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Abstract. Increased access to high resolution topography has revolutionized our ability to map out fine-scale topographic 

features at watershed- to landscape-scales. As our ‘vision’ of land surface has improved, so has the need for more robust 

quantification of the accuracy of the geomorphic maps we derive from these data. One broad class of mapping challenges is 

that of binary classification where remote sensing data are used to identify the presence or absence of a given feature. 10 

Fortunately, there are a large suite of metrics developed in the data sciences that are well suited to quantifying pixel-level 

accuracy of binary classifiers. This analysis focuses on how these metrics perform when there is a need to quantify how the 

number and extent of landforms are expected to vary as a function of the environmental forcing (e.g., due to climate, ecology, 

material property, erosion rate). Results from a suite of synthetic surfaces show how the most widely used pixel-level accuracy 

metric, F1-score, is particularly poorly suited to quantifying accuracy for this kind of application. Well-known biases to 15 

imbalanced data are exacerbated by methodological strategies that calibrate and validate classifiers across settings where 

feature abundances vary. Matthews Correlation Coefficient largely removes this bias over a wide range of feature abundances, 

such that the sensitivity of accuracy scores to geomorphic setting instead embeds information about the size and shape of 

features and the type of error. If error is random, Matthews Correlation Coefficient is insensitive to feature size and shape, 

though preferential modification of the dominant class can limit the domain over which scores can be compared. If the error 20 

is systematic (e.g., due to co-registration error between remote sensing datasets), this metric shows strong sensitivity to feature 

size and shape such that smaller features with more complex boundaries induce more classification error. Future studies should 

build on this analysis by interrogating how pixel-level accuracy metrics respond to different kinds of feature distributions 

indicative of different types of surface processes. 

  25 



2 
 

1 Motivation 

High resolution topographic datasets are transforming our ability to characterize the fine-scale structure of the Earth’s surface 

(Passalacqua et al., 2015). Airborne lidar especially, has changed how geomorphic fieldwork is conducted by enabling 

scientists to quantify the form and extent of meter-scale features over large areas (Roering et al, 2013). Because lidar ‘sees’ 

through vegetation, lidar has accelerated progress in both discovery science and testing hypotheses where the prevalence of 30 

features is expected to vary as a function of the environmental forcing (e.g., in response to differences in climate, ecology, 

material property, erosion rate). Airborne lidar has now been used to map mima mounds (Reed & Amundson, 2012), termite 

mounds (Levick et al., 2010; Davies et al., 2014), , tree throw pits and mounds (Roering et al., 2010; Doane et al., 2023), 

landslide boundaries and classes (Jaboyedoff et al, 2012; Bunn et al., 2019; Prakesh et al., 2020), channel networks (Pirotti & 

Tarolli, 2010; Clubb et al., 2014; Korzeniowska et al., 2018), bedrock structure (Cunningham et al., 2006; Pavlis and Bruhn, 35 

2011; Morell et al., 2017), and bedrock exposure (DiBiase et al., 2012; Milodowski et al., 2015; Rossi et al., 2020).  

 

 

Figure 1: (A) Mima mounds near Merced, CA, USA, (B) bedrock outcrops along Boulder Creek, CO, USA, and (C) gully erosion on Santa 
Cruz Island, CA, USA as observed from 1-m shaded relief maps. Note that even though the areal extent is the same among these scenes (200 40 
x 200 m), topographic relief is drastically different (total relief in A is 7 m, in B is 146 m, and in C is 76 m). 100-m elevation transects from 
A to A’ for each site are shown to illustrate how different features manifest as roughness elements in the topography. Airborne lidar for the 
mima mound and rocky slope sites was flown by the National Center for Airborne Laser Mapping (NCALM). Airborne lidar for the gully 
erosion site was flown by the United States Geological Survey (USGS). All lidar datasets were downloaded from OpenTopography (Reed, 
2006; Anderson et al., 2011; 2010 Channel Islands Lidar Collection, 2012). Interpretations of features classified from lidar data can be found 45 
in Reed & Amundson (2011), Rossi et al. (2020), and Korzeniowska et al. (2018) for the mima mound, rocky slope, and gully sites, 
respectively. 
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Figure 1 shows three examples of features that can be mapped using 1-m airborne lidar data. The utility of binary classification 

of feature locations for each of these geomorphic applications is clear. However, examples also highlight how the number, 50 

size, shape, amplitude, and pattern of features can vary. Regular, repeating morphologies with a characteristic spatial scale 

(e.g., mima mounds in Fig. 1A; Reed and Amundson, 2011) pose different challenges to classification than irregular, 

heterogeneous morphologies that occur at many scales (e.g., bedrock exposure in Fig. 1B; Rossi et al., 2020). Furthermore, 

the importance of flowing water on surface processes means that many geomorphic features form directional networks with 

substantial anisotropy (e.g., gully erosion in Fig. 1C; Korzeniowska et al., 2018). Perhaps unsurprisingly then, accuracy 55 

assessment in the geomorphic literature has varied a lot even as formal methods for evaluating pixel-level accuracy of binary 

classifiers are now becoming standard practice in the remote sensing and machine learning literature (e.g., Wang et al., 2019; 

Prakesh et al., 2020; Agren et al, 2021). Slow adoption of these standard methods in accuracy assessment may arise from two 

tendencies of geomorphic studies that employ lidar classifiers: 1. Process-based studies are typically more interested in the 

properties and densities of features rather than their contingent locations, and 2. Classifiers are expected to work across large 60 

gradients in the prevalence of features to test our understanding of the relevant transport laws at play. The former tendency 

arises from the fact that predicting the actual locations of features (e.g., mounds, outcrops, channels) is not usually a viable 

target for numerical models of landscapes where uncertainty in initial conditions and the stochastic nature of processes preclude 

a deterministic forecasting of the precise locations of features (e.g., Barnhart et al., 2020). The latter tendency arises from the 

need to use classified data to constrain natural experiments where geomorphic transport laws (Dietrich et al., 2003) can be 65 

tested against governing variables (e.g., across climo-, eco-, litho-, or tectono-sequences). As shown below, these tendencies 

can be at odds with pixel-level accuracy metrics designed to assess positional accuracy for balanced data (i.e., data where the 

frequency of positive and negative values are similar). 

 

Nevertheless, there are several important benefits to adopting pixel-level accuracy metrics when reporting the success of 70 

geomorphic classifiers. First, these metrics provide common standards for evaluating classifier accuracy across studies, 

including direct comparison between proxy-based classifiers and those developed using machine learning. Second, trends in 

pixel-level accuracy scores may reveal patterns in the spatial structure of error. Third, pixel-level measures are easy to apply 

to new objectives as long as their limitations are properly considered. This paper focuses on how two widely used metrics, F-

measures (van Rijsbergen, 1974; Chinchor, 1992) and Matthews Correlation Coefficient (Matthews, 1975; Baldi et al., 2000), 75 

perform when the research design intentionally calibrates and tests binary classifiers across large gradients in how balanced 

the data are. The general approach is to synthetically generate ‘model’ and ‘truth’ data that have a known error structure. Pixel-

level accuracy scores are then calculated as a function of feature abundance. Despite the simplicity of the scenarios considered, 

this analysis helps constrain the range over which pixel-level metrics can be reliably compared across gradients in feature 

abundance. Synthetic scenarios also reveal how the shape and scale of individual objects can strongly influence pixel-level 80 

scores when there are small co-registration errors between model and truth data.  
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2 Approach 

One common use of binary classifiers is to build an inventory of feature boundaries and abundances using remotely sensed 

data. This typically entails using scenes where ‘truth’ is known through detailed field or air photo mapping. An algorithm built 

from an independent data source (e.g., lidar) is then used to ‘model’ the locations of features. Models are commonly trained 85 

and tested so that the classifier can be used for larger scale geomorphic mapping. If the density, size distribution, and form of 

features varies from scene to scene, then it is important to understand how pixel-level accuracy metrics will perform as a 

function of scene-level properties (e.g., feature fraction). To mimic this task, this paper examines how two widely used 

accuracy metrics, F1-score and Matthews Correlation Coefficient (MCC), behave on synthetic truth and model data. Synthetic 

truth data is generated by randomly placing features in a scene at a given abundance. Model data is either independent from 90 

truth data or derived from the truth data using an assumed error structure. Pixel-level accuracy scores are then calculated for 

each scene.  

