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Abstract. We present a new formulation of the bedload sediment flux probability distribution. Individual particles obey

Langevin equations which are switched on and off by particle entrainment and deposition. The flux is calculated as the rate

of many such particles crossing a control surface within a specified observation time. Flux distributions inherit observation-

time dependence from the on-off motions of particles. At the longest observation times, distributions converge to sharp peaks

around classically-expected values, but at short times, fluctuations are erratic. We relate this scale dependence of bedload trans-5

port rates to the movement characteristics of individual grains. This work provides a statistical mechanics description for the

fluctuations and observation-scale dependence of sediment transport rates.

1 Introduction

Bedload transport refers to conditions when grains bounce and skid along the riverbed (Church, 2006). Numerous applications

require predictions of bedload transport rates: ecological restoration, river engineering, and landscape evolution modeling10

provide examples. Predicting bedload fluxes is notoriously difficult, in part because they display wide fluctuations (Bunte

and Abt, 2005; Recking et al., 2012). Considering this, any prediction of the bedload flux should really be supplemented by

estimates of variability and the space or time scales over which averaged values converge.

Particle-based, stochastic approaches have been developed from which mean values, probability distributions, and averag-

ing scales can all be obtained (e.g. Ancey and Pascal, 2020; Turowski, 2010). These approaches provide a more complete15

description of bedload transport than classic descriptions (e.g. Kalinske, 1947; Bagnold, 1966). However they remain largely

kinematic in comparison, because they do explicitly incorporate the grain-scale mechanics (Furbish et al., 2021). In this pa-

per, we provide a stochastic formulation of the bedload flux based directly on grain-scale mechanics. To achieve this, we first

develop an improved Newtonian model of particle displacement which is applicable across a broad range of timescales.

The original description of bedload displacement is due to Einstein, who calculated bedload displacement as a random20

sequence of rests interrupted by instantaneous steps (Einstein, 1937). Later, Lisle et al. (1998) and Lajeunesse et al. (2017) im-

proved Einstein’s approach by promoting his instantaneous steps to intervals of motion with constant velocity. Their approach

can be summarized with the stochastic equation

ẋ(t) = V σ(t), (1)
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where x(t) is the sediment position, V is the constant velocity of moving grains, and σ(t) is a dichotomous noise which flips25

randomly between σ = 0 (rest) and σ = 1 (motion) (e.g. Bena, 2006). Owing to the constant velocity assumption, this model

for sediment displacement applies only at long timescales when the details of individual particle movements become irrelevant

(cf. Weiss, 1994). To calculate displacements at short timescales, we should replace V with a mechanistic velocity derived

from the forces on moving particles.

The velocities of moving grains fluctuate due to turbulent forcing and particle-bed collisions (Heyman et al., 2016; Fathel30

et al., 2015). Experiments indicate that downstream velocity distributions of particles can be exponential (Fathel et al., 2015;

Lajeunesse et al., 2010), Gaussian (Heyman et al., 2016; Ancey and Heyman, 2014), or Gamma-like (Liu et al., 2019; Houssais

et al., 2015). Several studies have successfully modeled the velocity fluctuations of moving particles by analogy to Brownian

motion (Fan et al., 2014; Ancey and Heyman, 2014). These studies represent exponential and Gaussian velocities with the

Langevin equation35

v̇(t) = F (v) + ξ(t), (2)

where v(t) is the sediment velocity, ξ(t) is a random force, and F (v) is a deterministic force. ξ(t) is modeled as a Gaussian

white noise for simplicity, although in principle this is not required. The choice F (v) =−µv/|v|+ ∆ produces exponential

velocities, with µ a Coulomb friction coefficient and ∆ a steady force per unit mass, while F (v) = γ(V −v) produces Gaussian

velocities, with γ an inverse relaxation time and V a steady-state velocity. Eq. (2) provides a reasonable description of bedload40

velocities over short timescales, but it cannot describe particle displacements over longer timescales, when entrainment and

deposition also moderate transport.

Motion-rest alternation and the fluctuating movement velocities of individual particles both lend variability to the sediment

flux (Böhm et al., 2004; Roseberry et al., 2012). Sediment fluxes have been defined with both surface and volume definitions

(Ballio et al., 2014, 2018). The ensemble averaged sediment flux across a surface was formulated by Furbish et al. (2012, 2017):45

〈q(x,t)〉=

∞∫

0

dx′
∞∫

0

dt′R(x′, t′)E(x−x′, t− t′). (3)

This “nonlocal formulation" generalizes earlier approaches based on aggregating particles from upstream locations (Nakagawa

and Tsujimoto, 1976; Parker et al., 2000). E(x−x′, t− t′) is the entrainment rate a distance x′ upstream a time t′ in the past,

while R(x′, t′) is the probability that a just-entrained particle displaces at least a distance x′ in time t′. For the steady case50

E(x,t) = E where particles step an average distance ` in a motion, the nonlocal flux becomes 〈q〉= E` in accord with Einstein

(1950). The nonlocal formulation has not been extended to describe sediment transport fluctuations.

