
1 

 

Response of modern fluvial sediments to regional tectonic activity 1 

along the upper Min River, Eastern Tibet 2 

 3 

Wei Shi1, 2, Hanchao Jiang1, 2, *, Hongyan Xu1, 2, Siyuan Ma1, Jiawei Fan1, 2, Siqi 4 

Zhang1, Qiaoqiao Guo1, Xiaotong Wei1 5 

 6 

1State Key Laboratory of Earthquake Dynamics, Institute of Geology, China 7 

Earthquake Administration, Beijing 100029, China 8 

2Lhasa Geophysical National Observation and Research Station, Institute of Geology, 9 

China Earthquake Administration, Beijing 100029, China 10 

 11 

Corresponding author: Hanchao Jiang, E-mail: hcjiang@ies.ac.cn 12 

  13 

mailto:hcjiang@ies.ac.cn


2 

 

Abstract 14 

The deposition of fluvial sediments in tectonically active areas is mainly controlled 15 

by tectonics, climate, and associated Earth surface processes; consequently, fluvial 16 

sediments can provide a valuable record of changes in regional climate and tectonic 17 

activity. In this study, we conducted a detailed analysis of the grain‒size distribution in 18 

modern fluvial sediments from the upper Min River, Eastern Tibet. These data, were 19 

combined with regional information about of regional climate, vegetation, hydrology, 20 

geomorphology, lithology, and fault slip rate, and together indicate that modern regional 21 

tectonic activity along upper Min River can be divided into three segments. Specifically, 22 

fluvial sediments in the segment Ⅰ are dominated by fine silts (<63 μm: , 70.2%), 23 

agreeing with a low‒runoff and, low‒rainfall and high vegetation cover in this segment 24 

and revealing a windblown origin influenced by the arid and windy climate. These 25 

observations are consistent with the segment’s low hillslope angle and low relief in 26 

segment Ⅰ, all indicating weak activity along the Minjiang Fault. The coarse‒grained 27 

fraction (>250 μm) of fluvial sediments in the segments Ⅱ ‒and Ⅲ increases in a 28 

stepwise fashion (A = 6.2%, B = 19.4%, C = 33.8%) downstream, although runoff and 29 

rainfall do not change significantly from segment Ⅱ to segment Ⅲ. These patterns 30 

correlate well with an increases in both regional relief and hillslope angles. Together, 31 

these observations imply that regional tectonic activity along Maoxian‒Wenchuan Fault 32 

becomes more pervasive downstream along the Min River. Fluvial sediments in 33 

segment Ⅳ are well sorted and well rounded, which is expected due to significant 34 

increases in rainfall and runoff in this segment. The occurrence of well-sorted and well-35 
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rounded pebbles of fluvial sediments in downstream of Dujiangyan must be related to 36 

the long-time scouring and sorting by rivers. This study marks the first development of 37 

a new and important research approach that can characterize regional tectonic activity 38 

by analysis of grain-size distribution of fluvial sediments collected from tectonically 39 

active regions, combined with regional conditions in geology and geography. 40 

 41 

Keywords: Modern fluvial sediments; Grain-size analysis; Tectonic activity; Upper 42 

Min River; Eastern Tibetan Plateau 43 
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1 Introduction 45 

Tectonic geomorphology is a relatively young sub‒discipline of geomorphology, 46 

and has the major aim of unraveling interactions between tectonic activity, climate, and 47 

Earth surface processes (Wobus et al., 2005; Owen, 2013). The grain‒ size distribution 48 

of river bed material, channel width, channel sinuosity, extent of alluvial cover, 49 

lithology of bedrock, and hydraulic roughness are all potentially important variables 50 

(Whipple, 2004; Whittaker et al., 2010). Thus, comprehensive amounts of data must be 51 

collected in a wide range of field settings before the responses of these important 52 

variables to climatic and tectonic forcings can be determined. 53 

The topographic margin of the Tibetan Plateau (TP) along the Longmen Shan is 54 

one of the most impressive continental escarpments in the world, and the land surface 55 

rises westward over a horizontal distance of 40–60 km from the Sichuan Basin (500‒56 

700 m elevation) to peak elevations exceeding 6000 m (Chen et al., 2000; Kirby et al., 57 

2000, 2008). Some studies have revealed common topographic features within river 58 

channels in the eastern TP, namely, an upper low‒gradient channel segment, a middle 59 

steep‒gradient channel segment, and a low‒lying very steep channel segment, such as 60 

in the Red River region in Yunnan Province (Schoenbohm et al., 2004) and the Min 61 

River region in Sichuan Province (Kirby et al., 2003). However, it is important to note 62 

that strong lithological contrasts along the length of a river can also cause the channel 63 

steepness index to change at comparable magnitudes to those associated with large 64 

gradients in rock uplift rate (Snyder et al. 2000; Stock and Dietrich 2003; Beek and 65 

Bishop 2003; Whittaker et al., 2010). New data sourced from several localities record 66 

an apparent narrowing of channel width in response to increased rock uplift rates in 67 
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rivers with large areas of bedrock (Whipple, 2004). This is consistent with the recent 68 

proposition that river profiles straighten as aridity increase (Chen et al., 2019), as 69 

observed along the upper Min River in the field. Generally, exposures of hard bedrock 70 

often generate straight channels, which have low channel slopes and small sediment 71 

loads (Schumm and Khan, 1971, 1972). 72 

Vegetation density can modulate topographic responses to changing denudation 73 

rates, such that the functional relationship between denudation rate and topographic 74 

steepness becomes increasingly linear as vegetation density increases (Olen et al., 2016). 75 

Recent studies indicate that the upper Min River has poor vegetation coverage and most 76 

regions are fully exposed due to the strongly arid climate conditions (Jiang et al., 2015; 77 

Xu et al., 2020; Shi et al., 2020; Wei et al., 2021; Zhou et al., 2021). Thus, hillslope 78 

colluvium is the dominant sediment source to the upper Min River ‒ especially in its 79 

middle and lower segments (Zhang et al., 2021) ‒ akin to those in drainage basins in 80 

many arid regions worldwide (Clapp et al., 2002). 81 

Tectonic activity influences the evolution of lacustrine sedimentary sequences by 82 

affecting the provenance supply (Najman, 2006; Jiang et al., 2022). Frequent 83 

earthquakes on the TP, as recorded by widely distributed soft sediment deformation 84 

