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Abstract

By simulating erosion and deposition, landscape evolution models offer powerful insights to Earth surface 

processes and dynamics. These models are typically constructed from parameters describing drainage area (m), 

slope (n), substrate erodibility (K), hillslope diffusion (D), and a critical drainage area (Ac) that signifies the 

downslope transition from hillslope diffusion to advective fluvial processes. In spite of the widespread success of 

such models, the parameter values have high degrees of uncertainty mainly because the advection and diffusion 

equations amalgamate physical processes and material properties that span widely differing spatial and temporal 

scales. Here, we use a global catalogue of catchment-averaged cosmogenic 10Be-derived erosion (denudation) 

rates with the aim to optimise a set of landscape evolution models via a Monte Carlo based parameter search. We 

consider three model scenarios: advection-only, diffusion-only, and an advection-diffusion hybrid. In each case, 

we search for a parameter set that best approximates erosion rates at the global scale, and we directly compare 

erosion rates from the modelled scenarios with those derived from 10Be data. Optimised ranges can be defined for

many LEM parameters at the global scale. In the absence of diffusion, n ~ 1.3, and with increasing diffusivity the 

optimal n increases linearly to a global maximum of n ~ 2. Meanwhile we find that the diffusion-only model 

somewhat outperforms the advection-only model and is optimised when concavity is raised to a power of 2. With

these examples, we suggest that our approach provides baseline parameter estimates for large-scale studies 

spanning long timescales and diverse landscape properties. Moreover, our direct comparison of model-predicted 

versus observed erosion rates is preferable to methods that rely upon catchment-scale averaging or amalgamation 

of topographic metrics. We also seek to optimise K and D parameters in landscape evolution models with respect 

to precipitation and substrate lithology. These optimised models allow us to effectively control for topography 

and target specifically the relationship between erosion rate and precipitation. All models suggest a positive 

correlation between K or D and precipitation > 1500 mm yr–1, plus a local maximum at ~ 300 mm yr–1, which is 

compatible with the long-standing hypothesis that semi-arid environments are among the most erodible.
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1 Introduction

To appreciate short-term changes in Earth surface processes, such as those induced by humans (Brown, 

1981; Hooke, 2000), it is first necessary to understand long-term rates of erosion and deposition. Recognizing 

this, some recent studies (e.g., Simoes et al., 2010) derive erosion-transport rules from topography with an aim to 

predict macroscale patterns of erosion and sediment flux. At more restricted scales, erosion rates based on 

cosmogenic nuclides (e.g., 10Be) show a modest exponential correlation with catchment-averaged slope, as does 

normalised steepness in stream profiles (Portenga and Bierman, 2011; Harel et al., 2016). Nevertheless, it is 

widely observed that steepness and stream power parameters are subject to notable variation wherever climate 

and/or lithology differ (Harel et al., 2016; Gailleton et al., 2021; Marder and Gallen, 2022), and a robust analysis 

must accommodate such interactions.

Earth’s surface undergoes continuous modification through uplift and erosion over timescales too long to 

observe directly, hence landscape evolution models (LEMs) are vital tools for building knowledge. LEMs are 

often employed over expansive scales of space and time in order to study topographic response to changes in 

tectonics (e.g., Kooi and Beaumont, 1996; Garcia-Castellanos et al., 2003), climate (Temme et al., 2009, Adams 

et al., 2020), and sea level (Pico et al., 2019; Ruetenik et al., 2019). And yet, large spatial and temporal scales 

require generalisation of model parameters that accounts reliably for processes of hillslope diffusion and 

advective fluvial erosion. Using LEMs to estimate erosion rates delivers the key advantage of bridging scales and

defining an empirically derived mechanism at the local (grid cell) scale within each catchment. This demands that

erosion rates are integrated over scales matching the topographic changes they describe. At the local to regional 

scale, recent studies have focused on constraining LEM parameters via inversions that optimise rates of erosion, 

deposition, and topographic observations (e.g., Miller et al., 2013; Croissant et al., 2014; Pedersen et al., 2018; 

Barnhart et al., 2020). However, implementing many of these approaches at a global scale is challenging in terms 

of both computational cost and because it often requires a compilation of a large set of observables (such as 

knickpoints, depositional patterns, and erosion rates). In the absence of computational power that can accurately 

model stratigraphy at the global scale, and without constraints on global palaeo-topography, we settle for 

optimising LEM parameters with respect to catchment-averaged erosion rates.

