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Introduction  

This supporting information provides five supplementary figures to illustrate the range of data 

used to train and test the ANN model (Fig. 1-2), the distributions of model predictions of bedload 

flux (Fig. 3) and the associated model errors (Fig. 4,5). We include five tables that summarize 

the data used to train and test the ANN model (Table 1-2), a description of the inputs to all 

bedload transport models used in the study (Table 3), and a summary of model errors (Table 4-

5). We provide supporting text describing the data used (Text S1) and an expanded description of 

how bedload transport predictions were carried out using four previously published bedload 

models (Text S2).  

 

 

Text S1 

Figure S1 shows the distribution of the data and the correlation between variables. It also shows 

that the data is not normally distributed. Further, it can be visually confirmed that the bedload 

does not vary monotonically with any individual input variable, suggesting a non-linear relation 

between the input and output variables. This visual observation is also supported quantitatively 

(Table S2). The original data used in this study are skewed toward lower values (Figure S1). 

However, applying the logarithmic functions tends to stretch the data toward normal distribution 

(Figure S2). 



 

Figure S1. Illustration of the original data used in this study. 

 



 

Figure S2. Illustration of the log-transformed, normalized data used in this study. 

 

 

 

 

 

 

 



Table S1. Statistical indices of all data used in this study. 

Index W  

(m) 

S  

(m / m) 

Q  

(m3/s) 

D16  

(m) 

D50  

(m) 

D84  

(m) 

D90  

(m) 

qs  

(g / s / m) 

mean 18.1 0.01529 23.7 0.0176 0.0568 0.1321 0.1671 31.9 

std 30.3 0.01813 61.1 0.0184 0.0451 0.1055 0.1435 65.8 

min 0.3 0.00009 0.00005 0.0001 0.0003 0.0004 0.0011 0.1 

max 306.0 0.13600 427.5 0.0980 0.2200 0.5580 1.0800 401.0 

25% 6.1 0.00380 1.7 0.0040 0.0220 0.0550 0.0754 1.1 

50% 9.0 0.01000 4.0 0.0120 0.0500 0.1120 0.1400 5.1 

75% 14.6 0.01900 11.3 0.0280 0.0790 0.1700 0.2171 24.8 

skew (original 

data) 

4.8 2.8 3.9 1.8 1.2 1.6 2.3 3.1 

skew (log-

scaled) 

0.5 -0.4 0.1 -0.9 -1.4 -1.5 -1.5 0.1 

 

Table S2. Correlation coefficients for all data used in this study. 

Variable W S Q D16 D50 D84 D90 qs 

W 1.00 -0.29 0.76 -0.07 -0.07 -0.10 -0.10 0.17 

S -0.29 1.00 -0.25 0.09 0.23 0.36 0.37 -0.09 

Q 0.76 -0.25 1.00 0.06 0.10 0.05 0.03 0.22 

D16 -0.07 0.09 0.06 1.00 0.79 0.58 0.51 -0.23 

D50 -0.07 0.23 0.10 0.79 1.00 0.89 0.86 -0.26 

D84 -0.10 0.36 0.05 0.58 0.89 1.00 0.98 -0.23 

D90 -0.10 0.37 0.03 0.51 0.86 0.98 1.00 -0.22 

qs 0.17 -0.09 0.22 -0.23 -0.26 -0.23 -0.22 1.00 

 

  



Text S2 

Details of Previous bedload Models 

We selected four bedload transport models with varying approaches and degrees of complexity 

to compare to and build intuition for the predictions of the ANN model. We selected: (1) a 

probabilistic model developed by Einstein (1950), (2) a physics-based model developed by 

Wilcock and Crowe (2003), and (3, 4) two empirical models from Wong and Parker (2006) and 

Recking (2013). This section describes how each of these models were developed to estimate 

mass (or volume) bedload rate (qb) based on measured data obtained from bedload.web. 