(Wang et al., 2011; Xu et al., 2015; Jiang et al., 2016; Zhong et al., 2019; Zhang et al., 85 

2021), caused repeated landslides that also represent another major source of sediment 86 

into the upper Min River (Dai et al., 2011; Xu et al., 2012, 2013). These landslides 87 

generated a large amount of dust storms that deposited dust in nearby lakes (Jiang et al., 88 

2014, 2017) and exposed large quantities of fine‒grained sediment that had 89 

accumulated on mountain slopes, which were subsequently transported by wind to 90 

ancient lakes, documenting these seismic events (Whittaker et al., 2010; Liang and 91 

Jiang, 2017; Shi et al., 2022). This sedimentological process was recently recognized at 92 
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Huojizhai, Diexi Town, following the historical earthquake at Diexi in 1933 (Wei et al., 93 

2021). 94 

Changes in hydrology and sediment flux are commonly regarded as climate 95 

forcing (Wobus et al., 2010). The extent of alluvial cover is very limited throughout the 96 

upper Min River Basin, which is demonstrated by similarity of zircon U‒Pb ages in 97 

lacustrine sediments and their nearby bedrock units (Zhong et al., 2017). As such, the 98 

influence of occasional flood events should be considered over long time‒ scales 99 

(Snyder and Whipple, 2003), as aridity precludes rainfall or fluvial undercutting as 100 

being the trigger for such events. 101 

The consistent climate coupled with systematic variations in lithology and rock 102 

uplift rate along the Min Mountains allow comparison of channels that experience 103 

different tectonic forcings (Duvall et al., 2004). Selective transport is the dominant 104 

downstream fining mechanism in this region, although rates of selective transport in 105 

sand‒bed rivers are smaller than those in gravel‒bed rivers (Frings, 2008). 106 

Only a small volume of sediment collected from a river bed is needed to produce 107 

a transformative understanding of the rates at which landscapes change (Blanckenburg, 108 

2005). Study of these materials can reveal relationships between generation, transport 109 

(Clapp et al., 2000, 2002), and mixing of sediment (Perg et al., 2003; Nichols et al., 110 

2005), under the help of the key topographic and/or lithologic features (e.g., relief, slope 111 

angle, and substrate characteristics) (Riebe et al., 2000; Riebe et al., 2001; Matmon et 112 

al., 2003a, b). In this study, we combine field observations, surveys, and analysis of 113 

river sediments in the upper Min River to determine hydraulic characteristics, and 114 

topographic and tectonic information about bedrock channels in the upper Min River. 115 

 116 

2 Regional setting 117 
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2.1 Geographic and geologic settings 118 

Instrumental data collected after 1900 indicate that the TP has experienced strong 119 

earthquakes clustered around the Bayan Kala Block from 1995 to the present day, which 120 

are collectively known as the Kunlun‒Wenchuan earthquake series (Deng et al., 2014). 121 

The eastern TP is geomorphologically characterized by alpine valleys, and is 122 

tectonically activity is controlled by the Longmen Shan thrust belts, the Minjiang Fault, 123 

and the Huya Fault (Fig. 1a). Frequent tectonic activities have led to numerous 124 

earthquakes and landslides in this region (e.g., Zhang et al., 2003; Jiang et al., 2014; Li 125 

et al., 2015; Liang and Jiang, 2017), such as the 1933 Diexi Ms 7.5 earthquake, the 1976 126 

Songpan Ms 7.2 earthquake, the 2008 Wenchuan Ms 8.0 earthquake and the 2017 127 

Jiuzhaigou Ms 7.0 earthquake. These earthquakes caused widespread damage at to the 128 

Earth surface in this region. GPS‒measured uplift rates in the Longmen Shan Fault zone 129 

reached 2‒3 mm/a over 10 years since 1999 (Liang et al., 2013). Thermochronological 130 

dating of zircon and apatite indicated denudation rates of 1‒2 mm/a in the Longmen 131 

Shan region during the Late Cenozoic (Kirby et al., 2002). 132 

The alpine valleys in the eastern TP reduce the preservation potential of 133 

Quaternary sediments and expose large areas of bedrock. Bedrock outcrops within the 134 

catchment region of the upper Min River are dominated by Silurian phyllite, quartz 135 

schist, and Triassic phyllite, metamorphosed sandstone (Fig. 1a), which are easily 136 

weathered and eroded into transportable debris (Zhong et al., 2019). Massive granites 137 

are also exposed in the study area; in particular, the Neoproterozoic Pengguan complex 138 

(U‒Pb age of 859‒699 Ma; Ma et al., 1996) (Fig. 1a) is mainly composed of 139 

intermediate‒acid intrusive rocks, with lesser amounts of basic‒ultrabasic intrusive 140 
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rocks, volcanic rocks, volcanoclastic rocks, and greenschist facies metamorphic rocks. 141 

Sand (> 63 μm) in the study area was recently demonstrated to have been mainly 142 

derived from local debris material, which itself is likely related to dust storms and loose 143 

surface material produced by seismic activity (Jiang et al., 2017; Liang and Jiang, 2017). 144 

 145 

 146 

Figure 1 (a) Geological map and (b) precipitation distribution (Ding et al., 2014) for 147 

the upper Min River basin. Seismic data are from the China Earthquake Data Center 148 

(http://data.earthquake.cn/data). 149 

 150 

The upstream channel of the Min River is ~340 km long (Li et al., 2005; Ding et 151 
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al., 2014), nearly oriented N‒S (Fig. 1b), and erodes the hinterland of the TP via 152 

formation of gullies and valleys. The Min River valley is typically steep, narrow and 153 

deepening downstream with an incision depth of 300‒1500 m (e.g., Li et al., 2005; 154 

Zhang et al., 2005). The slopes on both sides of the study area are between 18° and 45°, 155 

and the vertical aspect ratio of the valley is 5.5‒12.6 ‰ (Zhang et al., 2005). 156 