Both renewal theory and population modeling approaches describe a stochastic sediment flux by introducing additional

Eulerian characteristics of particle transport. Renewal approaches introduce inter-arrival time distributions ψ(t), characterizing

intervals between successive arrivals of particles to a surface (Turowski, 2010; Ancey and Pascal, 2020). The flux is phrased55

as the rate of particle crossings over an observation time T :

q(T ) =
N (T )
T

. (4)
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N (T ) is the number of particle crossings by T – related to ψ(t). For exponential inter-arrival times ψ(t) = λe−λt, the flux

becomes Poissonian with rate constant λ, and its mean value is 〈q〉= λ. For other ψ(t)’s, the mean flux depends on the

observation time T (scale dependence). Population approaches introduce Eulerian entrainment and deposition rates to count60

the number of moving particles in a volume (Ancey et al., 2006, 2008). Fluxes are then computed by summing the velocities

of all moving particles in the volume. Both approaches provide excellent correspondence with experimental data. However,

we still have little understanding of how to relate their Eulerian input parameters to grain-scale mechanics (cf. Heyman et al.,

2016).

In this paper, our objective is to formulate the stochastic sediment flux directly from the dynamics of individual grains,65

rather than by introducing additional Eulerian quantities such as volumetric entrainment and deposition rates or inter-arrival

time distributions. To achieve this, in Sec. 2 we extend the motion-rest alternation model for particle displacement, Eq. (1)

to include Newtonian velocities from Eq. (2). This produces a description of particle displacement which is valid across

timescales. We then construct the sediment flux in Sec. 3 by aggregating over individual particle displacements from this

model. The resulting formulation shares elements from both the nonlocal and renewal approaches summarized in Eqs. (3) and70

(4). In Sec. 4 we solve the formulation for to derive the displacement and sediment flux probability distribution functions of

bedload particles, and in Secs. 5 and 6 we discuss the new features and limitations of our approach, summarize its relationship

to earlier work, and suggest several directions for further development.

2 Stochastic description of bedload transport

The starting point for our analysis is an idealized one-dimensional domain populated with sediment particles on the surface of a75

sedimentary bed. Particles are set in motion by the turbulent flow and move downstream until they deposit, and the cycle repeats.

The downstream coordinate is x, so that ẋ= v describes a velocity in the downstream direction and v̇ describes an acceleration.

The flow is considered weak enough that interactions among moving grains are uncommon, although interactions between

moving particles and the bed occur regularly. These conditions are characteristic of rarefied bedload transport conditions (e.g.

Kumaran, 2006; Furbish et al., 2017). Particles are considered to have similar enough shapes and sizes so as to have nearly80

identical mobility characteristics. These conditions allow for all particles to be described as independent from one another but

governed by the same underlying dynamical equations. Any of these conditions could be relaxed in exchange for additional

mathematical difficulty.

2.1 Mechanistic formulation of intermittent transport

From these assumptions, we propose an equation of motion for the individual sediment grain including two features. First,85

particles should alternate between motion and rest, similar to the earlier motion-rest models summarized by Eq. (1). Second,

the velocities of moving particles should evolve according to the Newtonian equation (2). These dynamics can be represented
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Figure 1. Panel (a) shows the velocity from Eq. (5) for a particular realization of the noises ξ(t) and σ(t), while panel (b) shows the position

derived Eq. (5) alongside other possible trajectories. Keys in panel (a) indicate the average movement time 1/kD , rest time 1/kE , and

motion-rest alternation process of σ(t), while keys in panel (b) shows the average movement velocity V and evolution of the displacement

for different values of σ(t). Motion-rest alternation with velocity fluctuations produces tilted stair-step trajectories with unsteady slopes in

the x–t plane.

as

ẋ(t) = v(t)σ(t),

v̇(t) = [F (v) + ξ(t)]σ(t).
(5)

Here, F (u) is a deterministic force term whose structure can be chosen to produce the desired velocity distribution for moving90

particles (exponential, Gaussian, or others), ξ(t) is a Gaussian white noise with correlation function

〈ξ(t)ξ(t+ τ)〉= 2Γδ(τ), (6)

representing velocity fluctuations of moving particles, and Γ is a velocity diffusivity [units L2/T 3] controlling the intensity

of velocity fluctuations. Fig. (1) displays particle velocities and displacements derived from these equations for the choice of

Gaussian movement velocities.95

The quantity σ(t) is a dichotomous Markov noise (e.g. Horsthemke and Lefever, 1984; Bena, 2006) which produces al-

ternation between motion (generally nonzero velocity and acceleration) and rest (zero velocity and acceleration). This noise

takes on values σ = 1 (motion) and σ = 0 (rest). The entrainment rate (σ = 0→ σ = 1) is labeled kE , and the deposition

rate (σ = 1→ σ = 0) is labeled kD. Times spent in motion and rest are respectively distributed as P (t) = kD exp(−kDt) and

P (t) = kE exp(−kEt), so the mean movement time is k−1
D , and the mean resting time is k−1

E . The notation k = kE + kD is a100

shorthand used throughout the paper. 1/k represents the correlation time of the dichotomous noise.

Eq. (5) represents intermittent particle transport in an external force field. The transport is intermittent in that the velocity

and acceleration are randomly switched on and off by entrainment and deposition. There are examples of similar systems in
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the physics literature, although these involve just the velocity being switched between values, not the acceleration (e.g. Laskin,

1989; Łuczka et al., 1993; Balakrishnan et al., 2001). Thus we study a system which is “second order" in the dichotomous105

noise, which presents considerable mathematical challenges (e.g. Masoliver, 1993). To our knowledge, an analogue of Eq. (5)

has not been examined.