2.1 Grid generation 

To generate ‘truth’ grids of features within a matrix, the pseudo-random number generator in NumPy is used to create a scene 

of size m x n cells. Continuous values are converted into binary classes (0 = matrix; 1 = feature) based on a user-specified 95 

value for the feature fraction (𝑓 ), which is simply the fraction of the surface covered by features. The simplest scenario is for 

features with a size of one pixel. While synthetic surfaces are scale free, results are reported assuming a grid spacing of 1-m 

to represent a typical case using airborne lidar. To simulate features that have a scale greater than one square meter, the pseudo-

random numbers instead specify a first guess at the locations of the centres of incipient features. The first guess at the number 

of features is calculated by finding the integer number of features of length, l, that most closely matches 𝑓 . However, as the 100 

number of feature centres increases, so does the probability that two neighbouring objects overlap and coalesce into a larger 

object. As such, the first guess generally produces an actual feature fraction lower than the user-specified value. The ratio 

between the specified 𝑓  and this underestimate is then used to proportionally increase the number of incipient features in the 

model domain. The process is iterated until either the synthetic fraction is within 0.5% of the specified value or fifty iterations, 

whichever comes first. The number of incipient objects is always higher than the actual number of objects in the scene because 105 

smaller incipient features increasingly coalesce into larger objects at higher feature fractions.  

 

All scenarios in this study rely on comparing simulated ‘truth’ and ‘model’ grids across the full range of feature fractions (0 < 

𝑓  < 1). Where the truth and model data are independent of each other, the two grids are generated using different pseudo-

random seed numbers in NumPy (section 3). In scenarios where the model grid is dependent on the truth grid, the model grid 110 

is a copy of the truth data using the specified error structure. Details for how random error (section 4.1), systematic error 

(section 4.2), and random plus systematic error (section 4.3) are implemented are described in context below. For each scenario, 
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the truth and model grids are evaluated by building the confusion matrix and calculating accuracy metrics at each feature 

fraction (section 2.2). 

2.2 Pixel-level accuracy metrics 115 

While there are many metrics used to quantify the accuracy of binary classifiers, the focus of this paper is on two of the most 

widely used ones: the F1-score and Matthews Correlation Coefficient (MCC). These metrics are frequently used to evaluate 

pixel-level performance of classified maps generated from machine learning (e.g., Wang et al., 2019; Prakesh et al., 2020; 

Agren et al, 2021). Application of these metrics need not be limited to the training and testing of machine learning algorithms. 

They are broadly useful to any binary classification task where positional accuracy is important. Both F1-score and MCC can 120 

be calculated directly from the confusion matrix. The confusion matrix for binary classification is a 2x2 table where the column 

headers are the true classes and the row headers are the model classes, thereby summarizing the occurrence of the four possible 

classification outcomes: True Negatives (TN), True Positives (TP), False Positives (FP), and False Negatives (FN).  

 

Figure 2: (A) Pixel classes for Fig. 1B and (B) the corresponding confusion matrix (inset) and correlation plot (main). In A, the four 125 
outcomes of the binary classification are shown in colour [TN = True Negatives; FP = False Positives; FN = False Negatives; TP = True 
Positives]. The areas in white were obscured by the vegetation canopy in air photos (24% of area) and thus excluded from accuracy 
assessment. In B, the colours of each cell in the confusion matrix and each point in the plot are the same as in A. The number of observations 
for each class is shown in the confusion matrix and point sizes on the plot are scaled to the relative frequency of each value. This classified 
map is site P01 from Rossi et al. (2020), where more details on mapping methods are described. 130 
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For example, the scene in Figure 1B is readily reclassified into these four outcomes (Fig. 2A) using the feature mapping from 

Rossi et al. (2020).  The frequency of these outcomes is summarized using the confusion matrix (Fig. 2B inset). The simplest 

accuracy metric is the overall accuracy (OA), and its complement the error rate (ER), where: 

       𝑂𝐴                (1) 135 

       𝐸𝑅                (2) 

While OA and ER are straightforward to calculate, they provide little insight into the relative frequencies of FP and FN. To 

address this limitation, there are a large family of accuracy metrics that better characterize different types of error. For example, 

precision and recall characterize the relative frequencies of FP and FN explicitly. Precision, also known as the positive 

predictive value, is the ratio of true positives to all positives predicted by the model (accounts for FP):  140 

                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛                       (3) 

Recall, also known as the true positive rate, is the ratio of true positives to all positives (accounts for FN): 

                        𝑅𝑒𝑐𝑎𝑙𝑙                       (4) 

Figure 2 is an example where the precision is low (0.36), but the recall is reasonably good (0.58) (Table 1). F-measures were 

designed to summarize precision and recall into a single metric (van Rijsbergen, 1974; Chinchor, 1992). The case where both 145 

are equally weighted is referred to as the F1-score, where: 

                 𝐹1-𝑠𝑐𝑜𝑟𝑒               (5) 

By representing the harmonic mean of precision and recall, this metric accounts for both errors of omission and commission. 

F1-scores only characterize the success at identifying the target class, and low values can occur even if the overall accuracy is 

high because it excludes True Negatives. As such, this metric is sensitive to the prevalence of positive values. Higher F1-150 

scores are favoured when the positive class is more abundant (e.g., Chicco and Jurman, 2020). Related to this sensitivity to 

imbalanced data is the property of asymmetry. Asymmetric metrics are those where the accuracy score differs when the target 

classes are switched. Table 1 shows that the F1-score for Figure 2 would be 72% higher if the target feature was soil instead 

of bedrock. Asymmetry arises because there is more soil than bedrock in the scene and TN are not included in calculations of 

precision, recall, or F1-score. These well-known limitations of F-measures are better handled by metrics that incorporate all 155 

four classes of the confusion matrix. One such metric is Matthews Correlation Coefficient (MCC), where: 

    𝑀𝐶𝐶              (6) 

MCC is equivalent to a Pearson’s correlation coefficient where the model classes are regressed against the true classes in a 

binary classification task (Fig. 2B). Values of MCC can be similarly interpreted where -1.0 indicates perfect anti-correlation, 

0 is a random model, and 1.0 indicates perfect correlation. And while MCC is just one of several metrics that include all four 160 

quadrants of the confusion matrix (e.g., Balanced Accuracy, Markedness, Cohen’s Kappa), recent work suggests that MCC is 

the most robust to imbalanced data (Chicco and Jurman, 2020; Chicco et al., 2021a; Chicco et al., 2021b). In this analysis, I 

report a normalized version of MCC as: 
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       𝑛𝑀𝐶𝐶                (7) 

By re-scaling MCC from zero to one, nMCC facilitates comparison with F1-score on plots and in discussion. It is worth noting 165 

though that interpretations of low values of nMCC differ from interpretations of low values of F1-score. The former implies 

anti-correlation between model and truth data while the latter does not.  For example, the scene in Figure 2 indicates a weak 

positive correlation (i.e., nMCC greater than 0.5) even though the F1-score is lower than 0.5 (Table 1).  As such, direct 

comparison of these metrics should be done with caution. 