Constrained by the specific landforms of the alpine valleys, the wind direction in the 157 

study area is generally SSW/NNE, roughly consistent with the strike of local valleys 158 

(Liu, 2014). The Min River valley exhibits high wind speeds in April (average 4.9 m/s) 159 

and low speeds in July (average 3.7 m/s). Wind speed is generally < 4 m/s before noon 160 

and > 4 m/s after noon, and normally peaks approximately 8‒10 m/s at around 16:00 161 

(Liu, 2014). The highest instantaneous wind speed recorded in the study area was 21 162 

m/s (Liu, 2014). 163 

The upper reaches of the Min River are located in a transition zone on the TP 164 

where wet monsoonal climate changes to a high‒elevation cold regionclimate. In this 165 

region, mean annual precipitation (MAP) ranges from 400 mm to 850 mm, and 166 

precipitation is dominant (>75%) during the rainy season (May‒October) (Ding et al., 167 

2014). It is noticeable that orographic rain along the eastern TP generates two storm 168 

areas centered around Sandagu and Zipingpu (Fig. 1b). Statistical analyses of 169 

precipitation data from 1982 to 2007 show that the MAP within these regions is higher 170 

than 1200 mm (Ding et al., 2014). 171 

Regional vegetation has clear vertical zonation, which mainly consists of small‒172 

leaf, arid shrubs at 1300‒2200 m a.s.l., mixed broadleaf‒conifer forests, evergreen and 173 

deciduous broad‒leaved mixed forests at 2000‒2800 m a.s.l., Picea and Abies forests 174 

at 2800‒3600 m a.s.l., and alpine shrubs and meadows at > 3600 m a.s.l. (Ma et al., 175 

2004; Zhang et al., 2008; Wei et al., 2021; Xu et al., 2020). There are two key factors 176 
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that influence vegetation distribution and ecological conditions in the study area: the 177 

arid and windy climate, which has a large temperature difference between day and night, 178 

and tectonics activity characterized by frequent earthquakes (Lin, 2008; Wang et al., 179 

2011). For example, strong earthquakes often induce landslides that can destroy 180 

vegetation cover in the study area (Xu et al., 2012, 2014). Both of these factors lead to 181 

fragility in landscape and vegetation cover. 182 

2.2 Segmented characteristics of the Min River 183 

Based on Tthe topographical and geomorphological characteristics, and fault and 184 

vegetation distribution patterns, of the upper Min River allow it to could be subdivided 185 

into four segments: Ⅰ, Ⅱ, Ⅲ, and Ⅳ (Fig. 1b).  186 

 187 

Figure 2 Photographs of field sampling sites in the upper Min River. The locations of 188 

cross‒sections though the Min River valleys (Zhang et al., 2005) are shown in Fig. 7c. 189 

 190 

Segment Ⅰ is the Minjiangyuan ‒ Diexi segment (3460‒2190 m a.s.l.). The riverbed 191 
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in this segment is directly connected with one side of the Min Mountain and has a valley 192 

bottom width of 200‒1000 m (Zhang et al., 2005) (Fig. 2a). Downstream from the 193 

Minjiangyuan, valley bottom width narrows markedly and is only 200‒300 m in 194 

Zhenjiangguan ‒ Diexi segment (Zhang et al., 2005). The relative relief of the Min 195 

Mountain increases significantly from Minjiangyuan to Diexi along the Min River, 196 

especially from the Zhenjiangguan to Diexi (Zhang et al., 2005). The vegetation 197 

coverage along this segment gradually deteriorates, with Picea, Abies, shrubs, and herbs 198 

in the Minjiangyuan ‒ Songpan segment, but only a small number of shrubs and herbs 199 

in the Songpan ‒ Diexi segment. Bedrock is widely exposed in the lower part of the 200 

segment. In this region, the monthly maximum wind speed reaches 15.4 m/s in Songpan. 201 

Segment Ⅱ is the Diexi ‒ Wenchuan segment (2190‒1470 m a.s.l.). The valley 202 

bottom width in this segment continuously decreases to 200‒300 m (Zhang et al., 2005), 203 

and the Min Mountains always occur in direct contact with the riverbed of the Min 204 

River (Fig. 2b). The longitudinal slope (12.6‰) reaches its maximum regional value 205 

near Diexi (Zhang et al., 2005). The regional vegetation coverage is mostly sparse and 206 

the bedrock is nakedwell exposed.  207 

Segment Ⅲ is the Wenchuan ‒ Dujiangyan segment (1470‒900m a.s.l.). The valley 208 

bottom width in this segment widens to about 200‒500 m (Zhang et al., 2005) (Fig. 2c) 209 

and regional vegetation cover increases compared to segment Ⅱ. In particular, the 210 

hillside around the Zipingpu Reservoir is covered with thick broad‒leaved trees and 211 

herbs. The monthly maximum wind speed in Lixian is 14.0 m/s. 212 

Segment Ⅳ is the Dujiangyan ‒ segment (900 ‒ 630 m a.s.l.). This segment flows 213 

into the interior of the Sichuan Basin, where it has flat geomorphological features (i.e., 214 

the riverbed width is greater than 300 m; Fig. 2d), and then transitions into the middle 215 

reach of the Min River. The monthly maximum wind speed in Dujiangyan is 13.8 m/s. 216 
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 217 

3 Materials and methods  218 

3.1 Field sampling and grain‒size analysis 219 

A ~265 340 km transect along the upper Min River was conducted during October 220 

2017, starting in the eastern TP (Minjiangyuan, 33°01′59″N, 103°42′42″E; 3462 m a.s.l.) 221 

and ending in the Sichuan Basin (Dujiangyan, 30°56′25″N, 103°38′14″E; 634 m a.s.l.) 222 

(Fig. 1b). A total of 181 river samples were collected for grain‒size analysis at 25 sites 223 

