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Abstract.  

 

Landscape evolution models (LEMs) are useful for understanding how large scale processes and perturbations influence the 

development of planetary surfaces. With their increasing sophistication and improvements in computational power they are 10 

finding greater uptake in analyses at finer spatial and temporal scales, however. For many LEMs, the planetary land surface is 

represented by a grid of regularly spaced and sized grid cells, or pixels, referred to as a Digital Elevation Model (DEM), yet 

despite the importance of the DEM to LEM studies there has been little work to understand the influence of grid cell size (i.e. 

resolution) on model behaviour and outputs. This is despite the choice of grid cell size being arbitrary for many studies, with 

users needing to balance detail with computational efficiency. Using the global sensitivity analysis Morris Method, the 15 

sensitivity of the CAESAR-Lisflood LEM to the DEM  grid cell size is evaluated relative to a set of key influential user-

defined parameters, showing it had a similar level of influence as a key hydrological parameter and the choice of sediment 

transport law. Outputs relating to discharge and sediment yields remained stable across different grid cell sizes until the cells 

became so large that the representation of the hydrological network degraded. Although total sediment yields remained steady 

when changing the grid cell sizes, closer analysis revealed that using larger grid resulted in it being built up from fewer yet 20 

more geomorphically-active events, risking outputs that are ‘the right answer but for the wrong reasons”. These results are 

important considerations for modellers using LEMs and the methodologies detailed provide solutions to understanding the 

impacts of modelling choices on outputs. 

1 Introduction 

Landscape evolution models (LEMsS) simulate the morphodynamic change of landscapes typically over long time scales 25 

ranging from decades to multi-millennia (van der Beek, 2013). Whilst they have beenLEMs were predominantly developed 

for predominantly experimental purposes, such as to understand broad scale basin behaviours over these long time scales, the 

increasing sophistication of the models, ushereding in an era of “second generation” LEMsS (Coulthard et al., 2013). This, has 

seen themLEMs increasingly used over shorter time frames with smaller grid cell sizes and for operational purposes that could 
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described as operational or to support decision making (e.g. (Environment Agency, 2021; Feeney et al., 2022; Ramirez et al., 30 

2022; Wong et al., 2021).  Thise operationalisation of LEMs brings with it a need to necessitates a deeper understanding 

ounderstandf model limitations and uncertainties where these mightthat may have a bearing over real-world decisions. 

 

Landscape change is often simulated by applying process- based rules of hydrology, erosion and deposition to change the 

elevation of cells in a regular grid, or points in an irregular mesh, that represents the land surface. The spatial resolution of this 35 

virtual surface is an important consideration due to two contrasting effects. Firstly, if it is too coarse (e.g. larger grid cells) it 

may smooth out the terrain too much and miss out key landscape features. Secondly, a finer of higher spatial resolution will 

better represent features but increases the number of cells and points for the area simulated that in turn increases the 

computation time (halving the grid cell size results in a square increase in the number of grid cells). Therefore, where high 

resolution data is available, a compromise DEM grid cell size is used by LEMs that captures drainage basin and hillslope 40 

features whilst maintaining a low number of grid cells (Hancock, 2005; Hancock et al., 2016). 

 

Unexpectedly, in Landscape Evolution Modelling, there are few studies that specifically address the impacts of DEM grid cell 

resolution withon LEMs. Though Schoorl et al., (2000) used the LAPSUS model to simulate landscape development on a 

series of artificial DEMs with varying grid cell sizes of simple slopes and catchments with resolutions of 1, 3, 9, 37 and 81m 45 

respectively,. Schoorl et al., (2000) results showed and showed that with larger grid cells total erosion or sediment yield from 

the simulations increased and that this was due to an in increase in erosion coupled with a decrease in sedimentation. They 

argued that the erosion increase was due to the model parameterisation, but that a decrease coarsening in the physical 

representation of the landscape with larger grid cells made sedimentation more difficult, concluding that it is important that 

the extent of the landscape and its relief characteristics are realistically represented by the used DEM. Pelletier, (2010) noted 50 

an impact of grid cell size in LEM’s where using larger grid cells flow paths can become dominated by only being able to 

change direction by 45 or 90 degrees.  

 

The lack of DEM resolution studies is someone surprising, considering there is research indicating the sensitivity of LEM’s to 

the DEM usedWhere LEM studies have considered the influence of grid cell resolution, they have often demonstrated a 55 

sensitivity. For example, Hancock, (2006) showed a sensitivity in LEM outputs to DEM’s created with different 

kriging/interpolation methods. These changes in the representation can then have important cumulative impacts if the 

landscape is modelled as Landscape Evolution ModelsLEMs may exacerbate, or deepen, concavities or other features 

ultimately leading to different shape topographies (Ijjasz-Vasquez et al., 1992; Willgoose et al., 2003). Hancock et al., (2016) 

illustrated this by perturbating a DEM by different ranges of random values and simulating millennial timescale changes on 60 

the different surfaces using the SIBERIA LEM. They found that an increasing magnitude of random surface variability did not 

significantly alter total basin sediment yields, but greatly changed the temporal pattern or delivery of sediment output. 

