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Abstract. Airborne lidarIncreased access to high resolution topography has revolutionized our ability to map out fine-scale 

(~1-m) topographic features at watershed- to landscape-scales. As our ‘vision’ of land surface has improved, so has ourthe 

need for more robust quantification of the accuracy of the geomorphic maps we derive from these data. One broad class of 

mapping challenges is that of binary classification where remote sensing data are used to identify the presence or absence of a 10 

given feature. Fortunately, there are a large suite of metrics developed in the data sciences that are well suited to quantifying 

pixel-level accuracy of binary classifiers. In this paper, I focus on the challenge of identifying bedrock from lidar topography, 

though the insights gleaned from this analysis apply to any task whereThis analysis focuses on how these metrics perform 

when there is a need to quantify how the number and extent of landforms are expected to vary as a function of the environmental 

forcing. Using (e.g., due to climate, ecology, material property, erosion rate). Results from a suite of synthetic maps, Isurfaces 15 

show how the most widely used pixel-level accuracy metric, F1-score, is particularly poorly suited to quantifying accuracy 

for this kind of application. Well-known biases to imbalanced data are exacerbated by methodological strategies that attempt 

to calibrate and validate classifiers across a range of geomorphic settings where feature abundances vary. Matthews 

Correlation Coefficient largely removes this bias over a wide range of feature abundances, such that the sensitivity of accuracy 

scores to geomorphic setting instead embeds information about the error structure of the classification. To this end, I examine 20 

how the scale size and shape of features (e.g., the typical sizes of bedrock outcrops) and the type of error. If error (e.g.,is 

random versus systematic) manifest in pixel-level scores. The normalized version of , Matthews CorrelationsCorrelation 

Coefficient is relatively insensitive to feature scale if error is random and if large enough areas are mapped. In contrast, asize 

and shape, though preferential modification of the dominant class can limit the domain over which scores can be compared. If 

the error is systematic (e.g., due to co-registration error between remote sensing datasets), this metric shows strong sensitivity 25 

to feature size and shape emerges when classifier error is systematic. My findings highlight the importance of choosing 

appropriate pixel-levelsuch that smaller features with more complex boundaries induce more classification error. Future studies 

should build on this analysis by interrogating how pixel-level accuracy metrics when evaluating topographic surfaces where 

respond to different kinds of feature abundances strongly vary. It is necessary to understand how pixel-level metrics are 

expected to perform as a function of scene-level properties before interpreting empirical observations. distributions indicative 30 

of different types of surface processes. 
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1 Motivation 

The increasing acquisition and access to lidar topography has revolutionizedHigh resolution topographic datasets are 

transforming our ability to characterize the fine-scale structure of the Earth’s surface (Roering et al., 2013; Passalacqua et al., 35 

2015). Because lidar can ‘see’ through the forest canopy, this technical advance enables quantification ofAirborne lidar 

especially, has changed how geomorphic fieldwork is conducted by enabling scientists to quantify the form and extent of 

meter-scale features over large areas when mounted on an airborne platform. Detailed mapping of such features is invaluable 

to(Roering et al, 2013). Because lidar ‘sees’ through vegetation, lidar has accelerated progress in both discovery science and 

testing hypotheses where the prevalence of features is expected to vary as a function of the environmental forcing (e.g., in 40 

response to changesdifferences in climate, ecosystem, rock properties, uplift rates). For example, airborne lidar ecology, 

material property, erosion rate). Airborne lidar has now been used to map termite mounds (Levick et al., 2010), mima mounds 

(Reed & Amundson, 2012), termite mounds (Levick et al., 2010; Davies et al., 2014), , tree throw pits and mounds (Roering 

et al., 2010; Doane et al., 20212023), landslide boundaries and classes (Jaboyedoff et al, 2012; Bunn et al., 2019; Prakesh et 

al., 2020), channel network and channel head locations networks (Pirotti & Tarolli, 2010; Clubb et al., 2014), exposed bedrock 45 

(DiBiase et al., 2012; Marshall and Roering, 2014; MilodowskiKorzeniowska et al., 2015), and2018), bedrock structure and 

faulting (Cunningham et al., 2006; Pavlis and Bruhn, 2011; Morell et al., 2017).), and bedrock exposure (DiBiase et al., 2012; 

Milodowski et al., 2015; Rossi et al., 2020).  

 

 50 

Figure 1: (A) Mima mounds near Merced, CA, USA, (B) bedrock outcrops along Boulder Creek, CO, USA, and (C) gully erosion on Santa 
Cruz Island, CA, USA as observed from 1-m shaded relief maps. Note that even though the areal extent is the same among these scenes (200 
x 200 m), topographic relief is drastically different (total relief in A is 7 m, in B is 146 m, and in C is 76 m). 100-m elevation transects from 
A to A’ for each site are shown to illustrate how different features manifest as roughness elements in the topography. Airborne lidar for the 
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mima mound and rocky slope sites was flown by the National Center for Airborne Laser Mapping (NCALM). Airborne lidar for the gully 55 
erosion site was flown by the United States Geological Survey (USGS). All lidar datasets were downloaded from OpenTopography (Reed, 
2006; Anderson et al., 2011; 2010 Channel Islands Lidar Collection, 2012). Interpretations of features classified from lidar data can be found 
in Reed & Amundson (2011), Rossi et al. (2020), and Korzeniowska et al. (2018) for the mima mound, rocky slope, and gully sites, 
respectively. 

 60 

Figure 1 shows three examples of features that can be mapped using 1-m airborne lidar data. The utility of lidar topography to 

binary classification of feature locations for each of these geomorphic applications is unquestioned. Theseclear. However, 

examples also highlight that one of the most common uses for lidar topography is for large-how the number, size, shape, 

amplitude, and pattern of features can vary. Regular, repeating morphologies with a characteristic spatial scale, binary 

classification of finer-scale features. While (e.g., mima mounds in Fig. 1A; Reed and Amundson, 2011) pose different 65 

challenges to classification than irregular, heterogeneous morphologies that occur at many scales (e.g., bedrock exposure in 

Fig. 1B; Rossi et al., 2020). Furthermore, the importance of flowing water on surface processes means that many geomorphic 

features form directional networks with substantial anisotropy (e.g., gully erosion in Fig. 1C; Korzeniowska et al., 2018). 

Perhaps unsurprisingly then, accuracy assessment in the geomorphic literature has varied a lot even as formal methods for 

evaluating pixel-level accuracy of binary classifiers isare now becoming standard practice in the remote sensing and machine 70 

learning literature (e.g., Wang et al., 2019; Prakesh et al., 2020; Agren et al, 2021), ). Slow adoption of these standard methods 

in accuracy assessment in the geomorphic literature is quite variable. This is likely due tomay arise from two tendencies of 

geomorphic studies that employ lidar classifiers: 1. Process-based studies are typically more interested in the properties and 

densities of features rather than their contingent locations; 2. Classifiers are expected to work across large gradients in the 

prevalence of features to test our understanding of the relevant transport laws at play. The former tendency arises from the fact 75 

that predicting the actual locations of features (e.g., mounds, outcrops, mounds, channels) is not typicallyusually a viable target 

for numerical models of landscapes where uncertainty in initial conditions and the stochastic nature of processes preclude a 

deterministic forecasting of surface evolution.finer-scale locations of features (e.g., Barnhart et al., 2020). The latter tendency 

arises from the need to use classified data to constrain natural experiments where geomorphic transport laws (Dietrich et al., 

2003) can be tested against governing variables (e.g., across climo-, eco-, litho-, or tectono-sequences). I showAs shown below 80 

that, these tendencies can be at odds with pixel-level accuracy metrics that are designed to assess positional accuracy for 

similarly balanced data (i.e., data where the frequency of positive and negative values does not dramatically vary from case to 

caseare similar). 

 

ThereNevertheless, there are several important benefits to adopting pixel-level accuracy metrics when reporting the success of 85 

geomorphic classifiers. First, these metrics provide common standards for evaluating classifier accuracy across studies, 

including direct comparison between proxy-based classifiers withand those developed using machine learning. Second, trends 

in pixel-level accuracy scores may reveal distinct patterns in the spatial structure of error. Third, pixel-level measures are easy 

to apply to new objectives as long as their limitations are properly considered. To this end, I focusThis paper focuses on how 
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two widely used metrics, F-measures (van Rijsbergen, 19791974; Chinchor, 1992) and Matthews Correlation Coefficient 90 

(Matthews, 1975; Baldi et al., 2000), perform when the research design intentionally calibrates and tests binary classifiers 

across large gradients in how balanced the data are. Interactions among feature size, feature shape, and error structure can 

produce diagnostic trends in accuracy scores as a function of feature prevalence. As such, I argue here that pixel-level accuracy 

scores should be evaluated alongside performance at other scales, particularly the scene-level scale where the statistical 

attributes of features can be quantified for a given environmental forcing.The general approach is to synthetically generate 95 

‘model’ and ‘truth’ data that have a known error structure. Pixel-level accuracy scores are then calculated as a function of 

feature abundance. Despite the simplicity of the scenarios considered, this analysis helps constrain the range over which pixel-

level metrics can be reliably compared across gradients in feature abundance. Synthetic scenarios also reveal how the shape 

and scale of individual objects can strongly influence pixel-level scores when there are small co-registration errors between 

model and truth data.  100 

 

 

 

Figure 1: Example bedrock mapping from Rossi et al. (2020) showing (A) a classified scene. Zoom boxes illustrate different kinds of error 
due to (B) mapping ‘truth’ from air photos and (C) using coarser resolution lidar data to ‘model’ bedrock. In A, scene-level patterns in actual 105 
bedrock exposure were mapped using 3-inch Pictometry® air photos and a topographic proxy derived from 1-m airborne lidar (Anderson et 
al., 2012) as the classifier. The bedrock fraction mapped from air photos is 0.24. The bedrock fraction mapped from lidar data using a 
regionally based, slope-threshold of 38° is 0.35. The zoom area used for B and C is shown in A as a black box. In B, the truth map for this 
site is overlaid on associated air photos at 75% transparency to show the two principal sources of error in air photo mapping. In C, the 
bedrock classifier is overlaid on the same truth map to show the three principal sources of error in using the lidar data for classification. 110 

2 Example application: Bedrock mapping 

The task of mapping bedrock outcrops is useful to show how pixel-level accuracy metrics can be applied to geomorphic studies 

for a few reasons. First, the transition from fully soil-mantled to bedrock-dominated hillsides reflects an important continuum 
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in process dominance and rates (Heimsath et al., 2012). Whether and where bedrock is observed records the local (im)balance 

between soil production and denudation rates (Gilbert, 1909), providing important tests to hypothesized soil production 115 

functions (e.g., exponential versus ‘humped’; Heimsath et al., 1997; Anderson, 2002) and sediment transport laws (e.g., linear 

versus nonlinear creep; Culling, 1963, Andrews & Bucknam, 1987). Second, the challenge of mapping bedrock using airborne 

lidar data is an application that has received a fair bit of recent attention (DiBiase et al., 2012; Marshall & Roering, 2014; 

Milodowski et al., 2015; Rossi et al., 2020). This is, in part, because individual bedrock features can be resolved in lidar 

topography using physically interpretable slope and roughness thresholds. Airborne lidar balances trade-offs between data 120 

resolution (~1-m) and data coverage (100’s of km2) and thus is well-suited to exploring how feature density and properties 

vary across environmental gradients. Third, identifying bedrock typifies the more general challenge of understanding the 

related, but distinct, scaling properties among data, features, and processes (Sofia, 2020). Bedrock tors and cliffs occur at many 

scales (sub-meter to tens of meters) that reside on hillsides (hundreds of meters in length) which are, in turn, responding to 

base level signals propagating through river networks (tens to thousands of km2).  125 

 

In this paper, I specifically consider the approach taken by DiBiase et al. (2012) and adopted by Rossi et al. (2020). These 

studies calibrated lidar proxies for bedrock in the San Gabriel Mountains, CA, USA (SGM) and the Colorado Front Range, 

CO, USA (CFR), respectively.  The general approach in both was to map bedrock using photographic imagery for 50 x 50 m 

to 200 x 200 m patches where the ground surface is visible due to limited forest cover and/or recent clearing due to wildfire. 130 

By selecting scenes representative of a large range of bedrock fractions, the main goal of these studies was to identify a single 

slope threshold that could be applied across the landscape. Both studies found strongest correlations using slope-thresholds 

somewhat above the angle of repose for granular materials (45° in the SGM and 43° in CFR). However, the threshold that 

most closely reproduced the scene-level bedrock fraction without rescaling is closer to expected values for the angle of repose 

(e.g., a slope-threshold of 38° produced a regression slope of one in the CFR; Rossi et al., 2020). Regressions in the CFR were 135 

overall weaker, likely due to differences in air photo mapping (1-10 cm surface-normal field photos in the SGM versus ~8 cm 

air photos in the CFR) and the increased prevalence of bedrock tors, or isolated bedrock outcrops within a lower relief soil 

mantle. Bedrock tors tend to produce dome-shaped features with steep slopes on their sides and low-sloped tops that may be 

better resolved using roughness-based topographic proxies (Milodowski et al., 2015). While scene-level success of slope-based 

proxies for bedrock in the SGM (peak r2 of 0.99) and CFR (peak r2 of 0.85) are promising, neither study assessed pixel-level 140 

accuracy. 