(Table S1). Sampling sites were selected from exposed, freshly‒developed depositional 224 

sequences that occurred close to the active channel and its margins (Fig. 2). Voluminous 225 

bedrock gravel occurs around the sampling sites (Fig. 2). To ensure sample consistency 226 

associated with uniform flow regimes, each sample was collected at a depth of 0‒0.2 m 227 

from different places within each sampling sequence. All locations were carefully 228 

chosen to avoid contamination from riverbank materials or from anthropogenic 229 

reworking. 230 

Grain‒size analysis was conducted using a Malvern Master‒sizer 3000 laser 231 

grain‒size analyzer at the State Key Laboratory of Earthquake Dynamics, Institute of 232 

Geology, China Earthquake Administration in Beijing, China. About 0.5 g of sediment 233 

was pretreated with 20 ml of 30% H2O2 to remove organic matter and then with 10 ml 234 

of 10% HCl to remove carbonates. About 300 ml of deionized water was added, and 235 

the sample solution was kept for 24 h to rinse acidic ions. The sample residue was 236 

dispersed with 10 ml of 0.05 M (NaPO3)6 on an ultrasonic vibrator for 10 min before 237 

grain‒size measurements. For each sample, the grain‒size analyzer automatically 238 
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outputs the median diameter (Md) and the percentages of each size fraction, with a 239 

relative error of less than 1%. Magnetic susceptibility (SUS) was measured using a 240 

Bartington MS2 susceptibility meter. 241 

3.2 Y values  242 

Mean grain size (Ms), standard deviation (σ), skewness (Sk), and kurtosis (KG) are 243 

commonly used to discriminate between different depositional processes and 244 

environments. Sahu (1964) distinguished aeolian processes from those that operate in a 245 

littoral environment by using the following equation:  246 

Y = ‒3.5688 Ms + 3.7016 σ2 – 2.0766 Sk + 3.1135 KG               (1) 247 

Here, Y values less than −2.74 indicate an aeolian provenance and Y values greater 248 

than −2.74 indicate a hydrogenic provenance (Sahu, 1964). Calculated Y values for 249 

lacustrine sediments (Jiang et al., 2017, 2014), red clay, and loess‒paleosol deposits 250 

(Wu et al., 2017; Lu and An, 1999) are less than ‒2.74, indicating an aeolian provenance. 251 

3.3 End‒member analysis 252 

Numerical unmixing of grain‒size distribution data into constituent components, 253 

known as end‒member analysis (EMA), can yield valuable information about transport 254 

dynamics (Weltje, 1997; Paterson and Heslop, 2015; Jiang et al., 2017). According to 255 

the principle that the end‒member number (EM) should be as small as possible (Weltje 256 

et al., 1997), several EMs obtained by end‒element analysis imply that numerous 257 

dynamic mechanisms occurred during formation of these deposits. Generally, larger 258 

values of EMs correspond to a stronger transport capacity, which itself indicates 259 

different provenances (Vandenberghe, 2013; Dietze et al., 2014; Jiang et al., 2017). For 260 

instance, the peak values of EMs in Lixian lacustrine sediments were concentrated at 261 
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10 μm (EM1) and 40 μm (EM2), and so reflect the background deposition of dust and 262 

locally sourced deposition transported by ambient wind, respectively (Jiang et al., 2017). 263 

We analyzed the Min River samples using the AnalySize software for processing and 264 

unmixing grain‒size data (Paterson et al., 2015), with parameters selected from the 265 

generalized Gaussian skewness model (SGG) (Egli, 2003). 266 

3.4 Analysis of C‒M and F‒M diagrams  267 

The analysis of C‒M and F‒M diagrams is useful to interpret sediment transport 268 

dynamics (Passega, 1957; Singh et al., 2007). In these diagrams, C is the coarsest 269 

percentile of the grain‒size distribution in samples (one percentile), and M is the median 270 

diameter of the grain‒size distribution, which are both indicators of the maximum and 271 

average transport capacity, respectively (Passega, 1957; Singh et al., 2007; Bravard et 272 

al., 2014). In addition, F represents the percentage of fractions finer than 125 μm (Singh 273 

et al., 2007). All values are plotted on a logarithmic scale, which produces specific 274 

patterns for distinct reaches (Singh et al., 2007; Bravard et al., 2014). A C‒M diagram 275 

(Fig. S1) has the following sections: NO, rolling; OP, rolling with some grains 276 

transported in suspension; PQ, graded suspension with some grains transported by 277 

rolling; QR, graded suspension; RS, uniform suspension; and T, pelagic suspension 278 

(Passega, 1957; Bravard and Peiry, 1999; Bravard et al., 2014). 279 

 280 

4 Results 281 

4.1 Characteristics of grain‒size and SUS 282 

The median grain size (Md), five grain-size fractions (0-2 μm, 2-20 μm, 20-63 μm, 283 
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63-250 μm, >250 μm), SUS and Y values of the Min River sediment can be divided 284 

into four categories (Fig. 3), which correspond to the different segments (Ⅰ ‒ Ⅳ) defined 285 

above. The average values of Md increased significantly at Diexi (from 31.0 μm to 80.8 286 

μm) and Wenchuan (from 49.3 μm to 170.2 μm), and decreased slightly at Dujiangyan 287 

(from 220.4 μm to 119.2 μm). The variations at these three sites are the most significant 288 

within the whole river (Table 1, Fig. 3). 289 

Table 1 Statistics for grain‒size fractions in the upper Min River. 290 

 291 

 292 

Figure 3 Variation of grain‒size components and river sediment parameters from the 293 

upper Min River. The dotted lines represent the average value of the whole sequence. 294 

 295 

Along the upper Min River downwards, the mean proportion of the 2–20 μm (Ⅰ = 296 

Segments 
Md  

(μm) 

Percentage composition / (%) 

SUS 0‒2 

μm 

2‒20 

μm 

20‒63 

μm 

63‒250 

μm 

>250 

μm 

Ⅰ 31.0 2.8 40.3 27.1 23.7 6.2 11.6 

Ⅱ 80.8 0.4 25.3 20.3 34.6 19.4 11.3 

Ⅲ 170.2 0.3 20.0 13.9 31.9 33.8 193.5 

Ⅳ 145.2 0.5 13.0 9.5 59.5 17.5 251.8 
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40.3%, Ⅱ = 25.3%, Ⅲ = 20.0%, and Ⅳ = 13.0%) and 20‒63 μm fractions (Ⅰ = 27.1%, 297 

