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Abstract. Prediction of bedload sediment transport rates in rivers is a notoriously difficult problem due to inherent variability 

in river hydraulics and channel morphology. Machine learning offers a compelling approach to leverage the growing wealth 

of bedload transport observations towards the development of a data driven predictive model. We present an artificial neural 

network (ANN) model for predicting bedload transport rates informed by 8,117 measurements from 134 rivers. Inputs to the 

model were river discharge, flow width, bed slope, and four bed surface sediment sizes. A sensitivity analysis showed that all 10 

inputs to the ANN model contributed to a reasonable estimate of bedload flux. At individual sites, the ANN model was able 

to reproduce observed sediment rating curves with a variety of shapes without site-specific calibration. This ANN model has 

the potential to be broadly applied to predict bedload fluxes based on discharge and reach properties alone.  

1 Introduction 

Bedload transport in rivers is a stochastic (Ancey, 2010; Paintal, 1971), nonlinear (Meyer‐Peter & Müller, 1948; Wong & 15 

Parker, 2006), phenomenon with high dimensionality (Goldstein et al., 2019). Further, direct measurements of bedload 

transport are often challenging to collect reliably, especially for large, rare floods or over long periods of time. In lieu of 

continuous measurement, accurate estimation of bedload transport rates with minimal site-specific calibration has a number 

applications (Wilcock, 2001), including by not limited to quantifying channel conveyance (Slater and Singer, 2013), informing 

river restoration efforts ((East et al., 2015; Warrick et al., 2015)), and approximating bedrock incision rates (Beer & Turowski, 20 

2021). As such, there has been a long legacy of scientific inquiry towards accurate quantitative prediction of bedload transport 

rates, beginning in the early 1900s (Gilbert, 1914) and continuing to today (Einstein, 1937; Wilcock and Crowe, 2003; 

Lajeunesse et al., 2010; and recently Zhao and Nepf, 2021 among many others). A number of models of fluvial sediment 

transport have been developed based on semi-empirical regressions fit to flume (Meyer‐Peter & Müller, 1948; Wong & Parker, 

2006) and field (Recking, 2010, 2013b; Rickenmann, 1991) data, probabilistic approaches (Einstein, 1950; Furbish et al., 25 

2012), and physics-based models (Lajeunesse et al., 2010; Parker, 1990; Wilcock & Crowe, 2003). Multi-model comparisons 

demonstrate that few models consistently perform well for large, multi-region datasets in part due to limitations in addressing 

site specific variability or due to temporal and spatial averaging (Barry et al., 2008; Gomez & Church, 1989; Recking, 2010, 

2013a). As such, existing bedload flux models are not versatile enough to be applied across the range of observed river reaches 

without extensive regional or site specific calibration (Goldstein et al., 2019; Kitsikoudis et al., 2015). Thus, predicting rates 30 
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of bedload sediment transport remains a persistent challenge, with predictions within an order of magnitude of direct 

measurements generally considered reasonable model performance (Recking, 2013a; Recking et al., 2012).   

This inherent variability in bedload transport observations and the associated need for site-specific calibration efforts, 

has led to recent suggestions that the reliable and consistent prediction of bedload transport from reach scale parameters may 

be intractable (Gomez & Soar, 2022). Indeed, there are a number of factors that give rise to variability into bedload transport 35 

rates across sites or through time at a single site including, but not limited to: spatial variability in both turbulent stresses and 

bed heterogeneity (Monsalve et al., 2016, 2017); grain protrusion, compaction, and structural arrangement of the bed (Church 

et al., 1998; Houssais et al., 2015; Marquis & Roy, 2012; Masteller & Finnegan, 2017; Masteller et al., 2019); intermittency 

in flux and sampling times (Bunte & Abt, 2005; Singh et al., 2009; Recking et al., 2012); upstream sediment supply (Recking, 

2012; Singer, 2010; Gomez & Soar, 2022); and interactions between grain size fractions on the surface and within the bed 40 

(Wilcock, 1998; Ferdowsi et al., 2017).  

Results from laboratory flume experiments and long-term field monitoring demonstrate that much of this variability 

may be collapsed or understood under controlled conditions. Grain protrusion within mixed grain size distributions can be 

accounted for through the use of hiding functions and relative reference critical shear stresses (Einstein, 1950; Ashida & 

Michue, 1971; Parker et al., 1982; Wilcock & Crowe, 2003). The challenge of vertical sorting and differing grain sizes between 45 

the river bed surface and subsurface was circumnavigated through the development of surface-based transport relations 

(Parker, 1990).  Even grain scale complexity in the particle shape can be unravelled by accounting for relative changes in fluid 

drag and friction (Deal et al., 2022).   Field and laboratory experiments demonstrate that the impact of a hydrograph with 

floods of different magnitudes and shapes on bedload flux can be understood cumulatively and is linearly related to the integral 

of the excess shear stress (Phillips & Jerolmack, 2014; Phillips et al., 2018). These selected demonstrations indicate that while 50 

there may be significant variability in raw measurements of bedload flux, this variability is not such that the development of a 

model which accurately captures patterns in bedload flux is intractable. Wholesale field application of a physically based 

model will continue to remain data limited; however, the introduction of longer-term monitoring stations indicates that a more 

nuanced physical model may be on the horizon (Rickenmann and McArdell, 2007; Rickenmann, 2018;  Gomez et al., 2021).   