 170 

Table 1: Accuracy metrics for Figure 2 using the alternative target classes of bedrock and soil.   

Target Class OA* ER* Precision Recall F1-score MCC* nMCC* 

Feature (bedrock) 0.67 0.33 0.36 0.58 0.44 0.24 0.62 

Feature (soil) 0.67 0.33 0.85 0.69 0.76 0.24 0.62 

* Metrics that do not vary as a function of the target class in binary classification. 

3 Independence between truth and model data 

The distinction between pixel-level and scene-level accuracy, in part, motivates the approach taken to examine how accuracy 

metrics handle imbalanced data in this study. Pixel-level accuracy requires that the precise locations of features are honoured, 175 

with a lower bound to feature detection set by the spatial resolution of the data used. Scene-level accuracy characterizes the 

mismatch between model and truth data at some coarser scale and typically assesses statistical properties of the target feature 

class (e.g., bedrock fraction, mound densities, drainage densities). While high pixel-level accuracy ensures high scene-level 

accuracy, the converse need not be true. Given the importance of developing binary classifiers that work across a range of 

feature densities and sizes, there is a need to better understand how pixel-level accuracy metrics perform across a range of 180 

scene-level properties like feature fraction. One mark of a good accuracy metric is its ability to diagnose the case of 

independence. In this context, independence means that the locations of features in the model contain no information about 

the true locations of features. If accuracy metrics produce similar scores when the model and truth data are independent from 

each other, then it means the metric can be reliably compared for different feature fractions. A perhaps trivial example is the 

case where feature fractions are assumed to be constant (e.g., total feature coverage) regardless of the true feature fraction. A 185 

more interesting example is the case where scene-level fractions are the same in the truth and model data (i.e., high scene-level 

accuracy) but where the actual locations of features are unrelated (i.e., low pixel-level accuracy).  
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Figure 3: Classified 100 x 100 m maps of (A) 1-m and (B) 10-m long incipient features showing the four classification outcomes (TN: True 190 
Negatives, FN: False Negatives, FP: False Positives, TP: True Positives). How accuracy scores vary as a function of feature fraction are also 
shown for (C) 1-m and (D) 10-m long incipient features, respectively. The ‘all feature’ scenario is where the model assumes the entire surface 
is feature with no matrix, regardless of scene-level properties. The ‘match scene’ scenario is where the model data matches the actual feature 
fraction, but whose feature locations are independent of each other. In A-B, example maps are shown for the case where fifty percent of the 
surface is covered by features. In C-D, normalized Matthews Correlation Coefficient (nMCC) is only shown for the ‘match scene’ scenario 195 
because it is undefined in the ‘all feature’ scenario. 
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Figure 3 shows the sensitivity of F1-score and nMCC to imbalanced data when the model and truth data are independent from 

each other (m = n = 100).  Each scenario assumes features are randomly distributed throughout the scene for any given feature 

fraction. In the first scenario, the classifier predicts that the feature is found everywhere regardless of the truth data (dashed 200 

lines). Because this ‘all feature’ model produces neither False Negatives nor True Negatives, nMCC is undefined in this 

scenario (see eqs. 6-7). F1-score nonlinearly improves with increasing feature fraction and approaches unity as the actual 

fraction nears the ‘all-feature’ model. In the second scenario, the classifier is forced to match the feature fraction in the truth 

grid, though the locations of features in the model are independent from the truth data (solid lines). This represents a worst-

case scenario for a classifier that successfully models the scene-level fraction while also providing zero predictive value at the 205 

pixel level. The values of nMCC rightly diagnose independence between the model and truth data by showing zero correlation 

across the full range of feature fractions (nMCC ~ 0.5). In contrast, F1-score increases as a linear function of feature fraction. 

As this and subsequent examples show, F1-score embeds a spurious correlation with feature fraction, all other things being 

equal, because the number of True Negatives is ignored. In contrast, nMCC provides a robust metric to evaluate positional 

error for classifiers that have been calibrated to scene-level properties. While these relationships do not depend on incipient 210 

feature size, larger mapping areas are needed to adequately sample the statistics of feature locations when incipient features 

are large with respect to the area of the scene (Fig. 3D). The noisy relationships in Figure 3D largely reflect the inability to 

match the specified feature fraction using a discrete number of random features whose locations are set by the specific pseudo-

random seed used. In fact, 49% of the grids generated for Figure 3D failed to meet the 0.5% tolerance of specified feature 

fractions after fifty iterations. For subsequent analyses, larger 1000 x 1000 m scenes are used to mitigate the effect of domain 215 

size on accuracy scores. For the larger domain, nearly all (>99%) the subsequent grid pairs meet the tolerance criterion before 

fifty iterations, which manifest as smoother curves in plots. 

4 Error structure and accuracy 

The previous section showed how F1-score and nMCC vary as a function of feature prevalence for classifiers that only 

honoured scene-level attributes (i.e., feature fraction) with no predictive skill at identifying feature locations. While a useful 220 

baseline scenario, a good classifier should identify both the locations of features and reproduce scene-level attributes, albeit 

with some residual error. To illustrate these more realistic conditions, three different error scenarios are presented where the 

error structure is either random (section 4.1), systematic (section 4.2), or both (section 4.3). While actual sources of error in 

geomorphic studies are typically more complex, these simple scenarios facilitate interpretation and provide insight into how 

pixel-level accuracy scores perform when the research design explicitly samples across a gradient in feature prevalence. 225 
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4.1 Random error 

The first error scenario considered is the situation where the binary classifier successfully identifies feature locations with a 

fixed rate of random error (�̅� ). To create synthetic surfaces of this type, a truth grid is first generated (for Fig. 4 m = n = 1,000) 

for a given feature fraction. Features are assumed to occupy a single pixel, though results are robust to different sizes of 

incipient features because where error occurs is independent of feature locations. To produce the associated model grid, an 230 

error grid is first generated using a different pseudo-random seed than that used to generate the truth data. The continuous 

values of the error grid are converted to binary classes (0 = no error; 1 = error) using the specified error rate as the threshold. 

The error grid is then used to construct the model grid from the truth grid by flipping feature classifications wherever the error 

grid value equals one. Note that the maximum error rate shown in Figure 4 is fifty percent. This is the scenario where the truth 

and model data are least correlated. Increasing the error rate further will produce increasingly stronger negative correlations 235 

between the model and truth data. Once both truth and model grids are generated, F1-score and nMCC are calculated. This 

analysis is done for feature fractions that range from 0.01 to 0.99 and error rates from 5 to 50 percent.  

 

 

Figure 4: (A) Model feature fractions and (B) associated accuracy scores as a function of the true feature fraction in the random error 240 
scenario (1000 x 1000-m map area). In both plots, the minimum and maximum error rates are highlighted, and 5% increments of error rate 
are shown as dotted lines. In A, matching the model fraction to the actual fraction of bedrock is not enforced like in other scenarios (Figs. 3, 
5). However, the two fractions are linearly related, and the slope of the relationship is directly related to the error rate (Appendix A). In B, 
lower rates of random error amplify the nonlinearity between F1-score and feature fraction while nMCC more uniformly improves across a 
broad range of feature fractions. 245 
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Figure 4 shows the results of this analysis for ten numerically simulated error rates. Results can be derived analytically from 

eqs. 5-7 and the imposed random error rate (Appendix A). However, presenting the results from numerical surfaces: 1. Ensures 

that synthetic scenes adequately sample population statistics; and 2. Facilitates integration with scenarios that include non-250 

random error (section 4.3). As should be expected, Figure 4 shows that accuracy scores increase as error rates go down. 