Furthermore, after 10 000 years of simulation the alternative positions of initial random perturbations strongly influenced local 
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patterns of hillslope erosion and landscape evolution - although general landscape metrics were very similar. Hancock and 

Evans (2006) looked at two small catchments in North Australia using 10, 20, 30, 40 and 50m grid cells to evaluate the impact 65 

of resoltuionresolution in determining channel head location and the area–slope relationship and cumulative area distribution 

that is a key driver in the SIBERIA (Willgoose and Riley, 1998) LEM. Their findings showed a clear drop in the slope/area 

relationship with larger grid cells – due largely to the smoothing and subsequent simplification of topography. Finally, 

Finlayson and Montgomery (2003) show a major degradation of DEM mean slope values when resampling from 30 to 90 to 

900m – representing the smoothing of features and lowering of gradients.. Finally, Pelletier, (2010) noted an impact of grid 70 

cell size in LEMs where using larger grid cells flow paths can become dominated by only being able to change direction by 

45 or 90 degrees.  

 

 

Due to the paucity of LEM studies considering the sensitivity to grid cell resolution, we need to look wider at similar modelling 75 

fields. Looking outside the immediate LEM literature, with In cellular morphodynamic models (similar in many ways to 

LEMs) Doeschl-Wilson and Ashmore (2005), examined the Murray and Paola (1994) braided river model and noted that the 

model performance was strongly affected by the spatial scales at which the input topography were represented. They 

demonstrated that when tested over a range of different spatial resolutions the model had a ‘preferred’ scale where it self-

adjusted to have a channel width with a certain number of cells (rather than a distance represented by a number of cells) 80 

(Doeschl-Wilson and Ashmore, 2005). Possible reasons why there is a sensitivity to grid resolution in cellular approaches was 

discussed by Nicholas (2005), who stated that this was a consequence of the water and sediment routing equations used in 

simplified cellular models. For example, where sediment and water were routed in proportion to local bed slopes, the 

calculations may become sensitive to very small variations in elevation as grid cell resolution changes (Nicholas 2005), that 

also shows a weakness in using local bed slope to represent the energy slope. This is especially important in a LEM or 85 

morphodynamic model where these elevations will be changing every iteration in response to erosion and deposition – this 

effect will be amplified or reduced by grid resolution.   

 

The two dimensional flow of water over landscapes is a key process in LEMs and for two dimensional hydraulic models of 

flood inundation the effects of DEM gird cell resolution have been extensively studied (e.g. (Horritt and Bates, 2001; Savage 90 

et al., 2016). Horritt and Bates, (2001) tested the LISFLOOD-FP inundation model against satellite derived flood inundation 

extents over DEMs with gird cell resolutions ranging from 10 to 1000m. Overall, they showed a good comparison between 

inundation area/extent over all resolutions (using the same model calibrations) though comparison of flood wave travel time 

was notably different. Interestingly, this shows how DEM grid cell resolution was less important in spatial matches between 

observed and modelled water extents, but certainly interfered with the equations determining where water went (travel times) 95 

in effect simplifying them to a point where they did not perform adequately with respect to resolution. Claessens et al., (2005) 

summarise these effects neatly: that the grid cellDEM resolution acts to firstly simplify the topographic data, and secondly any 
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model processes or governing equations that operate below this resolution will therefore also be simplified. This can lead to 

apparent gains in accuracy due to greater process representation within the model being countered by the coarser model 

resolution (Claessens et al., 2005). Horritt and Bates, (2001) also described how changes in topographic detail with different 100 

resolution DEMs also affected floodplain storage. Similar topographic degradation affecting model behaviour was observed 

by Savage et al., (2016) where using LISFLOOD-FP to simulate inundation over a wide range of resolutions they noted that 

model performance degraded where grid cells were larger than 50m. This was due to the channel being poorly represented 

within the DEM leading to increased floodplain water depths – lower velocities that all affected negatively model performance. 

Importantly, Savage et al., (2016) also observed how model resolution affected parameter sensitivity a secondary affect aside 105 

from model performance. This was also a key finding of Lim and Brandt, (2019) using the hydraulic component of CAESAR-

Lisflood LEM to examine any dependency between DEM resolution, Manning’s n roughness coefficient, and model 

performance. Comparing model inundation extents and depths for flood events on two rivers to simulation results over DEM 

grid cell resolutions from 1 – 50m, they demonstrated that high-resolution DEMs performed better with higher Manning’s n 

values whereas lower n values gave better outputs for lower resolution DEMs. Lim and Brandt, (2019) also showed that whilst 110 

coarser resolution DEMs generated better value performances according to their metrics, there were more discrepancies 

between known flooding and predicted water surface elevations illustrating a dependency on the metric used for assessment. 

Choice of metric for assessing model performance is also an important issue presently facing LEM studies, with metrics based 

on catchment outputs displaying different behaviours to those derived from changes within the catchment (Skinner et al., 

2018). 115 

 

In Computational Fluid Dynamics (CFD) where more complex numerical methods are used for hydraulic modelling, the effects 

of different grid resolutions or meshing methods are widely considered. Where CFD model simulations are applied to 

engineering solutions there are controls and standards for the verification of models (Vassiliadis et al., 2001) that are also 

reflected in the journal publication policies such as “Solutions over a range of significantly different grid resolutions should 120 

be presented to demonstrate grid independent or grid-convergent results” (Roache, 2019; Roache et al., 2009). Here grid 

independent (or grid independence) refers to whether errors or differences between different resolution simulations are 

sufficiently small. Hardy et al., (2003) provide a clear summary and example of methods for assessing grid independence using 

a ‘Grid Convergence Index approach’. Nicholas (2005) comments that whilst grid -independence is considered a key 

requirement of computational fluid dynamics (CFD) approaches – it may not be reasonable to use such approaches in cellular 125 

methods. A logical step might be to use methods from CFD grid independence testing on LEM models. However, grid 

independence tests are largely during steady flow conditions (e.g. Hardy et al., (2003)) measuring flow velocities in x, y, and 

z directions (for example) but sediment transport processes in LEM and morphodynamic models areis highly episodic and 

non-linear even when averaged over medium time scales (Coulthard et al., 2010; Coulthard and Wiel, 2012). Therefore, the 

availability and choice of metrics to assess LEM performance is difficult. 130 
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This issue of which metrics to use to assess LEM model performance was considered by (Skinner et al., 2018) where they 

carried out a multidimensional sensitivity analysis on the CAESAR-Lisflood (Coulthard et al., 2013) LEM. Previously, such 

studies have been hampered by long model run times making Monte-Carlo style analyses difficult, but here Skinner et al., 