 

Figure 1 shows two general challenges associated with using air photos to calibrate and validate lidar-based proxies for bedrock 

exposure. The first general source of error is introduced in the generation of ‘truth’ data from air photos (Fig. 1B).  Even under 

the best circumstances, visibility of the ground surface is obstructed in places by the vegetation canopy. This can be partially 145 

addressed by restricting mapping tasks to areas where obstructions are minimal and ground truthing air photo mapping with 

field observations. While using high resolution air photos aids interpretation, it is difficult to fully eliminate human error in 
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mapping due to shadows or weakly contrasting visible properties between bedrock and soil. Similarly, distinguishing in-place 

bedrock from detached coarse sediment is difficult unless coarse sediment collects into macro-scale features, like talus slopes, 

whose properties are distinct. The second general source of error arises in the classification process itself (Fig. 1C). Relating 150 

higher resolution air photos to lidar proxies requires better understanding of uncertainty in the scaling properties of features. 

Scaling challenges arise from both the feature shape itself and how gridded representations of features change as a function of 

data resolution. Because the classifier is often built from data acquired at different times and using different data sources, error 

in classification can also arise due to co-registration of truth and model datasets. Precise mapping of control points for 

georeferencing and smart use of stable surfaces in post-processing can help minimize the misfit between truth and model data 155 

(Bertin et al, 2022). The binary classifier itself, whether using physical thresholds or statistical models, will also be imperfect. 

New algorithms attempt to make this model error as small as possible. Each of these five sources of error lies on a continuum 

between random and systematic, where random error is independent of feature locations or properties and systematic error 

refers to any error structure that is spatially correlated with feature locations or properties. For example, we might expect co-

registration error between two remote sensing datasets to be more systematic than the others due to translation, rotation, and 160 

distortion of aligned datasets. Can pixel-level accuracy scores diagnose different error structures when calibration of binary 

classifiers is attempted against scenes that span large gradients in bedrock exposure? How does feature shape, feature scale, 

and mapping coverage interact with this error structure? 

3 Approach 

Two of the most widely used accuracy metrics are F1-score and Matthews Correlation Coefficient (MCC). Adopting such 165 

pixel-level metrics helps link studies that classify features using physical intuition (e.g., using slope-thresholds for bedrock 

exposure is based on the notion that only bedrock is stable above the angle of repose) with those developed using statistical 

methods (e.g., machine learning). These measures also provide a common language to assess results from studies that span 

different landscapes with different research goals. However, I emphasize here that while these metrics can robustly characterize 

pixel-level accuracy, it is important to consider their limitations in characterizing scene-level accuracy and how they might 170 

perform across gradients in environmental forcing. To this end, I consider a suite of synthetic land surfaces that show the 

sensitivity of F1-score and a normalized version of MCC to: feature scale, the error structure in the data, and how balanced 

the data are. In Section 3, I describe methods common to all scenarios. Specifically, I describe the general process of generating 

grids and calculating accuracy scores. Methods unique to each different scenario are then described in Sections 4 and 5 so that 

their rationale can be articulated in the context of results.  175 
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32 Approach 

One common use of binary classifiers is to build an inventory of feature boundaries and abundances using remotely sensed 

data. This typically entails using scenes where ‘truth’ is known through detailed field or air photo mapping. An algorithm built 

from an independent data source (e.g., lidar) is then used to ‘model’ the locations of features. Models are commonly trained 

and tested so that the classifier can be used for larger scale geomorphic mapping. If the density, size distribution, and form of 180 

features varies from scene to scene, then it is important to understand how pixel-level accuracy metrics will perform as a 

function of scene-level properties (e.g., feature fraction). To mimic this task, this paper examines how two widely used 

accuracy metrics, F1-score and Matthews Correlation Coefficient (MCC), behave on synthetic truth and model data. Synthetic 

truth data is generated by randomly placing features in a scene at a given abundance. Model data is either independent from 

truth data or derived from the truth data using an assumed error structure. Pixel-level accuracy scores are then calculated for 185 

each scene.  

2.1 Grid generation 

To generate ‘truth’ grids of bedrock and soil, I first usefeatures within a matrix, the pseudo-random number generator in 

NumPy is used to create a scene of size m x n cells. Continuous values are converted into binary classes (0 = soilmatrix; 1 = 

bedrockfeature) based on a user-specified value for the overallfeature fraction of bedrock (𝑓௕). 𝑓௙), which is simply the fraction 190 

of the surface covered by features. The simplest scenario is for bedrock torsfeatures with a size of one pixel. While synthetic 

surfaces are scale free, I report results are reported assuming a grid spacing of 1-m to represent a typical case using airborne 

lidar. To simulate features that have a scale greater than one square meter, I use the pseudo-random numbers to instead specify 

a first guess at the locations of the centres of incipient torsfeatures. The first guess at the number of torsfeatures is calculated 

by finding the integer number of torsfeatures of length, l, that most closely matches 𝑓௕𝑓௙. However, as the number of torfeature 195 

centres increases, so does the probability that two neighbouring ‘tors’objects overlap and coalesce into a larger featureobject. 

As such, the first guess generally produces an actual bedrockfeature fraction lower than the user-specified value. The ratio 

between the specified 𝑓௕𝑓௙ and this underestimate is then used to proportionally increase the number of incipient torsfeatures 

in the model domain. I iterate thisThe process is iterated until either the synthetic fraction is within 0.5% of the specified value 

or fifty iterations, whichever comes first. It is worth pointing out here that while I will continue to use the term ‘tor density’ to 200 

refer to the The number of tor centres per scene area, the resultantincipient objects is always higher than the actual number of 

tors isobjects in the scene because smaller due to the coalescing of incipient features (see section 6.2 and Appendix B2 for 

further elaboration).increasingly coalesce into larger objects at higher feature fractions.  

 

All scenarios presented in this study rely on comparing simulated ‘truth’ and ‘model’ grids. across the full range of feature 205 

fractions (0 < 𝑓௙ < 1). Where the truth and model data are independent of each other, the two grids are generated using different 

pseudo-random seed numbers in NumPy (section 43). In scenarios where the model grid is dependent on the truth grid, the 
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model grid is a copy of the truth data using the specified error structure. Details for how random error (section 54.1), systematic 

error (section 54.2), and random plus systematic error (section 54.3) are implemented are described in context below. For each 

scenario, the truth and model grids are evaluated by building the confusion matrix and calculating accuracy metrics at each 210 

bedrockfeature fraction (section 32.2). 

32.2 Pixel-level accuracy metrics 

While there are many metrics used to quantify the accuracy of binary classifiers, Ithe focus hereof this paper is on two of the 

most widely used ones: the F1-score and Matthews Correlation Coefficient (MCC). These metrics can beare frequently used 

to evaluate pixel-level performance of classified maps with respect to ground truth data and are often used when 215 

employinggenerated from machine learning techniques ((e.g., Wang et al., 2019; Prakesh et al., 2020; Agren et al, 2021). 

Application of these metrics need not be limited to the training and testing of machine learning algorithms. They are broadly 

useful to any binary classification task where positional accuracy is important. Both F1-score and MCC can be calculated 

directly from the confusion matrix. The confusion matrix for binary classification is a 2x2 table where the column headers are 

the true classes and the row headers are the model classes, thereby summarizing the occurrence of the four possible 220 

classification outcomes: True Negatives (TN), True Positives (TP), False Positives (FP), and False Negatives (FN).  

 

Figure 2: (A) Pixel classes for Fig. 1B and (B) the corresponding confusion matrix (inset) and correlation plot (main). In A, the four 
outcomes of the binary classification are shown in colour [TN = True Negatives; FP = False Positives; FN = False Negatives; TP = True 
Positives]. The areas in white were obscured by the vegetation canopy in air photos (24% of area) and thus excluded from accuracy 225 
assessment. In B, the colours of each cell in the confusion matrix and each point in the plot are the same as in A. The number of observations 
for each class is shown in the confusion matrix and point sizes on the plot are scaled to the relative frequency of each value. This classified 
map is site P01 from Rossi et al. (2020), where more details on mapping methods are described. 
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For example, the example scene in Figure 1A can be1B is readily reclassified into these four outcomes (Fig. 2A) which2A) 230 

using the feature mapping from Rossi et al. (2020).  The frequency of these outcomes is summarized byusing the confusion 

matrix shown in the inset of Figure(Fig. 2B. inset). The simplest assessment of accuracy metric is the overall accuracy (OA), 

and its complement the error rate (ER), where: 

       𝑂𝐴 ൌ
்௉ା்ே

்௉ା்ேାி௉ାிே
               (1) 

       𝐸𝑅 ൌ
ி௉ାிே

்௉ା்ேାி௉ାிே
               (2) 235 

While OA and ER are straightforward to calculate, they provide little insight into the relative frequencies of FP and FN. To 

address this limitation, there are a large family of accuracy metrics that better characterize different types of error. For example, 

precision and recall characterize the relative frequencies of FP and FN explicitly. Precision, also known as the positive 

predictive value, is the ratio of true positives to all positives predicted by the model (accounts for FP) and recall):  

                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்௉

்௉ାி௉
                      (3) 240 

Recall, also known as the true positive rate, is the ratio of true positives to all positives (accounts for FN), whereby:): 

                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்௉

்௉ାி௉
                      (3) 

                        𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்௉

்௉ାிே
                      (4) 

Figure 2 is an example where the precision is low (0.36), but the recall is reasonably good (0.58) (Table 1). F-measures were 

designed to summarize precision and recall into a single metric (van Rijsbergen, 19791974; Chinchor, 1992). The case where 245 

both are equally weighted is referred to as the F1-score, where: 

                 𝐹1-𝑠𝑐𝑜𝑟𝑒 ൌ
ଶൈ்௉

ሺଶൈ்௉ሻାி௉ାிே
              (5) 

By representing the harmonic mean of precision and recall, this metric accounts for both errors of omission and commission. 