The known complexity of natural river processes combined with the amount of available bedload data across many 55 

sites and settings (Hinton et al., 2017; King et al., 2004; Recking, 2019) suggests that this process may be predictable from a 

data science approach (Geron, 2019). Machine learning (ML) approaches leverage available data to train computers to, through 

an automated process, determine the relative contribution of individual input variables to a measured output (Geron, 2019). In 

the learning process, the ML algorithm iteratively discovers patterns and relations within the data and uses them for future 

predictions given similar input data. Many ML approaches do not consider the physics behind any specified problem directly, 60 

but excel at predicting nonlinear relationships with high dimensionality given sufficient training data (Hosseiny, 2021; 

Hosseiny et al., 2020). ML approaches can leverage variability aggregated from many existing datasets in order to improve 

site-specific bedload transport predictions across a range of fluvial environments. ML approaches have been previously 

exploited in a variety of geoscience problems including identifying vulnerability in Antarctica’s ice sheet (Lai et al., 2020), 
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global-scale soil salinization predictions (Hassani et al., 2021), and landslide susceptibility mapping (Zhou et al., 2021). In 65 

particular, an Artificial Neural Network (ANN) approach may be particularly well-suited for bedload prediction. ANN is a 

well-tested and powerful method which, through an iterative and automated training process, determines the weighted 

contribution of numerous input parameters towards a specified output (Haykin, 2008). This iterative approach allows ANN to 

parse nonlinear relations between numerous input parameters, making it a flexible tool for solving a wide range of problems, 

including optimization (Haykin, 2001) and data classification (Saravanan & Sasithra, 2014). Relevant to geoscience 70 

applications, ANNs have shown to be versatile tools towards more accurate description of rainfall-runoff processes (Hsu et 

al., 1995; Han et al., 2021), prediction of riverbed porosity (Bui et al., 2019), and for flood prediction (Hosseiny et al., 2020). 

Despite publicly available, high-quality observational data, the application of ML tools to sediment transport in rivers 

has, to our knowledge, remained limited. Kitsikoudis et al. (2015) used sediment concentration data from flume and field 

studies, for sand (median grain size, D50 = 0.062 mm-2.0 mm) bed rivers (Brownlie, 1981), to evaluate the performance of ML 75 

approaches: (a) ANN, (b) symbolic regression (SR), and (c) adaptive-network-based fuzzy inference (ANFIS) models. Their 

results show that models trained solely on flume data perform worse than those trained on field data with root mean squared 

errors (RMSE) of flume-trained predictions between 85% to 97% more than field-trained models. This study also found that 

the ANN model trained on field data performed best, with RMSE values 7.5% and 11.1% less than ANFIS and SR, 

respectively. Aseghi and Hosseini (2020) trained an ANN using 102 measurements of discharge, velocity, water surface slopes, 80 

flow depth, and median grain size to develop a prediction model for bedload transport for a single site - the Main Red Fork 

River in Idaho.  They found that the trained ANN captured bedload flux measurements more accurately than existing empirical 

equations – however, the wider applicability of the study may be limited because the ANN was trained using data from only a 

single site. Kitsikoudis et al. (2014) focuses on bedload transport within gravel-bed rivers, however the dataset is primarily 

drawn from a limited geographic region of the United States (Idaho, King et al., 2004). These data are generally of high-85 

quality, and while they integrate measurements from a number of rivers, they occupy only a limited portion of the gravel bed 

river parameter space. These rivers tend to be steeper, coarser grained, and shallower than average, limiting relations derived 

on these data to similar geographic locations (see Phillips & Jerolmack, 2019). Bhattacharya (2007) used an ANN approach 

using the Gomez and Church (1989) sediment flux database for sand and gravel (D50 = 0.062 mm-64 mm) bed rivers in 

subcritical flow to predict bedload and total load transport rates as a function of a combination of measured and derived input 90 

parameters. These input parameters include velocity, depth, particle diameter, slope, non-dimensional shear stress, critical 

shear stress, and stream power. They concluded that the RMSE of the model trained based on field data (407 observations) 

was on average 33.6% less than those derived from flume data and 16.4% to 249.6% less than several empirical and physically 

based models (Bhattacharya, 2007). 