(2018) used the Morris Method (Morris, 1991) to analyse the sensitivity of 15 different model parameters on model 135 

performance.  (Figure 1). Key to this study was the assessment of model behaviours across 15 model functions across four 

core behaviour groups: catchment sediment yields; internal geomorphology; catchment discharge; and, model efficiency. 

Skinner et al., (2018)’s work also provides is with a framework within which we could look at the impact of grid cell size on 

both overall model performance and in relation to the other model parameters tested. In effect providing us with a way of 

making a comprehensive assessment of the impact of grid cell size on LEM performance.  140 

 

Usefully, Skinner et al., (2018) present us with a framework for assessing LEM model performance and this paper uses this 

methodology to comprehensively assess the relative sensitivity of grid-based LEMs to resolution of the grid cells used, in 

comparison to changes to important parameter values. It can help us determine whether there is a level of grid independence 

in LEMs. Importantly, the Morris Method framework also allows us to look at the non-linear influences of changing gird cell 145 

size on other key model parameters how the sensitivity of the model to individual parameters is non-linear, being influenced 

by the values of other parameters, and on how this further influences overall model behaviour and efficiency. Figure 1 shows 

how the Morris Method ranks parameters in order of relative influence on model behaviours, where higher values of the mean 

indicate greater relative influence, and higher values of standard deviation indicating greater dependency on the values of other 

parameters, i.e., non-linearity (Skinner et al., 2018).  150 
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Figure 1 – : Example of the Morris Method outputs for assessing the sensitivity of the CAESAR-Lisflood model to 15 

different model parameters – over two different sized catchments after Skinner et al., (2018). This shows aggregated 155 

scores for all Elementary Effects where: 1 = sediment transport formula (SED); 2 = maximum erode limit (MEL); 3 = 

in channel lateral erosion rate (CLR); 4 = lateral erosion rate (LAT); 5 = critical vegetation shear stress (VEG); 6 = 

grass maturity rate (MAT); 7 = soil creep rate (SCR); 8 = slope failure threshold (SFT); 9 = in/out difference (IOD); 10 

= minimum Q value (MinQ); 11 = maximum Q value (MaxQ); 12 = slope for edge cells (SEC); 13 = evaporation rate 

(EVR); 14 = Manning’s n roughness coefficient (MNR); and 15 = grain size set (GSS). 160 

Whilst there are few studies addressing DEM resolution on LEM performance, Iit is clear from the literature that small changes 

in the landscape (as represented by DEMs) can have an impact on LEM outputs. Therefore, as theAs Tthe spatial resolution of 

a DEM affects the representation of topographic features, resolution will have an impact on model performance and output. 

LEMs may be especially sensitive to this as they typically use local gradients to determine erosion and deposition thus 

potentially generating a positive feedback if erosion and deposition increases local changes. There are existing methods and 165 

frameworks for assessing hydrological and hydraulic model performance and grid independence, however, the chaotic and 

non-linear behaviour of LEM erosion and deposition patterns may make these methods unsuitable for LEMs. Prior to the use 

of the Morris Method we have no structure for assessing LEM sensitivity to DEM resolution – or importantly how model 

resolution affects the parameter sensitivity.This is a problem as, where high resolution data is available, the grid cell resolution 

used is a user choice, with the user needing to balance detail with efficiency, yet the user has no prior knowledge of how this 170 
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choice might influence model behaviour and results. If those results are to be used for real-world decision making, this lack of 

knowledge would make the use of the model inappropriate for such operational purposes.  

 

In this paper we address these issues above and, by using the CAESAR-Lisflood LEM to simulate erosion and deposition over 

a wide range of spatial DEMgrid cell sizes resolutions. Outputs metricsfrom these simulations representing geomorphic, 175 

hydrological, and model performance are then assessed using the Morris Method to establish how DEM grid cell sizeresolution 

affects model results and performance and results; and importantly whether there are any parameter sensitivities to these 

resolutions. Our The focusaim is to understand how the hypothetical model sensitivitiesuser choice of grid resolution might 

influence outputs withover an operational use of the model, including catchment choice and the timescales simulated., which 

has influenced our choice of catchment and timescales simulated. 180 

2 Methods 

2.1 Study Catchment and DEM data 

Testing of DEM grid cell resolution isThe model tests were carried out on a DEM of Tin Camp Creek in the Northern Territory, 

Australia (see Figure 12). Tin Camp Creek has a catchment area of 0.5km2 and is located within a tropical climate, where its 

watercourse is ephemeral – rainfall in the wet season features small, intense convective events. It is a small sub-catchment of 185 

the wider Tin Camp Creek system and has been used previously for studies using LEMs (Hancock et al, 2010; Hancock, 2006; 

