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Abstract.

Landscape evolution models (LEMs) are useful for understanding how large scale processes and perturbations influence the
development of planetary surfaces. With their increasing sophistication and improvements in computational power they are
finding greater uptake in analyses at finer spatial and temporal scales;-hewever. For many LEMs, the planetary-land surface is
represented by a grid of regularly spaced and sized grid cells, or pixels, referred to as a Digital Elevation Model (DEM), yet
despite the importance of the DEM to LEM studies there has been little work to understand the influence of grid cell size (i.e.
resolution) on model behaviour-ane-eutputs. This is despite the choice of grid cell size being arbitrary for many studies, with
users needing to balance detail with computational efficiency. Using the global sensitivity analysis Morris Method, the
sensitivity of the CAESAR-Lisflood LEM to the-BEM-_grid cell size is evaluated relative to a set of key-influential user-
defined parameters, showing it had a similar level of influence as a key hydrological parameter and the choice of sediment
transport law. Outputs relating to discharge and sediment yields remained stable across different grid cell sizes until the cells
became so large that the representation of the hydrological network degraded. Although total sediment yields remained steady
when changing the grid cell sizes, closer analysis revealed that using larger grid resulted in it being built up from fewer yet
more geomorphically-active events, risking outputs that are ‘the right answer but for the wrong reasons”. These results are
important considerations for modellers using LEMs and the methodologies detailed provide solutions to understanding the

impacts of modelling choices on outputs.

1 Introduction

Landscape evolution models_(LEMSsS) simulate the morphodynamic change of landscapes typically over long time scales
ranging from decades to multi-millennia (van der Beek, 2013). Whilst they-have-beerl EMs were predominantly developed
for predeminanthy-experimental purposes, such as to understand broad scale basin behaviours over these-long time scales, the

increasing sophistication of the models, ushereding in an era of “second generation” LEMsS (Coulthard et al., 2013). This; has

seen themL EMs increasingly used over shorter time frames with smaller grid cell sizes ard-for operational purposes that-could
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deseribed-as-eperational-or to support decision making (e.g. {Environment Agency, 2021; Feeney et al., 2022; Ramirez et al.,

2022; Wong et al., 2021).- Thise operationalisation of LEMs brings with it a need to necessitates-a-deeper-understanding
eunderstandf model limitations and uncertainties where-these-mightthat may have a bearing over real-world decisions.

Landscape change is often simulated by applying process--based rules of hydrology, erosion and deposition to change the
elevation of cells in a regular grid, or peints-in an irregular mesh, that represents the land surface. The spatial resolution of this
virtual surface is an important consideration due to two contrasting effects. Firstly, if it is too coarse (e.g. larger grid cells) it
may smooth out the terrain too much and miss out key landscape features. Secondly, a finer of higher spatial resolution will
better represent features but increases the number of cells and points for the area simulated that in turn increases the
computation time (halving the grid cell size results in a square increase in the number of grid cells). Therefore, where high

resolution data is available, a compromise DEM grid cell size is used by LEMs that captures drainage basin and hillslope

features whilst maintaining a low number of grid cells (Hancock, 2005; Hancock et al., 2016).

Unexpectedly, in-Landseape EvelutionMedelling-there are few studies that specifically address the impacts of BEM-grid cell
resolution withon LEMs. Fheugh-Schoorl et al., (2000) used the LAPSUS model to simulate landscape development on a
series of artificial DEMs with varying grid cell sizes-efsimple-slopes-and-catchments-with-reselutions-of-1,-3,-9,-37-and-81m
respectively,—Sehoorl-et-al{2000)-results showed and showed that with larger grid cells total erosion or sediment yield from

the simulations increased and-that-this-was-due to an in increase in erosion coupled with a decrease in sedimentation. They

argued that the erosion increase was due to the model parameterisation, but that a decrease-coarsening in the physical
representation of the landscape with larger grid cells made sedimentation more difficult, concluding that it is important that
the extent of the landscape and its relief characteristics are realistically represented by the used DEM. PeHetier,(2010)-noted