However, F1-scores only characterize the success at identifying the target class, and low values can occur even if the overall 

accuracy is high because it excludes True Negatives. ConsequentlyAs such, this metric is quite sensitive to the prevalence of 250 

positive values whereby higher . Higher F1-scores are favoured when the positive class is more abundant (e.g., Chicco and 

Jurman, 2020). Related to this sensitivity to imbalanced data is the property of asymmetry. Asymmetric metrics are those 

where the accuracy score differs when the target classes are switched. Table 1 shows that the F1-score for Figure 2 would be 

72% higher if the target classfeature was soil instead of bedrock. Asymmetry arises because there is more soil than bedrock in 

the scene and TN are not included in calculations of precision, recall, or F1-score. These well-known limitations of F-measures 255 

are better handled by metrics that incorporate all four classes of the confusion matrix. One such metric is Matthews Correlation 

Coefficient (MCC), where: 

    𝑀𝐶𝐶 ൌ
ሺ்௉ൈ்ேሻିሺி௉ൈிேሻ

ඥሺ்௉ାி௉ሻൈሺ்௉ାிேሻൈሺ்ேାி௉ሻൈሺ்ேାிேሻ
             (6) 
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MCC is equivalent to a Pearson’s correlation coefficient where the model classes are regressed against the true classes in a 

binary classification task (Fig. 2B). Values of MCC can be similarly interpreted where -1.0 indicates perfect anti-correlation, 260 

0 is a random model, and 1.0 indicates perfect correlation. And while MCC is just one of several metrics that include all four 

quadrants of the confusion matrix (e.g., Balanced Accuracy, Markedness, Cohen’s Kappa), recent work suggests that MCC 

appears to beis the most robust to imbalanced data (Chicco and Jurman, 2020; Chicco et al., 2021a; Chicco et al., 2021b). In 

this analysis, I report thea normalized version of MCC as: 

       𝑛𝑀𝐶𝐶 ൌ
ெ஼஼ାଵ

ଶ
               (7) 265 

By re-scaling MCC from zero to one, nMCC facilitates comparison with F1-score on plots and in discussion. It is worth noting 

here though that interpretations of low values of nMCC differ from interpretations of low values of F1-score. The former 

implies anti-correlation between model and truth data while the latter does not.  For example, the scene in Figure 2 indicates a 

weak positive correlation (i.e., nMCC greater than 0.5) even though the F1-score is lower than 0.5 (Table 1).  As such, direct 

comparison of these metrics should be done with caution. 270 

 

Table 1: Accuracy metrics for Figure 2 using the alternative target classes of bedrock and soil.   

Target Class OA* ER* Precision Recall F1-score MCC* nMCC* 

BedrockFeature 

(bedrock) 0.67 0.33 0.36 0.58 0.44 0.24 0.62 

SoilFeature (soil) 0.67 0.33 0.85 0.69 0.76 0.24 0.62 

* Metrics that do not vary as a function of the target class in binary classification. 
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3 Independence between truth and model data 275 

The distinction

 

Figure 2: (A) Pixel classes for Fig. 1A and (B) the corresponding confusion matrix (inset) and correlation plot (main). In A, the four 
outcomes of the binary classification are shown in colour [TN = True Negatives; FP = False Positives; FN = False Negatives; TP = True 
Positives]. The areas in white were obscured by the vegetation canopy in air photos (24% of area) and thus excluded from accuracy 280 
assessment. In B, the colours of each cell in the confusion matrix and each point in the plot are the same as in A. The number of observations 
for each class is shown in the confusion matrix and point sizes on the plot are scaled to the relative frequency of each value. 

4 Pixel-level versus scene-level accuracy 

Throughout this analysis, I distinguish between pixel-level and scene-level measures of accuracy.accuracy, in part, motivates 

the approach taken to examine how accuracy metrics handle imbalanced data in this study. Pixel-level accuracy requires that 285 

the precise locations of features are honoured where the, with a lower bound to feature detection is set by the spatial resolution 

of the data used. Scene-level accuracy characterizes the mismatch between model and truth data at some coarser scale and 

typically assesses statistical properties of the target feature class (e.g., bedrock fraction, mound densities, drainage densities). 

While high pixel-level accuracy ensures high scene-level accuracy, the converse need not be true. This distinction is motivated 

by studies where calibration of lidar classifiers was undertaken only at the scene-level (DiBiase et al., 2012; Rossi et al., 2020) 290 

and whose rationale was summarized in section 2. Scene-level assessment alone may lead to different findings than pixel-level 

assessment. For example, a related effort by Milodowksi et al. (2015) showed that lidar-based, roughness-thresholds provide 

an alternative topographic proxy that can be more successful than slope-based ones in some landscapes. While their overall 

objective of finding a classifier that worked across a range of bedrock fractions was similar to DiBiase et al. (2012), these 
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authors used pixel-level assessment to select thresholds and evaluate classifier success. As such, there is a need to understand 295 

how pixel-level assessments behave when classifying data where scenes are intentionally selected across gradients in how 

balanced the data are.Given the importance of developing binary classifiers that work across a range of feature densities and 

sizes, there is a need to better understand how pixel-level accuracy metrics perform across a range of scene-level properties 

like feature fraction. One mark of a good accuracy metric is its ability to diagnose the case of independence. In this context, 

independence means that the locations of features in the model contain no information about the true locations of features. If 300 

accuracy metrics produce similar scores when the model and truth data are independent from each other, then it means the 

metric can be reliably compared for different feature fractions. A perhaps trivial example is the case where feature fractions 

are assumed to be constant (e.g., total feature coverage) regardless of the true feature fraction. A more interesting example is 

the case where scene-level fractions are the same in the truth and model data (i.e., high scene-level accuracy) but where the 

actual locations of features are unrelated (i.e., low pixel-level accuracy).  305 
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Figure 3: Classified 100 x 100 m maps of (A) 1-m and (B) 10-m long incipient features showing the four classification outcomes (TN: True 
Negatives, FN: False Negatives, FP: False Positives, TP: True Positives). How accuracy scores vary as a function of feature fraction are also 
shown for (C) 1-m and (D) 10-m long incipient features, respectively. The ‘all feature’ scenario is where the model assumes the entire surface 310 
is feature with no matrix, regardless of scene-level properties. The ‘match scene’ scenario is where the model data matches the actual feature 
fraction, but whose feature locations are independent of each other. In A-B, example maps are shown for the case where fifty percent of the 
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surface is covered by features. In C-D, normalized Matthews Correlation Coefficient (nMCC) is only shown for the ‘match scene’ scenario 
because it is undefined in the ‘all feature’ scenario. 

 315 

Figure 3 shows the sensitivity of F1-score and nMCC to a research design that tests binary classifiers across gradients in 

bedrock fraction for a typical sceneimbalanced data when the model and truth data are independent from each other (m = n = 

100).  Two scenarios are considered. Each assume bedrock outcropsscenario assumes features are randomly distributed 

throughout the scene for any given bedrockfeature fraction. In the first scenario, the bedrock classifier predicts that bedrockthe 

feature is found everywhere regardless of the truth data (dashed lines). Because this ‘all rock’feature’ model produces neither 320 

False Negatives nor True Negatives, nMCC is undefined in this scenario (see eqs. 6-7). F1-score nonlinearly improves with 

increasing bedrockfeature fraction and approaches unity as the actual bedrock fraction nears the ‘all-rock’feature’ model. In 

the second scenario, the bedrock classifier is forced to match the bedrockfeature fraction in the truth grid, though the locations 

of bedrock outcropsfeatures in the model are independent from the truth data (solid lines). This represents a worst-case scenario 

for a classifier that successfully models the scene-level fraction of bedrock while also providing zero predictive value at the 325 

pixel level. The values of nMCC rightly diagnose independence between the model and truth data by showing zero correlation 

across the full range of bedrockfeature fractions (nMCC ~ 0.5). In contrast, F1-score increases as a linear function of 

bedrockfeature fraction. As this and subsequent examples show, F1-score embeds a spurious correlation with bedrockfeature 

fraction, all other things being equal, because the number of True Negatives is ignored. In contrast, nMCC provides a robust 

metric to evaluate positional error for classifiers that have been calibrated to scene-level properties like bedrock fraction.. 330 

While these relationships do not depend on torincipient feature size, larger mapping areas are needed to adequately sample the 

statistics of feature locations when incipient torsfeatures are large with respect to the area of the scene (Fig. 3D). The noisy 

relationships in Figure 3D largely reflect the inability to match the specified bedrockfeature fraction using a discrete number 

of random torsfeatures whose locations are set by the specific pseudo-random seed used. In fact, 49% of the grids generated 

for Figure 3D failed to meet the 0.5% tolerance of specified bedrockfeature fractions after fifty iterations. For subsequent 335 

analyses, I use larger scenes of 1000 x 1000 m scenes are used to mitigate the effect of domain size on accuracy scores. For 

thisthe larger domain, nearly all (>99%) the subsequent grid pairs meet the tolerance criterion before fifty iterations, which 

manifest as smoother curves in plots. 
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Figure 3: Classified 100 x 100 m maps of (A) 1-m and (B) 10-m long square tors showing the four classification outcomes (TN: True 340 
Negatives, FN: False Negatives, FP: False Positives, TP: True Positives). How accuracy scores vary as a function of bedrock fraction are 
also shown for (C) 1-m and (D) 10-m long tors, respectively. The ‘all rock’ scenario is where the model data assumes the entire surface is 
bedrock regardless of the actual bedrock fraction. The ‘match scene’ scenario is where the model data matches the actual bedrock fraction, 
but whose locations are independent. In A-B, example maps are shown for the case of 0.5 bedrock. In C-D, normalized Matthews Correlation 
Coefficient (nMCC) is only shown for the ‘match scene’ scenario because it is undefined in the ‘all rock’ scenario. 345 
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54 Error structure and accuracy 

In theThe previous section, I showed how F1-score and nMCC vary as a function of bedrock fraction for very poor pixel-level 

feature prevalence for classifiers. A  that only honoured scene-level attributes (i.e., feature fraction) with no predictive skill at 

identifying feature locations. While a useful baseline scenario, a good classifier though, whether statistically or physically 

based, should be successful in most casesidentify both the locations of features and reproduce scene-level attributes, albeit 350 

with some residual error. To illustrate these more realistic conditions, I consider three different error scenarios are presented 

where the error structure is either random (section 54.1), systematic (section 54.2), or both (section 54.3). While actual sources 

of error arein geomorphic studies are typically more complex (e.g., Fig. 1),, these endmembersimple scenarios are intended 

tofacilitate interpretation and provide a heuristic understanding forinsight into how pixel-level accuracy scores perform when 

the research design explicitly samples across a gradient in feature prevalence. 355 

54.1 Random error 

The first error scenario I considerconsidered is the situation where the binary classifier successfully identifies bedrockfeature 

locations with a fixed rate of random error (𝑒̅௥). To create synthetic surfaces of this type, a truth grid is first generated (for Fig. 

4 m = n = 1,000) for a given bedrockfeature fraction. Bedrock torsFeatures are assumed to occupy a single pixel, though results 

are robust to different sizes of incipient torsfeatures because thewhere error locationoccurs is independent of feature 360 

locationlocations. To produce the associated model grid, Ian error grid is first generated an error grid using a different pseudo-

random seed than that used to generate the bedrock gridtruth data. The grid of continuous values isof the error grid are 

converted to binary classes (0 = no error; 1 = error) using the specified error rate as the threshold. The error grid is then used 

to construct the model grid from the truth grid by flipping bedrockfeature classifications wherever the error grid value equals 

one. Note that the maximum error rate shown in Figure 4 is 0.5.fifty percent. This is the scenario where the truth and model 365 

data are least correlated. Increasing the error rate further will produce increasingly stronger negative correlations between the 

model and truth data. Once both truth and model grids are generated, F1-score and nMCC are calculated. This analysis is done 

for bedrockfeature fractions that range from 0.01 to 0.99 and error rates from 0.055 to 0.550 percent.  
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 370 

Figure 4: (A) Model feature fractions and (B) associated accuracy scores as a function of the true feature fraction in the random error 
scenario (1000 x 1000-m map area). In both plots, the minimum and maximum error rates are highlighted, and 5% increments of error rate 
are shown as dotted lines. In A, matching the model fraction to the actual fraction of bedrock is not enforced like in other scenarios (Figs. 3, 
5). However, the two fractions are linearly related, and the slope of the relationship is directly related to the error rateI show  (Appendix A). 
In B, lower rates of random error amplify the nonlinearity between F1-score and feature fraction while nMCC more uniformly improves 375 
across a broad range of feature fractions. 