While these previous studies have demonstrated that ML models can improve upon existing sediment transport 95 

models, this suite of ML models have been trained with limited data (less than 500 observations) and under a relatively narrow 

range of the full parameter space which gravel-bed rivers occupy globally. Despite the increasing availability of bedload 

datasets, the application of ML in generating a versatile, data-driven model for predicting bedload transport across a wide 
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range of fluvial settings has not yet been investigated. To fill this gap, this paper develops a new ML model for predicting river 

bedload using an ANN approach and over 8,000 measurements from over 100 unique field sites. The performance of the 100 

proposed model is then shown to outperform four existing sediment transport models using only the publicly available data 

(Einstein, 1950; Recking, 2013b; Wilcock & Crowe, 2003; Wong & Parker, 2006). We finally demonstrate the utility of a 

broadly-trained ANN model by producing bedload transport rating curves for discharge without the need for additional site 

specific calibration.  

2 Materials and Methods 105 

2.1 Data summary and preparation 

We use a compilation of bedload transport rates downloaded from BedloadWeb  (http://en.bedloadweb.com), a publicly 

available online platform that hosts both previously published field and laboratory bedload datasets compiled from scientific 

literature or official reports and databases (Recking, 2019). Our study focused on field-collected datasets only, as these cover 

a greater range of variability in terms of the key variables associated with bedload transport (e.g. discharge, grain size, slope). 110 

The database includes 10,056 individual measurements of bedload transport from more than 134 unique field sites across the 

globe. Each reported bedload transport data point, qs (g/s/m), in our study has an associated measurement of river discharge, 

Q (m3/s), bed slope, S (m/m), flow width, W (m), and the 16th, 50th, 84th, and 90th percentiles of the bed surface grain size 

distribution (D16, D50, D84, D90). An additional advantage of these specific input parameters is that the static parameters (slope 

and grain size) can be directly measured between transport events and used to predict sediment flux from available hydrograph 115 

data (discharge and width). An important advantage of using a multi-site dataset, such as the BedloadWeb database, for model 

training is to encompass a broader parameter space than would be present at any individual river location. These data span a 

wide range of bed slopes (0.018-0.136 m/m), widths (0.3-306 m), grain sizes (D50 0.00013-0.22 m), and discharges (0.00005-

427.5 m3/s). As such, an ANN model trained using this dataset will have significantly wider applicability than one trained on 

a dataset covering a smaller range. Within this database, slope and grain size are largely static variables for each site describing 120 

the river reach, while flow width and discharge are dynamic and vary in time at each site. Grain size data is a mixture of direct 

measurements and interpolated data under the assumption that bed surface sizes are log-normally distributed. Interpolated data 

is used in cases where specific percentiles of the grain size distribution have not been directly measured or reported by the 

original studies. In our compiled database, we used measured grain sizes whenever they are available. In five cases, D16 values 

are not reported, and interpolated data is used (Recking, 2019). In 53 cases, both D16 and D90 were not reported, and similarly, 125 

in these instances interpolated values were used as input parameters. In the initial training of the ANN, all reported variables 

are used as input parameters to train the model and predict qs, as we expect a model informed by all available parameters 

(knowledge) will have the strongest predictive power (Haykin, 2008). 

Prior to model training, the data were inspected for overall quality and outliers were removed. The presence of 

extreme values and outliers generally degrades the overall performance of the resulting model (Geron, 2019). As such, 130 

http://en.bedloadweb.com/
http://en.bedloadweb.com/
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following procedures used in prior studies, we chose to first remove transport measurements with associated discharge values 

exceeding the 95th percentile (Dovoedo & Chakraborti, 2013; Kennedy et al., 1992) of all reported discharges in the database 

(Q > 430 m3/s; a total of 504 points), followed by removing extreme qs values above the 95th percentile of the remaining data 

(qs > 401.4 g/s/m;  478 datapoints) as well as those below the 10th percentile (Kennedy et al., 1992) of remaining data (qs < 0.1 

g/s/m; 957 datapoints). Following removal of these points, the total sample number was reduced from 10,056 to 8,117 135 

measurements across 134 rivers. This screening process did not eliminate any individual site from the database, such that 

neither large nor small rivers are selectively removed during this data preparation step. While this removal of more extreme 

values is an important step to ensure model quality, we acknowledge that this step preferentially removes the most extreme 

flow and sediment transport events from the dataset.  While there is significant interest in predicting sediment transport rates 

for extreme flow events, these largest events are the least frequently occurring in the dataset and more data would be needed 140 

to train an ANN model to reliably predict bedload flux under these conditions. Following this screening, we maintain 134 

distinct datasets, emphasizing that the training data do encompass more frequently occurring small and intermediate floods 

across all available sites in the database. Thus, while the trained model presented here may not be appropriate to predict bedload 

flux in response to exceptional events in larger rivers, it can still be applied over many orders of magnitude of discharge, as 

described above. Following this screening process, the median number of samples across all sites is n=50. For larger rivers 145 

with maximum discharges exceeding 300 m3/s (n=17), the median number of samples is reduced, n=23. However, five of these 

largest rivers  have sample sizes exceeding the median sample size n=50, with a maximum sample size of n=146 for the 

Mondego River (1.8% of the full database).  Thus, following the screening process, large rivers remain adequately represented 

in the training dataset. The 25th percentile for sample size is n=18 and the 75th percentile is n=83, with 82% of the sample 

sizes within one order of magnitude.  Only 22 sites have more than 100 samples. The largest dataset is from Goodwin Creek, 150 

which has 307 samples and comprises <4% of the full database. Given this, we do not expect that any individual dataset should 

overly bias model training. Data were then log-transformed (base 10) such that each parameter distribution would more closely 

follow a normal distribution (see Supporting Information). Data were then scaled by minimum and maximum measurement 

values, such that the transformed range of values for each variable ranged from 0 to 1 (Geron, 2019; Haykin, 2008). Data were 

shuffled and randomly divided into two populations: a training population (80%) and a test population (20%) with equivalent 155 

distributions consistent with the full dataset.  