A-HmpD o o e—in-LEEM where—usin argse dece oW-path an-become-dominated-bv-onhv-being-able-to

sensktivity—For—example—Hancock, (2006) showed a sensitivity in LEM outputs to DEM’s created with different
kriging/interpolation methods. These changes in the representation can then have important cumulative impacts if the
landscape is modelled as Landscape-Evelution-MedelsLEMs may exacerbate, or deepen, concavities or other features
ultimately leading to different shape topographies (ljjasz-Vasquez et al., 1992; Willgoose et al., 2003). Hancock et al., (2016)

illustrated this by perturbating a DEM by different ranges of random values and simulating millennial timescale changes on
the different surfaces using the SIBERIA LEM. They found that an increasing magnitude of random surface variability did not
significantly alter total basin sediment yields, but greatly changed the temporal pattern or delivery of sediment output.
Furthermore, after 10 000 years of simulation the alternative positions of initial random perturbations strongly influenced local
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patterns of hillslope erosion and landscape evolution - although general landscape metrics were very similar. Hancock and
Evans (2006) looked at two small catchments in North Australia using 10, 20, 30, 40 and 50m grid cells to evaluate the impact
of reseltuienresolution in determining channel head location and the area—slope relationship and cumulative area distribution
that is a key driver in the SIBERIA (Willgoose and Riley, 1998) LEM. Their findings showed a clear drop in the slope/area
relationship with larger grid cells — due largely to the smoothing and subsequent simplification of topography.—Finaty;
Finlayson and Montgomery (2003) show a major degradation of DEM mean slope values when resampling from 30 to 90 to

900m — representing the smoothing of features and lowering of gradients.- Finally, Pelletier, (2010) noted an impact of grid

cell size in LEMs where using larger grid cells flow paths can become dominated by only being able to change direction by

45 or 90 degrees.

fields:-Looking outside the immediate LEM literature, with—+n cellular morphodynamic models (similar in many ways to

LEMSs) Doeschl-Wilson and Ashmore (2005); examined the Murray and Paola (1994) braided river model and noted that the
model performance was strongly affected by the spatial scales at which the input topography were represented. They
demonstrated that when tested over a range of different spatial resolutions the model had a ‘preferred’ scale where it self-
adjusted to have a channel width with a certain number of cells (rather than a distance represented by a number of cells)
(Doeschl-Wilson and Ashmore, 2005). Possible reasons why there is a sensitivity to grid resolution in cellular approaches was
discussed by Nicholas (2005), who stated that this was a consequence of the water and sediment routing equations used in
simplified cellular models. For example, where sediment and water were routed in proportion to local bed slopes, the
calculations may become sensitive to very small variations in elevation as grid cell resolution changes (Nicholas 2005), that
also shows a weakness in using local bed slope to represent the energy slope. This is especially important in a LEM or
morphodynamic model where these elevations will be changing every iteration in response to erosion and deposition — this

effect will be amplified or reduced by grid resolution.

The two dimensional flow of water over landscapes is a key process in LEMs and for two dimensional hydraulic models of
flood inundation the effects of BEM-gird cell resolution have been extensively studied (e.g. (Horritt and Bates, 2001; Savage
et al., 2016). Horritt and Bates, (2001) tested the LISFLOOD-FP inundation model against satellite derived flood inundation
extents over DEMs with gird cell resolutions ranging from 10 to 1000m. Overall, they showed a good comparison between
inundation area/extent over all resolutions (using the same model calibrations) though comparison of flood wave travel time
was notably different. Interestingly, this shows how BEM-grid cell resolution was less important in spatial matches between
observed and modelled water extents, but certainly interfered with the equations determining where water went (travel times)
in effect simplifying them to a point where they did not perform adequately with respect to resolution. Claessens et al., (2005)
summarise these effects neatly: that the grid cellDEM resolution acts to firstly simplify the topographic data, and secondly any
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model processes or governing equations that operate below this resolution will therefore also be simplified. This can lead to
apparent gains in accuracy due to greater process representation within the model being countered by the coarser model
resolution (Claessens et al., 2005). Horritt and Bates, (2001) also described how changes in topographic detail with different
resolution DEMs also affected floodplain storage. Similar topographic degradation affecting model behaviour was observed
by Savage et al., (2016) where using LISFLOOD-FP to simulate inundation over a wide range of resolutions they noted that
model performance degraded where grid cells were larger than 50m. This was due to the channel being poorly represented
within the DEM leading to increased floodplain water depths — lower velocities that all affected negatively model performance.
Importantly, Savage et al., (2016) also observed how model resolution affected parameter sensitivity a secondary affect aside
from model performance. This was also a key finding of Lim and Brandt, (2019) using the hydraulic component of CAESAR-
Lisflood LEM to examine any dependency between DEM resolution, Manning’s n roughness coefficient, and model
performance. Comparing model inundation extents and depths for flood events on two rivers to simulation results over BEM
grid cell resolutions from 1 — 50m, they demonstrated that high-resolution DEMs performed better with higher Manning’s n
values whereas lower n values gave better outputs for lower resolution DEMs. Lim and Brandt, (2019) also showed that whilst
coarser resolution DEMs generated better value performances according to their metrics, there were more discrepancies
between known flooding and predicted water surface elevations illustrating a dependency on the metric used for assessment.
Choice of metric for assessing model performance is also an important issue presently facing LEM studies, with metrics based