 

 

Figure 4 shows the results of this analysis for ten differentnumerically simulated error rates in Figure 4. These results. Results 

can be derived analytically from eqs. 5-7 and the imposed random error rate (Appendix A). I useHowever, presenting the 380 

results from synthetic landscapesnumerical surfaces: 1. To ensureEnsures that synthetic scenes adequately sample population 

statistics; and 2. FacilitateFacilitates integration with scenarios that include non-random error (section 54.3). As should be 

expected, Figure 4 shows that accuracy scores increase with loweras error rates go down. However, the sensitivity of these 

scores is not uniform with respect to bedrockfeature fraction. Much like in the previous examplescenario (Fig. 3), F1-scores 

always monotonically improve with increasing bedrockfeature fraction. Note here though that the worst random error case 385 

(Fig. 4 dashed black line; 50% error rate) is not equivalent to the case where the model is independent from the truth data (i.e., 

the solid black line in Fig. 3). In the random error scenario, model data are correlated with, but not equal to, actual 

bedrockfeature fractions (Fig. 4A). The fixed error rate preferentially modifies the larger frequency class when near the 

endmember cases of all bedrockzero and all soil.full coverage of the surface by features. This behaviour is most easily 

envisioned for the case whereat the error rate is 50%.limits of feature abundance. If the actual surface is all bedrockfeatures, 390 
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then the model produces 50% soil on average, and visa versarandom error model will produce matrix pixels in proportion to 

the error rate. Similarly, if the actual surface is all soil. Inmatrix, then the random error model will produce feature pixels in 

proportion to the error rate.  For this error scenario, the slope of the relationship between modelled and actual bedrockfeature 

fractions equals 1 െ 2𝑒̅௥ (Appendix A). The symmetry of the sensitivity of nMCC to a constantuniform, random error rate 

allows for comparison of map accuracies across a wide range of differentially balanced datafeature abundances, specifically 395 

over the domain over which nMCC is approximately invariant (Fig. 4B). In contrast, disentangling the spurious correlation 

between F1-score and bedrockfeature fraction interacts with the preferential modification of surface classes in a complex way, 

leading to increasing nonlinearity in response tofor better classifiers with lower error rates. 

 

Figure 4: (A) Model bedrock fractions and associated (B) accuracy scores as a function of true bedrock fraction for the random error scenario 400 
(1000 x 1000-m map area). In both plots, the minimum and maximum error rates are highlighted, and 5% increments of error rate are shown 
as dotted lines. In A, matching the model fraction to the actual fraction of bedrock is not enforced like in other scenarios (Figs. 3, 5). 
However, the two fractions are linearly related, and the slope of the relationship is directly related to the error rate. In B, lower error rates 
amplify the nonlinearity between F1-score and bedrock fraction while nMCC more uniformly improves across a broad range of bedrock 
fractions. 405 

54.2 Systematic error 

The second error scenario I considerconsidered is the situation where the binary classifier successfully identifies 

bedrockfeatures with some imposed systematic error. This scenario is motivated by the common challenge of aligning two 

datasets collected using different sensors or collected at different times (e.g., Bertin et al., 2022). To create synthetic surfaces 

of this type, a truth grid is first generated (for Fig. 5 m = n = 1,000) for a given bedrockfeature fraction and torincipient feature 410 

size. Incipient torsfeatures are randomly distributed throughout the model domain. To generateproduce the associated model 
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grid, a copy of the truth grid is linearly offset by one pixel to the right in the x-direction, though results are insensitive to the 

direction of the shift. By using wrap-around boundaries, synthetic truth and model grids always have an identical bedrock 

fraction.feature fractions. Note that the systematic error rate (𝑒̅௦) is not constant and is instead a function of the bedrockfeature 

fraction, the magnitude of the systematic offset, and the shape and size of features. Once both truth and model grids are 415 

generated, F1-score and nMCC are calculated. This analysis is done for bedrockfeature fractions that range from 0.01 to 0.99 

and for torincipient feature sizes that range from 1x1 m to 10x10 m squares (i.e., areas of 1 to 100 pixels). 

 

Figure 5: (A) Variable error rates and (B) associated accuracy scores as a function of the true feature fraction for the systematic 

error scenario (1000 x 1000 m map areas). In both plots, the minimum and maximum incipient feature lengths are highlighted, 420 

and 1-m increments are shown as dotted lines. In A, the error rate (eq. 2) is non-uniform with lower rates at both low and high 

feature fractions. As incipient feature size gets larger, the error rate function becomes increasingly asymmetrical with peak 

values at 0.5 and 0.66 bedrock for 1- and 10-m long seeds, respectively. In B, the non-uniform error rates lead to more linear 

relationships between F1-score and feature fraction than in the case of random error (Fig. 4B). In contrast, nMCC shows 

modest negative relationships with  425 

I showfeature fraction for all incipient feature sizes. 

Figure 5 shows the results of this analysis for ten different tor sizes in Figure 5.incipient seeds that span from 1 to 10 m in 

length (1 to 100 m2). While I discuss results throughout this paper are discussed in terms of a scale typical to airborne lidar 

(i.e., 1-m spatial resolution), the relationships shown here are better cast as the ratio of the incipient feature scale (tori.e., seed 

length in pixels) to the error scale (1 pixel length) where the feature detection limit is one pixel. When thesystematic error is 430 
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of order feature length, systematic error mimics the case where the truth and model data are independent (e.g., compare long 

dashed lines in Fig. 55B to solid lines in Fig. 33C-D). As the systematic error gets smallersmall with respect to the torincipient 

feature size, both F1-score and nMCC improve. The largest improvements occur for small torincipient feature sizes and at low 

bedrockfeature fractions (Fig. 5B). When bedrockfeature fractions are low, the error is largely due to the geometric effect of 

the shift of individual square torsobjects surrounded by soil such that 𝑇𝑃 ൌ
௟మି௟

௟మ
 and 𝐹𝑃 ൌ 𝐹𝑁 ൌ

௟

௟మ
 (Appendix B).matrix. As 435 

bedrockfeature fraction increases, incipient torsobjects increasingly coalesce into a smaller number of featuresobjects, and the 

error is set by these more complex geometries (see discussion in section 65.2). Figure 5A shows howthat increasing tor sizesthe 

incipient feature size leads to lower error rates and increasing asymmetry in the error as arate function of bedrock fraction. 

Error, where the highest error is biased towards higher feature abundances. These error rate functions skew towards higher 

bedrock fractions leading to a manifest as a modest negative relationship between nMCC and bedrockfeature fraction 440 

regardless of incipient feature size (Fig. 5B). The asymmetric error structure also impacts F1-score, albeit in a way that is 

much harder to diagnose due to the spurious correlation between F1-score and bedrockfeature fraction (Figs. 3-4). The notion 

of systematic error in scene-level mapping was envisioned for situations where co-registration error between the remote 

sensing data used to map ‘truth’ and the remote sensing data used to build the classifier produce a systematic, translational 

offset. Strictly speaking then, this synthetic scenario represents the case where a translational offset is the same for all scene-445 

level patchesscenes, a plausible situation if the truth and model data for different scenes were acquired at the same time and in 

the same way. However, even under the less stringent condition where co-registration errors are oriented differently in different 

scenes (i.e., due to different acquisition parameters and times), the relationships shown in Figure 5 will still hold as long as the 

magnitude of the systematic error is similar across sitesscenes and thethere is no preferred orientation of features is isotropicto 

feature objects.  450 
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Figure 5: (A) Error rate response to tor size and associated (B) accuracy scores as a function of the true bedrock fraction for the systematic 
error scenario (1000 x 1000 m map areas). In both plots, the minimum and maximum tor lengths are highlighted, and 1-m increments are 455 
shown as dotted lines. In A, the error rate (eq. 2) is non-uniform with lower rates at both low and high bedrock fractions. As tors get larger, 
the error rate function becomes increasingly asymmetrical with peak values at 0.5 and 0.66 bedrock for 1- and 10-m long tors, respectively. 
In B, the non-uniform error rates lead to more linear relationships between F1-score and bedrock fraction than in the case of random error 
(Fig. 4B). In contrast, nMCC shows modest negative relationships with bedrock fraction for all incipient tor sizes. 

54.3 Random plus systematic error  460 

The third error scenario I considerconsidered is the situation where the binary classifier is systematically offset from the truth 

grid with an additional random error term. To create synthetic surfaces of this type, a truth grid is first generated (for Fig. 6 m 

= n = 1,000) for a given bedrockfeature fraction (𝑓௕ ) and torincipient feature size. TorsIncipient features are randomly 

distributed throughout the model domain. To generateproduce the associated model grid, a copy of the truth grid is first linearly 

offset by one pixel to the right in the x-direction, using a wrap-around boundary condition. I then generate aA random error 465 

grid is then generated using a different pseudo-random seed than that used to generate the bedrock gridtruth data. The grid of 

continuous values isof the error grid are converted to binary classes (0 = no error; 1 = error) using a random error rate of 0.05 

as a threshold. The random error grid is then used to flip bedrock classifications in the offset feature grid wherever the error 

grid value equals one. Note that model bedrockfeature fractions in the model need not match the truth data, and error rates 

willare now be a function of the bedrockfeature fraction, the magnitude of the systematic offset, the size and shape and size of 470 

bedrock features, and the random error rate. Once both truth and model grids are generated, F1-score and nMCC are calculated. 

This analysis is done for bedrockfeature fractions that range from 0.01 to 0.99 and torincipient feature sizes that range from 

1x1 m to 10x10 m squares (e.g., areas of 1 to 100 pixels). 
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 475 

 

Figure 6: (A) Variable error rates and (B) associated accuracy scores as a function of the true feature fraction for the systematic plus random 
error scenario (1000 x 1000-m map areas). These panels are analogous to Figure 5A and 5B but now include a 5% random error term. 
Differences in (C) error rates and (D) accuracy scores between this scenario and systematic error alone (Fig. 5) are shown to enable 
comparison. In C, the additional 5% random error term is linearly added to the systematic error term at the endmember cases of zero and 480 
total feature coverage. The random error translates into something less than 5% for intermediate cases with minima near zero for 1-m seeds 
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and 0.043 for 10-m seeds. In D, nMCC exhibits strong reductions from systematic error alone near endmember cases (high negative values) 
and a muted, more uniform reduction at intermediate values.  

 

 485 

Figure 6 is analogous to Figure 5 with error rates (Fig. 6A) and accuracy scores (Fig. 6B) plotted as a function of bedrockfeature 

fraction for different torincipient features sizes. The random error rate sets the minimum observed error and contributes to the 

total error in a nonlinearnonuniform way. This is because the random error term can flip values where systematic error 

occurshas occurred (i.e., both sources of error can combine to produce True Positives). Figure 6C and 6D show-D shows the 

differences in error rates and accuracy scores, respectively, between systematic error alone (Fig. 5A-B) and the systematic 490 

error plus random error scenario shown here (Fig. 6A-B).) and systematic error alone (Fig. 5A-B). The addition of random 

error is relatively more influential in cases where the classifier is more accurate (i.e., larger torsincipient features) and near 

endmember bedrock fractions (i.e., all soilzero and all rocktotal coverage of features). For a given incipient torfeature size, the 

minimum error added by the random error rate of 0.05 occurs at intermediate bedrock fractions and ranges from near zero for 

1-m torslong seeds to 0.043 for 10-m tors. The results shown inlong seeds. Figure 6B show6 shows that relationships between 495 

pixel-level accuracy scores and scene-level bedrock fraction for this scenario include elementsthe relative importance of both 

the random error andversus systematic error scenarios.changes as a function of feature fraction. Because random error is the 

dominant term of the total error rate near the endmember cases of zero and all bedrocktotal feature coverage, it leads to 

correspondingly large reductions in nMCC (Fig. 6D). In contrast, at intermediate bedrock fractions there is slight negative 

slope to nMCC like observed in the systematic error scenario (Fig. 5B). This is because reductions in nMCC induced by random 500 

error at intermediate bedrockfeature fractions are: relatively smaller, approximately invariant across a broad range of fractions, 

and symmetrical with respect to bedrockfeature fraction (Fig. 6D). While I only show one random error rate is shown, this 

example showsillustrates how the complex interactions between random and systematic error canneed to be readily simulated.  

to understand their implications on pixel-level accuracy scores.    