Ⅱ = 20.3%, Ⅲ = 13.9%, and Ⅳ = 9.5%) exhibit a stepwise decrease (Table 1, Fig. 3). 298 

The 63‒250 μm fraction exhibits a sharp increase from segment Ⅰ (23.7%) to Ⅱ (34.6%) 299 

and from segment Ⅲ (31.9%) to Ⅳ (59.5%), but a relatively minor change from 300 

segment Ⅱ (34.6%) to Ⅲ (31.9%) (Table 1, Fig. 3). The > 250 μm fractions exhibit a 301 

stepwise increase between segments Ⅰ, Ⅱ, and Ⅲ (6.2%, 19.4%, and 33.8%, 302 

respectively), and a significant decrease from segment Ⅲ (33.8%) to Ⅳ (17.5%) (Table 303 

1, Fig. 3). Measured SUS values remained low in segments Ⅰ (5.3‒30.6, with a mean of 304 

11.6) and Ⅱ (7.1 to 21.2, with a mean of 11.3), but were significantly higher in segment 305 

Ⅲ (9.9‒546.5, with a mean of 193.5) and reached consistently high values in segment 306 

Ⅳ (142.1‒356.5, mean: 251.8) (Table 1, Fig. 3).  307 

4.2 End‒member analysis 308 

Three end‒members (EMs) (R2 = 0.93) were identified in the Min River samples 309 

(Fig. 4) with peaks of 21.2 μm (58.0%), 185.8 μm (24.2%), and 351.7 μm (17.8%), 310 

respectively. Along the upper Min River downwards, these three EMs show clear 311 

stepwise changes between segments (Fig. 5). EM1 shows a stepwise decrease (Ⅰ = 82.5%, 312 

Ⅱ = 53.1%, Ⅲ = 38.6%, and Ⅳ = 23.7%), corresponding to the sum of the 2‒20 μm 313 

and 20‒63 μm fractions (Figs. 3, 5). EM2 shows a sharp increase from segment Ⅰ (13.1%) 314 

to Ⅱ (31.4%) and from segment Ⅲ (27.1%) to Ⅳ (67.4%), and a relatively smaller 315 

change from segment Ⅱ (31.4%) to Ⅲ (27.1%), corresponding to the 63‒250 μm 316 

fraction. By contrast, EM3 corresponds to the >250 μm fraction (Figs. 3, 5) and shows 317 

a stepwise increase between segments Ⅰ, Ⅱ, and Ⅲ (4.4%, 15.5% and 38.6%, 318 
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respectively), and a significant decrease from segment Ⅲ (38.6) to Ⅳ (23.7%). 319 

Figure 4 End‒member analysis model of fluvial sediments from the upper Min River. 320 

 321 

Figure 5 Variability of three EMs and their mode values of samples collected from the 322 

upper Min River. The fractional abundance (>1%) of the peak The peak values (mode 323 

values) with >1% fractional abundance ofin the grain‒size frequency distributions were 324 

extracted after consideration of a 1% instrumental error. BlueBlack  and gray circles 325 

represent the main and secondary peak modal values, respectively. The dotted lines 326 

represent the average value. 327 

 328 

4.3 Characteristics of the grain‒size frequency distribution 329 

The grain‒size frequency of river samples from segment Ⅰ has a discrete 330 
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distribution (Fig. S2) with three mode values at ~11.8 μm, ~48.8 μm, and ~177.2 μm. 331 

The main mode value of segment Ⅰ occurred in the ~48.8 μm portion. The grain‒size 332 

frequency distribution for segments Ⅱ and Ⅲ is strongly bimodal (Fig. S2), with the 333 

major and minor mode values at ~203.1 μm and ~17.0 μm for segment Ⅱ, and ~270.4 334 

μm and ~18.9 μm for segment Ⅲ. The grain‒size frequency distribution for segment 335 

Ⅳ is unimodal (Fig. S2) with a mode value of ~171.4 μm. 336 

 337 

Figure 6 C–M and F–M distributions of samples collected from the four studied 338 

segments of the upper Min River. 339 

 340 

4.4 C‒M and F‒M diagrams 341 

On a C‒M diagram for the Min River, samples from segment Ⅰ are completely 342 

separate from those collected from segments Ⅲ and Ⅳ. Most samples in segment Ⅱ 343 

overlap with those of segment Ⅲ (Fig. 6a). Among them, the M value of segment Ⅰ 344 

(13.9‒89.8 μm) mainly belongs to the RS section (Fig. 6a), although the C values 345 

exhibit a large variation between 54.8 μm and 964.3 μm. Samples from segment Ⅱ are 346 
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distributed throughout the P‒Q‒R sections (Fig. 6a), have C values of 383.5‒1066.0 347 

μm, and M values of 32.2‒171.4 μm. Samples from segment Ⅲ are concentrated in the 348 

PQ section (Fig. 6a), have C values of 396.9‒2083.8 μm, and M values of 70.3‒319.1 349 

μm. Samples in segment Ⅳ plot close to the RQ section and are distributed parallel to 350 

the C = M line (Fig. 6a). Samples collected from segments of the Min River show 351 

similar distribution features in F‒M diagrams to those shown in C‒M diagrams (Fig. 352 

6). 353 

 354 

5 Discussion 355 

5.1 Dynamic and provenance implications of fluvial sediments 356 

Grain‒size fractions, EMs, and mode values in different segments along the upper 357 

reaches of Min River reflect the distinct provenance and transport dynamics of fluvial 358 

sediments (McKinney and Sanders, 1978; Sun et al., 2002, 2004; Sun et al., 2007; 359 

Dietze et al., 2014; Vandenberghe, 2013). The EM1 in segment Ⅰ reaches a proportion 360 

of 82.5%, which corresponds to the fine particle components (<63 μm fractions). 361 

Previous studies have indicated that fractions with sizes of <10 μm and 10–40 μm 362 

represent background particles and regional dust that have been transported by wind 363 