on catchment outputs displaying different behaviours to those derived from changes within the catchment (Skinner et al.,
2018).

In Computational Fluid Dynamics (CFD) where more complex numerical methods are used for hydraulic modelling, the effects
of different grid resolutions or meshing methods are widely considered. Where CFD model simulations are applied to
engineering solutions there are controls and standards for the verification of models (Vassiliadis et al., 2001) that are also
reflected in the journal publication policies such as “Solutions over a range of significantly different grid resolutions should
be presented to demonstrate grid independent or grid-convergent results” (Roache, 2019; Roache et al., 2009). Here grid
independent (or grid independence) refers to whether errors or differences between different resolution simulations are
sufficiently small. Hardy et al., (2003) provide a clear summary and example of methods for assessing grid independence using
a ‘Grid Convergence Index approach’. Nicholas (2005) comments that whilst grid -independence is considered a key
requirement of computational fluid dynamics (CFD) approaches — it may not be reasonable to use such approaches in cellular
methods. A logical step might be to use methods from CFD grid independence testing on LEM models. However, grid
independence tests are largely during steady flow conditions (e.g. Hardy et al., (2003)) measuring flow velocities in X, y, and
z directions (for example) but sediment transpert-processes in LEM and morphodynamic models areis highly episodic and
non-linear even when averaged over medium time scales (Coulthard et al., 2010; Coulthard and Wiel, 2012). Therefore, the
availability and choice of metrics to assess LEM performance is difficult.
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This issue of which metrics to use to assess LEM model performance was considered by (Skinner et al., 2018) where they
carried out a multidimensional sensitivity analysis on the CAESAR-Lisflood (Coulthard et al., 2013) LEM. Previously, such
studies have been hampered by long model run times making Monte-Carlo style analyses difficult, but here Skinner et al.,
(2018) used the Morris Method (Morris, 1991) to analyse the sensitivity of 15 different model parameters on model
performance. (Figure-1)-—Key to this study was the assessment of model behaviours across 15 model functions across four
core behaviour groups: catchment sediment yields; internal geomorphology; catchment discharge; and, model efficiency.

Skinner et al., (2018)’s work also provides is-with-a framework within which we could look at the impact of grid cell size on

both overall model performance and in relation to the other model parameters tested. In effect providing us with a way of

making a comprehensive assessment of the impact of grid cell size on LEM performance.
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litis clear from the literature that small changes

in the landscape (as represented by DEMs) can have an impact on LEM outputs. Fherefore-as-theAs Fthe spatial resolution of
a DEM affects the representation of topographic features, resolution will have an impact on model performance and output.
LEMs may be especially sensitive to this as they typically use local gradients to determine erosion and deposition_thus
potentially generating a positive feedback if erosion and deposition increases local changes. Fhere-are-existing-methods-and
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In this paper we address these issues above-and; by using the CAESAR-Lisflood LEM to simulate erosion and deposition over
a wide range of spatial-DEMqrid cell sizes—reselutions. Outputs metricsfrom-these-simulations representing geomorphic,

hydrological, and model performance are then assessed using the Morris Method to establish how BEM-grid cell sizeresetution
affects model results and performance-and-results; and importantly whether there are any parameter sensitivities to these
resolutions. Our-The foecusaim is to understand how the-hypothetical-medel-sensitivitiesuser choice of grid resolution might
influence outputs withever an operational use of the modelineludingcatchment choiceand-the timeseales skmulated:, which

has influenced our choice of catchment and timescales simulated.