However, the sensitivity of these scores is not uniform with respect to feature fraction. Much like in the previous scenario (Fig. 

3), F1-scores always monotonically improve with increasing feature fraction. Note here though that the worst random error 

case (Fig. 4 dashed black line; 50% error rate) is not equivalent to the case where the model is independent from the truth data 

(i.e., the solid black line in Fig. 3). In the random error scenario, model data are correlated with, but not equal to, actual feature 255 

fractions (Fig. 4A). The fixed error rate preferentially modifies the larger frequency class near the endmember cases of zero 

and full coverage of the surface by features. This is most easily envisioned at the limits of feature abundance. If the actual 

surface is all features, then the random error model will produce matrix pixels in proportion to the error rate. Similarly, if the 

actual surface is all matrix, then the random error model will produce feature pixels in proportion to the error rate.  For this 

error scenario, the slope of the relationship between modelled and actual feature fractions equals 1 2�̅�  (Appendix A). The 260 

symmetry of the sensitivity of nMCC to a uniform, random error rate allows for comparison of map accuracies across a wide 

range of feature abundances, specifically over the domain over which nMCC is approximately invariant (Fig. 4B). In contrast, 

disentangling the spurious correlation between F1-score and feature fraction interacts with the preferential modification of 

classes in a complex way, leading to increasing nonlinearity for better classifiers with lower error rates. 

4.2 Systematic error 265 

The second error scenario considered is the situation where the binary classifier successfully identifies features with some 

imposed systematic error. This scenario is motivated by the common challenge of aligning two datasets collected using 

different sensors or collected at different times (e.g., Bertin et al., 2022). To create synthetic surfaces of this type, a truth grid 

is first generated (for Fig. 5 m = n = 1,000) for a given feature fraction and incipient feature size. Incipient features are randomly 

distributed throughout the model domain. To produce the associated model grid, a copy of the truth grid is linearly offset by 270 

one pixel to the right in the x-direction, though results are insensitive to the direction of the shift. By using wrap-around 

boundaries, synthetic truth and model grids always have identical feature fractions. Note that the systematic error rate (�̅� ) is 

not constant and is instead a function of the feature fraction, the magnitude of the systematic offset, and the shape and size of 

features. Once both truth and model grids are generated, F1-score and nMCC are calculated. This analysis is done for feature 

fractions that range from 0.01 to 0.99 and for incipient feature sizes that range from 1x1 m to 10x10 m squares. 275 
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Figure 5: (A) Variable error rates and (B) associated accuracy scores as a function of the true feature fraction for the systematic error 
scenario (1000 x 1000 m map areas). In both plots, the minimum and maximum incipient feature lengths are highlighted, and 1-m increments 
are shown as dotted lines. In A, the error rate (eq. 2) is non-uniform with lower rates at both low and high feature fractions. As incipient 
feature size gets larger, the error rate function becomes increasingly asymmetrical with peak values at 0.5 and 0.66 bedrock for 1- and 10-m 280 
long seeds, respectively. In B, the non-uniform error rates lead to more linear relationships between F1-score and feature fraction than in 
the case of random error (Fig. 4B). In contrast, nMCC shows modest negative relationships with feature fraction for all incipient feature 
sizes. 

Figure 5 shows the results of this analysis for ten different incipient seeds that span from 1 to 10 m in length (1 to 100 m2). 

While results throughout this paper are discussed in terms of a scale typical to airborne lidar (i.e., 1-m spatial resolution), the 285 

relationships shown here are better cast as the ratio of the incipient feature scale (i.e., seed length in pixels) to the error scale 

(1 pixel length) where the feature detection limit is one pixel. When systematic error is of order feature length, systematic error 

mimics the case where the truth and model data are independent (e.g., compare long dashed lines in Fig. 5B to solid lines in 

Fig. 3C-D). As the systematic error gets small with respect to the incipient feature size, both F1-score and nMCC improve. 

The largest improvements occur for small incipient feature sizes and at low feature fractions (Fig. 5B). When feature fractions 290 

are low, the error is largely due to the geometric effect of the shift of individual square objects surrounded by matrix. As feature 

fraction increases, incipient objects increasingly coalesce into a smaller number of objects, and the error is set by these more 

complex geometries (see discussion in section 5.2). Figure 5A shows that increasing the incipient feature size leads to lower 

error rates and increasing asymmetry in the error rate function, where the highest error is biased towards higher feature 

abundances. These error rate functions manifest as a modest negative relationship between nMCC and feature fraction 295 

regardless of incipient feature size (Fig. 5B). The asymmetric error structure also impacts F1-score, albeit in a way that is 
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much harder to diagnose due to the spurious correlation between F1-score and feature fraction (Figs. 3-4). The notion of 

systematic error in scene-level mapping was envisioned for situations where co-registration error between the remote sensing 

data used to map ‘truth’ and the remote sensing data used to build the classifier produce a systematic, translational offset. 

Strictly speaking then, this synthetic scenario represents the case where a translational offset is the same for all scenes, a 300 

plausible situation if the truth and model data for different scenes were acquired at the same time and in the same way. 

However, even under the less stringent condition where co-registration errors are oriented differently in different scenes (i.e., 

due to different acquisition parameters and times), the relationships shown in Figure 5 will still hold as long as the magnitude 

of the systematic error is similar across scenes and there is no preferred orientation to feature objects.  

4.3 Random plus systematic error  305 

The third error scenario considered is the situation where the binary classifier is systematically offset from the truth grid with 

an additional random error term. To create synthetic surfaces of this type, a truth grid is first generated (for Fig. 6 m = n = 

1,000) for a given feature fraction and incipient feature size. Incipient features are randomly distributed throughout the model 

domain. To produce the associated model grid, a copy of the truth grid is first linearly offset by one pixel to the right in the x-

direction, using a wrap-around boundary condition. A random error grid is then generated using a different pseudo-random 310 

seed than that used to generate the truth data. The continuous values of the error grid are converted to binary classes (0 = no 

error; 1 = error) using a random error rate of 0.05 as a threshold. The error grid is used to flip classifications in the offset 

feature grid wherever the error grid value equals one. Note that feature fractions in the model need not match the truth data, 

and error rates are now a function of the feature fraction, the magnitude of the systematic offset, the size and shape of features, 

and the random error rate. Once both truth and model grids are generated, F1-score and nMCC are calculated. This analysis is 315 

done for feature fractions that range from 0.01 to 0.99 and incipient feature sizes that range from 1x1 m to 10x10 m squares. 
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Figure 6: (A) Variable error rates and (B) associated accuracy scores as a function of the true feature fraction for the systematic plus random 320 
error scenario (1000 x 1000-m map areas). These panels are analogous to Figure 5A and 5B but now include a 5% random error term. 
Differences in (C) error rates and (D) accuracy scores between this scenario and systematic error alone (Fig. 5) are shown to enable 
comparison. In C, the additional 5% random error term is linearly added to the systematic error term at the endmember cases of zero and 
total feature coverage. The random error translates into something less than 5% for intermediate cases with minima near zero for 1-m seeds 
and 0.043 for 10-m seeds. In D, nMCC exhibits strong reductions from systematic error alone near endmember cases (high negative values) 325 
and a muted, more uniform reduction at intermediate values.  
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Figure 6 is analogous to Figure 5 with error rates (Fig. 6A) and accuracy scores (Fig. 6B) plotted as a function of feature 

fraction for different incipient features sizes. The random error rate sets the minimum observed error and contributes to the 330 

total error in a nonuniform way. This is because the random error term can flip values where systematic error has occurred 

(i.e., both sources of error can combine to produce True Positives). Figure 6C-D shows the differences in error rates and 

accuracy scores, respectively, between the systematic plus random error scenario shown here (Fig. 6A-B) and systematic error 

alone (Fig. 5A-B). The addition of random error is relatively more influential in cases where the classifier is more accurate 

(i.e., larger incipient features) and near endmember bedrock fractions (i.e., zero and total coverage of features). For a given 335 

incipient feature size, the minimum error added by the random error rate of 0.05 occurs at intermediate bedrock fractions and 

ranges from near zero for 1-m long seeds to 0.043 for 10-m long seeds. Figure 6 shows that the relative importance of random 

versus systematic error changes as a function of feature fraction. Because random error is the dominant term of the total error 

rate near the endmember cases of zero and total feature coverage, it leads to correspondingly large reductions in nMCC (Fig. 