2.2 Phase space description of motion-rest alternation

The time evolution of Eq. (5) for particular realizations of ξ(t) and σ(t) maps a trajectory through the phase space spanned by

x and v. The conditional probability density W (x,v, t|x0,v0) represents the likelihood that a phase trajectory reaches (x,v) at110

time t provided it passed through (x0,v0) at t= 0. This density characterizes the stochastic evolution of the particle position

and velocity.

A master equation for the phase space density can be formulated by noting that the combined process (x,v,σ) is Markovian

(cf. Horsthemke and Lefever, 1984). In appendix A we demonstrate that Eq. (5) implies

∂t(∂t + k)W (x,v, t|0) = (∂t + kE)L̂KW (x,v, t|0), (7)115

using the abbreviation W (x,v, t|x0,v0) =W (x,v, t|0). In this equation, L̂K is the Kramers operator, familiar from the de-

scription of Brownian particles in an external force field (e.g. Risken, 1984; Kubo et al., 1978):

L̂K =−v∂x + ∂v{−F (v) + Γ∂v}. (8)

To understand the structure of Eq. (7), it is useful to recall the classical Kramers equation for particles driven by a fluc-

tuating force without intermittency: ∂tW (x,v, t|0) = L̂KW (x,v, t|0), with the same operator L̂K as above (Kramers, 1940).120

A comparison suggests that the additional terms in Eq. (7) weave intermittency into the distribution function. In fact we can

see as kD→ 0 while kE →∞, so that bedload particles immediately entrain and never deposit, Eq. (7) becomes the Kramers

equation.

2.3 The displacement statistics of bedload grains

To calculate the sediment transport rate we will use the probability distribution of position for bedload particles, defined as125

P (x,t|0) =

∞∫

−∞

dv′W (x,v′, t|0). (9)

Unfortunately, even for the classical Kramers equation without intermittent motion, it is extremely difficult to obtain a gov-

erning equation for P (x,t|0) without first solving the phase space master equation for W (x,v, t|0) (e.g. Brinkman, 1956;

Olivares-Robles and García-Colin, 1996). For the case of F (v) associated with exponential velocities (e.g. Fan et al., 2014),

the Kramers equation has only been solved numerically (Menzel and Goldenfeld, 2011).130

Fortunately bedload experiments often show Gaussian velocities for moving particles (e.g. Martin et al., 2012; Ancey and

Heyman, 2014; Heyman et al., 2016), corresponding to the forcing term

F (v) = γ(V − v). (10)
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With this force, the classical (non-intermittent) Kramers equation analogous to Eq. (7) can be exactly solved for the position

distribution P (x,t|0) (e.g. Wang and Uhlenbeck, 1945; Chandrasekhar, 1943). When motions are intermittent, corresponding135

to Eq. (7), an exact solution appears not yet possible.

We can however solve Eq. (7) with the force (10) approximately, by using the same “overdamped" approximation often

applied to the classical Kramers equation (e.g. Risken, 1984; Gardiner, 1983). If we consider that moving particles attain their

steady-state velocities relatively quickly after entrainment (i.e. the relaxation timescale γ−1→ 0), we can actually obtain an

overdamped approximation for the phase space equation (7) using the same method originally introduced by Kramers (1940).140

We integrate Eq. (7) along the straight line x+ vγ−1 = const. from v→−∞ to v→∞. Because γ−1 is small, we can take

the line integral along dv only (cf. Coffey et al., 2004), providing the overdamped master equation:

[
∂2
t + k∂t +V ∂x∂t + kEV ∂x−D∂2

x∂t− kED∂2
x

]
P (x,t) = 0. (11)

The spatial diffusivity D is defined as D = γ−2Γ with units [L2/T ]. Hereafter we suppress the explicit dependence of the

position distribution on its initial conditions [P (x,t|x0,v0, t0) = P (x,t)].145

Eq. (11) interleaves two different diffusion processes: one associated with motion-rest alternation, and another with velocity

fluctuations during motions. We can see in particular that taking the entrainment rate kE very large, meaning that particles

are usually moving, implies the classical advection-diffusion equation (∂t +V ∂x−D∂2
x)P = 0. This result is characteristic

of a particle moving downstream with Gaussian velocity fluctuations. Otherwise, when kD and kE are comparable, there is a

possibility that particle motions will be interrupted, giving rise to the additional terms in Eq. (11).150

3 Mechanistic formulation of the sediment flux

Now we phrase the probability distribution of the sediment flux in terms of these particle dynamics. The method we present is

very similar to the one developed by Banerjee et al. (2020) to describe current fluctuations in condensed matter physics. The

basic idea, as depicted in Fig. (2), is to initially distribute N particles in all states of motion along the domain −L≤ x≤ 0.

Later, the number of particlesN and the size L of the domain will be extended to infinity such that their ratio ρ=N/L remains155

constant. This limit produces a configuration similar to the one considered in the nonlocal formation of Eq. (3).