Here, we determine LEM parameter values that minimise the variance among 10Be-derived apparent 

erosion rates in the OCTOPUS v.2 global catalogue (Codilean et al., 2022), and we analyse the capacity of LEMs

to predict erosion rate given those optimised parameters. Our LEM employs the common stream power plus 
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diffusion formulation, which is subject to important limitations, such as the neglect of fluvial deposition and mass

wasting processes (e.g., Whipple and Tucker, 1999). The trade-offs involved in this simplified approach, we 

believe, are justified by the record of success with simulating landscape processes at large scales and across a 

wide range of lithologies, drainage areas, and steepness (e.g., Gallen et al., 2013; Miller et al. 2013; Fox et al., 

2014).

1.1 Catchment-averaged erosion rates from cosmogenic 10Be

Rates of catchment-scale erosion can be estimated from abundances of cosmogenic radionuclides such as
10Be, which is measured in quartz-bearing river sand (Granger et al., 1996; von Blanckenburg, 2005). Such 

nuclides accumulate within minerals exposed to secondary cosmic rays in the upper few metres of the bedrock 

subsurface and are lost via erosion and radioactive decay (Lal, 1991). The attenuation of cosmic rays with depth 

causes the nuclide production rate to decrease exponentially (at 2 m depth the 10Be production rate is < 5 % that at

the surface); hence, nuclide abundances measured in sediment are an inverse function of erosion (or, strictly 

denudation) rate.

The spatial variations observed in erosion rates across a range of climates and lithologies (Portenga and 

Bierman, 2011; Starke et al., 2020) suggest that the erosion processes driving the evolution of landscapes also 

vary. This has important implications for the interpretation of 10Be-derived erosion rates and how we 

parameterize erosion in LEMs. Estimating catchment-averaged erosion rate from nuclide abundances in river 

sand depends on at least two fundamental premises (von Blanckenburg, 2005; Mudd, 2016): (1) sediments were 

produced via long-term, steady bedrock erosion distributed uniformly across the catchment; and (2) sediments 

have experienced continuous exposure to cosmic rays at/near the surface. In detail, long-term steady erosion 

refers to at least one attenuation length (~ 0.6 m) of erosion integrated over a 103–105 yr timescale. Hence, abrupt 

bedrock erosion events, for instance, caused by bedrock landsliding or glacial quarrying may bias erosion rate 

estimates. Similarly, long intervals of ice cover or intermittent deep sediment burial contradict the requirement 

for continuous cosmic-ray exposure. Other sources of potential discord relate to lithology, catchment size, and 

hypsometry, which are known to affect sediment transport dynamics and grain-size yields (Carretier et al., 2015; 

Riebe et al., 2015; Lukens et al., 2016; Zavala et al., 2020). The sources of deviation noted above are collectively 

responsible for the considerable variability observed in large compilations of 10Be-derived erosion rates (e.g., 

Portenga and Bierman, 2011; Harel et al., 2016). Catchment-wide erosion rates are commonly determined and 

published for settings that do not comply strictly with the method’s premises; these estimates are best referred to 
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as apparent erosion rates (Mudd, 2016). Nevertheless, 10Be-derived erosion rates currently offer the most widely 

distributed insight into long-term, catchment-scale erosion rates on a global scale.

2 Methods

Stream power is represented by a non-linear advection equation derived from observations of river 

morphology and generalised relationships for bed shear stress (e.g., Howard et al., 1994; Whipple and Tucker, 

1999; Lague, 2014). It affords a description of channel incision as a function of upstream drainage area (A) and 

local slope (S) for the portion of the catchment (above the critical drainage area, Ac) where fluvial advection 

dominates over hillslope diffusion and debris flow processes (e.g., Lague and Davy, 2003; Fontana et al., 2003; 

Whipple and Tucker, 1999). The stream power equation takes the form:

E predicted ,advective=K A
m Sn , (1)

where K is the advection coefficient or erosional efficiency, and m and n determine the relative dependence of 

incision on drainage area and slope. The ratio m/n defines the concavity of the longitudinal channel profile and 

typically varies from 0.3 to 0.6 (Wobus et al., 2006; Whipple and Tucker, 1999); n determines the erosional 

nonlinearity, which is thought to relate to regional flood variability and typically ranges from 1 to 4 (e.g., Lague, 

2014). A global compilation of stream power parameters constrained by topographic metrics (Harel et al., 2016) 

reports an optimised n ~ 2.6. The value of n may also vary depending on the location in the channel network—the

steepest and fastest-eroding locales such as knickpoints can have values closer to unity (Lague, 2014). In general,

higher n results in larger erosional flux from steep terrain, while higher m results in larger flux from big rivers. 

However, if m and n both increase (keeping their ratio constant), a larger fraction of erosional flux will be 

sourced from steeper main-stem channels.

The amalgamated outcomes of hillslope transport processes, such as rainsplash, soil creep, and 

bioturbation, are primarily diffusive. Hence, to simulate hillslope processes, we include a diffusion equation:

E predicted ,diffusive=D (d
2 z
dx2

+
d2 z
dy 2 )

p

, (2)
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where D is diffusivity, which is reported to range from ~ 4.4 × 10–4 to 3.6 × 10–2 for linear diffusion (e.g., 

Fernandes and Dietrich, 1997). We use a non-linear form of the diffusion equation in which concavity is raised to

an exponent in order to harmonise with Gabet et al. (2021), which posits that erosion rate scales approximately 

with concavity squared. For linear diffusion, which is mass conservative, the deposited and eroded sediment 

should in balance. However, in the non-linear model, negative concavities raised to a power of p can produce 

non-real numbers. Thus, we produce an average catchment-wide erosion rate in which we ignore deposited 

sediment (areas of negative concavity) and take an average only based on eroded sediment in this model.

For our joint advection-diffusion model, we follow the common approach of combining stream power with

linear diffusion (i.e., p = 1 in Eq. 2). When Equations (1) and (2) are combined, D and K covary, and it has been 

noted that a higher D/K ratio results in a more linear scaling between erosion rate and catchment-averaged slope 

(Forte et al., 2016). Hence, we divide (Eq. 3) by K, which allows the D/K ratio to be optimised with respect to 

predicted erosion rate:

E predicted
K

=Am Sn+
D
K ( d

2 z
dx2

+
d2 z
dy2 ), (3)

With our advection-diffusion model formulation (Eq. 3), we set out to solve simultaneously for globally 

optimised values of D/K, n and Ac. D/K and n determine the relative importance of advective versus diffusive 

processes in driving erosion; lower D/K and higher n (which implies higher m given uniform concavity) will 

result in the dominance of advection, whereas higher D/K and lower n will result in more diffusion-dominance. 

While varying m and n, we maintain their ratio constant at 0.45, a widely applied average channel concavity (e.g.,

Wobus et al., 2006; Harel et al., 2016), and in line with the global average of 0.42 reported by Gailleton et al. 

(2021). 

Based on previous modelling results (e.g., Roering et al., 2007), one might expect advection-dominant 

landscapes to be rougher in outline relative to the smoothing effects of diffusion. However, Theodoratos et al. 

(2018) show that multiple sets of parameters can give rise to equifinality. In our modelling framework, the D/K 

ratio covaries with n to determine the ratio of hillslope erosion versus the total (fluvial + hillslope) erosion—

denoted here as Epredicted,diffusive/Etotal, where Etotal is the sum of Epredicted,diffusive and Epredicted,advective. The ratio 

Epredicted,diffusive/Etotal is therefore a function of both n and D/K. In principle, this metric is proportional to an (inverse) 
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effective Peclet number for net erosion (Perron et al., 2008). For values of Epredicted,diffusive/Etotal close to unity, 

diffusive processes will dominate, while values closer to zero represent advection dominance (Fig. 1). 

