implications. 

In particular, because the modelled percentile uncertainty depends on the number of grains that could be identified, i.e., on 

the counting statistics, the percentile precision increases improves with the larger number of grains that were measured 555 

(Table S54). This is what we observed, and such results are in good agreement with reported statistical uncertainties that 

resulted from the application of comparable methods (Eaton et al., 2019). We note here that in general fewer grains were 

found in images that were acquired in the DNG format. This might be a result of lower image contrast in these images, 

which we did not attempt to correct. While the smaller number of grains might reduce the percentile precision for images 

with very few grains in them, we could not find any further systematic effect thereof. In additioncontrast, our data showed 560 

systematic differences if grain sizes were measured on single images (SI) or on orthophoto mosaics (OM). Grain size 

percentiles derived from orthophoto mosaics showed higher uncertainties than grain sizes measured on single orthoimages, 

both for the entire range of percentiles (Figs. 5 and 6) and for selected percentile values (Figs. 7 and 8). An exception is L2 

where the uncertainty of the median grain size percentile was generally high (up to ~42%). Compared to the grain size data 

collected from orthophoto mosaics, the relative percentile uncertainty on the single image data was between 3 to 6% lower 565 
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for K1 and between 0.6 to 8% lower for S9 surveys. Likewise, for individual key percentile values, i.e., the D50, D84 and D96, 

the uncertainties on the data retrieved from orthophoto mosaics were between 2 and 9% higher across all models of K1 and 

S9. However, we acknowledge that for some L2 models, the uncertainties on the grain size data were higher if the data was 

collected from single images than if the measurements were accomplished on orthophoto mosaics. We attribute this to a 

combination of imagery and segmentation traits (see Sect. 4.4). 570 

4.3 Grain size accuracy compared to field measurements 

Grain sizes in close-range UAV imagery through image segmentation are measured on a 2D approximation of a 3D surface 

of particles, which might be affected by the sedimentary structure, e.g., imbrication or armouring, and projection effects. 

Additionally, a bias could be introduced during the segmentation of the images. Therefore, we compare the sizes of grains 

measured on a subset of the K1 imagery with a dataset where the grains were manually measured in the field to test how our 575 

grain size estimations hold up against field measured data (Fig. 9).  

First, imagery-based grain size measurements result in an overestimation of the percentiles values compared to field-based 

surveys (Sect. 3.5), independent of the SfM model referencing strategy (Fig. 9). Such a systematic overestimation of grain 

sizes can even be found for models where the bundle adjustment was accomplished with ground control points and from 

single images (i.e., C1 and C2 curves in Fig. 9). This is most likely a result of an under-segmentation of grains in images, 580 

potential biases inherent to image based approaches, i.e., a 2D projection effect or partial overlapping of grains (Carbonneau 

et al., 2005), and/or a combination thereof. We note here that this systematic overestimation might have also have a survey-

specific component. We base this inference on the results of other analyses, which were accomplished with the same 

segmentation software and which documented a systematic underestimation of related percentile values, thus hinting at an 

effect related to over-segmentation (Chardon et al., 2021). This issue might be addressed if (i) images are segmented semi-585 

automatically where manual measurements are accomplished occasionally to set a benchmark (Burinton and Bookhagen, 

2021), (ii) reference measurements are conducted for calibration purposes, (Chardon et al., 2021) or if (iii) the automated 

segmentation is improved. However, more research is needed to improve our understanding of systematic traits of 

segmentation-based grain sizes and the related dependency on survey-specific characteristics. We note that our K1 site where 

we did find this bias is not suited for such an endeavour.  590 

Second, for all our K1 models, only grain sizes taken from single orthoimages (Figs. 9a, b) can be considered as acceptable, 

i.e., agreeing within uncertainties, despite a systematic overestimation of the percentile values. Contrarily, grain size data 

from orthophoto mosaics are less accurate than from single images when compared to field measured data and additionally 

show some dependency on the SfM model strategy, or more likely, on the SfM model uncertainty (Figs. 9c, d). This reflects 

a general trend where only grain sizes from orthophoto mosaics were systematically varying with the UAV model geometry 595 

within surveys (e.g., Figs. 5b, 6b and Fig. 8). This implies that the measurement results depend on whether grain sizes were 

collected on orthomosaics or on single images, and additionally on how the UAV survey was conducted if orthomosaics are 

used. 
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Figure 9: Relative difference between grain size percentiles estimated from UAV imagery to grain sizes, which were measured in the field 600 
for the region A of the Kander survey (K1). (a, b) Results for data from single orthoimages (SI). (c, d) Results for orthophoto mosaics 