2.2 Machine learning structure and implementation 

Following previous applications of ML to sediment transport (e.g. (Bhattacharya et al., 2007; Goldstein et al., 2019; 

Kitsikoudis et al., 2015), we employ an artificial neural network (ANN) approach.  The ANN framework is based on a network 

of connected units (neurons), most commonly comprised of single input and output layers, multiple hidden layers, where each 160 

layer contains a set of neurons (Geron, 2019; Haykin, 2008) (Fig. 1a). The ANN presented here was developed using Keras 

(Chollet & others, 2015), an Application Programming Interface in the Python programming language. The structure of the 

ANN was informed by available bedload transport data and associated measurements of discharge, channel morphology (slope 
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and width), and grain size (4 measurements). The input and output layers of the ANN were set to seven (Q, S, W, D16, D50, 

D84, D95) and one (qs), respectively. The functions that guide the model in identifying nonlinear relations (activation functions), 165 

were set to the Rectified Linear Unit (ReLU), except one function associated with the output layer, which was set to be a 

sigmoid function. The ReLU(x) returns the maximum of (0, x) and sigmoid(x) returns 1/(1+exp(-x)). To avoid overfitting in 

the training process, each input segment was normalized (batch normalization) and a subset of the neurons in each layer were 

temporarily ignored (dropout) to add additional noise to data (Geron, 2019). The training process of the ANN model uses 80% 

of the bedload transport data to determine the weight coefficients of the neurons’ connections that minimize prediction error. 170 

During each iteration of the ANN during the training process, the Mean Standard Error (MSE) is computed between the model-

predicted data and the observational training data (Fig. 1B).  We select MSE over Root Mean Square Error (RMSE) because 

it more heavily penalizes larger errors compared to RMSE, which is the square root of MSE, or the coefficient of determination 

(R2).  This penalization of large errors by MSE is particularly helpful in the efficient optimization of the ANN across multiple 

training epochs. To assess whether the model may be over-fit to the training data, we also perform a validation test of the 175 

model at every iteration of the ANN. The validation of the ML model in each iteration (epoch) was carried out by calculating 

the MSE on a random subset of the training dataset that is not used in that epoch. For this application, 10% of the training 

dataset was used within the epoch model validation step. Once the MSE of the training dataset has reached a stable minimum 

across many iterations (Fig. 1B), and the MSE on the validation data is consistent with this minimum, we consider the model 

to be sufficiently trained.   180 

2.3 Comparison of ANN performance with previous bedload models 

We selected four bedload transport models with varying approaches and degrees of complexity to compare to and build 

intuition for the predictions of the ANN model. We selected: (1) a probabilistic model developed by Einstein (1950), (2) a 

physics-based model developed by Wilcock-Crowe (2003), and (3, 4) two empirical models from Wong-Parker (2006) and 

Recking (2013). We acknowledge that these physics-based bedload transport equations could likely be calibrated to fit the 185 

available data as many of the equation coefficients are in practice tuneable to the data at hand. However, the need for site-

specific sediment flux measurements to calibrate a relation severely limits the application of these bedload transport equations 

to most natural settings as the accurate measurement of bedload transport remains a challenging and time-consuming 

endeavour. Given that the aim of this contribution is to develop a predictive model that does not require any site-specific 

calibration, we do not undertake any additional tuning of the existing equations for bedload transport across sites prior to 190 

comparison with the ANN predictions. Within this analysis, the purpose of utilizing these four different bedload transport 

equations is to provide a comparison with and build intuition for the ANN approach.  

We compared bedload flux measurements to predictions from these four bedload transport models and the trained 

ANN model (Fig. 2). All predictions were made using the 20% of data excluded from the ANN training process (test data, n 

= 1,624). The ANN model utilizes all available data from the bedload database (7 inputs), while the bedload transport models 195 

have varying degrees of complexity, ranging from requiring four input parameters (Einstein, 1950; Wong & Parker, 2006) to 
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five input parameters (Wilcock & Crowe, 2003) (see Table S3). Selected previous models are valid for sand and gravel bed 

rivers, and therefore, the comparison is restricted to these rivers. A further description of these models is provided in the 

Supporting Information. 