(Dietze et al., 2014; Jiang et al., 2014, 2017), which contribute 51±11% and 42±14% 364 

of the lacustrine sediments across the TP, respectively (Dietze et al., 2014). Therefore, 365 

the EM1 (fine‒grained fractions) in segment Ⅰ probably have an aeolian provenance. 366 

This inference is supported by five separate lines of evidence: 1) Md varies within the 367 

narrow range 13.9‒89.8 μm (Fig. 3), although the C values fluctuate widely between 368 
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54.8 μm and 964.3 μm (Fig. 7); 2) the distribution of samples in an RS section in a C‒369 

M diagram (Fig. 6) reflects uniform suspension, which likely requires transportation by 370 

ubiquitous and strong wind (Fig. S1, Passega, 1957); 3) nearly half of the samples (i.e., 371 

22 out of 55) have Y values of less than ‒2.74, which is indicative of an aeolian origin 372 

(Sahu, 1964); 4) loess deposits are widely distributed in the study area, especially from 373 

Diexi upstream (Fig. S3) (Liu et al., 2013; Shen et al., 2017) and may represent a 374 

voluminous source of dust particles; and 5) the study area has a high mean altitude of 375 

2840 m, and the monthly maximum wind speed can reach 15.4 m/s, which would allow 376 

for strong aeolian transport. 377 

 378 

Figure7 Variation characteristics of (a) M and (b) C values of the grain‒size index. (c) 379 

Riverbed base‒level and the position of the cross‒section of the upper Min River 380 

(Zhang et al., 2005). (d) Hillslope angle and (e) local relief along the upper Min River. 381 
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A 4*4 km grid was delineated along the upper Min River (~260 km). The highest 382 

ridgeline and riverbed height in the grid were extracted from a DEM map, and the local 383 

relief was then obtained by calculating the highest ridgeline minus the riverbed height. 384 

The hillslope angle was obtained by solving for tan (local relief/slope length). 385 

The EM2 in segment Ⅳ reaches the highest value (185.8 μm: 67.4%) recorded in 386 

the whole sequence and corresponds to the 63‒250 μm fraction (59.5%), which is 387 

consistent with previous studies having shown that fluvial deposits are composed 388 

mainly of a medium‒sand component (modal size: 200‒400 μm) (Middleton, 1976; 389 

Tsoar and Pye, 1987; Bennett and Best, 1995; Dietze et al., 2014). In the C‒M diagram, 390 

sample data that lie close to the C = M line reflect the suspension transport of riverbed 391 

sediments (Fig. 6a) (Singh et al., 2007; Passega, 1957). In addition, the single peak 392 

mode (Fig. S2d) of segment Ⅳ represents a single river transport process and 393 

sedimentary environment (McKinney and Sanders, 1978), and the small size range of 394 

the grain‒size frequency distribution also reflects a well‒sorted product that was 395 

deposited by fluvial action (Sun et al., 2002). Therefore, the EM2 mainly reflect typical 396 

fluvial sediments.  397 

EM3 corresponds to the coarsest grain‒size components (>250 μm) and has the 398 

highest value (351.7 μm: 38.6%) of the whole sequence in segment Ⅲ. The maximum 399 

values of C and M (Figs. 7a, b) in segment Ⅲ indicate that it had the highest transport 400 

capacity (Passega, 1957; Singh et al., 2007; Bravard et al., 2014). Therefore, EM3 401 

represents the local sedimentary component that was locally transported over short 402 

distances (Dietze et al., 2014; Jiang et al., 2014, 2017). The distribution characteristics 403 
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of samples from segment Ⅲ in the PQ section (Fig. 6a) indicate that dominant rolling 404 

and jumping transportation processes dominated (Passega, 1957). Meanwhile, the SUS 405 

values in segment Ⅲ increase to abnormally high values (28.5‒546.5, with a mean of 406 

227.3) abruptly near to exposures of the Pengguan complex (Fig. 1a), although lower 407 

SUS values occur in the surrounding area (Zagunao River: 9.1‒114.1, with a mean of 408 

34.1, Fig. S4; Zipingpu reservoir: 5‒60, Zhang et al., 2019; and segments Ⅰ and Ⅱ: 5.3‒409 

30.6, mean 11.5, Fig. 3). The precipitation in segment Ⅲ is generally low (400‒700 410 

mm/a) and only significantly increases near to the Zipingpu reservoir (1200 mm/a), so 411 

that the sedimentary changes were muted until 2 years after the Wenchuan earthquake 412 

(Zhang et al., 2019) (Fig. 1b). In addition, the mean grain size in segment Ⅲ (170.2 μm) 413 

increases before the Zagunao River (mean of 83.1 μm, Fig. S4) joins the Min River (Fig. 414 

1b. 3) and contribution from the Zagunao River can be precluded. Therefore, the 415 

abnormally high grain size and SUS values in segment Ⅲ are likely caused by a local 416 

provenance change. 417 

5.2 Climate controlled fine‒grained fluvial sediments 418 

The windy and semi‒arid climate in the study area is responsible for more fine 419 

particle components (EM1) in segment Ⅰ (Jiang et al., 2014), which caused EM1 to 420 

gradually decrease downstream as the wind weakens (Fig. 5). The relatively low 421 

precipitation (400‒700 mm/a) and low runoff (18.4‒43.4 × 108 m3) (Fig. 1b) in segment 422 

Ⅰ reflect the limited transport capacity of the river, and the angular gravels on the 423 

riverbed also indicate weak scouring, which preserves more fine‒grained components 424 

(EM1) in fluvial sediments. Segment Ⅰ developed along the Minjiang Fault (Fig. 1a), 425 
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which has a low slip rate (0.30‒0.53 mm/a, Kirby et al., 2000; Zhou et al., 2000, 2006; 426 