(OM). DNG and JPEG indicates the image acquisition format. Key percentiles, i.e., D50, D84 and D96, are highlighted. The number of 

detected grains (ngrains) and the data are colour-coded for SfM model setup (see Fig. 2 for detailed legend). 
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4.4 Potential problems associated with orthophoto mosaics 605 

Our results show that in some cases grain size data extracted from orthomosaics are less precise and less consistent (see Sect. 

4.2) and less accurate when compared to field data (see Sect. 4.3). Similar inaccuracies were also reported by Woodget et al. 

(2018) upon measuring grain sizes on orthomosaics, albeit on the basis of statistical image properties. At this stage, we 

consider the following three reasons for the low accuracy and the lower precision in some grain size datasets that were 

collected on orthomosaics. 610 

First, we used fixed locations to measure grain sizes, which means that an in-accurate SfM model might result in a shift of 

the view fieldin the situation where different areas of a bar will be measured, particularly if grains are measured segmented 

on in orthophoto mosaics (Figs. 10a, b). Such a bias will not be introduced if grains are measured on single images. 

Furthermore, for orthomosaics, if the sizes of the grains on the selected bars vary between the different views, then the grain 

size distributions will be different. This was actually the case for the Entle (S9) surveys (Figs. 6 and 7). Second, local 615 

disturbances and image warping (Figs. 10c, d) that may result upon generating the orthomosaic may also affect the 

segmentation of the images. Indeed, we could find small image artefacts in all our generated orthomosaics. They were 

particularly prominent in imageries created from the L2 models, i.e., the overall lowest quality models. Finally, a strong 

variationthese factors can influence  in the segmentation performance can occur when the automated version of 

PebbleCounts, is used, which in turn might introduce amplifya the bias as only potentially a small fsome size fractions of 620 

pebbles raction of pebbles might preferentially be found. In this context, segmentation errors, which are introduced in 

response to an over- or under-segmentation of the images (i.e. more or fewer pebbles identified of a certain size), might be 

the source of an additionalincrease the bias, particularly for datasets where few pebbles are measured (Figs. 10e, f). In all our 

results, some under-segmentation did occur, but interestingly this process was most prominent if orthophoto mosaics were 

used and if grains were measured on low quality images (i.e., L2 and partly S9). Accordingly, we use these conditions, and 625 

probably a combination of them, to explain the larger uncertainties on those grain size datasets that were collected from 

orthophoto mosaics compared to the results where grains were measured on single orthoimages. 
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Figure 10: Systematic factors that influence grain size estimation from UAV imagery, especially from orthophoto mosaics (OM). (a,b) 

Effect of varying accuracy of SfM (Structure from Motion) used for referencing for orthophoto mosaics, which should display the same 630 
extent. (c,d) Comparison of undistorted single, nadir images (SI) with orthophoto mosaics, which highlight small scale image warping and 

artefacts: 1) Duplication from incorrect image stitching, 2) Blurring of pebble boundaries, and 3) irregular grain shapes. (e,f) Selected 

results highlighting the varying image segmentation performance. Examples of systematic under-segementation marked with white arrows. 
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4.5 Implications for workflows on grain size estimation  

Our results have some general implications for the estimation of grain sizes from UAV acquired imagery. We will present 635 

these in the order of a typical workflow that is generally employed upon measuring grain size datasets with a UAV/SfM 

workflow (e.g., Fig. 3). For UAV surveys with a subsequent SfM processing a best practicse to achieve highest quality in 