Einstein (1950) 

Einstein bedload model (1950) is probabilistic model that relates the flow intensity to the 

bedload. To estimate the volumetric bedload flux (𝑞𝑏𝑣; m2/s), the Einstein model was used as, 

1 − 
1

√𝜋
 ∫ 𝑒−𝑡2(0.413 𝜏∗⁄ )−2

−(0.413 𝜏∗⁄ )−2
𝑑𝑡 =  

43.5 𝑞∗

1+ 43.5 𝑞∗     (S-1) 

where 𝜏∗ is the dimensionless shear stress for uniform flow (Shields stress), 𝑡 is the integral 

parameter, and 𝑞∗ is the dimensionless bedload transport rate (or Einstein bedload number) 

defined as 

𝑞∗ =  
𝑞𝑏𝑣

𝑫√𝑔𝑅𝑫
        (S-2) 

where 𝑞𝑏𝑣 is the volumetric bedload transport rate (m2/s), 𝑔 is the gravitational acceleration 

(m/s2), 𝑅 is the dimensionless submerged specific gravity which was set to 1.65 in this research 

(Garcia, 2007), and D is D50 (m). To solve the left-hand-side of Eq. (S-1), the dimensionless 

shear stress (𝜏∗) was estimated by  

𝜏∗ =  
𝐻𝑺

𝑅𝐷
       (S-3) 

where 𝐻 is the water depth (m), and 𝑆 is the slope (m/m). The water depth in Eq. S-3 can be 

estimated by using the Manning Equation defined as  

𝑄 =
1

𝑛
 𝐴 𝑅ℎ

2/3𝑆1/2       (S-4) 

where Q is the river discharge (m3/s), A is the flow area (m2), 𝑅ℎ is the hydraulic radius (flow 

area divided by the wetted perimeter; m), and n is the Manning coefficient (m−1/3s). Assuming a 

rectangular channel and by the trial and error, the water depth can be obtained from the Manning 

equation in the form of 

𝑄 =
1

𝑛

(𝐵𝐻)5/3

(𝐵+2𝐻)2/3 𝑆1/2      (S-5) 

where B is the bottom width of the channel (in this study assumed equal to the flow width (W); 

m). The manning coefficient (n) in Eq. S-5 was obtained from the Manning-Strickler Equation 

(Garcia, 2007; Hosseiny & Smith, 2019) defined as 

𝑛 =  
𝐷50

21.1

1

6
       (S-6) 



Wong and –Parker (2006) 

Wong and Parker (2006) reanalyzed the data used to develop the foundational Meyer-Peter and 

Muller (MPM) equation (Meyer‐Peter & Müller, 1948) and found a better fit to data resulting in 

the following equation: 

𝑞∗ = 3.97(𝜏∗ −  0.0495)3/2     (S-7) 

where the 𝜏∗ is the non-dimensional shear stress (Eq. S-3) and the exponent is fixed at 3/2. The 

MPM equation is similar in form, but tends to overpredict bedload at higher discharges (Barry et 

al., 2004). Experimentally, bedload flux is well-described by Eq. S-7 and similar models employ 

excess shear stress raised to a 3/2 power, however application within different rivers typically 

requires that both the coefficient and threshold shear stress be treated as fitting parameters 

(Mueller et al., 2005; Phillips & Jerolmack, 2019). Here, for the sake of comparison, we have 

applied this equation using fixed coefficient and thresholds shown in Eq. S-7 as it was not 

possible to estimate these parameters at each site in the database. Once 𝑞∗ was obtained, using 

Eq. S-2 and measured D50, the volumetric bedload rate (qbv) was estimated.  

Wilcock and -Crowe (2003) 

Wilcock and Crowe (2003) is a physics-based transport law formulated to predict transport 

rates of individual grain size fractions, Di, as a function of the grain size distribution and 

associated mobility of each fraction. The volumetric transport rate per unit width (m2/s) for each 

size fraction, qbvi, is defined by the following function:  

𝑞𝑏𝑣𝑖 =  
𝐹𝑖 𝑢∗3

𝑞∗
𝑖

𝑅𝑔
      (S-8) 

where Fi is the proportion of fraction i in surface size distribution (set to 0.16, 0.5, 0.84, and 0.9 

for four measured sediment sizes used in this research), 𝑅 is the dimensionless submerged 

specific gravity, assumed 1.65 in this study, and u* is the shear velocity (m/s) defined as  

𝑢∗ =  √𝜏/𝜌        (S-9) 

in which 𝜏 is the shear stress (N/m2; Pa) and 𝜌 is the water density (kg/m3). 