6D). In contrast, at intermediate bedrock fractions there is slight negative slope to nMCC like observed in the systematic error 340 

scenario (Fig. 5B). This is because reductions in nMCC induced by random error at intermediate feature fractions are: relatively 

smaller, approximately invariant across a broad range of fractions, and symmetrical with respect to feature fraction (Fig. 6D). 

While only one random error rate is shown, this example illustrates how the complex interactions between random and 

systematic error need to be simulated to understand their implications on pixel-level accuracy scores.    

5 Discussion 345 

Whether mapping orographic gradients in bedrock exposure (Rossi et al., 2020), characterizing precipitation controls on 

termite mound density (Davies et al., 2014), or inferring how wind extremes induce tree throw frequencies (Doane et al., 2023), 

lidar topography has revolutionized our ability to map differences in the density of fine-scale features. None of these examples 

used pixel-level accuracy scores in their analyses. In fact, it is not immediately apparent how well such methods would perform 

even if the authors had adopted pixel-level accuracy assessment. For those geomorphic studies that have used pixel-level 350 

accuracy scores on lidar-based classifiers (e.g., Bunn et al., 2019; Clubb et al, 2014; Milodowski et al., 2015), it is also not 

obvious how accuracy scores are expected to vary as a function of feature prevalence. To help address this challenge, this 

paper presented a suite of synthetic scenarios that show how F1-score and Matthews Correlation Coefficient (MCC) perform 

across gradients in feature prevalence when the error structure between model and truth data are known. While the scenarios 

are simple, they provide insight into how well suited, and under what conditions, two of the most widely used accuracy metrics 355 

can be used when data are imbalanced (5.1). The systematic error scenarios further revealed a strong sensitivity of accuracy 

metrics to the shape and size of feature objects (5.2). Finally, the results from synthetic scenarios are used to provide a tentative 

set of best practices for using pixel-level metrics in geomorphic studies (5.3). 
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5.1 Accuracy assessment for imbalanced mapping tasks 

One main goal of this study was to understand the sensitivity of F1-score and MCC to feature prevalence. It is useful for 360 

accuracy scores to be invariant with respect to feature fraction under a given error structure so that classified scenes can be 

calibrated and validated using a wide range of geomorphic settings. For example, Matthews Correlation Coefficient (MCC), 

and its normalized equivalent (nMCC), readily diagnosed the case of independence between truth and model data across the 

full range of feature abundances (red lines in Fig. 3). In contrast, a spurious correlation between feature abundance and F1-

score was only exacerbated by adding scene-level constraints to this case (black lines in Fig. 3). Because F1-score only 365 

considers True Positives, False Positive, and False Negatives, it is an asymmetric accuracy metric (Table 1). Asymmetry refers 

to the fact that the score is dependent on the choice of target class. All pixel-level assessments that do not consider all four 

components of the confusion matrix (e.g., precision, recall, F-measures, receiver operating characteristic curves) are 

asymmetric. Asymmetric metrics may not be problematic if one outcome is much more important than its alternative due to 

its consequences (e.g., a medical diagnosis). However, for many of the geomorphic mapping applications posed here, the 370 

relative importance of one class over the other is unclear (e.g., bedrock versus soil; mound versus inter-mound; incised versus 

un-incised). Successfully identifying both the occurrence and non-occurrence of features is important. In multi-class accuracy 

assessment, it is common to calculate a ‘macro’ F1-score, which is the arithmetic mean of F1-scores for all classes. This macro 

averaging can also be applied to binary tasks by calculating the F1-score for the alternative cases when target classes are 

swapped (Sokolova and Lapalme, 2009). While a macro F1-score for binary classification is symmetrical and easy to calculate, 375 

adoption of this approach is still relatively rare (Chicco and Jurman, 2020). 
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Figure 7: (A) Relationship between nMCC and macro F1-score for all the error scenarios posed in this study. (B) Ratio of accuracy scores 
(nMCC / macro F1-score) as a function of feature area ratios (model area / true area). In A, the macro score is the arithmetic mean of the 
two F1-scores calculated when classes are swapped. In B, the ratio of scores is plotted as a function of the ratio of feature areas to show that 380 
when the model and truth data exhibit different scene-level properties (e.g., feature areas or fraction), the macro F1-score produces lower 
values. The systematic error scenario enforced the property that model and truth data match scene-level fractions which is why they all plot 
at the coordinates [1,1]. The other error scenarios often produced mismatches between scene-level feature fractions. In these cases, the 
accuracy metrics are only equivalent when the scene-level fractions match. 

Figure 7 shows how macro F1-scores compare to nMCC for each of the error scenarios considered in this paper. This modified 385 

version of F1-score addresses the problem of asymmetry and produces similar values to nMCC when the error is small. In the 

systematic error scenario, the scene-level fraction of bedrock in the model data is identical to the truth data. This leads to a 

direct correspondence between nMCC and macro F1-score (red symbols in Fig. 7). However, for the scenarios that include a 

fixed rate of random error, the macro F1-scores generally plot below the 1:1 relationship (Fig. 7A). In these scenarios, accuracy 

metrics are only equivalent in cases where the scene-level fractions are the same between the model and truth data (Fig. 7B). 390 

Notably, the systematic plus random error scenario produces accuracy metric ratios (Fig. 7B) closer to unity than random error 

alone for feature area ratios greater than one (low feature fractions). When feature area ratios are less than one (high feature 

fractions), accuracy ratios instead follow the trend defined by random error alone. Two important insights can be gleaned from 

Figure 7: (1) Even though macro F1-score addresses the problem of asymmetry, it penalizes random error more the nMCC, 

and (2) The mismatch between macro F1-score and nMCC is encoding disparities between scene-level and pixel-level 395 

measures of accuracy, albeit in a highly nonlinear way. Given that macro F1-score produces stronger sensitivity than nMCC 

to the random error scenarios (i.e., accuracy ratios < 1), nMCC should still be favoured as a more stable metric when calibrating 

and validating feature classifiers across gradients in feature prevalence. However, and despite its relative success, caution is 

still warranted in comparing nMCC across gradients in feature fraction.  Uniform, random error preferentially modifies the 

dominant class, leading to strong reductions in accuracy near endmember cases (Fig. 4; Appendix A). Even for relatively 400 

accurate classifiers, random error limits the domain over which nMCC is comparable (e.g., accuracy scores for 5% random 

error stabilize between ~20 to 80% feature abundances; Fig. 4).  