Hancock, 2012; Skinner et al, 2018). The DEM used is produced from high resolution digital photogrammetry and available 

at 2m grid resolution at its finest (as described by Hancock, 2012). For this study the 2m DEM was resampled using the Raster 

Resample tool in ArcMap v10.4.1 to grid cells sizes between 2 and 30m at 2m iterations and a final 50m grid resolution (see 

Appendix BA). The Cchoice of small area DEM is deliberate to reduce model run times – especially when using the smallest 190 

grid cell sizes. The 2m resolution proved to be too computationally expensive so was not used. 
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Figure 2 1 – Digital Elevation Model of the Tin Camp Creek catchment shown at 10m resolution with hillshade. 195 
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2.2 the CAESAR-Lisflood model 

The LEM used wais the CAESAR-Lisflood model (Coulthard et al., 2013). A full description of the CAESAR-Lisflood model 

can be found in Coulthard et al. (2013), and its core functionality is only summarised here. The model utilises an initial DEM 

built from a regular grid of cells, and in the catchment mode (as used in this model set up) is driven by a rainfall timeseries 

that can be lumped or spatially distributed (Coulthard and Skinner, 2016b). At each timestep the rainfall input is converted to 200 

surface runoff using TOPMODEL (Beven and Kirkby, 1979), and distributed across the catchment and routed using the 

LISFLOOD-FP component (Bates et al., 2010). The CAESAR component of the model drives the landscape development 

using sediment transport formulae based on flow depths and velocities derived from the LISFLOOD-FP component. Bed load 

is distributed to neighbouring cells proportionally based on relative bed elevations. This study has not used the suspended 

sediment processes in the model. The model can handle nine different grain sizes, and information is stored in surface and sub-205 

surface layers where only the top surface layer is ‘active’ for erosion and deposition. A comprehensive description of this 

process can be found in (Van De Wiel et al., 2007). The model has capability for bedrock erosion but the set up for this study 

does not include a representation of bedrock and is unlikely to be influential over the 30 year operational timeframe used. An 

initial soil layer is determined globally using the information within the Grain Size set parameter (see Table 1). 

 210 

CAESAR-Lisflood is freely available and since 1996 there have been 119 published studies using the model over a wide range 

of temporal and spatial scales (Skinner and Coulthard, 2022). Here we used CAESAR-Lisflood v1.9 with modifications to 

allow it to run in batch mode and to automatically collect information relevant to the behavioural functions (outlined below).  

2.3 Morris Method 

Our study used the Morris Method (MM) described in Ziliani et al. (2013), i.e. the original MM of Morris (1991), as extended 215 

by Campolongo et al. (2007), and applied the “sensitivity” package in the R Statistical Environment (Pujol, 2009) to generate 

the parameter sets for the Sensitivity Analysis (SA). To set up the MM we selected a number of parameters to be assessed, 

specifying a minimum and maximum range for each, plus a number of iterative steps. The parameter values are equally spaced 

based on the range and number of steps – for example, a parameter with a range of 2 to 10 and 5 incremental steps would have 

available values of 2, 4, 6, 8, and 10. This was carried out for each parameter and where possible the same number of 220 

incremental steps were used for each. For a full description of the MM applied to CAESAR-Lisflood see Skinner et al., (2018) 

and a summary is provided below. 

 

The MM uses a system of repeats to sample the global parameter space. For each parameter, the user defines minimum and 

maximum values and the number of incremental steps within that range to choose values from (e.g., with a minimum value of 225 

2, a maximum value of 10, and five incremental steps, the values of 2, 4, 6, 8, and 10 would be available). The first test in each 

repeat uses a randomly selected set of parameters determined from the whole available parameter space. The second test in the 
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repeat uses the same parameter set yet varies a single randomly determined parameter to a different randomly determined value 

from those available. That parameter would then be excluded from selection for change for the rest of this repeat, with the 

process continuing until all parameters have been changed once.  230 

 

The sensitivity of the model to changes in parameter values is evaluated by the changes of objective function values between 

sequential tests within repeats, relative to the number of incremental steps the parameter value has been changed by (e.g., 

where for thea set of values 2, 4, 6, 8, and 10, a switch from an initial value of 4 to either 2 or 6 is one step, a change to 8 is 

two steps, and 10 is three). The change in objective function score between two sequential tests divided by the number of 235 

incremental step changes is an elementary effect (EE) of that objective function and the parameter changed (Equation 1). After 

all tests for each grid resolution have been performed, the main effect (ME) for each objective function and parameter is 

calculated from the mean of the relevant EEs – the higher the ME the greater the model’s sensitivity. Alongside the ME, the 

standard deviation of the EEs is also calculated as this provides an indication of the non-linearity within the model. 

 240 

Equation 1 

𝑑𝑖𝑗 = |
𝑦(𝑥1𝑥2 … , 𝑥𝑖−1, 𝑥𝑖 + ∆𝑖,𝑥𝑖+1, … , 𝑥𝑘) − 𝑦 (𝑥1𝑥2 … , 𝑥𝑖−1, 𝑥𝑖,𝑥𝑖+1, … , 𝑥𝑘)

∆𝑖

| 

 

where 𝑑𝑖𝑗 is the value of the jth EE (𝑗 =  1, … , 𝑟; where r is the number of repetitions (here r = 100)) of the ith parameter (e.g. 

i =1 refers to sediment transport formula, see Table 1), xi is the value of the ith parameter, k is the number of parameters 245 

investigated (here 7), 𝑦(𝑥1, 𝑥2, … , 𝑥𝑘) is the value of the selected objective function, and ∆𝑖 is the change in incremental steps 

parameter i was altered by. 