From this initial configuration, the flux is calculated as the average rate of particles crossing to the right of the control surface

at x= 0 after the sampling time T , analogous to the renewal formulation of Eq. (4):

q(T ) =
1
T

N∑

i=1

Ii(T ). (12)

In this equation, the Ii(T ) are indicator functions which equal 1 if the ith particle has crossed the control surface (x= 0) by T ,160

and 0 otherwise. Particles which have not crossed the surface (or which have crossed and then crossed back) do not contribute

to the flux.
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Figure 2. Panel (a) indicates the configuration for the flux. Here, time increases from the bottom to the top. Particles begin their transport

with positions −L≤ x≤ 0 to the left of S at observation time T = 0, and the flux is calculated in panel (b) as the rateN (T )/T of particles

crossing x= 0 over the observation time T . Particle crossing events are indicated in (b) by color-coded lines. The probability distribution

of q(T ) is determined from all possible realizations of the trajectories and initial positions as N and L tend to infinity while the density of

particles ρ=N/L to the left of S is held constant.

The probability density F (q|T ) of the flux, conditional on the sampling time T , is then an average involving Eq. (12) across

all possible initial configurations of particles and their trajectories:

F (q|T ) =
〈
δ
(
q− 1

T

N∑

i=1

Ii(T )
)〉
. (13)165

Taking the Laplace transform F̃ (s|T ) =
∫∞

0
dqe−sqF (q|T ) (forming the characteristic function) produces

F̃ (s|T ) =
N∏

i=1

[
1−

(
1− e−s/T

)〈
Ii(T )

〉]
. (14)

This formula relies on the independence of averages for each particle (so that the average of a product is the product of averages)

and the observation that eαI = 1− (1− eα)I if I = 0,1.
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The average over initial conditions and possible trajectories of the indicator for the ith particle involved in this characteristic170

function is

〈Ii(T )〉=
1
L

0∫

−L

dx′
∞∫

0

dxP (x−x′,T ). (15)

Here P (x,T ) is the position probability distribution of position at time T , either derived exactly from Eqs. (7) and (9), or

from the overdamped approximation Eq. (11). The integral over x evaluates the probability that the position of a particle at T

exceeds x= 0, while the integral over x′ averages across a uniform distribution of possible initial positions. These 〈Ii(t)〉 are175

the components of the flux that depend on the particle dynamics.

Inserting Eq. (15) into Eq. (14) and taking the limits L→∞ and N →∞, as the density of particles ρ=N/L is held

constant, provides

F̃ (s|T ) = exp
[
−
(
1− e−s/T

)
Λ(T )

]
. (16)

Λ(T ) is the central parameter of the sediment flux probability distribution:180

Λ(T ) = ρ

∞∫

0

dx

∞∫

0

dx′P (x+x′,T ). (17)

The quantity Λ(T )/T is a rate function. This ratio describes the rate of particle arrivals to the control surface at x= 0, and it

explicitly depends on the observation time T .

Eq. (16) is the characteristic function of a Poisson distribution (Cox and Miller, 1965). Expanding in e−s/T and inverting

the Laplace transforms provides the probability distribution of the flux conditional on the sampling time T :185

F (q|T ) =
∞∑

n=0

Λ(T )n

n!
e−Λ(T )δ

(
q− n

T

)
. (18)

This equation implies that the mean flux is 〈q(T )〉=
∫∞

0
qF (q|T )dq = Λ(T )/T . Similarly the variance is σ2

q (T ) = Λ(T )/T 2.

For the case when Λ(T ) is proportional to the observation time (Λ∝ T ), these formulas become identical to the renewal

approach with exponential inter-arrival times.

Eq. (18) formulates the flux probability distribution directly from the particle dynamics set out in Eq. (5). This equation190

is a scale-dependent Poisson distribution. The Poisson form originates primarily from the assumption that particles undergo

independent dynamics. It is scale dependent through the displacement statistics of individual particles ingrained in Eq. (17).

4 Results

4.1 Displacement by intermittent transport

The overdamped master equation (11) describes the displacement statistics of particles alternating between motion and rest195

with Gaussian movement velocities. This equation is founded on the approximation that just-entrained particles attain their

steady-state (but fluctuating) velocities rapidly.
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Figure 3. Panel (a) indicates the overdamped probability distribution of particle position (19) as it evolves through time, while panel (b)

shows the resulting particle diffusion from Eq. (20). All results are scaled by the mean hop length `= V/kD and the timescale τ = 1/k

of the motion-rest alternation. Curves represent the analytical results while the points are results of Monte Carlo simulations of the exact

equations (5) produced by evaluating the cumulative transition probabilities on a small timestep (e.g. Barik et al., 2006). In panel (a) from the

initial mixture of motion and rest states, particles advect downstream as they diffuse apart from one another due to motion-rest alternation

and velocity variations. The initial distribution persists as a delta function spike for the t= 10τ curve. In panel (b) at timescales t� 1/k the

diffusion is approximately ballistic since particles have not had time to exchange between motion and rest. For t� 1/k particles undergo

normal diffusion as particles become well-mixed among motion and rest states. Small discrepancies are visible at short times between the

simulations and analytical approximations due to our neglect of velocity fluctuations in deriving Eq. (20).