2.1 10Be-derived apparent erosion rates 

We conduct modelling experiments that employ randomly selected sets of LEM parameter values, and then

compare our model outputs with the OCTOPUS v.2 global catalogue of 10Be-derived catchment-averaged erosion

rates (Codilean et al., 2022). In addition to apparent erosion rates (N = 4631), OCTOPUS includes topographic 

data and catchment morphometries. Using the catchment boundaries in OCTOPUS, we clipped rasters from the 

Hydrosheds Shuttle Radar Topography Mission (SRTM) dataset, a global digital elevation model (DEM) with 3-

arc-second resolution (Lehner et al., 2008), plus the National Elevation Dataset (Gesch et al., 2002) for 

catchments in Alaska north of 60 degrees. Local pits (i.e., lakes) within the catchments were filled using the 

priority-flood method of Barnes et al. (2014). In building the network of local upstream drainage areas for each 

cell, runoff is assumed to flow down the steepest descent in accordance with the D8 flow routing algorithm. 

Slopes for every cell are computed along this steepest-descent flow path.

To determine the effect of DEM resolution, we test our models on 1-arc-second SRTM data  (Farr et al., 

2004), although for reasons of computational capacity we restrict our analyses to catchments with < 13 million 

grid cells (N = 3414), and for the scenarios diffusion-only and advection-only. We find that DEM resolution is 

not pivotal (Appendix A, Fig. A1/A2). 

About 24 % of the OCTOPUS dataset is not exploitable for our purposes: 91 catchments are too small to be

processed by the LEM (< 3 DEM cells in any dimension), and we exclude 33 of the very largest catchments due 

to the extreme computational cost. Multiple erosion rate measurements included in OCTOPUS refer to samples 

from different locations within the same larger catchment. For such cases, a separate catchment is defined only 

where the drainage area differs by > 5 %; otherwise, we amalgamate the data and derive a single average erosion 

rate. In total, 3618 catchment-wide apparent erosion rates (Eapparent) are used in our modelling experiments, 

ranging from 0.028 km2 to 129,000 km2 (11 to 38 million grid cells). We do not separate 10Be measurements 

conducted on different grain-size fractions.

After catchment slopes and drainage areas are computed, the diffusion and stream power equations can be 

solved. The LEM is run for exactly one time-step on DEMs representing each of the 3618 catchments; the 

sediment flux to the catchment outlet is then averaged over the total drainage area to yield a LEM-predicted 

erosion rate (Epredicted). Because different values of input LEM parameters typically yield different erosion rates 
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(with the exception of highly diffusive models, as described below), such models are then optimised by 

comparison with our catalogue of Eapparent data.

2.2 Monte Carlo simulations 

We use a brute-force Monte Carlo approach to investigate the parameter space by running randomly 

selected sets of parameters and testing the fit of modelled versus observed (10Be-derived) erosion rates. We adopt 

the philosophy of equifinality (e.g., Beven and Binley, 1992) to evaluate the model parameters applied in our 

LEMs; implicit in these assumptions is that multiple sets of parameters may give rise to a similar, or equifinal, 

result (e.g., Csilléry et al., 2010). Hence, we report both the range of optimal parameters in addition to the best-fit

model parameters.

In our framework, no more than three parameters are modified and compared at any one time (Table 1). 

This is possible thanks to several simplifying steps (detailed below) that require fewer modelling runs (e.g., 

Theodoratos et al., 2018). The performance of the model with a given set of parameters is evaluated based on the 

mismatch between E*
predicted and Eapparent with respect to the likelihood function (Beven and Binley, 2014). 

Modelled and observed rates are compared directly, no regression is involved. In so doing, one or more local 

maxima representing an optimised parameter set may be identified in the space defined by parameter values 

versus the likelihood function. A range is then defined within 1 % of the peak (for example, if the best-fit model 

has r2 = 0.500 we report the range of parameters from models with r2 > 0.495).

For each randomly selected set of parameter values (Table 1), the LEM computes a single time step, and 

the erosion in each grid cell is integrated. E*
predicted is then scaled by employing a log-transformation on all 

modelled catchments:

log (K ∗ )=
1
N∑ (log( EpredictedK )− log (E apparent )), (4)

log (E predicted
∗ )=log(

E predicted
K )+log (K∗ ), (5)

where N is the number of observations. The performance of log(E*
predicted) against log(Eapparent) is then calculated 

for each parameter set. This setup offers the advantage of limiting the number of parameters varied; it is not our 
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aim to determine the absolute values of coefficients because these covary; instead, we focus on the ratio D/K (see 

Section 2.1).