SfM models (e.g., James et al., 2020; Eltner and Sofia, 2020; Sanz-Abledo et al., 2020) includes a GCP referencing and in 

theory the storage of the images in the raw format. However, in the field raw image acquisition is seldom realised because of 

its technical cost, such as lower survey velocity and the larger file size. Such conditions need significantly longer time for 640 

file storage and cause a multiplication of photogrammetric processing time and file size. Therefore, and in light of the 

possibility to reduce the systematic error through modelling from a suitable set of GCPs (see James et al., 2020), the use of 

pre-processed JPEG images might be sufficient for most applications targeting grain sizes. Furthermore, Ssurvey designs 

without GCPs might be acceptable for grain size estimation in cases where (i) a high-precision spatial allocation of the grains 

is not needed, a correct image referencing and undistorting is possible potentially by using a pre-calibrated camera model 645 

(see also Carbonneau et al., 2018). In such cases, we recommend measurements on undistorted single, undistorted nadir 

orthoimages, especially when grain size distributions are expected to vary and sampling is done only locally. All these 

recommendations are valid independent on the method for grain size estimation.  

In principle, using a segmentation approach for grain size estimation allows for a rigorous error and uncertainty 

propagationmodelling. Specifically, SfM model uncertainties can be used for a statistically robust estimation of errors on 650 

grain datasets by combining a bootstrapping and Monte Carlo approach, as accomplished in this work. Even more, an error 

estimation can be accomplished for models without GCPs, for the case where a simple parametrization that only bases on a 

length and scale error is considered (see supporting Code S1). We emphasize that this is only possible when the image 

distance can be estimated. We also note that this approach allows to estimatethe estimation of uncertainties also for datasets 

where grains were measured in other imagery, e.g., images acquired with a handheld camera. Generally, this approach 655 

returns uncertainty values for both measurement results and statistical processing, which includes effects related to counting 

statistics. To our knowledge, no such possibility for the estimation of uncertainties exists for grain size estimations that are 

based on statistical image parameters. However, current segmentation techniques are prone to biases that result from under- 

or over-segmentations and 2D projection effects of 3D structures. Therefore, in such cases, reductions of inaccuracies might 

be achieved through manual filtering of grains during segmentation (e.g., Burinton and Bookhagen, 2019; Detert and 660 

Weitbrecht, 2012) and/or through a calibration of the measurements with a reference data set (e.g., Chardon et al., 2021), 

where data was collected in the field, as exemplified in this work. Such a strategy is likely to improve and the accuracy of 

grain size data and yields in an estimate of the related uncertainty. 
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5. Conclusions 

Our field-based approach in combination with the simple uncertainty modelling can be used to propagate model all relevant 665 

uncertainties of SfM models onto grain size data that are extracted from segmented UAV imagery. The workflow proposed 

in this paper is applicable to any tasks that aim at measuring grain size data from images, and it allows to assess the 

sensitivity of such grain size data on the UAV survey strategy. This includes selection of the image acquisition format, for 

which the use of the raw image format during image acquisition instead of the JPEG format might reduce the systematic 

uncertainty in topographic models. For our setup, the image format used for grain size estimation was a key variable, where 670 

an overall higher precision and accuracy was achieved if grain sizes were measured on undistorted single, undistorted nadir 

orthoimages rather than on orthophoto mosaics. Furthermore, general UAV survey conditions, e.g., light, wind or vegetation 

exert a control on the precision and accuracy of grain size data estimated from images, even if the topographic models used 

for referencing are of high quality. Contrarily, our grain size data is not very sensitive to the quality of the topographic 

model, as long as single, undistorted nadir  images are used where distortions were corrected with a camera lens model 675 

during the photogrammetric processing. 

6 Code availability 

The code used for image processing and uncertainty estimation of grain size distributions is provided at  

https://doi.org/10.5281/zenodo.6415046 https://doi.org/110.5281/zenodo.6415047 as python files and executable jupyter 

notebooks, where the latter also serve as documentation. Additionally, we provide there also the python script used for 680 

estimating the camera distance. 

7 Data availability 

Photo-measured grain size data are provided along with field measured b-axes values for K1 in a csv format an all UAV 

images used for SfM model generation and all orthoimages referenced images (both SI and OM), in which we measured 

grain sizes, can be found at https://doi.org/110.5281/zenodo.6415047. 685 
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