2 Methods
2.1 Study Catchment and DEM data

Testing-of DEM-grid-cel-resolutionisThe model tests were carried out on a DEM of Tin Camp Creek in the Northern Territory,
Australia (see Figure 12). Tin Camp Creek has a catchment area of 0.5km? and is located within a tropical climate, where its

watercourse is ephemeral — rainfall in the wet season features small, intense convective events. It is a small sub-catchment of
the wider Tin Camp Creek system and has been used previously for studies using LEMs (Hancock et al, 2010; Hancock, 2006;
Hancock, 2012; Skinner et al, 2018). The DEM used is produced from high resolution digital photogrammetry and available
at 2m grid resolution at its finest (as described by Hancock, 2012). For this study the 2m DEM was resampled using the Raster
Resample tool in ArcMap v10.4.1 to grid cells sizes between 2 and 30m at 2m iterations and a final 50m grid resolution (see
Appendix BA). The Echoice of small area DEM is deliberate to reduce model run times — especially when using the smallest

grid cell sizes. The 2m resolution proved to be too computationally expensive so was not used.
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2.2 the CAESAR-Lisflood model

The LEM used wais the CAESAR-Lisflood model (Coulthard et al., 2013). A full description of the CAESAR-Lisflood model
can be found in Coulthard et al. (2013), and its core functionality is only summarised here. The model utilises an initial DEM
built from a regular grid of cells, and in the catchment mode (as used in this model set up) is driven by a rainfall timeseries
that can be lumped or spatially distributed (Coulthard and Skinner, 2016b). At each timestep the rainfall input is converted to
surface runoff using TOPMODEL (Beven and Kirkby, 1979), and distributed across the catchment and routed using the
LISFLOOD-FP component (Bates et al., 2010). The CAESAR component of the model drives the landscape development
using sediment transport formulae based on flow depths and velocities derived from the LISFLOOD-FP component. Bed load
is distributed to neighbouring cells proportionally based on relative bed elevations. This study has not used the suspended
sediment processes in the model. The model can handle nine different grain sizes, and information is stored in surface and sub-
surface layers where only the top surface layer is ‘active’ for erosion and deposition. A comprehensive description of this

process can be found in (Van De Wiel et al., 2007)._The model has capability for bedrock erosion but the set up for this study

does not include a representation of bedrock and is unlikely to be influential over the 30 year operational timeframe used. An

initial soil layer is determined globally using the information within the Grain Size set parameter (see Table 1).

CAESAR-Lisflood is freely available and since 1996 there have been 119 published studies using the model over a wide range
of temporal and spatial scales (Skinner and Coulthard, 2022). Here we used CAESAR-Lisflood v1.9 with modifications to
allow it to run in batch mode and to automatically collect information relevant to the behavioural functions (outlined below).

2.3 Morris Method

Our study used the Morris Method (MM) described in Ziliani et al. (2013), i.e. the original MM of Morris (1991), as extended
by Campolongo et al. (2007), and applied the “sensitivity” package in the R Statistical Environment (Pujol, 2009) to generate
the parameter sets for the Sensitivity Analysis (SA). To set up the MM we selected a number of parameters to be assessed,
specifying a minimum and maximum range for each, plus a number of iterative steps. The parameter values are equally spaced
based on the range and number of steps — for example, a parameter with a range of 2 to 10 and 5 incremental steps would have
available values of 2, 4, 6, 8, and 10. This was carried out for each parameter and where possible the same number of
incremental steps were used for each. For a full description of the MM applied to CAESAR-Lisflood see Skinner et al., (2018)
and a summary is provided below.

The MM uses a system of repeats to sample the global parameter space. For each parameter, the user defines minimum and
maximum values and the number of incremental steps within that range to choose values from (e.g., with a minimum value of

2, amaximum value of 10, and five incremental steps, the values of 2, 4, 6, 8, and 10 would be available). The first test in each

repeat uses a randomly selected set of parameters determined from the whole available parameter space. The second test in the
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repeat uses the same parameter set yet varies a single randomly determined parameter to a different randomly determined value
from those available. That parameter would then be excluded from selection for change for the rest of this repeat, with the

process continuing until all parameters have been changed once.