Tan et al., 2019) and therefore a weak influence on local provenance supply (Jiang et 427 

al., 2014, 2017). In addition, the wide riverbed (Fig. 2a), relatively low hillslope angle, 428 

and local relief in the Minjiangyuan ‒ Songpan segment (Figs. 7d, e) causes in situ 429 

retention of locally sourced coarse components. Therefore, EM2 and EM3 make only a 430 

minor contribution to the fluvial sediments in segment Ⅰ. 431 

Segment Ⅳ is located inside the Sichuan Basin and is completely unaffected by 432 

alpine valleys in the eastern TP. It is characterized by a wide and flat geomorphological 433 

surface (Fig. 2d). The significant downstream increase in precipitation and runoff in the 434 

Zipingpu reservoir (Fig. 1b) indicates that fluvial action was the main control on 435 

sediment transportation in segment Ⅳ. In addition, well-rounded pebbles (Fig. 2d) on 436 

the riverbed prove this point. 437 

5.3 Coarse‒grained deposits controlled by tectonism  438 

Fluvial sediments coarsen at the transition between segments Ⅰ and Ⅱ, highlighting 439 

an increase in EM2 and EM3 content, and a higher M value (Figs. 3, 7). This locality 440 

occurs at intersection of the Minjiang Fault and the Songpinggou Fault (Fig. 1a), which 441 

was the epicenter of the Diexi Ms 7.5 earthquake in 1933 (Chen et al., 1994; Ren et al., 442 

2018). As a result, the outcropping bedrock was severely damaged and so provided new, 443 

fresh, and local sediment sources (EM3). Downstream from Diexi, field surveys exhibit 444 

that the altitude decreases by 400 m over a horizontal distance of 20 km, such that the 445 

longitudinal slope of the riverbed (12.6‰, Fig. 7c, Zhang et al., 2005) and the hillslope 446 

angle (41.4°, Fig. 7d) are highest in this region when compared to the entire study area, 447 

which imply a higher of rivers incision rates regional denudation rate forced by active 448 

tectonics (Zhang et al., 2005; Whittaker et al., 2007a). These remarkable changes of 449 
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geomorphology correspond well to a twofold increase in erosion coefficients that occur 450 

within 15 km of major faults in the eastern TP (Kirkpatrick et al., 2020) and more 451 

intense denudation at the location of seismogenic faulting along high‒relief plateau 452 

margins (Li et al., 2017). The narrower valley and direct contact between the riverbed 453 

and hillside on either side in segment Ⅱ (Fig. 2b) provide favorable conditions for 454 

rolling and jumping transportation of sediment along the hillslope. In addition, the rapid 455 

rising of the base‒level of the Min River in segment Ⅱ enhances the river's cutting and 456 

transport capacity (Merritts and Vincent, 1989; Stokes et al., 2002; Cheng et al., 2004; 457 

Whittaker et al., 2007a; Boulton et al., 2014). 458 

Measured EM3 rapidly reaches its maximum fluctuation range in segment Ⅲ (Fig. 459 

5), likely due to the maximum transport force (C value) in the area (Fig. 7). The regional 460 

precipitation in segment Ⅲ is low (400‒700 mm/a) and only significantly increases 461 

near to the Zipingpu reservoir (1200 mm/a) (Fig. 1b). From a tectonic perspective, the 462 

Maoxian‒Wenchuan Fault, with a large dextral slip rate (1.0‒3.8mm /a; Chen and Li, 463 

2013; Wang et al., 2017) and a large vertical slip rate (~1‒2 mm/a; Liu et al., 2015), 464 

mainly controls the distribution of segment Ⅲ (Fig.1). Previous studies have shown that 465 

the Maoxian ‒ Wenchuan Fault occurs a band of maximum exhumation along the 466 

eastern Longmen Shan Fault zone since the late Miocene (Tan et al., 2019). Therefore, 467 

rapid regional uplift and denudation (Kirby et al., 2002; Liang et al., 2013) not only 468 

generated a larger hillslope angle (mean value of 24.9°) and the highest local relief 469 

(2188 m), but also provided widespread source of fresh, coarse‒grained, and local 470 

sediment (Whittaker et al., 2007b, 2010) in segment Ⅲ. The significant coarsening of 471 

fluvial sediment at the beginning of segment Ⅲ indicates the catchments undergoing a 472 
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transient response to tectonics are associated with significant volumetric export of 473 

material (Whittaker et al., 2010). Moreover, the PQ distribution of segment Ⅲ samples 474 

in the calculated C‒M diagram (Fig. 4) shows the importance of rolling and jumping 475 

transport mechanisms (Passega, 1957), which correlate with the steep landform features 476 

in segment Ⅲ (Fig. 2c). Exposures of hard Mesozoic granites instantaneously provide 477 

a local source of coarse components, and thus correspond to the maximum M and C 478 

values. Although regional climate generally has a weak influence on the supply of 479 

coarse particles, the concentrated distribution of particles within the calculated grain‒480 

size frequency distribution (Fig. S2c) indicates that fluvial action played an effective 481 

role in sorting local sediment sources (Sahu, 1964; Sun et al.,2002; Frings, 2008). The 482 

persistent occurrence of the coarsest grain‒size cross the segment Ⅲ responds to the 483 

fact that the catchments crossing faults maintain their high slip rate over time, which 484 

exhibits a sharp contrast to that of segment Ⅰ. 485 

Generally, a large earthquake is followed by a period of enhanced mass wasting 486 

and fluvial sediment evacuation (Hovius et al., 2011; Wang et al., 2015). The Wenchuan 487 

Ms 8.0 earthquake in 2008 caused severe geomorphological damage in region, and the 488 

annual average suspended sediment flow in regional rivers increased by a factor of 3‒489 

7 following the earthquake. The river recovered to its pre‒earthquake level just 1.2 ± 490 

0.9 years later (Wang et al., 2015), ). howeverHowever, over 70% of the co‒seismic 491 

debris has stabilized in place along the hillslopes during the following decades (Dai et 492 

al., 2021) and will take 370 years to be removed out of the mountains (Wang et al., 493 

2017). As such, we believe that co‒seismic debris generated by the Wenchuan 494 
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earthquake in 2008 had negligible influence on our sample collection campaign 495 

conducted in 2017. 496 

5.4 Geomorphic morphology reveals tectonic activity 497 

Alpine valleys characterize the landscape of the upper reaches of the Min River in 498 

the eastern TP (Figs. 2, 7) and have an incision depth of 300‒1500 m (Li et al., 2005; 499 