After optimal values of Ac, D/K and/or n are found, the associated value of K can be corrected for log-

transformation using an unbiased estimator (after Ferguson, 1989):

K=K ∗ e
s2

2 , (6)

where s2 is an estimate of the variance:

s2= 1
N−1

∑ ( log (Eapparent )− log (E predicted
∗ ))

2
, (7)

An equivalent form of Eqs 4–7 is used for the diffusion-only model, simply by replacing K with D. 

Although we believe this log transformation is justified, we show coefficients without Eqs 4–7 applied in 

Appendix C. 

Given that our erosion rate data span several orders of magnitude, we compare log(Eapparent) and 

log(E*
predicted) using the coefficient of determination (r2) as implemented in the scikit-learn Python package (scikit-

learn.org). This allows for direct comparison with previous studies that also use the r2 metric in log-space to 

explore the controls on catchment-scale erosion rates (e.g., Portenga and Bierman, 2011; Harel et al., 2016). 

Optimised values are defined as the maximum r2 value only if they are surrounded by local maxima in the 

likelihood, which is the case in all experiments below. Additionally, to gauge the sensitivity of results to the 

likelihood function, we provide results using Mean Absolute Error (MAE) for comparison in Appendix B.

2.3 The influence of lithology and precipitation on erosion

We subdivided the OCTOPUS catchments according to (1) areally-dominant lithology based on the 

GLiM global geologic map (Hartmann et al., 2012), which gives a vectorized description of lithology compiled 

from a number of regional high-resolution geologic maps at a target resolution of 1:1,000,000; and (2) spatially-

averaged mean annual precipitation (MAP) using the WorldClim bioclimatic dataset (Hijmans et al., 2005).

Precipitation differences between lithologic subgroups can be significant; for instance, averages of 650 to 

1390 mm for unconsolidated sediment and metamorphic rocks, respectively. To address lithological variation in 

the presence of climatic differences between lithologic subgroups in the advection-only model, we attempt to 
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isolate substrate effects with the form of the stream power equation given by Kooi and Beaumont (1996), which 

explicitly includes precipitation variations that are normally folded into K:

E predicted ,advective=K lith ( pA )
m Sn, (8)

Although many factors influence K besides precipitation, we use Klith in this case to denote the variable we are 

attempting to isolate. We do not attempt to correct for variable precipitation in calculating D; for instance, by 

devising an equivalent Dlith from Eq. 8.

3 Results 

3.1 Advection-only model

We apply a stream power-based advection-only model (excluding hillslope diffusion), with two free 

parameters: a slope exponent (n) and critical drainage area (Ac). Variations in m are fixed to n such that concavity 

is held constant at m/n = 0.45. We report the optimised values in terms of maximum value and an optimised 

range of values that are within 1 % of the maximum (i.e., Q0.01). The advection-only model (Fig. 2) is globally 

optimised at n ~ 1.31 (Q0.01 = 1.17–1.33; Fig. 2a) and at Ac
 ~ 0.06 km2 (Q0.01 = 0.03–0.07 km2; Fig. 2b). We note 

that these values do not change substantially when using the higher-resolution 1-arc-sec DEMs (Appendix A, Fig.

A1). Optimal n increases to 1.47 (Q0.01 = 1.23–1.61), while optimal Ac decreases to 0.02 km2 (Q0.01 = 0.01–0.04 

km2). The differences in n are likely the result of the sensitivity to higher catchment-averaged slopes in the 1-arc-

sec DEMs (see supplementary Table S1). Additionally, both the 3-arc-sec and 1-arc-sec models show a consistent

pattern of significant drop-off in r2 values at 0.05–0.08 km2, putting at least an upper limit on the optimal 

parameter value.

3.2 Diffusion-only model

The diffusion-only model (Fig. 3) is globally optimised with the hillslope diffusion constant, p ~ 2.0 (r2 =

0.50, Fig. 3b). We find negligible dependence on DEM-resolution; p ~ 2.0 for the 1-arc-sec models (Appendix A,

Figure A2).
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3.3 Advection-diffusion model

While the optimisation of our diffusion-only model (Fig. 3) with p = 2 is an intriguing result that invites 

further investigation (cf. Gabet et al., 2021), we retain linear diffusion (p = 1) in our advection-diffusion 

experiment because for p ≠ 1 the model is (1) numerically unstable when implemented in LEMs, and (2) it fails 

to accommodate hillslope deposition (i.e., does not conserve mass).