The overdamped master equation (11) is solved in appendix B with transform calculus, obtaining

P (x,t) = Â

t∫

0

e−kE(t−u)−kDuI0

(
2
√
kEkDu(t−u)

)e−(x−V u)2/4Du

√
4πDu

du. (19)

Here I0 is a modified Bessel function and Â=−D∂2
x+V ϕ∂x+k+∂t is a differential operator. Within the integral, the Bessel200

term represents the proportion of time u/t the particle has spent in motion, while the Gaussian term describes the distribution of

displacements achieved in time u. This distribution is compared with numerical simulations of the exact distribution from Eq.

(5) in Fig. (3)a. The general decreasing trend of mean transport with observation time is qualitatively consistent with laboratory

observations (Singh et al., 2009; Saletti et al., 2015) and the renewal approach summarized earlier (Turowski, 2010; Ancey and

Pascal, 2020).205

The moments of particle position from Eq. (5) are extremely challenging to obtain. An approximation for the mean can be

obtained by considering that velocity fluctuations during motions approximately cancel out, since these are symmetrical around

V . Therefore we set Γ = 0 in Eq. (5) to find the mean position 〈x(t)〉= kEV t/k, which is V t scaled by the expected fraction

of time spent in motion. Similarly we can approximate the variance by reasoning that motion-rest alternation, and not velocity

fluctuations during motions, is the primary source of particle diffusion. Again setting Γ = 0 we find the variance of position210
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(σ2
x = 〈x2〉− 〈x〉2):

σx(t)2 =
2kEkDV 2

k3

(
t+

1
k
e−kt− 1

k

)
. (20)

This describes a two-range particle diffusion process, whereby the rate of particle spreading depends on how long the dynamics

have been ongoing (Taylor, 1920). Fig. (3)b compares this variance to the numerical solutions and exhibits a crossover between

ballistic and normal scaling regimes at τ = 1/k. The variance approximation is good apart from small undershooting at short215

times. Here, small contributions to the variance from velocity fluctuations in the motion state become visible, suggesting that

particle velocity fluctuations during motions slow the diffusion at short timescales.

4.2 The flux rate function for overdamped transport

The formalism in Sec. 3 provides the central parameter Λ(T ) of the sediment flux distribution. Using the overdamped proba-

bility distribution of position Eq. (19), we evaluate Eq. (17) in appendix C, providing220

Λ(T ) = ρ

T∫

0

I0

(
2
√
kEkDu(T −u)

)
e−kE(T−u)−kDu

×
[√

D

πu

(
[ ~∂T + k]u− kD

2k

)
e−V

2u/4D +
V

2

(
[ ~∂T + k]u− kD

k

)
erfc

(
−
√
V 2u

4D

)]
du. (21)

In this equation, the notation ~∂T means that the partial time derivative acts from the left of all terms in which it is involved, as

in f(T ) ~∂T g(T ) = ∂T [f(T )g(T )], and erfc(x) denotes the complementary error function.225

This result indicates a nuanced observation-scale dependence in the sediment flux. We can better understand Eq. (21) by

investigating extreme cases of the observation time. As shown in appendix D, Eq. (21) takes on simple forms at extreme values

of T :

Λ(T ) =





ρkE

k

√
DT
π , T � (kDPe)−1,

ρkEV T
k , T � (kDPe)−1.

(22)

Here, Pe = V 2/(2DkD) is a Péclet number that measures the relative importance of advection and diffusion to the particle230

motion.

The limiting form of Λ(T ) implies that for T � (kDPe)−1 the mean flux converges to the eventual value 〈q(T →∞)〉= q0:

q0 = ρkEV/k. (23)

This can be understood as the result q0 = E` of the nonlocal formulation (3) in the case of steady transport conditions. Thus

at T →∞ our formlation becomes equivalent to that of Einstein (1950). Here, E = ρkE is an averaged areal entrainment rate235

and `= V/k ≈ V/kD is the mean step length of particles. k ≈ kD holds since the mean duration of a single motion is typically

much smaller than the duration of a single rest.
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Fig. (4)a shows the rate constant decaying toward its asymptotic value in Eq. (22) for different values of Pe. Numerical

simulations of the exact equations (5) are superimposed. The overdamped approximation pursued in this paper provides a

valid characterization of the sediment flux for T � 1/γ, but for T � 1/γ, the approximate result overshoots. Thus in general240

we expect the properties of particle acceleration immediately after entrainment (cf. Campagnol et al., 2015) will slow the

observation-scale dependence of the flux at short timescales.

Fig. (4)b demonstrates the adjustment of the flux distribution (12) across observation times. At the shortest times, the flux

approaches a uniform-like distribution due to the (apparent) divergence of Λ(T ). At very long observation times, the flux

adopts the deterministic (Einstein) form245

F (q|T )∼ δ(q−E`). (24)

This limit can be seen by taking large T in Eq. (18) and using the correspondence between Poisson and Gaussian distributions

for large Poisson rates (e.g. Cox and Miller, 1965). The Einstein (1950) result for the sediment transport rate becomes exact in

the limit the observation is large compared to the key timescale 1/k of motion-rest alternation. Otherwise, the flux has intrinsic

fluctuations related to the unpredictability of particle arrivals in a finite observation window, as characterized by Eq. (12).250

5 Discussion

In this paper, we formulated a mechanistic description of the bedload sediment flux using a detailed stochastic model of individ-

ual particle displacements. The resulting sediment flux distribution shows Poissonian fluctuations that depend on observation

scale. Our displacement model applies over a wider range of timescales than earlier formulations because it includes both

Newtonian velocities and motion-rest alternation. In appropriate simplified limits, the displacement model Eq. (7) reduces to255

many earlier descriptions of grain-scale transport (e.g. Einstein, 1937; Lisle et al., 1998; Lajeunesse et al., 2017; Ancey and

Heyman, 2014; Fan et al., 2014). In this sense, the grain-scale transport component of this paper generalizes and unifies all of

these earlier works.