We calculated the dimensionless bedload transport rate for each size fraction, 𝑞𝑖
∗ using 

𝑞𝑖
∗ = {

0.002  𝜑7.5                      𝜑 < 1.35

14 (1 −
0.894

√𝜑
)

4.5
             𝜑 ≥ 1.35

    (S-10) 

where 𝜑 is defined as 

 𝜑 = ( 
𝜏

𝜏𝑟𝑖
 )        (S-11) 

in which 𝜏𝑟𝑖 is the reference shear stress of size fraction i, defined as 

𝜏𝑟𝑖 =  𝜏𝑟𝑚 (
𝐷𝑖

𝐷𝑠𝑚
)𝑏𝑖        (S-12) 

where 𝜏𝑟𝑚 is the reference shear stress of mean size of bed surface, 𝐷𝑠𝑚 is the geometric mean 

sediment grain size (m) defined as 



𝐷𝑠𝑚 =  √𝐷84𝐷16      (S-13) 

and 𝑏𝑖 is the exponent defined as 

  𝑏𝑖 =  
0.67

1+ 𝑒
(1.5− 

𝐷𝑖
𝐷𝑠𝑚

)
,      (S-14) 

We calculated the average shear stress applied on particles, 𝜏 in Eq. S-11 (Pa), following Gaeuman et al., 

(2009) 

𝜏 = 0.052 𝜌 (𝑔 𝑆 𝐷65)0.25𝑈1.5    (S-15) 

where U is the cross sectionally averaged velocity (m/s), and 𝐷65 is the 65th percentile of the 

grain size distribution (m) (Gaeuman et al., 2009). D65 was assumed to be equal to the average of 

D50 and D84. Cross sectionally averaged velocity, U, was estimated by dividing the discharge by 

the area of the flow as  

𝑈 =  
𝑄

𝐵𝐻
        (S-16) 

where Q is the flow discharge (m3/s). We calculated the reference shear stress of mean size of bed 

surface, 𝜏𝑟𝑚 in Eq. S-12 (Pa) as 

𝜏𝑟𝑚 =  𝜏∗
𝑟𝑚 𝑅 𝜌 𝑔 𝐷𝑠𝑚  ,     (S-17) 

where 𝜌 is the water density (kg/m3). To do that, we calculated the non-dimensional mean 

reference shear stress, 𝜏∗
𝑟𝑚, for the geometric mean sediment diameter, 𝐷𝑠𝑚 (m), as 

𝜏∗
𝑟𝑚 = 0.021 + 0.015 𝑒(−20𝐹𝑠),    (S-18) 

where Fs is the bed sand fraction. To estimate the bed sand fraction based on four measured 

sediment sizes (D16, D50, D84, and D90), a hyperbolic tangent function was fitted to the four 

sediment sizes (Tanhfit) to generate a sediment grain size distribution model. This function was 

selected because it generally follows the common S-shape of the sediment grain size distribution. 

As such, the input to the Tanhfit function was the sediment size and the output was the percent 

finer. The sand fraction (the fraction of the bed materials between sediment sizes of 62x10E-6 m 

and 2x10E-3 m) for each measured datapoint then was estimated by 

𝐹𝑆 =  𝑇𝑎𝑛ℎ𝑓𝑖𝑡(2𝑥10𝐸 − 3) − 𝑇𝑎𝑛ℎ𝑓𝑖𝑡(62𝑥10𝐸 − 6)   (S-19) 

In this research, the transport rates for four classes of D16, D50, D84, and D90 were calculated and 

summed up as an estimate for the total bedload. 

Recking (2013) 

Recking bedload model (2013) was developed based on the two equations that were developed 

by Recking (2010). The model can be used for sand and gravel mixtures and was developed 

based on 6,319 field observations and 1,317 flume measurements (Recking, 2010). In this model, 

the sediment size 𝐷84 is considered to control sediment mobility. Recking (2013) is formulated 

as 

ϕ = 14 𝜏84
∗ 2.5/ [1 +  (𝜏𝑚

∗ /𝜏84
∗ )4]      (S-20) 



where ϕ is the Einstein dimensionless bedload parameter (ϕ =
𝑞𝑏𝑣

√𝑔𝑅𝐷84
3⁄  ) based on the 

volumetric bedload rate (𝑞𝑏𝑣). Further, 𝜏𝑚
∗  is the non-dimensional mobility Shields stress related 

to the transition from partial to full mobility, and can be estimated by  

{(5𝑆 + 0.06)(𝐷84/𝐷50)4.4√𝑆−1.5   for gravel
0.045                                              for sand