 

 

In Skinner et al., (2018) a MM test was applied to a DEM of the same Tin Camp Creek basin used for this study, using a single 250 

10m grid cell size (see Figure 12). That test used a sub-set of 15 parameters and 100 repeats, producing 1600 tests in the total. 

Here we are testing 15 different resolutions so the same level of scrutiny of parameters and repeats would result in 24,000 tests 

to be required. To reduce the computational expense, we reduced the 15 parameters to the 7 that exhibited the greatest impacts 

on model behavior in Skinner et al., (2018). In addition, the number of repeats was reduced to 10 in line with the minimum 

number suggested by Ziliani et al., (2013). This reduced the total number of tests to 80 for each DEM resolution and 1,200 in 255 

total. The only difference in the parameter value ranges to Skinner et al., (2018) is the inclusion of Meyer-Peter Muller (Meyer-

Peter and Muller, 1948) as an additional sediment transport law, with changes between any of the sediment transport laws 

being counted as a single iterative step change. Meyer-Peter Muller was included as this formula had been added to version 

1.9d of CAESAR-Lisflood since the Skinner et al., (2018) analysis and enabled a greater number of ‘steps’ to be included in 

the sediment transport component. The parameters and their values are shown in Table 1. 260 
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Table 1 – Parameters selected for the MM test, the number of iterative steps applied, and the values used for each 

iterative step. A description of the role of these parameters within the model is provided in Appendix A. 

 
Code Parameter Steps Tin Camp Creek  

(1) SED Sediment Transport Formula 3 1 Wilcock & Crowe / 2 Einstein / 3 Meyer Peter Muller 

(2) GSS Grain Size Set 5 Set 1; Set 2; Set 3; Set 4; Set 5 

(3) MNR Manning's n Roughness 5 0.03; 0.0325; 0.035; 0.0375; 0.04 

(4) TOPN m value used by TOPMODEL 5 0.005; 0.0075; 0.01; 0.0125; 0.015 

(5) VEG Vegetation Critical Shear Stress (Pa) 5 2; 3.25; 4.5; 5.75; 7 

(6) MAT Grass Maturity Rate (yr) 5 0.5; 0.875; 1.25; 1.625; 2 

(7) MEL Max Erode Limit (m) 5 0.001; 0.0015; 0.002; 0.0025; 0.003 

 265 

 

In Skinner et al., (2018) a model function approach to evaluating MM was developed and tested using the CAESAR-Lisflood 

model. The main purpose of the model function approach was to mitigate for the fact that there is almost always a lack of 

suitable observation data to use in evaluating the performance of LEMs via an objective function approach (an objective 

function being the error score between modelled and observed data). Instead, Skinner et al., (2018) proposed a series of metrics 270 

that would assess key behaviours in the model relating to its outputs and assess MM against changes in the model’s behaviour. 

Here we use the same 15 model functions as Skinner et al (2018) and these are shown in Table 2. To summarise the large 

amount of information produced, the ME of each parameter and model function combination was normalised based on the 

proportion of the ME for highest ranking parameter for that model function – therefore the highest ranked parameter for each 

model function always scored 1. The scores for each parameter were aggregated for across all model functions based on the 275 

mean of the scores. The model functions were further sub-divided into core behaviour groups (Table 2) and the scores 

aggregated again for each core behaviour. The same was also done, separately, for the standard deviations of each parameter 

and model function.  

 

Table 2 – Core behaviours of the model and the Model Functions adopted to assess changes to these (from Skinner et 280 

al, 2018).  

Core Behaviour Model Function 

Catchment Sediment Yield Total Sediment Yield 

 Mean Daily Sediment Yield 
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 Peak Daily Sediment Yield 

 Time to Peak Sediment Yield 

 Days when Sediment Yield > baseline 

Internal Geomorphology Total Net Erosion 

 Total Net Deposition 

 Area with > 0.02m Erosion 

 Area with > 0.02m Deposition 

Catchment Hydrology Total Discharge 

 Mean Daily Discharge 

 Peak Daily Discharge 

 Time to Peak Discharge 

 Days when Discharge > baseline 

Model Efficiency Total Model Iterations 

 

 

The same set of repeats and parameter changes were used for each grid cell size to allow direct comparison. Finally, using the 

full set of results across all of the grid cell sizes a further analysis was performed with grid cells size as an additional parameter 285 

to assess its relative influence on the model compared to the other 7 parameters. This was done by using 5 steps (4, 8, 12, 16, 

and 20m resolution) and randomly selecting the starting grid cell size for each repeat, the position in the sequence it is changed, 

and the change in steps. 

 

Each individual test within the repeats consisted of 30 years of simulations using the same input rainfall. The rainfall was 290 

produced by using 23 year observation record from a single raingauge at Jabiru Airport, with the first 7 years repeated for the 

full 30 year input. This was applied as a lumped input at a 1h timestep. 

2.4 Stream network analysis 

To examine how stream network metrics changed with DEM resolution, the Hydrology tools in ArcMap 10.4.1 were used to 

extract stream networks and stream orders for each resolution with the Strahler (1957) and Shreve (1966) methods. Both 295 

methods are top-down approaches to stream ordering in that they start from the source and increase in value towards the outlet. 