5 Discussion 505 

Whether mapping orographic gradients in bedrock exposure (Rossi et al., 2020), characterizing precipitation controls on 

termite mound density (Davies et al., 2014), or inferring how wind extremes induce tree throw frequencies (Doane et al., 2023), 

lidar topography has revolutionized our ability to map differences in the density of fine-scale features. None of these examples 

used pixel-level accuracy scores in their analyses. In fact, it is not immediately apparent how well such methods would perform 

even if the authors had adopted pixel-level accuracy assessment. For those geomorphic studies that have used pixel-level 510 

accuracy scores on lidar-based classifiers (e.g., Bunn et al., 2019; Clubb et al, 2014; Milodowski et al., 2015), it is not obvious 

how accuracy scores are expected to vary as a function of feature prevalence. To help address this challenge, this paper 

presented a suite of synthetic scenarios that show how F1-score and Matthews Correlation Coefficient (MCC) perform across 
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gradients in feature prevalence when the error structure between model and truth data are known. While the scenarios are 

simple, they provide insight into how well suited, and under what conditions, two of the most widely used accuracy metrics 515 

are when data is imbalanced (5.1). The systematic error scenarios further revealed a strong sensitivity of accuracy metrics to 

the shape and size of feature objects (5.2). Finally, the results from synthetic scenarios are used to provide a tentative set of 

best practices for using pixel-level metrics in geomorphic studies (5.3). 

5.1 Accuracy assessment for imbalanced mapping tasks 

One main goal of this study was to understand the sensitivity of F1-score and MCC to feature prevalence. It is useful for 520 

accuracy scores to be invariant with respect to feature fraction under a given error structure so that classified scenes can be 

calibrated and validated using a wide range of geomorphic settings. For example, Matthews Correlation Coefficient (MCC), 

and its normalized equivalent (nMCC), readily diagnosed the case of independence between truth and model data across the 

full range of feature abundances (red lines in Fig. 3). In contrast, a spurious correlation between feature abundance and F1-

score was only exacerbated by adding scene-level constraints to this case (black lines in Fig. 3). Because F1-score only 525 

considers True Positives, False Positive, and False Negatives, it is an asymmetric accuracy metric (Table 1). Asymmetry refers 

to the fact that the score is dependent on the choice of target class. All pixel-level assessments that do not consider all four 

components of the confusion matrix (e.g., precision, recall, F-measures, receiver operating characteristic curves) are 

asymmetric. Asymmetric metrics may not be problematic if one outcome is much more important than its alternative due to 

its consequences (e.g., a medical diagnosis). However, for many of the geomorphic mapping applications posed here, the 530 

relative importance of one class over the other is unclear (e.g., bedrock versus soil; mound versus inter-mound; incised versus 

un-incised). Successfully identifying both the occurrence and non-occurrence of features is important. In multi-class accuracy 

assessment, it is common to calculate a ‘macro’ F1-score, which is the arithmetic mean of F1-scores for all classes. This macro 

averaging can also be applied to binary tasks by calculating the F1-score for the alternative case when target classes are 

swapped (Sokolova and Lapalme, 2009). While a macro F1-score for binary classification is symmetrical and easy to calculate, 535 

adoption of this approach is still relatively rare (Chicco and Jurman, 2020). 



 

26 
 

 

Figure 7: (A) Relationship between nMCC and macro F1-score for all the error scenarios posed in this study. (B) Ratio of accuracy scores 
(nMCC / macro F1-score) as a function of feature area ratios (model area / true area). In A, the macro score is the arithmetic mean of the 
two F1-scores calculated when classes are swapped. In B, the ratio of scores is plotted as a function of the ratio of feature areas to show that 540 
when the model and truth data exhibit different scene-level properties (e.g., feature areas or fraction), the macro F1-score produces lower 
values. The systematic error scenario enforced the property that model and truth data match scene-level fractions which is why they all plot 
at the coordinates [1,1]. The other error scenarios often produced mismatches between scene-level feature fractions. In these cases, the 
accuracy metrics are only equivalent when the scene-level fractions match. 

Figure 7 shows how macro F1-scores compare to nMCC for each of the error scenarios considered in this paper. This modified 545 

version of F1-score addresses the problem of asymmetry and produces similar values to nMCC when the error is small. In the 

systematic error scenario, the scene-level fraction of bedrock in the model data is identical to the truth data. This leads to a 

direct correspondence between nMCC and macro F1-score (red symbols in Fig. 7). However, for the scenarios that include a 

fixed rate of random error, the macro F1-scores generally plot below the 1:1 relationship (Fig. 7A). In these scenarios, accuracy 

metrics are only equivalent in cases where the scene-level fractions are the same between the model and truth data (Fig. 7B).  550 

isNotably, the systematic plus random error scenario produces accuracy metric ratios (Fig. 7B) closer to unity than random 

error alone for feature area ratios greater than one (low feature fractions). When feature area ratios are less than one (high 

feature fractions), accuracy ratios instead follow the trend defined by random error alone. Two important insights can be 

gleaned from Figure 7: (1) Even though macro F1-score addresses the problem of asymmetry, it penalizes random error more 

the nMCC, and (2) The mismatch between macro F1-score and nMCC is encoding disparities between scene-level and pixel-555 

level measures of accuracy, albeit in a highly nonlinear way. Given that macro F1-score produces stronger sensitivity than 

nMCC to the random error scenarios (i.e., accuracy ratios < 1), nMCC should still be favoured as a more stable metric when 
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calibrating and validating feature classifiers across gradients in feature prevalence. However, and despite its relative success, 

caution is still warranted in comparing nMCC across gradients in feature fraction.  Uniform, random error preferentially 

modifies the dominant class, leading to strong reductions in accuracy near endmember cases (Fig. 4; Appendix A). Even for 560 

relatively accurate classifiers, random error limits the domain over which nMCC is comparable (e.g., accuracy scores for 5% 

random error stabilize between ~20 to 80% feature abundances; Fig. 4).  

 

The synthetic scenarios posed in this study were motivated by tasks where differences in scene-level feature abundances are 

driven by differences in geomorphic setting (e.g., due to climate, ecology, material property, erosion rate). As such, the 565 

synthetic surfaces generated for this analysis assumed that feature properties were homogeneously distributed within each 

scene (like the mima mounds in Fig. 1A). The key difference across scenes was feature prevalence, which was used to identify 

how sensitive accuracy metrics are to imbalanced data.  However, the sensitivity of accuracy metrics to feature fraction also 

provides insight into how metrics might behave when features are heterogeneously distributed within a scene (like the bedrock 

and gully erosion maps in Fig. 1B-C). While it is beyond the scope of this analysis to systematically explore this, a simple 570 

thought experiment using the scenes generated from this study show why within-scene heterogeneity might be important to 

pixel-level accuracy assessment. There are many combinations of scenes with different feature fractions that can merge into a 

larger one with the same feature fraction. Table 2 shows a suite of examples that each produce 50 percent feature coverage.  

 

Table 2: Merged scenes that produce fifty percent feature area* [scene 1 percent / scene 2 percent].   575 

 5 / 95 10 / 90 15 / 85 20 / 80 25 / 75 30 / 70 35 / 65 40 / 60 45 / 55 50 / 50 

Random  

(5%) 

0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

0.83 / 0.83 0.89 / 0.89 0.91 / 0.91 0.93 / 0.93 0.94 / 0.94 0.94 / 0.94 0.95 / 0.95 0.95 / 0.95 0.95 / 0.95 0.95 / 0.95 

Systematic  

(10 m) 

0.98 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.93 

0.95 / 0.86 0.95 / 0.89 0.95 / 0.90 0.94 / 0.91 0.94 / 0.91 0.94 / 0.92 0.94 / 0.92 0.94 / 0.93 0.94 / 0.93 0.93 / 0.93 

Sys + Rand 

(10 m, 5%) 

0.93 0.92 0.91 0.91 0.90 0.90 0.89 0.89 0.89 0.89 

0.80 / 0.75 0.85 / 0.80 0.87 / 0.83 0.88 / 0.85 0.89 / 0.86 0.89 / 0.87 0.89 / 0.88 0.89 / 0.88 0.89 / 0.89 0.89 / 0.89 

* The top row is the nMCC of merged scenes. The bottom row is the nMCC of each individual scene that was merged. 

 

The merging of scenes in Table 2 helps illustrate how heterogeneous feature distributions may impact nMCC. For the random 

error scenario, the strong sensitivity to endmember cases is erased, and nMCC is uniform across all ten scene mixtures. For 

the systematic error scenario, accuracy improves for the higher feature fraction portion of the scene while accuracy marginally 580 

decreases for the lower feature fraction portions of the scene. For the systematic plus random error scenario, accuracy improves 

for both the higher and lower feature fraction portions of the scene. In all cases, nMCC is higher for the merged scenes than 
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for their constituent components, until they converge on each other when fully homogenous. While systematic error clearly 

induces non-uniform mixing (i.e., merged nMCC varies with different constituent feature fractions), all three cases suggest 

that heterogeneity generally favours more stable estimates of accuracy by sampling portions of the scene with both more and 585 

less abundant features. More thorough examination of this claim is needed. Taken at face value though, these results argue that 

it is better to train a model on all the data at once than on individual scenes with different feature fractions, if the source of 

classification error is expected to be similar. However, scene-level comparisons may provide more insight into variations in 

the error structure of the classification model itself, which is often poorly constrained. 

 590 

Taken as whole, nMCC should be strongly preferred over F1-score when building and testing classifiers across gradients in 

feature abundance, with heterogeneous scenes and pooling of data perhaps favouring more stable assessment. Despite this 

result, the two scenarios that include systematic error also suggest that asymmetry in accuracy scores can still ariseis arising 

in response to the geometries and genesis of more features. In these cases, asymmetry is not due to limitations of the accuracy 

metric itself, but instead a result of how features are simulated in synthetic examples. Whether mythe synthetic generative 595 

process (i.e., randomly distributed square torsfeatures of constant size) is representative of real transitions from soil-

mantledlow to bedrock-dominated hillsideshigh feature fractions is an open question. However that likely depends on the 

feature of interest. Nevertheless, these synthetic examples provide an opportunity to probe how the evolution of feature 

geometries influence accuracy scores, a topic that is explored in much more depth below and in Appendix B. 
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 600 

Figure 6: (A) Error rate response to tor size and associated (B) accuracy scores as a function of the bedrock fraction for the 
systematic plus random error scenario (1000 x 1000-m map areas). 5.2 Size and shape of features 

The These panels are analogous to Figure 5A and 5B but now include a 5% random error term. Differences in (C) error rate and (D) accuracy 
scores between this figure and Figure 5 are shown to enable comparison. In C, the additional 5% random error term is linearly added to the 
systematic error term at the end-member cases of zero and all bedrock. The random error translates into something less than the 5% additional 605 
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error at intermediate cases with minima near zero for 1-m tors and 0.043 for 10-m tors. In D, nMCC exhibits strong reductions from 
systematic error alone near endmember cases (high negative values) and a muted, more uniform reduction for intermediate values.  

 

6 Discussion 

6.1 Accuracy assessment for imbalanced mapping tasks 610 

Mapping patchy bedrock exposure is a good use case for binary classification on imbalanced data. Many studies have now had 

success doing scene-level mapping of bedrock exposure using lidar topography (DiBiase et al., 2012; Heimsath et al., 2012; 

Marshall et al., 2014; Milodwoski et al., 2015; Rossi et al., 2020). By calibrating lidar classifiers at the hillslope scale, there 

are enough observations to characterize the statistics and properties of bedrock features while also minimizing intra-scene 

variations in climate, ecosystem, rock properties, and base level controls on soil production and denudation rates. Of this prior 615 

work, the only one to use pixel-level accuracy scores to calibrate and validate their bedrock classifier was Milodowski et al. 