2.3.1. Einstein (1950) 200 

The Einstein model (1950) assumes that bedload flux is related to the probability of a particle being eroded as a function of 

changes in turbulent intensity, rather than the average fluid forces acting on the particle. As such, the model relates the 

probability of erosion (as a function of flow intensity) to the intensity of bedload transport (Eq. 1). This method does not 

require a critical shear stress for incipient motion since the movement of the grain is based on probabilistic estimates. The 

Einstein equation tends to perform well for estimating local bedload in large rivers with uniform sand and gravel (Garcia, 205 

2007). The implicit form of the Einstein equation is described as 

1 − 
1

√𝜋
 ∫ 𝑒−𝑡2(0.413 𝜏∗⁄ )−2

−(0.413 𝜏∗⁄ )−2
𝑑𝑡 =  

43.5 𝑞∗

1+ 43.5 𝑞∗         (1) 

where 𝜏∗  is the dimensionless shear stress for uniform flow (Shields stress), 𝑡  is the integral parameter, and 𝑞∗  is the 

dimensionless bedload transport rate (or Einstein bedload number).  

2.3.2. Wong and –Parker (2006) 210 

Wong and Parker (2006) reanalysed the data used to develop the foundational Meyer-Peter and Muller (MPM) equation 

(Meyer‐Peter & Müller, 1948) and found a better fit to data resulting in the following equation: 

𝑞∗ = 3.97(𝜏∗ − 𝜏𝑐
∗)3/2         (2) 

where the exponent is fixed at 3/2 and τ*c=0.0495 is the dimensionless threshold of sediment entrainment. The MPM equation 

is similar in form, but tends to overpredict bedload at higher discharges (Barry et al., 2004). Experimentally, bedload flux is 215 

well-described by Eq. 5 and similar models employing excess shear stress raised to a 3/2 power (see Lajeunesse et al., 2010), 

however application within different rivers and flumes typically requires that both the coefficient and threshold shear stress be 

treated as fitting parameters (Mueller et al., 2005; Phillips & Jerolmack, 2019). Here, for the sake of comparison, we have 

applied this equation using fixed coefficient and thresholds as it was not possible to estimate these parameters at each site in 

the database. The difficulty in estimating the threshold shear stress is a significant hurdle in the application of bedload transport 220 

equations (Buffington and Montgomery, 1997, Phillips et al., 2022). 

2.3.3. Wilcock and Crowe (2003) 

Wilcock and Crowe (2003) presented a sophisticated transport model for mixed gravel and sand, based on 48 laboratory 

experiments with five different sediments sizes. The fractional transport discharge in this model is estimated based on a 

reference parameter informed by the sediment distribution of the bed surface. This model represents a major advance by 225 
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incorporating the non-linear effects of sand content on the mobility of gravel and the overall transport rate (Wilcock & Crowe, 

2003). We applied this model to the available testing dataset by estimating sand fractions from sediment grain size data, 

followed by estimating the reference shear stress for the geometric mean grain size. More information about this method and 

the steps undertaken in this study is presented in the supporting document (Text S1).  

2.3.4. Recking (2013) 230 

The Recking (2013b) model is a single continuous function from two equations previously developed in Recking (2010). The 

model can be used for sand and gravel mixtures and was developed based on 6,319 field observations and 1,317 flume 

measurements (Recking, 2010). The model considers sediment mobility based on D84, as this size was observed to impact bed 

material mobility, flow resistance, hiding, surface armoring, and bed shear stress (Recking, 2013). The critical mobility 

parameter (τ*c) is set to a constant for sand, and as a function of the ratio of D84/D50 and the river slope, S.  235 

 

2.3.5 Quantitative comparison of ANN performance and bedload models 

In order to evaluate the performance of the ANN relative to these existing models, we calculated MAE for the four previous 

bedload transport models and the ANN model based on the direct measurements of bedload flux from the BedloadWeb 

database within the portion of the dataset reserved for the test (n = 1,624). MAE is calculated as: 240 

𝑀𝐴𝐸 =  
∑|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
.   (3) 

We selected MAE as the primary criteria to assess the average model performance because it is less sensitive to extreme values 

(Willmott & Matsuura, 2005). To better compare under and overprediction of each model across multiple orders of magnitude, 

we log-transformed all bedload transport observations and predictions. This is because, based on Eq. 3, predicted values that 

fall multiple orders of magnitude below observed values will result in very small differences between predicted and observed, 245 

which, result, by definition, in very small MAE values.  In extreme cases, MAE values computed for models that, on average, 

underpredict the observed data by multiple orders of magnitude (e.g. Fig. 2A) can be less than MAE values for models that 

equally over- and underpredict the observed data within the same order of magnitude (e.g. Fig. 2d).  In this case, computing 

MAE on log-transformed observations and model predictions more equally weights underpredictions of each model relative 

to model overpredictions. Further, given that the observations of bedload transport span four orders of magnitude and are not 250 

normally distributed, this procedure helps to more equally account for model errors across the full range of the dataset.   