 

The synthetic scenarios posed in this study were motivated by tasks where differences in scene-level feature abundances are 

driven by differences in geomorphic setting (e.g., due to climate, ecology, material property, erosion rate). As such, the 405 

synthetic surfaces generated for this analysis assumed that feature locations were homogeneously distributed within each scene 

(like the mima mounds in Fig. 1A). The key difference across scenes was feature prevalence, which was used to identify how 

sensitive accuracy metrics are to imbalanced data.  However, the sensitivity of accuracy metrics to feature fraction also 

provides insight into how metrics might behave when features are heterogeneously distributed within a scene (like the bedrock 

and gully erosion maps in Fig. 1B-C). While it is beyond the scope of this analysis to systematically explore this, a simple 410 

thought experiment using the scenes generated from this study show why within-scene heterogeneity might be important to 

pixel-level accuracy assessment. There are many combinations of scenes with different feature fractions that can merge into a 

larger one with the same feature fraction. Table 2 shows a suite of examples that each produce 50 percent feature coverage.  
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Table 2: Merged scenes that produce fifty percent feature area* [scene 1 percent / scene 2 percent].   415 

 5 / 95 10 / 90 15 / 85 20 / 80 25 / 75 30 / 70 35 / 65 40 / 60 45 / 55 50 / 50 

Random  

(5%) 

0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

0.83 / 0.83 0.89 / 0.89 0.91 / 0.91 0.93 / 0.93 0.94 / 0.94 0.94 / 0.94 0.95 / 0.95 0.95 / 0.95 0.95 / 0.95 0.95 / 0.95 

Systematic  

(10 m) 

0.98 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93 0.93 

0.95 / 0.86 0.95 / 0.89 0.95 / 0.90 0.94 / 0.91 0.94 / 0.91 0.94 / 0.92 0.94 / 0.92 0.94 / 0.93 0.94 / 0.93 0.93 / 0.93 

Sys + Rand 

(10 m, 5%) 

0.93 0.92 0.91 0.91 0.90 0.90 0.89 0.89 0.89 0.89 

0.80 / 0.75 0.85 / 0.80 0.87 / 0.83 0.88 / 0.85 0.89 / 0.86 0.89 / 0.87 0.89 / 0.88 0.89 / 0.88 0.89 / 0.89 0.89 / 0.89 

* The top row is the nMCC of merged scenes. The bottom row is the nMCC of each individual scene that was merged. 

 

The merging of scenes in Table 2 helps illustrate how heterogeneous feature distributions may impact nMCC. For the random 

error scenario, the strong sensitivity to endmember cases is erased, and nMCC is uniform across all ten scene mixtures. For 

the systematic error scenario, accuracy improves for the higher feature fraction portion of the scene while accuracy marginally 420 

decreases for the lower feature fraction portions of the scene. For the systematic plus random error scenario, accuracy improves 

for both the higher and lower feature fraction portions of the scene. In all cases, nMCC is higher for the merged scenes than 

for their constituent components, until they converge on each other when fully homogenous. While systematic error clearly 

induces non-uniform mixing (i.e., merged nMCC varies with different constituent feature fractions), all three cases suggest 

that heterogeneity generally favours more stable estimates of accuracy by sampling portions of the scene with both more and 425 

less abundant features. More thorough examination of this claim is needed. Taken at face value though, these results argue that 

it is better to train a model on all the data at once than on individual scenes with different feature fractions, if the source of 

classification error is expected to be similar. However, scene-level comparisons may provide more insight into variations in 

the error structure of the classification model itself, which is often poorly constrained. 

 430 

Taken as whole, nMCC should be strongly preferred over F1-score when building and testing classifiers across gradients in 

feature abundance, with heterogeneous scenes and pooling of data perhaps favouring more stable assessment. Despite this 

result, the two scenarios that include systematic error also suggest that asymmetry in accuracy scores is arising in response to 

the geometries and genesis of features. In these cases, asymmetry is not due to limitations of the accuracy metric itself, but 

instead a result of how features are simulated in synthetic examples. Whether the synthetic generative process (i.e., randomly 435 

distributed square features of constant size) is representative of real transitions from low to high feature fractions is an open 

question that likely depends on the feature of interest. Nevertheless, these synthetic examples provide an opportunity to probe 

how the evolution of feature geometries influence accuracy scores, a topic that is explored in much more depth below. 
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5.2 Size and shape of features 

The focus of this paper has largely been on what to expect from pixel-level accuracy scores when a binary classifier is applied 440 

across gradients in feature prevalence. Embedded in this analysis are assumptions for how features emerge at higher 

abundances. Intriguingly, a negative correlation between nMCC and feature prevalence emerged in scenarios with systematic 

error, regardless of the incipient feature size (Fig. 5B; 6B). Given that nMCC addresses the problem of asymmetry with respect 

to target class (Fig. 3C-D; Fig. 4B), what causes this asymmetrical sensitivity of nMCC to systematic error? One likely 

candidate is that the simulated changes in feature prevalence entailed a corresponding change in the size and shape of feature 445 

objects. A feature object is defined here as a spatially isolated occurrence of the target class (i.e., the ones in a binary 

classification) enveloped by pixels of non-occurrence (i.e., the zeros in a binary classification). As features become more 

abundant, small objects coalesce into larger ones. This section probes the role of object size and shape on error by examining 

how the incipient feature shape interacts with translational error. 

5.2.1 Shape and scale of incipient features 450 

All the synthetic scenarios presented above used incipient features with square shapes and whose scale was varied using a 

single parameter, the incipient feature length. The square geometry was useful because squares are oriented in the same way 

as the regular grids being used, thus imposing a rotational symmetry to translational offsets. However, other rotationally 

symmetrical shapes could have been used. Figure 8 shows four alternative shapes whose rotational symmetry makes them 

insensitive to the direction of translational offset between truth and model data. Because these shapes are constrained by their 455 

raster representation, it is hard to create different shapes with the same area when objects are small. For the shapes ‘square’, 

‘rounded’, ‘plus’, and ‘star’, all four shapes have approximately equivalent areas (< 3% difference) for shape diameters of 6, 

7, 10, and 11 pixels, respectively (Fig. 8A). The number of False Positives and False Negatives to a 1-pixel offset is a function 

of both the object size and shape (Fig. 8B). As feature objects get larger, the relative error induced by a 1-pixel offset typically 

goes down. For a given object area, the relative frequency of error induced by a 1-pixel offset appears to be sensitive to the 460 

complexity of object boundaries.  

 

To help interpret the relative trade-off between object size and shape, Figure 8C plots the F1-scores of the example feature 

objects in Figure 8A as a function of object area. Due to the symmetry of translational offset, recall, precision, and F1-score 

are equivalent for this kind of systematic error. Each of these metrics provides a measure of accuracy induced by feature shape 465 

alone, independent of the scene-level abundance of features. The error induced by a one-pixel shift between truth and model 

classification can be directly derived for the square case because of its simple geometry. The number of True Positives is equal 

to l2- l and the number of False Positives and False Negatives are each equal to l, where l is the length of the square in integer 

units of pixels. Substituting these terms into equation 5 and simplifying yields an equation for F1-score specific to square 

features: 470 
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          𝐹1-𝑠𝑐𝑜𝑟𝑒 1               (8) 

The last term in equation 8 explains why accuracy improves as a function of feature area.  The area of a square increases faster 

than its length, thus leading to lower sensitivity to the 1-pixel offset. This ratio is equivalent to the number of pixel edges 

divided by the total number of pixels for a rasterized shape, which is referred to here as the edge-to-area ratio. The edge-to-

area ratio can be calculated for any raster shape and sets how sensitive F1-score is to a translational offset. Each kind of shape 475 

differs in how the edge-to-area ratio changes as they get larger, thus defining different scaling relationships between accuracy 

and feature size (Fig. 8C). In general, concave shapes (i.e., ‘square’ and ‘rounded’) are more conducive to higher F1-scores. 