Zhang et al., 2005) (Fig. 6a). In segment Ⅰ, hillslope angles and local relief gradually 500 

increase downstream along the Minjiang Fault from 5° to 34.8° and 243 m to 1572 m, 501 

respectively (Figs. 7d, e). However, these changes seem a little contradict with the 502 

consistent high to be decoupled with the high and stable proportion of fine‒grained 503 

background dust in the fluvial sediments of segment Ⅰ (Figs. 3, 5), which is an open and 504 

interesting question. The consistent precipitation and runoff rates explain the calculated 505 

consistency in transport power, as defined by unchanging values of C and M (Fig. 7). 506 

We note that the longitudinal slope of the riverbed (6.7‒7.6‰, Fig. 7c; Zhang et al., 507 

2005) in segment Ⅰ steadily changes as altitude decreases from 3460 m to 2190 m; 508 

therefore, gradual steepening of the landscape is likely a response to enhanced river‒509 

related erosion (Merritts and Vincent, 1989; Stokes et al., 2002; Cheng et al., 2004). 510 

The high vegetation density in the Minjiangyuan ‒ Songpan region is also probably 511 

modulated by the lower topographic slope (Figs. 2a, 7) (Olen et al., 2016). These are 512 

consistent with generally weak activity of the Minjiang Fault (Kirby et al., 2000; Zhou 513 

et al., 2000, 2006; Tan et al., 2019). 514 

In segment Ⅱ, the hillslope angle (12.3‒41.4°, with a mean of 30.1°) is generally 515 

steeper than the average for the whole study area (25.1°), and the highest angles (41.4°) 516 
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far exceed the stability threshold of ~32° for landslide denudation, which suggests that 517 

landslide‒dominated hillslope denudation has kept pace with the rates of rock uplift and 518 

valley incision in segment Ⅱ (Burbank, et al., 1996; Montgomery and Brandon, 2002; 519 

Clarke and Burbank, 2010; Wang et al., 2014). Along the studied transect, local relief 520 

in segment Ⅱ initially increases and then decreases (Fig. 7c), and the flow direction of 521 

the Min River also changes from roughly N‒S to NW‒SE (Fig. 1a). The lithology in 522 

segment Ⅱ changes from Triassic to Silurian (Fig. 1a), and seismic activity transitions 523 

from the Minjiang Fault to the Maoxian‒Wenchuan Fault. Given that segment Ⅱ records 524 

the lowest annual rainfall in the study area (<500 mm/a, Fig. 1), this transformation of 525 

tectonic activity and lithology likely plays a dominant role on fluvial erodibility (Selby, 526 

1980; Stokes et al., 2008; Whittaker et al., 2007a; Zondervan et al., 2020), and 527 

influences changes in of regional geomorphology and river drainage. 528 

Hillslope angles (14.9°‒34.3°, with a mean of 24.9°) and local relief (689‒2188 m, 529 

with a mean of 1463 m) in segment Ⅲ exhibit a general increase along the Maoxian‒530 

Wenchuan Fault (Figs. 1, 7), although they differ from the increasing trends shown in 531 

segment Ⅰ. For example, the highest local relief encountered throughout the entire 532 

sequence occurs in segment Ⅲ, although its mean hillslope angle (24.9°) is lower than 533 

the mean value (25.1°) for of the entire sequence (Fig. 7). In addition, precipitation and 534 

runoff only show a significant increase adjacent to the Zipingpu reservoir (Fig. 1). We 535 

note that the regional bedrock in segment Ⅲ is dominated by hard Mesozoic granites 536 

of the Pengguan complex (Fig. 1a), and that the Maoxian‒Wenchuan Fault is situated 537 

on the zone of maximum exhumation along the Longmen Shan fault zone (Tan et al., 538 
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2019). Therefore, the higher local relief along segment Ⅲ indicates that active 539 

Maoxian‒Wenchuan Fault (Tan et al., 2019) caused enhanced rock uplift and valley 540 

incision (Whittaker et al., 2007a; Tan et al., 2019), which accounts for the largest 541 

transport forces (C values, Fig. 7) and the coarsest local components (EM3, Fig. 5) in 542 

this section. Nevertheless, a decrease in the mean hillslope angle within segment Ⅲ 543 

may be attributed to hardening of the exposed bedrock of the Pengguan complex rather 544 

than weakening of tectonic activity along the Maoxian‒Wenchuan Fault. Even if the 545 

shortening rates are generally slow in the eastern TP (Densmore et al., 2008; Zhang, 546 

2013) and satellite data may be equivocal, grain-size analysis of fluvial sediments 547 

combined with topographic analyses can help guide the identification of regional 548 

tectonic activity effectively (Schoenbohm et al., 2004; Kirby et al., 2003, 2008; Tan et 549 

al., 2019). 550 

 551 

6 Conclusion 552 

Grain‒size analysis was conducted on modern fluvial sediments of the upper Min 553 

River and this information was integrated with vegetation, hydrology, geomorphology 554 

(local relief and hillslope) and geology (fault and lithology) data to extract regional 555 

climate and tectonic signals in the eastern TP. This procedure identified three segments 556 

of tectonic activity along the upper Min River. The Minjiang Fault, situated in the 557 

Minjiangyuan ‒ Diexi segment, generally shows weak seismic tectonic activity. Two 558 

segments of tThe Maoxian-Wenchuan fault Fault from Diexi to Wenchuan and from 559 

Wenchuan to Dujiangyan show enhanced phase of regional tectonic activity, . 560 
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However,although the segment from Dujiangyan to the Sichuan basin records almost 561 

no evidence of tectonic activity. 562 

In this study, we report a new approach that can reveal the style of regional tectonic 563 

activity by analyzing fluvial sediments collected from tectonically active regions. The 564 

novelty of this research method and the reliability of the results in this study provide a 565 

key framework with which regional tectonic activity can be revealed through the study 566 

of fluvial sediments in other tectonically active localities worldwide. 567 
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