The sensitivity of the model to changes in parameter values is evaluated by the changes of objective function values between
sequential tests within repeats, relative to the number of incremental steps the parameter value has been changed by (e.0.,

where-for thea set of values 2, 4, 6, 8, and 10, a switch from an initial value of 4 to either 2 or 6 is one step, a change to 8 is

two steps, and 10 is three). The change in objective function score between two sequential tests divided by the number of
incremental step changes is an elementary effect (EE) of that objective function and the parameter changed (Equation 1). After
all tests for each grid resolution have been performed, the main effect (ME) for each objective function and parameter is
calculated from the mean of the relevant EEs — the higher the ME the greater the model’s sensitivity. Alongside the ME, the
standard deviation of the EEs is also calculated as this provides an indication of the non-linearity within the model.

Equation 1

d = |Y(X1X2 s o1, X Ay Xir, o, X)) — Y (X120 o, Xy, X Xign ~--.xk)|
b= |

4

where d;; is the value of the j" EE (j = 1,...,r; where r is the number of repetitions (here r = 100)) of the i'" parameter (e.g.
i =1 refers to sediment transport formula, see Table 1), x; is the value of the i" parameter, k is the number of parameters
investigated (here 7), y(xy, x,, ..., x;) is the value of the selected objective function, and A; is the change in incremental steps
parameter i was altered by.

In Skinner et al., (2018) a MM test was applied to a DEM of the same Tin Camp Creek basin used for this study, using a single
10m grid cell size (see Figure 12). That test used a sub-set of 15 parameters and 100 repeats, producing 1600 tests in the total.
Here we are testing 15 different resolutions so the same level of scrutiny of parameters and repeats would result in 24,000 tests
to be required. To reduce the computational expense, we reduced the 15 parameters to the 7 that exhibited the greatest impacts
on model behavior in Skinner et al., (2018). In addition, the number of repeats was reduced to 10 in line with the minimum
number suggested by Ziliani et al., (2013). This reduced the total number of tests to 80 for each DEM resolution and 1,200 in
total. The only difference in the parameter value ranges to Skinner et al., (2018) is the inclusion of Meyer-Peter Muller (Meyer-
Peter and Muller, 1948) as an additional sediment transport law, with changes between any of the sediment transport laws
being counted as a single iterative step change. Meyer-Peter Muller was included as this formula had been added to version
1.9d of CAESAR-Lisflood since the Skinner et al., (2018) analysis and enabled a greater number of ‘steps’ to be included in
the sediment transport component. The parameters and their values are shown in Table 1.
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Table 1 — Parameters selected for the MM test, the number of iterative steps applied, and the values used for each
iterative step. A description of the role of these parameters within the model is provided in Appendix A.

Code

1 Wilcock & Crowe / 2 Einstein / 3 Meyer Peter Muller

Sediment Transport Formula

Grain Size Set Set 1; Set 2; Set 3; Set 4; Set 5

Manning's n Roughness 0.03; 0.0325; 0.035; 0.0375; 0.04

m value used by TOPMODEL 0.005; 0.0075; 0.01; 0.0125; 0.015

Vegetation Critical Shear Stress (Pa) 2;3.25;45;5.75; 7

Grass Maturity Rate (yr) 0.5; 0.875; 1.25; 1.625; 2

Max Erode Limit (m) 0.001; 0.0015; 0.002; 0.0025; 0.003

In Skinner et al., (2018) a model function approach to evaluating MM was developed and tested using the CAESAR-Lisflood
model. The main purpose of the model function approach was to mitigate for the fact that there is almost always a lack of
suitable observation data to use in evaluating the performance of LEMs via an objective function approach (an objective
function being the error score between modelled and observed data). Instead, Skinner et al., (2018) proposed a series of metrics
that would assess key behaviours in the model relating to its outputs and assess MM against changes in the model’s behaviour.
Here we use the same 15 model functions as Skinner et al (2018) and these are shown in Table 2. To summarise the large
amount of information produced, the ME of each parameter and model function combination was normalised based on the
proportion of the ME for highest ranking parameter for that model function — therefore the highest ranked parameter for each
model function always scored 1. The scores for each parameter were aggregated for across all model functions based on the
mean of the scores. The model functions were further sub-divided into core behaviour groups (Table 2) and the scores
aggregated again for each core behaviour. The same was also done, separately, for the standard deviations of each parameter
and model function.

Table 2 — Core behaviours of the model and the Model Functions adopted to assess changes to these (from Skinner et
al, 2018).