We solved the displacement model analytically to obtain the displacement probability distribution. This derivation relied on

the “overdamped" approximation that particles accelerate rapidly following entrainment. We then formulated the stochastic260

sediment flux using the resulting particle displacement statistics. The obtained flux distribution mimics earlier renewal theory

descriptions of the bedload flux (Turowski, 2010; Ancey and Pascal, 2020), except its input parameters relate directly to

the transport characteristics of individual grains. The flux distribution depends on the timescale over which it is observed. It

inherits this scale-dependence from the velocity fluctutations and motion-rest alternations of individual grains. The convergence

timescale of the flux indicates this conclusion: transport rates converge for timescales T = (kDPe)−1. The convergence thus265

links to the deposition rate of individual particles (inverse time spent in motion) and the Péclet number which measures the

significance of movement velocity fluctuations. When the time spent in motion goes to zero (idealized steps), or velocity

fluctuations vanish (Pe→∞), the flux loses its scale dependence. In other conditions, the flux approaches the deterministic

result q = E` of Einstein (1950) and later nonlocal formulations (Furbish et al., 2012, 2017) as the observation time becomes

large.270
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Figure 4. Panel (a) plots the mean sediment flux for different values of the Péclet number Pe = V 2/(2kDD), characterizing the relative

significance of particle velocity fluctuations during motion. Plotted lines show the analytical result (21), while the points are Monte Carlo

simulations. Panel (b) displays the evolution of the flux distribution (18) across observation times. The flux is normalized by the prediction

q0 = E` of the Einstein model. In panel (a), the convergence time of the mean flux is controlled by attributes of individual particle motions.

In all cases, the mean flux converges for T � 1/(kDPe), as expected by Eq. (22). The overdamped approximation (22) cannot account

for timescales T � γ−1, as indicated by the discrepancy between numerical and analytical calculations. In panel (b), the Einstein limit

F (q|T ) = δ(q−E`) is approached as the observation time T grows. Stronger velocity fluctuations (smaller Pe) slow the convergence.

5.1 Newtonian description of bedload displacement

Our description of individual particle displacements in Sec. 2 provides an analytically-solvable alternative to computational-

physics models of grain-scale transport (e.g. Schmeeckle, 2014; Ji et al., 2014; Clark et al., 2017). Analytical progress was

possible largely because the forces on moving particles were modeled as linear in the particle velocity [Eq. (10)] with Gaussian

white noise fluctuations (cf. Ancey and Heyman, 2014). This forcing structure is a crude approximation for the actual hydro-275

dynamic and granular forces acting on bedload particles. In reality, flow forces are non-linear in the flow velocity and history-

dependent (Michaelides, 1997; Schmeeckle et al., 2007), while collision forces are velocity-dependent and episodic (Brach,

1989; Schmeeckle and Nelson, 2003; Pierce, 2021). Fluctuations in these forces are probably colored noise, not white (Hänggi

and Jung, 2007; Cameron et al., 2020). Although we cannot hope to include completely realistic forces into an analytically-

solvable model, it should still be possible to introduce some level of additional complexity into the forcing structure of Eq. (5).280

A first step is to solve Eq. (7) with F (v) tailored to produce exponential velocities for moving particles (e.g. Fan et al., 2014).

The result would lend additional insight into how the scale-dependence of the flux depends on the particle velocity statistics.
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A simplified element of our approach is the representation of entrainment and deposition by instantaneous alternation be-

tween motion and rest states (e.g. Einstein, 1937). In actuality, motion and rest are not perfectly defined because “resting"

particles undergo slow downstream creep (Houssais et al., 2015; Allen and Kudrolli, 2018) and can shuttle in their pockets285

without any net translation (Diplas et al., 2008; Celik et al., 2010). It is challenging to imagine an analytically-solvable model

of particle displacement which does not discriminate between multiple states of transport, but improvements can nonetheless

be made to the dichotomous representation of entrainment and deposition we employed. One option is to render slower-moving

particles more likely to deposit, which can be viewed as making the dichotomous noise “state dependent" (e.g. Laio et al., 2008;

Bartlett and Porporato, 2018). This would preferentially cull slow-moving particles and positively skew the particle velocity290

distribution among moving particles (Williams and Furbish, 2021), possibly affecting the sediment flux.

5.2 Mechanistic interpretation of transport fluctuations

The sediment flux probability distribution derived in Sec. 3 represents a Poisson distribution with a scale-dependent rate.

Poisson distributions have relatively thin tails which reflect narrow sediment transport fluctuations. In reality, sediment flux

distributions are only Poissonian at high transport rates, whereas in other conditions they have wide tails representing the295

possibility of large fluctuations (Ancey et al., 2008; Saletti et al., 2015; Turowski, 2010), which appear as bursts (e.g. Goh and

Barabási, 2008) in sediment flux timeseries (Dhont and Ancey, 2018; Singh et al., 2009). This observation highlights a need to

improve the mechanistic description we developed here to produce wider transport rate fluctuations.