 

3 Results 

3.1 Model training 

We found that five hidden layers, each with 600 neurons, could adequately reflect dataset measurements with minimum error 255 

(Fig. 1b). The fine-tuning of the ANN model showed that the optimum model had a batch size of 1200, a learning rate of 0.6, 

a dropout rate of 0.1, incorporated the mean squared error (MSE) as a loss function, and an ‘Adadelta’ optimizer for minimizing 
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the error in the training process (Chollet et al., 2015; Geron, 2019). The training process began with initial training and 

validation losses of MSE = 0.094 and MSE = 0.058 (Fig. 1b), and final values of MSE = 0.0126 and MSE = 0.013 after 600 

iterations (epochs). Minimal improvements in error occurred between 300 and 600 epochs, indicating that the ANN model had 260 

captured the relationships between the inputs and output adequately, and further iteration would not improve performance. 

The ANN model performed similarly on the validation dataset (Fig. 1b), which reveals that overfitting is not an issue since the 

difference between training and validation errors is relatively constant and minimal (Geron, 2019; Haykin, 2008).  

3.2 Model performance against observations 

Following model training, the model with the weighting coefficients determined during training was applied to the remaining 265 

20% of the dataset (test data) to independently predict bedload transport rates. The ANN prediction resulted in a very close 

prediction of the mean observed flux per unit width (𝑞�̅�ANN = 25.6 g/s/m compared to 𝑞�̅�  DATA = 31.6 g/s/m) (Fig. 2). We also 

performed a sensitivity test of the ANN model by training and testing a set of additional models in the same fashion as described 

for the full ANN model but removed a single input parameter each time (Fig. 1c). We also trained and tested an ANN model 

with three grain sizes (D16, D84, D94) removed. We found that the performance of the ANN was most sensitive to removal of 270 

discharge leading to a 95% increase in model error (MSE) during training (Fig. 1c) and an associated 65% increase in model 

error when the trained model was applied to test data.  

We compared site-specific, mean absolute error (MAE) values using site-specific ANN predictions to both the 

interquartile range (IQR) and the full range of observed bedload transport rates at each site (See Supplementary Information).  

We found that, on average, MAE values are less than both the IQR and the full range of qs values across 134 sites. We found 275 

11 instances where MAE exceeds IQR and only one instance where MAE exceeded the full range of observed values at a site, 

comprising less than 10% of sites in the database. However, the median number of samples in these cases was 17, relative to 

a median of 50 samples across all sites. In addition to this, we looked at functional relationships between the site-specific 

model MAE for the test data versus the total number of samples at each site. We did this to ascertain whether the model was 

biased towards differences in sample size. We did not find any systematic or significant relationships between the sample size 280 

at any individual site and the computed errors between the ANN output and our test data. Because some of the input parameters 

to the ANN are dynamic (e.g. discharge, width), we also explored the absolute error between every individual observation in 

our database and the model input parameters. We find that there is no systematic or significant relationship between the 

absolute error across all data points and any individual input parameter. We did find that the lowest measured transport rates 

result in increased errors at some sites, which is consistent with most bedload flux models as bedload transport is often within 285 

the partial or intermittent transport regime very close to the threshold for motion (Wilcock & McArdell, 1997). 

 

3.3 Comparison of ANN to previous bedload transport models 

In direct comparison, the ANN model outperforms all four previous models, regardless of their complexity. The ANN 

prediction of bedload transport rates across the test data results in a MAE of 0.704, which is 2.5-16.8 times less than calculated 290 

MAE for the other considered models. In addition, the standard deviation for the test predictions by the ANN model was 48.2 
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g/s/m and the minimum amongst all models. Among the four previous bedload equations chosen for comparison, Recking 

(2013), an empirical model with five input parameters, performed markedly better than all other previous models with an MAE 

= 1.81 when compared to measured data (Fig. 2d). Einstein (1950), a probabilistic model with four inputs, performed 

substantially worse, with an MAE = 11.84 for the log-transformed bedload predictions. It is worth noting that the mean error 295 

ratio = -0.07, calculated for the Einstein (1950) model, is less than the other three existing bedload transport models (See 

Supplementary Table SX). This is due to tendency of the Einstein (1950) model to underpredict observed bedload transport 

rates relative to the other models. Einstein (1950) underpredicts measured bedload transport rates for more than 82% of 

observations, often by multiple orders of magnitude, resulting in the largest MAE when calculated using the log-transformed 

data (Fig. 2a). In contrast, bedload flux predictions made using Wong and Parker (2006) and Wilcock and Crowe (2003), lead 300 

to considerable overpredictions in bedload flux across sites (Fig. 2b-c). Wong and Parker (2006) resulted in an average qs = 

855.7 g/s/m with a standard deviation of 2,318 g/s/m and a mean error ratio = 202.52. Wilcock and Crowe (2003) resulted in 

average qs = 13,278.45 g/s/m with a standard deviation of 24,011.43 g/s/m and the maximum calculated error ratios across all 

models, with a mean error ratio = 5,555.7. The model generally overpredicts the observed data, with the 25th percentile of the 

estimated values for the test data is 1,294-fold larger than reported measurements. In addition, high positive skewness in the 305 

predictions (skewness = 4.57) by Wilcock and Crowe (2003) showed that without independent calibration the model could not 

reflect the distribution of the measured data. However, MAE calculations on the log-transformed results from Wong and Parker 

