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Figure S1: The optimal advection model n value in the 30m resolution models based on the
Copernicus 1-arc second DEM (a) is shifted slightly higher compared with the lower resolution
model, (optimal value n=1.36 compared with n=1.28 in the optimal 90m resolution model).
Meanwhile, the optimal A, (b) is lower (A:=0.02 km? here vs 0.05 km? in the low resolution model).
The different resolution models are still largely consistent in spite of these differences, and give a
similar maximum NSE of 0.47 (c) compared with 0.48 for the 90m model.
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Figure S2: The optimised diffusion exponent in the 30m models of p=2.0 is consistent with that of
the lower resolution model of p=2.0. However, the optimal fit is worse at NSE = 0.41 (compared
with NSE=0.51 for SRTM 90). This difference may arise in part because the model based on the
SRTM data appears better able to capture the variability of erosion rates (compare panel b to Figure
3b of the main text). This may suggest that the higher scatter of the SRTM surface elevation data,
(whether real or due to noise) serves as somewhat of a proxy for surface roughness in steeper /
rapidly eroding terranes.
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Figure S3: Example of the advection-only model run using a form of NSE that accounts for
measurement error after Harmel and Smith (2007). The Model yields nearly the same optimized n
(1.28) and A. value (0.05 km?) as the model run using NSE on the means from the main text
(n=1.28, A. = 0.05). The main difference is that the NSE metric is skewed upwards (c; NSE=0.62)
because many E’.dices €Stimates lie within the range of measurement error of Eqpparen.
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Figure S4: Example of the diffusion-only model run using a form of NSE that accounts for
measurement error after Harmel and Smith (2007). The Model yields the same optimized p (2.0)
as the model run using NSE on the means from the main text. The main difference is that the NSE

metric is skewed upwards (b; NSE=0.64) because many E s €Stimates lie within the range of
measurement error of Eqypqren.
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Figure S5: The optimal advection-only values, using MAE as a likelihood function a) n=1.28 and b)
A.=0.05 km? are identical to the results from models optimised using NSE of n=1.28 and A.=0.05,

respectively. The optimal model (c) has an average absolute error of 0.44 (log(mm yr)).
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Figure S6: The optimal advection-only values, using MAE as a likelihood function a) p=2.2 is

similar to the results from models optimised with NSE, p=2.0. The optimal model (c) has an
average absolute error of 0.43 (log(mm yr)).
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Figure S7: Exploration of binning on the relationships between (K or D) or (K* or D*) and MAP. a)
K determined using only 5 MAP bins. b) K determined using 40 MAP bins, and c) non-log
transformed K (K*) determined using 20 MAP bins. Refer to Figure 5 of the main text for a full
description of figure elements.
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Figure S8: Corresponding Figure for Figure 5 of the main text, showing the 90% confidence
intervals surrounding optimized K values within different climate bins and residuals for each bin.

CI was determined by calculating K within each bin using (nonparametric) bootstrapped values of

E apparene for 1000 iterations. We also show residuals and corresponding high scatter for select bins,
but with a generally log-normal appearance for most bins. a): Advection only with n = 1.28, A=
0.05; b: Diffusion-only with p = 2.0; c: Advection-Diffusion with n=2.26, A.=0.03, D/K = 1.79 10°.
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Figure S9: Corresponding Figure for Figure 6 of the main text, showing the 90% confidence
intervals surrounding optimized K values within different climate bins and (inset) residuals select
bins. CI was determined by calculating K within each using bootstrapped values of Egpparene for 1000
iterations. We also show residuals and corresponding high scatter for select bins, but with a
generally log-normal appearance for most bins. The exception to this may be bins with lower
numbers of samples (e.g., Plutonic Intrusive), which also have high uncertainty. a: Advection only
with n = 1.28, A.= 0.05; b: Diffusion-only with p = 2.0; c: Advection-Diffusion with n=2.26,
Ac=0.03, D/K = 1.79 10°.
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Figure S10: Model results for the advection-only model with free variable n using different m/n
ratios. The best performance is the model run with m/n = 0.3 (n=1.4, NSE=0.48), slightly higher
than the model run with m/n=0.45 (n=1.2, NSE=0.47) and higher than the model run with m/n=0.6
(n=1.2, NSE=0.45). However, our inability to optimise the global average of m/n~0.45 suggests
that perhaps our method cannot constrain this parameter while simultaneously solving for n, and
instead it must be inferred directly from topographic morphometry (e.g. Gailleton et al., 2021).