A vast set of processes generate transport rate fluctuations in real channels. At the shortest timescales, fluctuations arise from

the intermittent arrivals of individual grains, as we have described here. Over longer timescales, activity waves (Heyman et al.,300

2014), cluster entrainment (Papanicolaou et al., 2018; Strom et al., 2004), bedform migration (Guala et al., 2014; Hamamori,

1962), grain-size sorting (Cudden and Hoey, 2003; Iseya and Ikeda, 1987), flow variations (Mao, 2012; Wong and Parker,

2006), and sediment supply perturbations (Lisle et al., 1993; Madej et al., 2009) all contribute to sediment transport variability.

It should be possible to include particle-particle interactions into our description to capture the subset of these processes

which originate from the grain-scale physics. Activity waves, clusters, and bedforms might result from including interactions305

between particles into the entrainment and deposition rates, such as collisions (Lee and Jerolmack, 2018), the stabilization

of bed particles by neighbors, or coordinated deposition based on the locations of sedimentary deposits (cf. McDowell and

Hassan, 2020). We might formulate the resulting joint distribution of particle positions and velocities by analogy to reaction-

diffusion problems (e.g. Pechenik and Levine, 1999; Cardy, 2008) or other interacting particle systems available in the physics

literature (e.g. Escaff et al., 2018; Hernández-García and López, 2004).310

5.3 Observation-scale dependence of the flux distribution

The observation-scale dependence of the sediment flux has been investigated in several laboratory experiments. Both Singh

et al. (2009) and Saletti et al. (2015) found that the statistical moments of the bedload flux shift with the observation time

T , but Singh et al. identified statistical multiscaling, where the flux distribution changes shape with T , while Saletti et al.

identified monoscaling, where the distribution does not change shape with T . Our approach predicts monoscaling because315
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the flux distribution (18) is always Poissonian, even though all of its moments scale together with T in a non-trivial way,

see Fig. (4). Probably the Poissonian and monoscaling characteristics of the flux distribution both originate from the assumed

independence of individual particle motions which was used to arrive at Eq. (16). Turowski (2010) demonstrated that renewal

theories with certain non-exponential inter-arrival times produce multiscaling. Possibly, wider-tailed, multiscaling sediment

flux distributions will derive from generalizations of our approach to include particle-particle interactions. To some extent a320

flux distribution which is wide-tailed at short observation times must be multiscaling, since it should approach the thin-tailed

(deterministic) Einstein distribution (24) as the observation time becomes large, changing shape as it adjusts.

6 Conclusions

We have formulated the bedload flux probability distribution using the statistical mechanics of individual grains in transport.

This formulation produces Poissonian flux distributions having scale-dependent rates, meaning transport rate fluctuations are325

relatively narrow, and transport characteristics shift with the timescales over which they are observed. In laboratory experi-

ments, sediment transport fluctuations are typically wider than Poissonian. Notably, we can assert that the Poisson flux distri-

bution derived in this paper originates exclusively from the independence of individual grains: the Poisson form is completely

indifferent to the forces driving particles downstream, so long as these forces do not introduce correlations between particles.

In the future it will be necessary to refine the statistical mechanics formulation presented here to produce wider transport fluc-330

tuations. We expect that introducing any component in Eq. (5) which couples one particle to another will achieve wider flux

distributions than Poisson. The severe challenge will be evaluating the average in Eq. (14) when grains are not independent.

Appendix A: Derivation of the phase space master equation

Because the joint process (x,v,σ) is Markovian, its phase space distribution function for a particular realization of the white

noise ξ(t) obeys the Chapman-Kolmogorov equation (Cox and Miller, 1965; Van Kampen, 2007):335

Wξ(x,v,σ, t+ δt|x0,v0,σ0, t0) =
∑

σ′=0,1

∞∫

−∞

dx′
∞∫

−∞

dv′Wξ(x,v,σ, t+ δt|x′,v′,σ′, t)Wξ(x′,v′,σ′, t|x0,v0,σ0, t0). (A1)

This equation relates the phase space distribution function at t+δt to its value at t through the transition amplitudesWξ(x,v,σ, t+

δt|x′,v′,σ′, t). The distribution Wξ is a functional of the white noise ξ(t) (Hänggi, 1985; Łuczka, 2005).

In the limit of vanishing δt, the transition amplitudes in Eq. (A1) can be directly evaluated from the dynamical equations Eq.

(5) using a method analogous to Horsthemke and Lefever (1984). The transition rates involve δ-function terms in x′ and v′.340

These terms are expanded in δt to first order, and the integrals in Eq. (A1) are conducted over the δ-functions. This produces

the pair of equations

∂tMξ = kERξ − kDMξ +
{
− ∂xv+ ∂v[−F (v) + ξ(t)]

}
Mξ

∂tRξ = kDMξ − kERξ.
(A2)

14

https://doi.org/10.5194/esurf-2022-4
Preprint. Discussion started: 20 January 2022
c© Author(s) 2022. CC BY 4.0 License.