(2015). In their analysis, lidar classifiers were assessed at multiple roughness thresholds applied over different spatial 

neighbourhoods. Recognizing the challenges of imbalanced data, these authors subsampled the more frequent class in each 

scene to match the number of observations of the smaller class. My analysis shows that Matthews Correlation Coefficient 

(MCC) provides an alternative approach to handling the challenge of comparing scenes with different bedrock fractions that 620 

also addresses the problem of asymmetry embedded in other pixel-level metrics (Table 1). While the limitations of metrics 

like F1-score are already well-known (Chicco and Jurman, 2020), Figure 3 emphasizes an important implication of using this 

metric when the research design intentionally samples across scenes with differentially balanced data. Adding scene-level 

constraints to a random classifier leads to lower F1-scores than simply assuming the entire surface is bedrock. In other words, 

adding scene-level information in the calibration process actually reduces F1-score. This vulnerability is true for all pixel-625 

level assessments that do not consider all four components of the confusion matrix (e.g., precision, recall, F-measures, receiver 

operating characteristic curves).  

 

The results presented here corroborate arguments that MCC is generally a more robust pixel-level accuracy metric than F1-

score (Chicco & Jurman, 2020), specifically within the context of calibrating and validating bedrock mapping algorithms. 630 

Despite the improvements afforded by MCC, caution is still warranted in directly interpreting how pixel-level metrics will 

vary as a function of feature prevalence.  Uniform, random error preferentially modifies the dominant class, leading to strong 

reductions in accuracy near endmember cases, all other things being equal (Fig. 4; Appendix B1). Even for accurate classifiers, 

random error limits the domain over which MCC, and thus nMCC, can be confidently compared at the scene-level (e.g., 

accuracy scores for 5% random error stabilize between ~20 to 80% bedrock; Fig. 4). Furthermore, linear regressions of 635 

observed and classified bedrock fractions (e.g., DiBiase et al., 2012; Rossi et al., 2020) can provide clues as to how error varies 

across scenes. Under the narrow conditions of uniform and spatially random error, the y-intercepts of regressions should equal 
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the error rate and the regression slope should be less than one (Appendix A). The linear regressions presented in Rossi et al. 

(2020) were forced through the origin. Had they not been, the y-intercepts of those fits would have been negative, suggesting 

that the classified lidar data tended to produce more error at lower bedrock fractions. While the number of scenes analysed 640 

was small (8 scenes), this tendency towards higher error at lower bedrock fractions makes sense with respect to how bedrock 

emerges in the Colorado Front Range. Lower relief hillsides with less bedrock are dominated by tors as opposed to bands of 

bedrock cliffs that begin to emerge on higher relief hillsides. The myriad sources of error in real landscapes (Fig. 1) will lead 

to much more complex intra-scene error than either the random or systematic error scenarios posed here. Nevertheless, these 

simple scenarios provide a useful baseline for interrogating how spatially correlated error can be diagnosed from inter-scene 645 

differences in nMCC. With respect to systematic error, I only considered the case where truth and model data are offset by one 

pixel. Despite its simplicity, this exercise revealed that the scale of individual features matters when error is correlated to 

feature location. Systematic error scenarios produced an asymmetrical sensitivity of nMCC to the fraction of bedrock, a result 

that was not an artifact of ignoring components of the confusion matrix. This result begs the question as to what other properties 

of features are changing as a function of bedrock fraction that can explain the observed asymmetry (Figs. 5-6), a question 650 

which I explore in more depth below.  

6.2 Size and shape of features 

Up to now, the focus of this paper has largely been on what to expect from pixel-level accuracy scores when a binary classifier 

for bedrock is applied across a gradientgradients in bedrock fractionfeature prevalence. Embedded in this analysis are 

assumptions for how outcrops emerge at higher bedrock fractions. Specifically, I assumed that the spatial distribution of 655 

incipient features is random. This treatment allowed me to probe how scene-level and pixel-level accuracy relate when 

sampling across large gradients in bedrock exposure. Afeatures emerge at higher abundances. Intriguingly, a negative 

correlation between nMCC and bedrock fractionfeature prevalence emerged in scenarios with systematic error, regardless of 

the incipient torfeature size (Fig. 5B; 6B). Given that nMCC addresses the problem of asymmetry with respect to target class 

(Fig. 3; Fig. 4B), what causes this asymmetrical sensitivity of nMCC to systematic error? 660 

 

In all the scenarios I have presented, the minimum tor size is set by the tor length. Because incipient tors are placed on the 

surface by randomly placing their centres in the scene, more complex features are generated where incipient tors overlap by 

chance. To illustrate the implications of this approach, Figure 7 examines how feature size  One likely candidate is that the 

simulated changes in feature prevalence entailed a corresponding change in the size and shape: 1. Impact the error caused by 665 

a 1-pixel shift, and 2. Change as a function of bedrock fraction for the scenarios considered in this study. In general, error is 

expected to go down with increasing feature size because area increases faster than the length of the edge of the  of feature 

being offset. Due to the symmetry of the error induced by a objects. A feature being offset by one pixel, recall, precision, and 

F1-score are equivalent for this kind of systematic error (Fig. object is defined here as a spatially isolated occurrence of the 

target class (i.e., the ones in a binary classification) enveloped by pixels of non-occurrence (i.e., the zeros in a binary 670 
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classification). As features become more abundant, small objects coalesce into larger ones. This section probes the role of 

object size and shape on error by examining how the incipient feature shape interacts with translational error7A). I focus on 

these values as a measure of error induced by feature shape alone that is independent of the scene-level bedrock fraction. As 

bedrock fractions increase in my synthetic surfaces, the average size of individual features gets larger. Whether this increase 

in feature size is due to changing the incipient tor size or the coalescing of many incipient tors into a single feature, F1-scores 675 

always monotonically improve (Fig. 7B). However, Figure 7A nicely contrasts the differences in the error induced by a 1-

pixel shift of simple features like square tors versus the more complex ones generated by the coalescing of incipient tors. For 

the same feature area, simple feature boundaries produce less error than sinuous, convexo-concave boundaries because the 

area to edge ratio is higher, thereby minimizing the impact of translational offsets (see more examples in Fig. B1). Most shapes 

produce less error as they get larger, though it is possible to create shapes that produce more error as they get larger (see ‘star’ 680 

shape in Fig. B1). In the synthetic scenarios where there is systematic error, both the average feature area and F1-scores 

increase with increasing bedrock fraction.  The error looks like that of isolated square tors only at the lowest bedrock fractions. 

As features get larger, F1-score substantially improves but at a lower rate than if bedrock was modelled as a single square tor 

(black line in Fig. 7B), reflecting the lower area to edge ratios produced by these complex feature shapes. Interpreting F1-

score is limited by the fact that is does not account for True Negatives, which necessarily go down as bedrock fraction goes 685 

up. As such, increasing bedrock fraction in my synthetic scenarios should record the trade-offs between increasing feature 

sizes leading to less error and increasing feature complexity leading to more error. The negative trends in nMCC shown in 

Figures 5B and 6B suggest that the net result of these competing effects is that increased complexity is the dominant term. The 

asymmetrical sensitivity of nMCC to systematic error also highlights the importance of how feature abundances are being 

simulated. Are the subsequent bedrock maps produced in this study representative of the actual transition from soil-mantled 690 

to bedrock-dominated hillsides? I cast this question more broadly in the section below where I can consider how the genesis 

and growth of features is embedded in pixel-level scores. 

5.2.1 Shape and scale of incipient features 

All the synthetic scenarios presented above used incipient features with square shapes and whose scale was varied using a 

single parameter, the incipient feature length. The square geometry was useful because squares are oriented in the same way 695 

as the regular grids being used, thus imposing a rotational symmetry to translational offsets. However, other rotationally 

symmetrical shapes could have been used. Figure 8 shows four alternative shapes whose rotational symmetry makes them 

insensitive to the direction of translational offset between truth and model data. Because these shapes are constrained by their 

raster representation, it is hard to create different shapes with the same area when objects are small. For the shapes ‘square’, 

‘rounded’, ‘plus’, and ‘star’, all four shapes have approximately equivalent areas (< 3% difference) for shape diameters of 6, 700 

7, 10, and 11 pixels, respectively (Fig. 8A). The number of False Positives and False Negatives to a 1-pixel offset is a function 

of both the object size and shape (Fig. 8B). As feature objects get larger, the relative error induced by a 1-pixel offset typically 
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goes down. For a given object area, the relative frequency of error induced by a 1-pixel offset appears to be sensitive to the 

complexity of object boundaries.  

 705 

To help interpret the relative trade-off between object size and shape, Figure 8C plots the F1-scores of the example feature 

objects in Figure 8A as a function of object area. Due to the symmetry of translational offset, recall, precision, and F1-score 

are equivalent for this kind of systematic error. Each of these metrics provides a measure of accuracy induced by feature shape 

alone, independent of the scene-level abundance of features. The error induced by a one-pixel shift between truth and model 

classification can be directly derived for the square case because of its simple geometry. The number of True Positives is equal 710 

to l2- l and the number of False Positives and False Negatives are each equal to l, where l is the length of the square in integer 

units of pixels. Substituting these terms into equation 5 and simplifying yields an equation for F1-score specific to square 

features: 

          𝐹1-𝑠𝑐𝑜𝑟𝑒௦௤ ൌ 1 െ
௟

௟మ
              (8) 

The last term in equation 8 explains why accuracy improves as a function of feature area.  The area of a square increases faster 715 

than its length, thus leading to lower sensitivity to the 1-pixel offset. This ratio is equivalent to the number of pixel edges 

divided by the total number of pixels for a rasterized shape, which is referred to here as the edge-to-area ratio. The edge-to-

area ratio can be calculated for any raster shape and sets how sensitive F1-score is to a translational offset. Each kind of shape 

differs in how the edge-to-area ratio changes as they get larger, thus defining different scaling relationships between accuracy 

and feature size (Fig. 8C). In general, concave shapes (i.e., ‘square’ and ‘rounded’) are more conducive to higher F1-scores. 720 

Concavo-convex shapes have more complex boundaries, with some shapes even showing a reduction in accuracy with 

increasing size (e.g., ‘star’ shape). Even though the synthetic scenarios used in this study assumed square seeds for their 

incipient features, the coalescing of these incipient shapes into larger objects means that complex boundaries, and thus 

increasing edge-to-area ratios emerge as feature prevalence increases. 
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 725 

 

Figure 8: (A) The shape and scale of incipient feature objects directly affects (B) the subsequent frequencies of False Negatives 

(yellow) and False Positives (blue) to a 1-pixel, translational offset in model classification, (C) which also results in different 

scaling relationships between object areas and F1-score. In A, four different objects are shown that have either convex (i.e., 

square, rounded) or concavo-convex (i.e., plus, star) boundaries with respect to the matrix. The object area is reported below 730 

each shape in pixels. Note that the smallest ‘rounded’ example is not actually round, but a rotated square. In B, error classes 

are shown for a 1-pixel shift to the right. Because shapes are all rotationally symmetric with respect to the four cardinal 

directions, error rates do not depend on the direction of the shift. Only true negatives that share an edge with the other classes 
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are shown.

 735 

Figure 7: The frequency of False Positives and False Negatives (A) is a function of the incipient tor shape and average tor size, which can 
be quantified for (B) the systematic error scenario using F1-score. In A, six permissible tor In C, the F1-score for each of the sixteen shapes 
are plotted as a function of the object area. The function describing how object area and F1-score varies for square features (eq. 8) is also 
plotted as a dashed line for reference. 

5.2.2 Shape and scale of emergent features 740 

In the synthetic scenarios presented above, the minimum feature size is set by the incipient feature length (i.e., 1 to 10 pixels). 