The Strahler method (Strahler, 1957) calculates the depth of the drainage network – a 2nd order stream begins only where two 

or more 1st order streams meet, and a 3rd order only where two or more 2nd order stream meet, and so on. As such the maximum 

stream order number does not provide information on the number of individual streams within the network. The Shreve method 

(Shreve, 1966) assigns stream values cumulatively, so where two streams with a value one meet, the downstream becomes 2, 300 

and unlike the Strahler method, lower order tributaries are including in the ordering, so where a stream with value 1 joins with 
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a stream with value 2, the downstream section is assigned a value of 3. Therefore, the stream number at the outlet provides 

information on the number of streams in the system. In ArcMap a stream identification threshold (in effect delineating 1st order 

streams) was set at 1000m2 - rounded up to the nearest whole pixels. The total number of 1st order streams calculated by the 

Strahler method was estimated by converting the raster output to a polyline and selecting only 1st order streams. With the 305 

exception of the 2m resolution, the analysis was performed on the post-test DEM for Test 1 of each resolution test to allow a 

drainage network to be established on spun-up into the DEM surface – this negated the need to pit fill the DEM before the 

network analysis.  

3. Results 

3.1 Influence of grid cell size on model outputs (Model Functions) 310 

The ME for each of the 15 model functions were calculated for each of the grid cells sizes and the patterns observed for each 

Model Function are summarised in Table 3. The box and whisker plots of Figure 23 highlights these patterns for four of the 

Model functions (plots for all of the Model Functions can be viewed in the Appendix BC). Figure 23 shows that the mean total 

erosion and sediment yields output by the model remain similar for grid resolutions up to 24-30m, although the spread of 

values across the 80 tests vary more with larger grid cells. However, the peak daily sediment yields increase with larger grid 315 

cells, whereas there is a decrease in the number of days where sediment yield is over the baseline. This indicates that with 

larger grid cells there are less events that produce erosion and sediment outputs offset by an increase in erosion and sediment 

outputs during larger events. 

 
Table 3 – Visual interpretation of influence of grid resolution on the 15 model functions. 320 

 
Model Function Pattern with Coarse Grid 

Resolution 

Resolution where Patterns breaks 

down 

Total sediment yield little change >22m 

Mean daily sediment yield little change >22m 

Peak daily sediment yield increase >24m 

Time to peak sediment yield little change >26m 

Days when peak sediment yield > 

baseline 

decrease - 

Total net erosion little change >22m 

Total net deposition decrease >10m 

Area with > 0.02m erosion decrease - 

Area with > 0.02m deposition little change - 

Total discharge decrease - 
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Mean daily discharge decrease - 

Peak daily discharge little change >20m 

Time to peak discharge increase >20m 

Days when discharge > baseline decrease - 

Total model iterations decrease >12m 

 

 

 

 325 

 
 

Figure 3 2 – Box and whisker plots showing the mean and spread of model outputs at each grid resolution, for (a) Total 

Sediment Yield, (b) Total Net Erosion), (c) Peak Daily Sediment Yield, and (d) Days over Sediment Yield Threshold. 

 330 
The box and whisker lots in Figure 23 aggregate the results of 80 tests and could conceal a range of varying model behaviours 

when using the same parameter set across the different grid cell sizes. To check this, 5 parameter sets, or tests (numbered as 
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the order they appear in the MM), were randomly selected and plotted in Figure 34. This shows that the individual tests follow 

the overall trends displayed in Figure 23. 

 335 
 

 
Figure 4 3 – Output values for five randomly selected test numbers at each grid resolution, for (a) Total Sediment Yield, 

(b) Total Net Erosion, (c) Peak Sediment Yield, and (d) Days over Sediment Yield Threshold. 

3.2 Influence of grid cell size on model behaviour (summary of MM) 340 

The mean aggregated ME scores, measuring the overall relative influence of each parameter across all of the model functions, 

are shown in Figure 45. Although there is variation between the grid cells sizes, the relative influence of each parameter 

remains fairly consistent across DEM resolution. The clear exception here being the Sediment Transport Law, that whilst 

remaining the most influential parameter for the majority of resolution, its relative influence decreases as the grid coarsens, 

until for the coarsest of grids the TOPMODEL M replaces it as most influential (at 28m and 50m). It appears that it is an 345 

increase in influence of the TOPMODEL M that drives the decrease below 26m, beyond which all the other parameters increase 

in influence as Sediment Transport Law further decreases. 
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Figure 5 4 - Mean ME scores aggregated for all Model Functions for each parameter and each grid cell size. 350 

 

3.3 Stream network analysis 

The numbers of stream orders calculated is shown in Figure 56. The maximum number of stream orders calculated by the 

Strahler method remained consistent throughout, dipping to three orders at 28m resolution, and three again at 50m. The Shreve 

and Strahler first order counts steadily decreased as grid cells become larger. This shows that the depth of the drainage network 355 

does not reduce until the largest grid cells are used. However, the detail within the network is being lost with less 1st Strahler 

orders, and lower Shreve numbers, with larger grid cells. The disparity between the Shreve number and the number of 1st 

Strahler order streams is due to disconnection of part of the drainage channel to the main network, therefore these streams are 

not contributing to the Shreve number. This disconnection was not consistent through the resolutions, with some coarser 

resolution displaying a better connected network than others. 360 
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Figure 6 5 – The maximum number of stream orders calculated at each grid resolution using both the Strahler and 

Shreve methods. The total number of 1st Order stream cells calculated by the Strahler method is also shown. 