Concavo-convex shapes have more complex boundaries, with some shapes even showing a reduction in accuracy with 

increasing size (e.g., ‘star’ shape). Even though the synthetic scenarios used in this study assumed square seeds for their 

incipient features, the coalescing of these incipient shapes into larger objects means that complex boundaries, and thus 480 

increasing edge-to-area ratios emerge as feature prevalence increases. 

 

 

Figure 8: (A) The shape and scale of incipient feature objects directly affects (B) the subsequent frequencies of False Negatives (yellow) 
and False Positives (blue) to a 1-pixel, translational offset in model classification, (C) which also results in different scaling relationships 485 
between object areas and F1-score. In A, four different objects are shown that have either convex (i.e., square, rounded) or concavo-convex 
(i.e., plus, star) boundaries with respect to the matrix. The object area is reported below each shape in pixels. Note that the smallest ‘rounded’ 
example is not actually round, but a rotated square. In B, error classes are shown for a 1-pixel shift to the right. Because shapes are all 
rotationally symmetric with respect to the four cardinal directions, error rates do not depend on the direction of the shift. Only true negatives 
that share an edge with the other classes are shown. In C, the F1-score for each of the sixteen shapes are plotted as a function of the object 490 
area. The function describing how object area and F1-score varies for square features (eq. 8) is also plotted as a dashed line for reference. 

5.2.2 Shape and scale of emergent features 

In the synthetic scenarios presented above, the minimum feature size is set by the incipient feature length (i.e., 1 to 10 pixels). 

Because incipient features are placed on the surface randomly, more complex objects are produced where incipient features 
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overlap by chance. To illustrate the implications of this, Figure 9A shows examples of individual objects that can be generated 495 

using square seeds. Examples are organized by incipient feature size (rows) and object areas (columns). Adjacent to each 

object is the error induced by a 1-pixel shift to the right, with its corresponding F1-score reported above it. Note that individual 

objects are not necessarily rotationally symmetric. If an object has a preferred orientation, then error will be enhanced for 

objects where the long axis is perpendicular to the translational offset and reduced for objects where the long axis is parallel 

to the translational offset. In practice, the sensitivity of error to object orientation is not realized in the synthetic scenarios 500 

above because the random placement of features results in objects without a preferred orientation.  

 

Figure 9: (A) For a given object area, the frequency of False Positives and False Negatives differs among incipient objects and the emergent 
objects that coalesce from smaller ones, such that (B) F1-scores increase with average object area more slowly than square objects do in 
response to a 1-pixel offset. In A, six permissible object shapes are shown for three different incipient feature sizes (rows) and three different 505 
object areas (columns). The incipient feature shape both controls the minimum object size and the complexity of object boundaries. Smaller 
incipient features can produce more complex shapes and higher error rates for a given feature size (see associated F1-scores). In B, the F1-
score is plotted as a function of average object area for the systematic error scenario (Fig. 5). Markers show values at three different feature 
fractions. The black line is the function describing how F1-score responds to a 1-pixel offset to an individual square object (eq. 8).  

While the examples shown in Figure 9A reiterate the point that error is reduced for larger objects with simpler shapes in 510 

response to a 1-pixel offset, it still does not show how object properties are varying in the synthetic scenarios presented above. 

Figure 9B plots the F1-score as a function of the mean object area for the systematic error scenario. To calculate object areas, 

the binary map of features (i.e., pixel values equal to one) is segmented into objects. Object segmentation is based on adjacency 

of the target feature class to at least one of its eight neighbours (see examples in Fig. 9A). Objects can contain holes, but these 

holes do not contribute to their object area. After segmenting the scene into objects, the average object area is calculated and 515 

linked to the F1-scores reported earlier (Fig. 5). Figure 9B shows that F1-score generally improves with increasing object 

area, albeit in a way that is strongly mediated by the incipient feature size. All lines intersect with the function describing F1-



22 
 

score for square features (eq. 8; solid black line) for the limiting case where there is only one object in the scene. For any given 

incipient feature size though, F1-score quickly drops off this function due to the increasing complexity of object boundaries. 

There is a monotonic increase in F1-score with average object area and feature prevalence (markers in Fig. 9B) regardless of 520 

the incipient feature size. The scenarios above are not producing shapes like the ‘stars’ shown in Figure 8. Larger features do 

lead to higher F1-scores (Fig. 9B). It was already shown that placing larger features in the landscape improves accuracy in 

response translational offset (Figs. 5-6). As such, the negative trends in nMCC shown in Figures 5B and 6B suggest that the 

net result of increasing the size of objects, for a given incipient seed, is outweighed by the complexity of feature boundaries 

generated by coalescing them. This analysis suggests that it is paramount to understand the scaling properties of features as 525 

they become more prevalent to understand how accuracy scores may be affected by small co-registration errors.  Finally, the 

sensitivity of accuracy metrics to the size and shape of individual features begs important questions as to how stable accuracy 

metrics are to increasing spatial resolution. As airborne remote sensing is supplemented and superseded by drone-based 

mapping, there is good reason to believe that the sizes and shapes of better resolved features may change, and thus influence 

how binary classifiers perform. 530 

5.3 Recommendations and future directions 

Many geomorphic tasks share the need for binary classifiers that perform well across gradients in feature abundance. Whether 

constraining the density of landslide scars, channel erosion, bedrock outcrops, or pit-mound features, geomorphic studies often 

rely on fine-scale mapping to determine how feature size, extent, and prevalence respond to differences in environmental 

forcing.  There is a general need for classifiers that successfully handle imbalanced data. This paper set out to understand how 535 

two widely used pixel-level accuracy metrics perform across gradients in feature prevalence. By using synthetic examples 

where the error structure of the data is known, heuristics can be developed for best practices when the research design 

specifically calibrates and validates binary classifiers across gradients in feature abundance. Four key recommendations 

emerged: 

 540 

(1) Matthews Correlation Coefficient, and its normalized equivalent (nMCC), are much better suited than F1-score to 

comparing accuracy scores when feature abundances vary across classified scenes. Even after addressing the problem 

of asymmetry, macro F1-score tends to over-penalize random error.  

 

(2) For random error, caution is warranted in interpreting nMCC near the endmember cases of zero and full feature 545 

coverage because random error preferentially modifies the dominant class. Though scores are relatively invariant 

only between ~20-80% feature coverage, this domain might be expanded for scenes with more heterogeneous feature 

distributions.  
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(3) For systematic error, nMCC is strongly sensitive to the size and shape of individual objects. Larger objects with 550 

simpler boundaries are less sensitive to this kind of error because their edge-to-area ratios are small. As such, it is 

important to characterize both co-registration uncertainty and the attributes of the individual objects being mapped. 

 

(4) Before training and testing classifiers on imbalanced data, it is essential to establish baseline expectations for how 

pixel-level accuracy scores respond to potential sources of error over the range of feature abundances observed. This 555 

can be accomplished through numerical simulation. 