Because incipient features are placed on the surface randomly, more complex objects are produced where incipient features 

overlap by chance. To illustrate the implications of this, Figure 9A shows examples of individual objects that can be generated 

using square seeds. Examples are organized by incipient feature size (rows) and object areas (columns). Adjacent to each 

object is the error induced by a 1-pixel shift to the right, with its corresponding F1-score reported above it. Note that individual 745 

objects are not necessarily rotationally symmetric. If an object has a preferred orientation, then error will be enhanced for 

objects where the long axis is parallel to the translational offset and reduced for objects where the long axis is perpendicular 

to the translational offset. In practice, the sensitivity of error to object orientation is not realized in the synthetic scenarios 

above because the random placement of features results in objects without a preferred orientation.  
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 750 

Figure 9: (A) For a given object area, the frequency of False Positives and False Negatives differs among incipient objects and the emergent 
objects that coalesce from smaller ones, such that (B) F1-scores increase with average object area more slowly than square objects do in 
response to a 1-pixel offset. In A, six permissible object shapes are shown for three different incipient torsfeature sizes (rows) and three 
different torobject areas (columns). The incipient torfeature shape both controls the minimum feature scaleobject size and the complexity of 
featureobject boundaries, whereby smaller. Smaller incipient torsfeatures can produce more complex shapes and higher error rates for a 755 
given feature size (see associated F1-scores). In B, the F1-score is plotted as a function of average featureobject area for all the scenarios 
shown in Figure 5 (i.e., systematic error only). Square markers indicatescenario (Fig. 5). Markers show values at three bedrock fractions. 
While average tor sizes get different feature fractions. The black line is the function describing how F1-score responds to a 1-pixel offset to 
an individual square object (eq. 8).  

While the examples shown in Figure 9A reiterate the point that error is reduced for larger as more bedrock is exposed, this 760 

relationship objects with simpler shapes in response to a 1-pixel offset, it still does not show how object properties are varying 

in the synthetic scenarios presented above. Figure 9B plots the F1-score as a function of the mean object area for the systematic 

error scenario. To calculate object areas, the binary map of features (i.e., pixel values equal to one) is segmented into objects. 

Object segmentation is based on adjacency of the target feature class in at least one of its eight neighbours (see examples in 

Fig. 9A). Objects can contain holes, but these holes do not contribute to their object area. After segmenting the scene into 765 

objects, the average object area is calculated and linked to the F1-scores reported earlier (Fig. 5). Figure 9B shows that F1-

score generally improves with increasing object area, albeit in a way that is strongly contingent on the incipient tor size. Error 

at the lowest bedrock fractions largely reflects the error associated with imposed incipient tor shape andmediated by the 

incipient feature size. To illustrate this, theAll lines intersect with the function describing F1-score for square tors of a given 

area is also shown for reference (features (eq. 8; solid black line).) for the limiting case where there is only one object in the 770 

scene. For any given incipient feature size though, F1-score quickly drops off this function due to the increasing complexity 

of object boundaries. There is a monotonic increase in F1-score with average object area and feature prevalence (markers in 
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Fig. 9B) regardless of the incipient feature size. The scenarios above are not producing shapes like the ‘stars’ shown in Figure 

8. Larger features do lead to high F1-scores (Fig. 9B). It was already shown that placing larger features in the landscape 

improves accuracy in response translational offset (Figs. 5-6). As such, the negative trends in nMCC shown in Figures 5B and 775 

6B suggest that the net result of increasing the size of features, for a given incipient seed, is outweighed by the complexity of 

feature boundaries generated by coalescing them. This analysis suggests that it is paramount to understand the scaling 

properties of features as they become more prevalent to understand how accuracy scores may be affected by small co-

registration errors.  Finally, the sensitivity of accuracy metrics to the size and shape of individual features begs important 

questions as to how stable accuracy metrics are to increasing spatial resolution. As airborne remote sensing is supplemented 780 

and superseded by drone-based mapping, there is good reason to believe that the shapes and scales of better resolved features 

may change, and thus influence how binary classifiers perform. 

6.3 Other geomorphic applications 

5.3 Recommendations and future directions 

Many geomorphic tasks share the need for binary classifiers that perform well across gradients in feature abundance. Whether 785 

constraining the density of landslide scars, river channelschannel erosion, bedrock outcrops, or pit-mound features, geomorphic 

studies often rely on fine-scale mapping to determine how feature size, extent, and prevalence respond to differences in 

environmental forcing.  As such, there is a general need for classifiers that successfully handle imbalanced data. In all the 

synthetic scenarios presented here, increased target class density was generated by randomly distributing the nuclei of incipient 

features within the model domain. This is perhaps a reasonable analogue to the case where bedrock tors are exhumed from a 790 

spatially random distribution of somewhat more resistant bedrock (e.g., due to differences in chemical composition, fracture 

density, etc.) that underly thin soils near denudational thresholds. In contrast, many topographic features show striking 

evidence for self-organization (Hallet, 1990; Phillips, 1999; Murray et al., 2009) where feature properties instead reflect 

interactions of local positive feedbacks and far-field negative feedbacks (e.g., Gabet et al., 2014). Unlike the synthetic surfaces 

shown here, the emergence of patterned topography and the regular spacing of features will maintain isolation of features even 795 

at very high densities. In such cases, we might expect the shape and size of features to follow well-defined scaling laws that 

respond quite differently to systematic error. There is a general need for classifiers that successfully handle imbalanced data. 

This paper set out to understand how two widely used pixel-level accuracy metrics perform across gradients in feature 

prevalence. By using synthetic examples where the error structure of the data is known, heuristics can be developed for best 

practices when the research design specifically calibrates and validates binary classifiers across gradients in feature abundance. 800 

Four key recommendations emerged: 

 

It is beyond the scope of this analysis to test the variety of scaling relationships that different topographic features exhibit in 

nature. That said, this analysis emphasizes the importance of understanding how feature size and shape covary with each other 
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as feature density increases. If scaling relationships do exist for a given type of feature and are known, then they provide the 805 

baseline for interpreting how and whether pixel-level accuracy scores are differentially sensitive to feature abundance. Even 

though pixel-level metrics like MCC and nMCC handle imbalanced data well and address the challenge of asymmetry with 

respect to target class, the examples shown here suggest that it should not be assumed that these pixel-level metrics will be 

invariant as a function of feature abundance.  How pixel-level metrics vary under different error scenarios need to be modelled 

explicitly so that trends in accuracy can be interpreted. The approach taken here was to use synthetic feature maps to yield 810 

insight into how pixel-level scores relate to scene-level attributes (sp., bedrock fraction). Future work would benefit from using 

landscape evolution models to inform how pixel-level scores are expected to vary under different error scenarios for the 

relevant geomorphic processes at play.  As numerical models of the land surface attempt to keep pace with increasingly higher 

resolution, process-scale observations (Tucker & Hancock, 2010), they have the potential to provide hypothesis-driven 

statistical analysis for how pixel-level accuracy scores should vary with feature abundance for different types of error. 815 

 

In many cases, we expect error to depend on the topographic proxy being used (e.g., slope, curvature, roughness) such that 

error may be higher in scenes closer to the feature detection limit (i.e., where fewer features are observed). As such, more 

careful consideration of spatial autocorrelation in error and the subsequent trends in accuracy scores that arise is needed.  

Further attention to this issue will undoubtedly reveal different relationships between pixel-level scores and scene-level 820 

attributes than those presented here. Nevertheless, the error scenarios considered reveal that the domain over which nMCC is 

expected to be comparable across scenes can be quite limited depending on the source of error, the error rate, and the size and 

shape of features being assessed. 

(1) Matthews Correlation Coefficient, and its normalized equivalent (nMCC), are much better suited than F1-score to 

comparing accuracy scores when feature abundances vary across classified scenes. Even after addressing the problem 825 

of asymmetry, macro F1-score tends to over-penalize random error.  

 

(2) For random error, caution is warranted in interpreting nMCC near the endmember cases of zero and full feature 

coverage because random error preferentially modifies the dominant class. Though scores are relatively invariant 

only between ~20-80% feature coverage, this domain might be expanded for scenes with more heterogeneous feature 830 

distributions.  

 

(3) For systematic error, nMCC is strongly sensitive to the size and shape of individual objects. Larger objects with 

simpler boundaries are less sensitive to this kind of error because their edge-to-area ratios are small. As such, it is 

important to characterize both co-registration uncertainty and the attributes of the individual objects being mapped. 835 
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(4) Before training and testing classifiers on imbalanced data, it is essential to establish baseline expectations for how 

pixel-level accuracy scores respond to potential sources of error over the range of feature abundances used. This can 

be accomplished through numerical simulation. 

 840 

Simulating a suite of simple scenarios with a known error structure and uniform incipient seeds provided some insight into 

how pixel-level accuracy metrics behave across gradients in feature prevalence. Real-world applications are decidedly more 

complex. In the scenarios presented here, increased feature density was simulated by randomly distributing the nuclei of 

incipient features within the model domain. Such a treatment may be relevant to some applications but is clearly limited. Figure 

1 anticipated three clear limitations of simulating features in this way. Many features show evidence for: a characteristic scale 845 

and spacing (e.g., mima mounds in Fig. 1A), size distributions spread across a wide range of scales (e.g., bedrock exposure in 

Fig. 1B), and anisotropy (e.g., gully erosion in Fig. 1C). As such, more work is needed to understand how pixel-level accuracy 

metrics perform on imbalanced data that exhibit these properties. To this end, three promising future research directions are: 

 

(1) As landscape evolution modelling attempts to keep pace with increasingly higher resolution observations (Tucker 850 

& Hancock, 2010), it also has wide potential for error analysis. Instead of randomly generating features, numerical 

models can produce more realistic feature distributions that are derived from the relevant geomorphic transport laws 

at play (Dietrich et al., 2003). A process-based approach towards error assessment could be used to identify under 

what conditions binary classifiers can be reliably compared across gradients in feature fraction. 

 855 

(2) Pixel-level accuracy scores are built on the confusion matrix, which does not retain the spatial autocorrelation 

structure or the semantic content of feature objects. Given the importance of the size and shape of features to some 

error scenarios, the path forward may lie in multi-scale, object-based image analysis (e.g., Drăguţ and Eisank, 2011). 

Object-based image analysis is on the cutting edge of feature extraction from remote sensing data (Hossain and Chen, 

2019). How to reliably evaluate the accuracy of image segmentation algorithms though requires creative re-thinking 860 

and re-tooling of standard pixel-level accuracy scores (Cai et al., 2018). 

 

(3) Both opportunities above emphasize the over-arching challenge of the rapidly changing landscape of increasing 

spatial resolution data. Higher resolution data both impacts the practical challenge of co-registration error as well as 

highlights the more theoretical challenge of semantic vagueness, or the notion that feature boundaries may not be 865 

sharply defined (Sofia, 2020). As data resolution increases, traditional methods in image segmentation and binary 

classification may require new approaches (Zheng and Chen, 2023). 

 

On the one hand, this paper is a call to action on adopting standard methods from the data sciences into surface processes 

research. On the other hand, geomorphic questions provide a diversity of real-world use-cases where these ‘standard’ methods 870 
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can be put to the test and new methods can be developed. As machine learning approaches towards geomorphic mapping 

proliferate, a better understanding is needed on how these methods will perform on the scientific tasks that are driving surface 

processes research forward. 