 365 

3.4 Model performance 

Figure 67 shows the changes in the number of iterations required by the model with each grid cell size. The iterations represent 

the number of calculations required by a test and is a useful proxy for model efficiency that is independent of the specification 

and performance of individual machines. There is a visible rapid drop off in the number of iterations required between 4m and 

12m resolutions, yet little change with increasing coarseness beyond 12m, suggesting there are only marginal computational 370 

efficiency gain to be made using DEM resolutions coarser than 12m (the spread of the total number does decrease beyond 12m 

still). 
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Figure 7 6 – Box-Whisker plots showing the spread of total number of model iterations required at each grid resolution. 375 

3.5 Relative influence of grid cell size 

The results of from the MM tests for each grid cell size were further used to simulate a MM run where the DEM grid resolution 

could be considered a parameter itself. Figure 78 summarises the results and reveals the relative importance of grid cells size 

when compared to the key parameters in the model. Overall, it has a similar level of influence over all core behaviours as the 

Sediment Transport Law (i) and the TOPMODEL M. Broken down, this is skewed by the Catchment Hydrology (iii) and 380 

Model Efficiency (v) core behaviours where it is the most influential parameter, whilst it has relatively low relative influence 

on the Catchment Sediment (ii) and Internal Geomorphology (iv) behaviours. 
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 385 

Figure 8 7 - Mean and Standard Deviation of relative MEs for the seven parameters and DEM Grid Resolution for all 

Model Functions aggregated by Core Behaviours (see Table 2). 

 

4. Discussion 

 390 

4.1 Model robustness to grid resolution 

 

Certain aspects of CL’s CAESAR-Lisflood’s performance are relatively robust to changes in grid cell size. However, this 

behavior can conceal important differences. As shown in Table 3 and Figures 23 and 34, important factors including Total 

Sediment Yield and Total Net Erosion display little change until grid cell sizes >22m. However, whilst these output metrics 395 

remain relatively constant, related factors Peak Daily Sediment Yield increase, and Days When Peak Sediment Yield is > 

Threshold decrease. Despite long term sediment yields being similar this demonstrates a change in model behaviour, where 

with larger grid cells the sediment delivered from the catchment is doing so in fewer yet larger bursts. This can be explained 
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by a loss of the granularity of the drainage network as grid cell size increases, as shown in Figure 89. In particular, 1st Order 

streams are lost with larger grid cells (see Figure 56). With smaller grid cells there is a more detailed channel network, so when 400 

summed across the whole basin the process of channels geomorphically ‘switching on and off’ is smoother. With larger grid 

cells, there are less channels meaning the switching on and off response is more step like and thus more spikey. This also 

illustrates one of the weaknesses and difficulties of using a lumped parameter such as basin sediment yield to describe both 

model performance and basin geomorphology. There was also a decrease in Total Net Deposition with larger grid cells, 

consistent with the findings of School et al, (2000) that using larger grid cells makes the conditions needed for sedimentation 405 

less likely to occur. We did not see any of the larger grid  dependent erosion fluctuations demonstrated by Nicholas (2005) 

with their braided river model, that can be explained by CL using the flow velocity derived from water surface slope to calculate 

bed shear stress and thus sediment transport rather than bed slope. In other LEM’s based on bed slope this sensitivity may 

therefore remain. 

 410 

 

Figure 89 – Illustration of the loss of granularity in the representation of the stream network (shown is red) with 

increasingly large grid cell sizes. 
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4.2 Model behaviour with grid resolution 415 

 

The behaviours of the model are captured by the relative influence of parameters on the Model Functions and Core Behaviours, 

with changes in the relative influence being taken as a change in behaviour. The relative influence of the 7 parameters tests on 

the Core Behaviours when using different grid cell sizes is summarised in Figure 45 and suggests a similar story to the changes 

in factors that would indicate model robustness. Although there is some noise, the relative importance of the different 420 

parameters remains relatively unchanged below the coarsest resolutions > 22m. However, there is also a general trend of 

waning influence of the choice of Sediment Transport Law that appears to begin at 10m resolution and continues throughout. 

This indicates that the coarsening of the grid resolution is resulting in some key behavioural shifts in the simulations that are 

most likely related to the loss of detail in the drainage network discussed in 4.1. 

 425 

Relative to the 7 parameters used in the MM tests, grid cell size showed a mixed degree of influence on the model behaviours 

(see Figure 78). It had the greatest influence on the Model Efficiency, which also had a relatively low standard deviation ME 

suggesting this was non-linear and other parameter values did not affect this. This is exactly as would be expected as halving 

the grid cell size increases cell number by four, which also increases the number of iterations required by a same degree. Grid 

cell size had the greatest influence over the Catchment Hydrology behaviours, which is consistent with the loss of detail in the 430 

drainage network discussed in 4.1, and also the findings of Savage et al (2016) that grid resolution influences the sensitivity 

of hydraulic models to parameter values. It had relatively less influence over the Catchment Sediment and Internal 

Geomorphology behaviours but still influential enough to require consideration. Overall, grid resolution was shown to be the 

third most influential parameter, to a similar degree as the Sediment Transport Law and TOPMODEL M. 

 435 

4.4 Implications and suggestions  

 

This work has only simulated the influence of grid cell size on a single LEM and on a single, relatively small, catchment. The 

role of the loss of detail in the drainage network with larger grid cells is a physical effect applicable across all models using a 

regular grid of elevation and to any catchment, regardless of size or situation. However, the relative impact will change with 440 

different size basins – at different resolutions – and quite possibly when experiencing a different range or magnitude of driving 

events. Therefore, the generic finding of our study – that the degradation of a model DEM (larger grid cells) conceals 

topographic details that may be important to model outcomes – is important. But, the actual impact on individual studies will 

be specific to the catchment modelled and the resolution chosen. 