Catchment Sediment Yield Total Sediment Yield
Mean Daily Sediment Yield

11



285

290

295

300

Peak Daily Sediment Yield
Time to Peak Sediment Yield
Days when Sediment Yield > baseline

Catchment Hydrology Total Discharge
Mean Daily Discharge
Peak Daily Discharge
Time to Peak Discharge

Days when Discharge > baseline

The same set of repeats and parameter changes were used for each grid cell size to allow direct comparison. Finally, using the
full set of results across all of the grid cell sizes a further analysis was performed with grid cells size as an additional parameter
to assess its relative influence on the model compared to the other 7 parameters. This was done by using 5 steps (4, 8, 12, 16,
and 20m resolution) and randomly selecting the starting grid cell size for each repeat, the position in the sequence it is changed,
and the change in steps.

Each individual test within the repeats consisted of 30 years of simulations using the same input rainfall. The rainfall was
produced by using 23 year observation record from a single raingauge at Jabiru Airport, with the first 7 years repeated for the
full 30 year input. This was applied as a lumped input at a 1h timestep.

2.4 Stream network analysis

To examine how stream network metrics changed with DEM resolution, the Hydrology tools in ArcMap 10.4.1 were used to
extract stream networks and stream orders for each resolution with the Strahler (1957) and Shreve (1966) methods. Both
methods are top-down approaches to stream ordering in that they start from the source and increase in value towards the outlet.
The Strahler method (Strahler, 1957) calculates the depth of the drainage network — a 2" order stream begins only where two
or more 1% order streams meet, and a 3" order only where two or more 2" order stream meet, and so on. As such the maximum
stream order number does not provide information on the number of individual streams within the network. The Shreve method
(Shreve, 1966) assigns stream values cumulatively, so where two streams with a value one meet, the downstream becomes 2,
and unlike the Strahler method, lower order tributaries are including in the ordering, so where a stream with value 1 joins with
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a stream with value 2, the downstream section is assigned a value of 3. Therefore, the stream number at the outlet provides
information on the number of streams in the system. In ArcMap a stream identification threshold (in effect delineating 1 order
streams) was set at 2000m? - rounded up to the nearest whole pixels. The total number of 1% order streams calculated by the
Strahler method was estimated by converting the raster output to a polyline and selecting only 1% order streams. With the
exception of the 2m resolution, the analysis was performed on the post-test DEM for Test 1 of each resolution test to allow a
drainage network to be established on spun-up into the DEM surface — this negated the need to pit fill the DEM before the
network analysis.

3. Results
3.1 Influence of grid cell size on model outputs (Model Functions)

The ME for each of the 15 model functions were calculated for each of the grid cells sizes and the patterns observed for each
Model Function are summarised in Table 3. The box and whisker plots of Figure 23 highlights these patterns for four of the
Model functions (plots for all of the Model Functions can be viewed in the Appendix BC). Figure 23 shows that the mean total
erosion and sediment yields output by the model remain similar for grid resolutions up to 24-30m, although the spread of
values across the 80 tests vary more with larger grid cells. However, the peak daily sediment yields increase with larger grid
cells, whereas there is a decrease in the number of days where sediment yield is over the baseline. This indicates that with
larger grid cells there are less events that produce erosion and sediment outputs offset by an increase in erosion and sediment
outputs during larger events.

Table 3 - Visual interpretation of influence of grid resolution on the 15 model functions.

Model Function Pattern with Coarse Grid Resolution where Patterns breaks
Resolution down
Total sediment yield little change >22m
Mean daily sediment yield little change >22m
Peak daily sediment yield increase >24m
Time to peak sediment yield little change >26m
Days when peak sediment yield > decrease =
baseline
Total net erosion little change >22m
Total net deposition decrease >10m
Area with > 0.02m erosion decrease -
Area with > 0.02m deposition little change =
Total discharge decrease -

13
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Figure 3-2 - Box and whisker plots showing the mean and spread of model outputs at each grid resolution, for (a) Total
Sediment Yield, (b) Total Net Erosion), (c) Peak Daily Sediment Yield, and (d) Days over Sediment Yield Threshold.

The box and whisker lots in Figure 23 aggregate the results of 80 tests and could conceal a range of varying model behaviours
when using the same parameter set across the different grid cell sizes. To check this, 5 parameter sets, or tests (numbered as
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the order they appear in the MM), were randomly selected and plotted in Figure 34. This shows that the individual tests follow
the overall trends displayed in Figure 23.
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