 

Simulating a suite of simple scenarios with a known error structure and uniform incipient seeds provided some insight into 

how pixel-level accuracy metrics behave across gradients in feature prevalence. Real-world applications are decidedly more 

complex. In the scenarios presented here, increased feature density was simulated by randomly distributing the nuclei of 560 

incipient features within the model domain. Such a treatment may be relevant to some applications but is clearly limited. Figure 

1 anticipated three clear limitations of simulating features in this way. Many features show evidence for: a characteristic size 

and spacing (e.g., mima mounds in Fig. 1A), size distributions spread across a wide range of scales (e.g., bedrock exposure in 

Fig. 1B), and anisotropy (e.g., gully erosion in Fig. 1C). As such, more work is needed to understand how pixel-level accuracy 

metrics perform on imbalanced data that exhibit these properties. To this end, three promising future research directions are: 565 

 

(1) As landscape evolution modelling attempts to keep pace with increasingly higher resolution observations (Tucker 

& Hancock, 2010), it also has wide potential for error analysis. Instead of randomly generating features, numerical 

models can produce more realistic feature distributions that are derived from the relevant geomorphic transport laws 

at play (Dietrich et al., 2003). A process-based approach towards error assessment could be used to identify under 570 

what conditions binary classifiers can be reliably compared across gradients in feature fraction. 

 

(2) Pixel-level accuracy scores are built on the confusion matrix, which does not retain the spatial autocorrelation 

structure or the semantic content of feature objects. Given the importance of the size and shape of features to some 

error scenarios, the path forward may lie in multi-scale, object-based image analysis (e.g., Drăguţ and Eisank, 2011). 575 

Object-based image analysis is on the cutting edge of feature extraction from remote sensing data (Hossain and Chen, 

2019). Yet, how to reliably evaluate the accuracy of image segmentation algorithms will require creative re-thinking 

and re-tooling of standard pixel-level accuracy scores (Cai et al., 2018). 

 

(3) Both opportunities above emphasize the over-arching challenge of the rapidly changing landscape of increasing 580 

spatial resolution data. Higher resolution data both impacts the practical challenge of co-registration error as well as 

highlights the more theoretical challenge of semantic vagueness, or the notion that feature boundaries may not be 
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sharply defined (Sofia, 2020). As data resolution increases, traditional methods in image segmentation and binary 

classification may require new approaches (Zheng and Chen, 2023). 

 585 

On the one hand, this paper is a call to action on adopting standard methods from the data sciences into surface processes 

research. On the other hand, geomorphic questions provide a diversity of real-world use-cases where these ‘standard’ methods 

can be put to the test and new methods can be developed. As machine learning approaches towards geomorphic mapping 

proliferate, better understanding is needed on how these methods will perform on the scientific tasks that are currently driving 

surface processes research forward. 590 

6 Conclusions 

Pixel-level accuracy assessment provides a powerful tool for understanding how well classifiers built from high resolution 

topography are performing. To be most useful, the limitations of commonly used metrics like precision, recall, and F1-score 

need to be considered. Classification tasks that span large gradients in feature abundance are particularly vulnerable to biases 

in these metrics because data is imbalanced and the choice of target class matters. More robust metrics like MCC and nMCC 595 

largely address these methodological challenges. However, caution is still warranted in comparing pixel-level scores across 

gradients in feature density and extent. If error is random and uniform across scenes, then nMCC will dramatically worsen 

near endmember cases because the more prevalent class is preferentially modified, though this effect may be mediated by 

pooling data from many different scenes. If the model is systematically offset from the truth grid, then an asymmetrical 

sensitivity of nMCC can arise depending on assumptions for the genesis and growth of individual features. As the size of 600 

individual features increases, there is lower sensitivity to systematic offset. However, if the shapes of features are also getting 

more complex, then the increased edge to area ratio of individual features can counteract and exceed improvements in accuracy 

associated with larger feature sizes. Though pixel-level metrics used in the machine learning and remote sensing community 

should be more widely adopted in geomorphic research, further work is needed to understand how different sources of error 

might decouple pixel-level from scene-level measures of accuracy. 605 

Appendix A: Random error and accuracy metrics 

Section 4.1 reported how pixel-level accuracy scores vary as a function of bedrock fraction for a fixed rate of random error. 

While the synthetic surfaces were generated using Python, the results shown in Figure 4 can be directly derived from the mean 

random error rate (�̅� ) and true feature fraction (𝑓 ) analytically. Under this scenario, the probability of flipping either class is 

independent of the prevalence and location of features such we can define the average frequencies for all four components of 610 

the confusion matrix. The relative frequencies of each outcome are the product of the average rate of error (or non-error) and 

the average abundance of the true class. For example, the True Positives reflect both the probability of the feature occurring 
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(𝑓 ) and the probability of not being flipped in the model due to random error (i.e., 1 �̅� ). The frequencies of all four 

classification outcomes are:  

                𝑓 1 �̅� 𝑓                      (A1) 615 

  𝑓 �̅� 𝑓                  (A2) 

               𝑓 �̅� 1 𝑓             (A3) 

               𝑓 1 �̅� 1 𝑓            (A4) 

 

Because we also know that the feature fraction in the model (𝑓 ) must equal the sum of the fractions of True Positives and 620 

False Negatives, these equations yield the relationship:  

                 𝑓 1 �̅� 𝑓 �̅� 1 𝑓            (A5) 

Equation A5 can be rearranged and simplified to describe how the model feature fraction is related to the true feature fraction: 

                       𝑓 1 2�̅� 𝑓 �̅�            (A6) 

The relationships shown in Figure 4A (main text) are equivalent to equation A6 for different error rates. That the Python-625 

generated scenes match the analytical solution indicates that the domain used for these synthetic scenes is large enough to 

adequately sample population statistics. Note that equation A6 provides a prediction for the relationship between true and 

model bedrock fractions only if error is uniform and random across scenes. In such cases, the average error rate can be directly 

inferred from both the slope and y-intercept of the regression.  

 630 

Because pixel-level accuracy scores can be derived directly from the confusion matrix, the simplified assumptions of random, 

uniform error also facilitate prediction for how F1-score and nMCC will vary with the true feature fraction. Substituting the 

values from eqs. A1-A4 into equation 5 (main text) yields: 

                 𝐹1-𝑠𝑐𝑜𝑟𝑒
̅

̅ ̅
           (A7) 

which is equivalent to the numerically generated black curves in Figure 4B. Similarly, substituting eqs. A1-A4 into equation 635 

6 (main text) yields:  

         𝑀𝐶𝐶
̅

̅ ̅ ̅ ̅ ̅ ̅
          (A8) 

which is equivalent to the numerically generated red curves in Figure 4B. Though the expression for MCC under random, 

uniform error is complex, it reveals why there is strong and symmetrical sensitivity near the endmember cases of zero and all 

bedrock. The numerator in eq. A8 decreases faster than the denominator near endmember cases regardless of the average error 640 

rate. Since 𝑓  and 1 𝑓  are complementary and �̅�  is assumed to be constant, this reduction in MCC is also symmetrical 

around an optimal bedrock fraction of 0.5. 
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Data Availability 

Figure 1 elevation data was downloaded from OpenTopography (2010 Channel Islands Lidar Collection, 2012; Anderson et 

al., 2012; Reed, 2006). Figure 2 and Table 1 are based on the bedrock mapping at site P01 from Rossi et al. (2020). Maps for 645 

1-m truth and model data at this site can be accessed at https://github.com/mwrossi/cfr_extremes. These classified maps are 

based on 2018 Pictometry® orthomosaicked air photos purchased by Boulder County and airborne lidar data acquired by the 

National Center for Airborne Laser Mapping for the Boulder Creek Critical Zone Observatory (Anderson et al., 2012). 

Synthetic surface results presented in Figures 3-7, Figure 8C, and Figure 9B were generated in Python. Example feature objects 

in Figure 8A-B and Figure 9A were generated in Adobe Illustrator. Main scripts for accuracy assessment are maintained at 650 

https://github.com/mwrossi/feature-mapping-accuracy. Data and scripts used to generate figures are archived at 

https://doi.org/10.6084/m9.figshare.23796024.  
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