    (S-21) 

The non-dimensional Shields stress related to D84 (𝜏84
∗ ) in this method is characterized as 

𝜏84
∗ =  

𝑆𝑅ℎ

𝑅𝐷84
=  

𝑆

𝑅𝐷84[
2

𝑊
+74 𝑝2.6 (𝑔𝑆)𝑝 𝑞−2𝑝 𝐷84

3𝑝−1]
    (S-22) 

where p = 0.23 when 
𝑞

√𝑔𝑆𝐷84
3⁄ < 100 and p = 0.3 otherwise, and 𝑞 is the flow discharge per 

unit width (Recking, 2013).  

Finally, the volumetric transport rate (qbv) can be converted into mass transport rate by 

multiplying it by the density of the sediment (assumed 2650 kg/m3 for natural sediment). 

 

Table S3. A comparison between input variables into bedload models used in this study. Bolded 

variables represent direct measurements used from bedload.web.  

 

Table S4. Statistical indices of error ratio (Eq. S-23) for different methods used to estimate 

bedload for sand and gravel bed rivers in the test data.  

Method Min Max Std Mean Mean Absolute 

Einstein -1.0 133.2 7.0 0.3 1.9 

Wong and Parker -1.0 24620.1 1012.6 223.9 224.5 

Wilcock and Crowe -0.9 328482.3 17702.5 5441.9 5441.9 

Recking (2013) -0.9 169.6 13.2 4.0 4.7 

ANN -0.9 35.4 2.4 0.7 1.1 

Relative error (error ratio) was defined as 

Error Ratio =  
 (prediction−measured)

measured
  (S-23)  

Model Name Input Variables from Bedload.web 

Database 

Inputs Derived from 

Measured Data 

Einstein Q, W, S, D50 𝜏∗, 𝑛, 𝑅ℎ, 𝐴, 𝐻 

Wong-Parker Q, W, S, D50 𝜏∗, 𝑛, 𝑅ℎ, 𝐴, 𝐻 

Wilcock-Crowe Q, W, S, D16, D84 𝐹𝑖 , 𝑢∗, 𝑞∗, 𝜏, 𝜏𝑟𝑖, 𝜏𝑟𝑚, 𝐷𝑠𝑚, 𝑏,
𝐷65, U, 𝜏∗

𝑟𝑚, 𝐹𝑆  
Recking 2013 Q, W, S, D50, D84 𝜏𝑚

∗ , 𝜏84
∗  

ANN Q, W, S, D16, D50, D84, D90 - 



Table S5- Statistical indices for bedload flux predictions (qs) for the sand and gravel bed rivers in the test data used in this study 

relative to measurements.  

Method 
Average 

(g/s/m) 

Std 

(g/s/m) 

90% 

(g/s/m) 

75% 

(g/s/m) 

50% 

(g/s/m) 

25% 

(g/s/m) 

10% 

(g/s/m) 
Skew 

MAE 

(g/s/m) 

RMSE 

(g/s/m) 

Measured Data 42.04 74.40 133.55 41.47 9.46 2.00 0.60 2.63 - - 

ANN 39.55 60.10 132.10 53.95 11.06 1.84 0.62 2.03 16.51 44.00 

Einstein 48.38 202.20 126.20 5.29 7.35E-05 0.00 0.00 8.67 54.98 189.78 

Wong and 

Parker 1044.66 1832.19 3535.31 1138.42 316.99 0.00 0.00 2.98 1007.58 2073.96 

Wilcock and 

Crowe 16377.56 

28458.1

4 

39188.8

8 

18390.1

0 8017.39 2515.76 662.07 5.34 

16335.6

9 32802.60 

Recking (2013) 46.54 81.09 138.43 55.03 13.50 2.02 0.37 3.39 40.30 78.83 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S3- The distribution of the predictions for the sand and gravel bed rivers obtained from 

different models.  

 

 

 

 

 

 



 

 

 

 

Figure S4. Variations in the absolute error ratio, Eq. S-23, of predicted bedload discharge 

obtained from the ANN model with the input variables 

 

 



 

 

 

Figure S5. Variations in prediction errors obtained from trained ML model for all river sites used 

in this study.  
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