(2006) and Wilcock and Crowe (2003) yield MAE = 2.23 and 6.59 respectively, demonstrating that while these uncalibrated 

models may lead to overprediction, the scale of these overpredictions is multiple orders of magnitude less than the potential 

underprediction of the uncalibrated Einstein (1950) approach.  310 

We find that, without site-specific calibration, the trained ANN developed in this contribution most reliably reflects 

the distribution of the measured bedload data in the training dataset.  Of the uncalibrated existing bedload transport models, 

the approach of Recking (2013) most reliably reflects the measured test data.  

4 Discussion 

We demonstrate that the trained ANN model provides a robust prediction of available test data. This is particularly encouraging 315 

because the model is trained using a dataset with wide parameter ranges compiled from many sites across the world, suggesting 

that it may be readily applied to any site which falls within the existing distributions of the training dataset with fairly good 

results (see Supplementary Information). Caution should be applied in the application of this ANN for input parameters outside 

of the parameter distributions for which it was trained. Admittedly, the ANN model leverages all seven available inputs from 

the BedloadWeb database, whereas previous models only utilize a subset (Table S3) and as such, it is not entirely surprising 320 

that the ANN outperforms existing models. However, it is worth noting that, to our knowledge, there is no available empirical 

or theoretical bedload model that would similarly leverage all of these input parameters. ANN model sensitivity testing 

revealed that each of the seven parameters aides in the final prediction, however the removal of discharge produced the largest 

errors by far. This result is also unsurprising, and isconsistent with findings from other recently developed sediment transport 

models (e.g. Cohen et al., 2022). Bedload flux is chiefly a function of the fluid stress applied to the bed in excess of the 325 
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threshold for motion and thus primarily dependent on how channel discharge maps to stress through the channel cross section 

(Meyer‐Peter & Müller, 1948; Wong & Parker, 2006). It is worth noting, however, that the trained ANN model which does 

not include discharge only has a MAE = 21.1 g/s/m compared to the full ANN MAE of 15.8 g/s/m, which is still less than 

those from all previous models (Table S5). It should be noted that all four existing bedload transport models require some form 

of discharge (or shear stress) data to make predictions. All other ANN models trained on only a subset of the input parameters 330 

showed an increase in model error (MSE) in the test phase of up to 12% relative to the full ANN model. Across these sensitivity 

runs ANN model error was most sensitive to the removal of channel width (MSE increase of 12%) and least sensitive to the 

removal of D90 (MSE increase of 0.8%). These findings are consistent with those from a sensitivity analysis of the global-scale 

model WBMSed (Cohen et al. (2022) and recent sediment transport models developed using a stream power approach 

(Lammers and Bledsoe, 2018). Across all cases, increases in total error of this class of ANN models (average MSE = 1546.0 335 

g2/s2/m2) is still significantly less than the four uncalibrated bedload models (minimum MSE = 6215.1 g2/ s2/m2).  

We suggest that the relative insensitivity of ANN performance reflects the inherent self-organization of alluvial river 

systems (Leopold et al., 1960; Gary Parker, 1978; Phillips & Jerolmack, 2016). Alluvial rivers evolve towards a stable 

geometry that reflects a condition at which the bankfull flood will only slightly exceed the threshold for motion and initiate 

bedload transport (Dunne & Jerolmack, 2020; Parker, 1990). By extension, if a river is at or near this stable state, its width, 340 

slope, and surface grain size distribution, all hold information about channel size and therefore discharge required to transport 

sediment. We suggest that the machine learning approach, which incorporates all these inputs, better captures the covariation 

between channel characteristics and their influence on bedload transport rates in natural systems when compared to more 

deterministic models. This is, in part, due to the model training, which is explicitly aimed at parsing the functional relationships 

between these covaried input parameters. 345 

The robust performance of the trained ANN across many sites also demonstrates that potential sources of variability 

may be absent in a particular site and that the ANN successfully captures an expected average behavior. Alternatively, these 

effects may be embedded within correlations between model input parameters.  For example, it has been demonstrated 

experimentally that decreased sediment supply can result in coarsening of the bed surface (Dietrich et al., 1989). Thus, the 

effect of relative differences in sediment supply may be implicitly accounted for in the ANN results due to differences in the 350 

grain size input parameters relative to channel width and slope measurements. If so, this only reinforces the critical importance 

of river self-organization in setting bedload transport rates (Phillips & Jerolmack, 2019) and the ability of the ANN to parse 

this organization through a data-driven approach. The ANN cannot explicitly define the sources of potential variability given 

the available input parameters, but this is also beyond the scope of this contribution.  