  445 

This study has further highlighted the need for operators to better understand the sensitivities of their models to both internal 

and external factors before embarking on landscape evolution studies. Here, we have demonstrated that DEM grid resolution 

is a controlling external factor of the behaviours simulated in the system, with larger grid cells resulting in fewer yet more 
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extreme erosion producing events, which although overall produces similar total sediment yields does so over a smaller 

contributing area. Grid cell size was also shown to be the third most influential parameter out of those tested. This suggests 450 

that it is important that when making model choices, operators should aim to use the finest resolution available to them and 

that model efficiency will allow. Where model efficiency is a concern, a compromise can be made by selecting a resolution 

where coarsening further results in lower levels of benefits - in this study that would appear to be around 12m (Figure 67), 

close to the default 10m used for the same catchment in Skinner et al., (2018). Importantly – this choice is catchment specific. 

  455 

The use of MM to assess the model’s sensitivity to an external factors (e.g., grid cell size) relative to the sensitivity to internal 

parameters presents opportunities and a powerful tool. This allows for a more comprehensive consideration of the sensitivity 

of the model to choices of the modeller and enable them to evaluate on what areas to focus on improving, for example, the 

tests here tell the modeller that work to increase the resolution and detail of the DEM grid would yield greater benefits than 

work to reduce the uncertainty in the grain size parameters. Performing this type of analysis to inform model choices will 460 

increase the robustness and confidence in model outputs, crucial if LEMs are going to be used operationally and for decision 

making. Additionally, the same methods can be applied to other modelling fields, including hydrological and hydraulic 

modelling. 

 

4.5 Limitations 465 

 

Whilst this study has highlighted the influence that grid cell resolutionsize can have on model behaviour and outputs it is also 

limited by the narrow set of conditions tested. We have only considered a single LEM and. We have looked at only a single 

small catchment with its own unique set of conditions. Therefore, whilst many of our findings can reasonably be ported to 

different models with similar parameaterisation and operation we acknowledge that the findings are not generic. Equally, 470 

whilst we believe many of our findings are directly relevant to other applications of CEASAR-Lisflood to different catchments, 

Of particular note is the paucity of Tin Camp Creek has few depositional zones (e.g. floodplains or alluvial fans) so the  

deposition that occurs within the catchment itself, with the majority of eroded sediments leaveing the catchment entirely. We 

have deliberately used a short timescale of simulationonly use a single timescale of simulation - the timescale used, just 30 

years, that is short by the standards of LEMs but analogous to operational uses of the models to aid decision making. The 475 

applicability of the detailed results of this study to other models, catchments, and timescales is unknown but the implications 

remain, that being the sensitivities of models to grid cell resolutions should be understood as part of any study using LEMs. 

This is particularly pertinent when they are being used operationally. 

 

5. Conclusions 480 
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This research has explored the influence DEM grid cell size has on the water and sediment outputs of a LEM (CAESAR-

Lisflood) using the Morris Method sensitivity. We found simulated basin sediment yields and hydrological outputs totalled 

over the model duration, were largely unchanged as grid cells sizes increased, up to a point where the grid cell size started to 

degrade the extent and shape of the drainage network. It is likely that the impact of this network degradation will be dependent 485 

on the size of the basin, with the results being lessened on larger basins for the same grid cell size.  

 

However, when the model results are analysed over event scale timescales it became clear that the lumped output grid scale 

independence masked important changes with resolution. As grid cell sizes increased, the similar sediment yields were 

produced by fewer, larger events. It is important, therefore, to note this sensitivity in the models application or risk a ‘right 490 

results for the wrong reasons’ set of outputs.  

 

These findings are important because the resolution of the DEM used in LEM studies is often an arbitrary choice, often driven 

by the need to balance including as much detail as is available with model efficiency. The approach presented in this paper 

demonstrates the feasibility of using a screening sensitivity analyses to identify key influences on model behaviour, for grid 495 

cell size and parameter choices, which will help modellers identify the optimal grid cells size for their study. 
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Appendix A - Description of Parameters 

Code Parameter Description 

(1) SED Sediment Transport Formula Relationship between properties of flow and the volume of sediment entrained, 

often determined via field and laboratory observations. 

(2) GSS Grain Size Set The proportion of sediment within different size classes distributed uniformly 

across the model domain at the start of each simulation. 

(3) MNR Manning's n Roughness A coefficient related to how much resistance the land surface presents to flows. 

(4) TOPN m value used by TOPMODEL A parameter that controls the flashiness of hydrograph response to rainfall. 

(5) VEG Vegetation Critical Shear Stress (Pa) A shear stress threshold above which vegetation is removed from the land 

surface by flows. 

(6) MAT Grass Maturity Rate (yr) The amount of time it takes new vegetation to grow to full size. 

(7) MEL Max Erode Limit (m) A limit to the amount of sediment that can be eroded in a cell each time step 

used to maintain stability. 

  500 

Formatted Table
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Appendix BA - DEMs at different grid resolutions 
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 505 

Figure A1 - Illustrations of the Tin Camp Creek DEM resampled at 2m increments, from 2m grid resolution to 30m, 

plus 50m. 
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Appendix CB - Box and whisker plots 

 510 
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Figure B1 - Box and whisker plots showing the spread of model outputs, and the means at each grid resolution. 515 
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