6 Conclusions 

With increasing access to high resolution data and increasing focus on fine-scale mapping of topographic features, pixelPixel-875 

level accuracy assessment provides a powerful tool for understanding how well classifiers built from lidarhigh resolution 

topography are performing. To be most useful, the limitations of commonly used metrics like precision, recall, and F1-score 

need to be considered. Classification tasks that span large gradients in feature abundance are particularly vulnerable to biases 

in these metrics because data is strongly imbalanced and the choice of target class matters. More robust metrics like MCC and 

nMCC largely address these methodological challenges. However, caution is still warranted in comparing pixel-level scores 880 

across gradients in feature density and extent (e.g., bedrock fraction).. If error is random and uniform across scenes, then nMCC 

will dramatically worsen near endmember cases because the more prevalent class will beis preferentially modified., though 

this effect may be mediated by pooling data from many different scenes. If the model is systematically offset from the truth 

grid, then an asymmetrical sensitivity of nMCC can arise depending on the assumptions for the genesis and growth of 

individual features. As the size of individual features increases with feature abundance, there will also beis lower sensitivity 885 

to systematic offset. However, if the shapes of features are also getting more complex, then the increased edge to area ratio of 

individual features can counteract and exceed improvements in accuracy associated with larger feature sizes. Though pixel-

level metrics used in the machine learning and remote sensing community should be more widely adopted in geomorphic 

research, further work is needed to understand how different sources of error might decouple pixel-level from scene-level 

measures of accuracy. 890 

Appendix A: Random error and accuracy metrics 

Section 54.1 reported how pixel-level accuracy scores vary as a function of bedrock fraction for a fixed rate of random error. 

While the synthetic surfaces were generated using Python, the results shown in Figure 4 can be directly derived from the mean 

random error rate (𝑒̅௥) and true bedrockfeature fraction (𝑓௕𝑓௙) analytically. Under this scenario, the probability of flipping 

either class is independent of the prevalence and location of bedrock outcropsfeatures such we can define the average 895 

frequencies for all four components of the confusion matrix. The relative frequencies of each outcome are the product of the 

average rate of error (or non-error) and the average abundance of the true class. For example, the True Positives reflect both 

the probability of bedrockthe feature occurring (𝑓௕𝑓௙) and the probability of not being flipped in the model due to random error 

(i.e., 1 െ 𝑒̅௥). The frequencies of all four classification outcomes are:  
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                𝑓 ௉ ൌ ሺ1 െ 𝑒̅௥ሻ𝑓௕௙               900 

      (A1) 

  𝑓ி௉ ൌ 𝑒̅௥𝑓௕𝑓௙                 (A2) 

               𝑓ிே ൌ 𝑒̅௥ሺ1െ 𝑓௕ሻ൫1െ 𝑓௙൯      

      (A3) 

               𝑓 ே ൌ ሺ1 െ 𝑒̅௥ሻሺ1െ 𝑓௕ሻ൫1െ 𝑓௙൯     905 

      (A4) 

 

Because we also know that the bedrockfeature fraction in the model (𝑓௕௠𝑓௙௠) must equal the sum of the fractions of True 

Positives and False Negatives, these equations yield the relationship:  

                 𝑓௕௠𝑓௙௠ ൌ ሺ1െ 𝑒̅௥ሻ𝑓௕𝑓௙ ൅ 𝑒̅௥ሺ1െ 𝑓௕ሻ൫1െ 𝑓௙൯    910 

       (A5) 

Equation A5 can be rearranged and simplified to describe how the model bedrockfeature fraction andis related to the true 

bedrockfeature fraction vary as a linear function of the random error rate: 

                       𝑓௕௠𝑓௙௠ ൌ ሺ1െ 2𝑒̅௥ሻ𝑓௕𝑓௙ ൅ 𝑒̅௥     

      (A6) 915 

The relationships shown in Figure 4A (main text) are equivalent to equation A6 for different error rates. That the Python-

generated scenes match the analytical solution indicates that the domain used for these synthetic scenes is large enough to 

adequately sample population statistics. Note that equation A6 provides a prediction for the relationship between true and 

model bedrock fractions only if error is uniform and random across scenes. In such cases, the average error rate can be directly 

inferred from both the slope and y-intercept of the regression. If this reasoning is flipped, then empirical studies using scene-920 

level regressions (DiBiase et al., 2012; Rossi et al., 2020) provide prima facie evidence for whether classification error is 

random and uniform across scenes. For example, while all regressions reported in Rossi et al. (2020) were forced through the 

origin, the best-fit linear regressions yielded negative y-intercepts suggesting that error rates were systematically higher at 

lower bedrock fractions.  

 925 

Because pixel-level accuracy scores can be derived directly from the confusion matrix, the simplified assumptions of random, 

uniform error also facilitate prediction for how F1-score and nMCC will vary with the true bedrockfeature fraction. 

Substituting the values from eqs. A1-A4 into equation 5 (main text) yields: 

                 𝐹1-𝑠𝑐𝑜𝑟𝑒 ൌ
ଶ௙್ሺଵି௘̅ೝሻ

ଶ௙್ሺଵି௘̅ೝሻା௘̅ೝ

ଶ௙೑ሺଵି௘̅ೝሻ

ଶ௙೑ሺଵି௘̅ೝሻା௘̅ೝ
     

      (A7) 930 
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which is equivalent to the numerically generated black curves in Figure 4B. Similarly, substituting eqs. A1-A4 into equation 

6 (main text) yields:  

         𝑀𝐶𝐶 ൌ

ඥ௙್ൈඥଵି௙್ൈሺଵିଶ௘̅ೝሻ

ට௙್ା௘̅ೝି௘̅ೝ
మି௙್

మିସ௘̅ೝ௙್ିସ௘̅ೝ௙್
మିସ௘̅ೝ

మ௙್ିସ௘̅ೝ
మ௙್

మ

ට௙೑ൈටଵି௙೑ൈሺଵିଶ௘̅ೝሻ

ට௙೑ା௘̅ೝି௘̅ೝ
మି௙೑

మିସ௘̅ೝ௙೑ିସ௘̅ೝ௙೑
మିସ௘̅ೝ

మ௙೑ିସ௘̅ೝ
మ௙೑

మ
   

       (A8) 935 

which is equivalent to the numerically generated red curves in Figure 4B. Though the expression for MCC under random, 

uniform error is complex, it reveals why there is strong and symmetrical sensitivity near the endmember cases of zero and all 

bedrock. The numerator in eq. A8 decreases faster than the denominator near endmember cases regardless of the average error 

rate. Since 𝑓௕𝑓௙ and 1െ 𝑓௕𝑓௙ are complementary and 𝑒̅௥ is assumed to be constant, this reduction in MCC is also symmetrical 

around an optimal bedrock fraction of 0.5. 940 

Appendix B: Feature shape and systematic error 

In this analysis, bedrock tors are treated as square features whose scale is varied with a single parameter, the ‘tor’ length. The 

square geometry is useful because it is oriented in the same way as the regular grid over which the synthetic landscapes are 

generated. The random placement of incipient tors on the surface ensures that bedrock features do not have a preferential 

orientation and translational errors do not depend on the orientation of offset. While relaxing these assumptions are beyond 945 

the scope of this study, it is worth probing more deeply on how tors are simulated to help explain the asymmetrical sensitivity 

of nMCC to bedrock fraction when the model data is systematically offset from truth (Figs. 5-6). Specifically, I show in this 

appendix how the frequency of False Positives and False Negatives are linked to the shape and size of features. Both the 

incipient tor shape and the subsequent aggregation of these shapes into larger bedrock features are what set the overall error 

rate. By incipient tor shape, I am referring to the seed shape used to generate bedrock from the random placement of tor centres. 950 

While I only used a square seed in the main analysis, Figure B1 shows the importance of seed shape to generating false 

positives and false negatives when the truth and model features are systematically offset by one pixel. In Figure B1A, I show 

four shapes at three different spatial scales. Because seed shapes are constrained by their raster representation, it is hard to 

create different shapes with the same area when the seed shape is small. For the shapes ‘square’, ‘rounded’, ‘plus’, and ‘star’, 

the shape area is approximately equivalent for shape diameters of 6, 7, 10, and 11 pixels, respectively. For these radially 955 

symmetrical shapes, a 1-pixel shift produces the same number of false positives and false negatives regardless of the orientation 

of the shift.  
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Figure B1: (A) Shape and scale of incipient tors directly affects (B) the subsequent frequencies of False Negatives (yellow) and False 
Positives (blue) to a translational offset in model classification. In A, four different feature shapes are shown that have either convex (i.e., 960 
square, rounded) or concavo-convex (i.e., plus, star) boundaries with respect to the soil matrix. The feature area is reported below each shape 
in pixels. Note that the smallest ‘rounded’ example is not actually round, but a rotated square. As features get too small with respect to the 
data resolution, it becomes difficult to represent complex objects using a regular, square grid. In B, error classes are shown for a 1-pixel shift 
to the right. Because shapes are all rotationally symmetric with respect to the four cardinal directions, error rates do not depend on the 
direction of the shift. Only true negatives that share an edge with the other classes are shown. 965 

While much of the analysis has emphasized that MCC and nMCC are superior to F1-score for accuracy assessment when True 

Negatives matter, F1-score is well-suited to the task of isolating how feature size and shape impact error independent of 

bedrock fraction. The geometry of an individual square tor is a useful starting point because the error induced by a one-pixel 

shift between truth and model classification is readily derived from its simple geometry. The number of True Positives is equal 

to l2 - l and the number of False Positives and False Negatives are each equal to l, where l is the length of the square. Substituting 970 

these terms into eq. 5 (main text) and simplifying yields an equation for F1-score specific to square features: 

          𝐹1-𝑠𝑐𝑜𝑟𝑒௦௤ ൌ 1 െ
௟

௟మ
            (B1) 
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Because the area of a square increases faster than its length, the last term in equation B1 explains why accuracy improves as a 

function of feature area. To extend this further, I also compare how the different shapes shown in Figure B1 impact F1-scores 

(Fig. B2B). The key property that is changing for these different shapes is the edge to area ratio, whereby concave shapes (i.e., 975 

‘square’ and ‘rounded’) are generally more conducive to higher F1-scores. However, the size of features is also very important. 

In all but the ‘star’ example, F1-scores improve as features get larger. The ‘star’ does not follow the pattern because it is the 

only example here where the edge to area ratio increases with feature size.  

 

Figure B2: (A) Example bedrock map like those produced in this analysis and (B) the relationship between feature area and F1-score. In A, 980 
nine ‘tor’ centres produce three individual tors. In B, the F1-score in A is plotted as a function of the average feature area alongside the seed 
shapes shown in Figure B1. For reference, I also plot the function describing how area and F1-score vary for square tors. Note that even 
though the bedrock map shown in A is generated using randomly distributed square outcrops, the F1-score is lower than the dashed blue 
line due to the more complex boundaries generated by coalescing incipient tors into a fewer number of features. 

This feature level assessment provides further insight into why Figures 5-6 (main text) show positive trends in F1-score and 985 

negative trends in nMCC as a function of bedrock fraction. Increasing feature size favours lower error while increasing feature 

complexity favours higher error. Figure 7 (main text) demonstrates that the net result of these competing effects is monotonic 

increases in F1-score as a function of bedrock fraction, all other things being equal. This is because it is difficult to overcome 

the strong sensitivity of F1-score to how balanced the data are. Instead, nMCC reveals that the impact of increasing complexity 

of feature shape slightly outweighs the increase in feature size leading to a modest negative relationship to bedrock fraction 990 

(Fig. 5 main text). 
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Data Availability 

FiguresFigure 1- elevation data was downloaded from OpenTopography (2010 Channel Islands Lidar Collection, 2012; 

Anderson et al., 2012; Reed, 2006). Figure 2 and Table 1 are based on the bedrock mapping at site P1P01 from Rossi et al. 

(2020). Maps for 1-m truth and model data at this site can be accessed at https://github.com/mwrossi/cfr_extremes. These 995 

classified maps are based on 2018 Pictometry® orthomosaicked air photos purchased by Boulder County and airborne lidar 

data acquired by the National Center for Airborne Laser Mapping for the Boulder Creek Critical Zone Observatory (Anderson 

et al., 2012). Synthetic surfaces presented in Figures 3-79 were built in Python. Scripts can be accessed at 

https://github.com/mwrossi/bedrock-mapping-accuracyhttps://github.com/mwrossi/feature-mapping-accuracy. Once through 

review, the main code will continue to be hosted on Github, but scripts and files used for generating figureseach figure will be 1000 

archived on Figshare.  
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