Inspection of the model predictions (Fig. 3) shows that the Wong and Parker (2004) and Wilcock and Crowe (2003) 355 

models tend to overpredict observed fluxes, but generally, capture the correct shape of the observed data and therefore could 

likely be calibrated to match the observed data. Calibration of bedload transport functions through adjustments to the leading 

coefficient and/or the threshold term can generally increase their utility (Hinton et al., 2017). However, these calibration 

parameters are not always easy to estimate and usually require direct measurements of bedload flux. Phillips and Jerolmack 
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(2019) specifically analysed field sites to investigate channel geometry and the threshold of motion and were only able to 360 

reliably calibrate bedload functions for 68 of 132 sites (51.5%). Application of empirical functions can require additional 

derived or calculated parameters such as shear stress. Shear stress is not necessarily challenging to derive by assuming steady, 

uniform flow; however, even shear stress data is rarely available at the majority of stream monitoring sites and can require a 

complicated set of processing routines for gaged sites (see Phillips and Jerolmack, 2016). More notably, the generally poor 

predictions from the physically-based and semi-empirical bedload transport models (Fig. 2) highlights the challenge in utilizing 365 

any bedload transport equation to predict or construct a rating curve without existing site-specific flux measurements. A 

primary advantage of this ANN model is that it utilizes either parameters that are directly and consistently measured at stream 

gages (flow), measured from high-resolution topography (slope, width), or can be measured during low or no flow periods 

(grain size). For the majority of sites, both slope and grain size are static site variables and this presents a major advantage of 

this ANN model for predicting bedload transport at gaged sites where direct measurements of bedload are not available to 370 

develop empirical rating curves or to calibrate other existing bedload functions. 

One application of the ANN model developed here is to construct bedload transport rating curves for a broad range 

of gaged rivers. We selected a small subset of rivers that cover a wide range of parameters from the dataset used in this study 

to highlight the ANN model output (Fig. 3). These simple results highlight how the ANN approach can be used for the 

prediction of bedload transport at gaged sites without additional site-specific calibration. The strength of the ANN model 375 

should allow for this approach to be relatively easily adapted to any gaged catchment with similar parameters or site without 

prior transport measurements to estimate bedload flux based on a hydrograph and reach scale estimates of bed grain size and 

slope. Within the US Geological Survey National Water Information System, there are thousands of potential gages. 

Furthermore, this model could be paired with spatially distributed hydrologic models if sufficient grain size measurements 

could be made and could also be readily applied within global-scale sediment flux models (such as WBMSed, see Cohen et 380 

al., 2022) or in Earth System Models (e.g. Tan et al., 2021; Li et al., 2021) where additional necessary parameters can be 

modelled or estimated from global compilations (Tan et al., 2021; Li et al., 2021; Cohen et al., 2022).  

5 Conclusions 

This paper presented an artificial neural network (ANN) model for predicting river bedload. To do that, a large, measured 

bedload dataset, including 8,117 data points from 134 rivers, was gathered from the BedloadWeb, a free public online platform. 385 

The structure of the ANN included an input layer, an output layer, and five hidden layers with 600 neurons. The inputs to the 

model included temporally variable river discharge and flow width, and static measurements of bed slope and grain size 

(specifically D16, D50, D84, and D90). A sensitivity analysis was carried out to show the sensitivity of the model with the input 

parameters. The results showed that the ANN model was most sensitive to the river discharge and least sensitive to the largest 

grain size (D90). Our analysis suggests that including all available parameters in the ANN model better captures the covariations 390 

between the input and output parameters. Further, the ANN model provides robust prediction of the test (unseen) bedload data 

(n = 1,624) within the bounds of one order of magnitude. We highlight that an advantage of this ANN model is that it was 

developed on a broad range of rivers and appears to accurately capture the variation in the data, making this model a good 
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candidate for predicting bedload fluxes at gaged sites. The proposed machine learning model in this research lays the 

foundations for efficient and accurate predictions of river bedload within the broadest array of rivers to date. 395 
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Figure 1. (a) Structure of the ANN model developed in this study with 7 input parameters. (b) Learning curves illustrate the 

decline in mean squared errors for training and validation. (c) Variations in ML model performance in training and validation 

due to changes in model input variables. 610 
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Figure 2. Comparison between ANN prediction for the test data (gravel and sand bed rivers) and previous models of (A) 

Einstein, (B) Wong-Parker, (C) Wilcock-Crowe, and (D) Recking (2013). Note that calculated Einstein values below 1e-3 

g/s/m are not shown in the plot for legibility.  
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Figure 3. Example of the ANN model developed in this study applied to construct bedload transport rating curves for several 

sites. The numbers in parenthesis show the percentiles of each variable relative to the whole dataset. 

 

 620 


	1 Introduction
	2 Materials and Methods
	2.1 Data summary and preparation
	2.2 Machine learning structure and implementation
	2.3 Comparison of ANN performance with previous bedload models
	2.3.1. Einstein (1950)
	2.3.2. Wong and –Parker (2006)
	2.3.3. Wilcock and Crowe (2003)
	2.3.4. Recking (2013)