In these equations the shorthands are Mξ =Wξ(x,v,1, t|x0,v0,σ0, t0) and Rξ =Wξ(x,v,0, t|x0,v0,σ0, t0). We now average

Eq. (A2) over realizations of the white noise and compute the correlator 〈ξ(t)Mξ〉= Γ∂vM using the Furutsu-Novikov theorem345

(e.g. Van Kampen, 2007; Gitterman, 2005). Incorporating this correlator into Eq. (A2) obtains

∂tM = kER− kDM +LKM

∂tR= kDM − kER,
(A3)

where L̂K =−∂xv+ ∂v{−F (v) + Γ∂v} is the Kramers operator, M = 〈Mξ〉, and R= 〈Rξ〉. Summing the above equations,

noting W (x,v, t|0) =M +R, and eliminating M from the sum produces Eq. (7).

Appendix B: Solution for the position probability distribution350

The position probability distribution can be obtained from Eq. (11) provided we have a pair of initial conditions on P . We

consider that particles have a probability kD/k = ϕ to start from rest, so they have a probability 1−ϕ= kE/k to start from

motion. Particles are initially located at x= 0, and particles that start from motion are considered to have a random initial

velocity selected from the steady-state distribution

f(v) =
√

γ

2πΓ
e−γv

2/2Γ. (B1)355

With these assumptions, the initial state can be written M(x,v,0) = (1−ϕ)δ(x)f(v) and R(x,v,0) = ϕδ(x)δ(v). Summing

these two equations and integrating out the velocity provides P (x,0) = δ(x). Plugging these two equations into Eq. (A3),

summing the result, then integrating out the velocity provides ∂tP (x,0) =−kEV
k δ′(x). This produces the required pair of

initial conditions. A similar calculation is available in Weiss (2002).

Now we take Fourier transforms over space and Laplace transforms over time of the overdamped master equation (11),360

obtaining

¯̃P (g,s) =
s+ k+Dg2− igV ϕ

s(s+ k) + (Dg2− igV )(s+ kE)
. (B2)

The Fourier transform can be inverted by partial fraction decomposition and contour integration to obtain

P̃ (x,s) =
−ϕD∂2

x +V ϕ∂x + s+ k

V R(s+ kE)
exp

[V x
2D
− V |x|

2D
R
]
, (B3)

where365

R=

√
1 +

4D
V 2

s(s+ k)
s+ kE

. (B4)

The Laplace transform can then be inverted with the shift property L−1{f̃(s+k)}= e−ktf(t), the derivative property (Arfken,

1985)

L−1
{
sf̃
}

= (δ(t) + ∂t)f(t), (B5)
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the identity (Bateman and Erdelyi, 1953, pg. 133)370

L−1
{1
s
g̃(s− a/s)

}
=

t∫

0

I0

(
2
√
au(t−u)

)
g(u)du, (B6)

and Laplace transform tables (Prudnikov et al., 1992), eventually giving Eq. (19).

Appendix C: Calculation of the scale-dependent rate function

The Laplace transform of Eq. (17) over T provides

Λ̃(s) = ρ

∞∫

0

dxi

∞∫

0

dxP̃ (x+xi,s). (C1)375

Noting that x+xi is always positive, inserting Eq. (19), and integrating twice gives

Λ̃(s) =− ρϕD

V R(s+ kE)
+

2ρDϕ
V R(1−R)(s+ kE)

+
4ρD2(s+ k)

V 3R(1−R)2(s+ kE)
. (C2)

Taking the inverse transform, applying Eq. (B5), and using the shift property develops

Λ(T ) = ρe−kETL−1

{
− ϕD

V R?s
+

2Dϕ
V R∗(1−R?)s

+
4D2

(
~∂T + k

)

V 3R?(1−R?)2s

}
. (C3)

Here, the notation ~∂T means the derivative acts from the left on all terms multiplying it, and380

R∗ =

√
1 +

4D(kD − kE)
V 2

+
4D
V 2

(
s− kEkD

s

)
. (C4)

Laplace inverting Eq. (C3) with Eq. (B6) and tabulated Laplace transforms (e.g. Arfken, 1985; Prudnikov et al., 1992) eventu-

ally provides Eq. (21).

Appendix D: Asymptotic limits of the flux rate function

The behavior of Eq. (21) at extreme values of T can be obtained with Tauberian theorems by inverting the Laplace-transformed385

rate function (C2) at the opposite extreme of s (Weiss, 1994). At short times, expanding Eq. (C2) as s→∞ gives

Λ̃(s) =
ρkEV

2ks2
+
ρkE
k

√
D

4s3
, (D1)

which inverts to

Λ(t)∼ ρkEV T

2k
+
ρkE
k

√
DT

π
, (D2)
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giving the small T behavior. This has two scaling limits within it. Provided that T � 4D/(V 2π)< 2D/V 2, the scaling goes390

as Λ(T )∼ T−1/2. But if T � 2D/V 2, it goes as Λ(t)∼ T . For large times, taking s→ 0 gives

Λ̃(s) =
ρkEV

ks2
, (D3)

and this inverts to Λ(T ) = ρkEV T/k. These limits are summarized in Eq. (22).

Code availability. Python scripts for Monte Carlo simulation and to develop are available temporarily at https://github.com/jkpierce/flippyflop.

The scripts contain comments detailing the stochastic simulation methods. This code will later be moved to a location with a DOI.395
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