The advection-diffusion model (Fig. 4) is globally optimised at n ~ 2.02 (Q0.01 = 1.51–2.57; Fig. 4c), and 

D/K ~ 4.56 × 105 m0.9n+1 (Q0.01 = 9.01 × 103 – 1.94 × 107; Fig. 4d). For n and D/K, the Q0.01 ranges are quite broad 

in part because both parameters are co-dependent (Fig. 4a). Optimum Ac ~ 0.04 km2 (Q0.01 = 0.02–0.37; Fig 4e) is 

similar to that from the advection-only models. The models are more diffusive when n is low and D/K is high, 

and Epredicted is dependent mainly on catchment slope. This results in values clustering at r2 ~ 0.35 (Fig. 4c, d, e) 

for models with high diffusion. Because D/K covaries with n (and m, Fig. 4a), we find that sediment transport 

derived from diffusional processes is maximised when Epredicted,diffusive/Etotal is ~ 0.39 (Fig. 4f). 

4 Discussion

In their benchmark study, Portenga and Bierman (2011) employ stepwise regression to relate their 

compilation of 10Be-derived erosion rates to a range of factors embracing topography, climate, lithology and 

seismicity. That study, along with the later inclusion of normalised steepness (e.g., Harel et al., 2016), added 

substantially to our knowledge of how and why erosion rate varies. Our alternative approach here focuses upon 

the erosional processes at play in terms of advective and diffusive mass flux, rather than attempting to interpret 

the machinations of landscape response to internal and external agents. A significant advantage is that relations 

between topography, erosion, and LEM parameters are derived at the scale of the DEM grid cell within each 

catchment, and success is gauged from the absolute difference between modelled (E*
predicted) and 10Be-derived 

(Eapparent) erosion rates—in other words, we evaluate LEM parameters as they are commonly implemented in the 

models.

 

4.1 Optimised parameters for landscape evolution models

We first consider some comparisons with previous work regarding advection-only approaches. Our 

optimised Ac ~ 0.06 km2 (Fig. 2b) for the 3-arc-sec resolution models falls near the minimum of the range applied 

in previous studies, such as Whipple and Tucker (1999), who suggest 0.059–0.14 km2. Our optimised n ~ 1.3 (n ~

1.47 for the 1-arc-sec models) is much lower than the 2.6 reported by Harel et al. (2016), which is derived from 

regression of erosion rate and normalised steepness (ks ref). Harel et al. (2016) then use the product of ks ref and a 
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scaling drainage area to calculate Mχ. In principle, Mχ and n should be similar to our K and n values; however, Mχ 

is integrated across the catchment, thus limiting the ability of these regressions to capture the inherent 

nonlinearity at the sub-catchment or sub-reach scale when n ≠ 1. The large discrepancy between our globally 

optimised values of n and those of Harel et al. (2016) likely arises from this integration across the catchment or 

reach scale, whereas here we compute erosion rates at each DEM grid cell, allowing us to better capture the 

nonlinear effects of stream power on erosion when n ≠ 1. Spatial heterogeneity in erosion rate is often controlled 

by steep areas in the catchment, such as knickpoints, and higher values of n amplify the proportion of erosion 

derived from steep areas relative to the rest of the catchment (Fig. 1).

While linear diffusion (p = 1) is commonly applied in landscape evolution studies (e.g., Braun and 

Willett, 2013), our optimised p ~ 2 for the diffusion-only model is consistent with Gabet al. (2021) in which 

erosion rate correlates best with the square of hillslope convexity. In response to Gabet et al. (2021), Struble and 

Roering (2021) point to a systematic underestimation of curvature in natural landscapes that may be an artefact of

the numerical methods used for estimating curvature from DEMs. Gabet et al. (2021) employ high-resolution (~1 

m) LIDAR data, but the broader point made by Struble and Roering (2021) poses a serious limitation for large-

scale LEM analyses that are typically restricted to lower-resolution DEMs. In such cases, the need for mass 

conservation and numerical stability are important considerations. And yet, a diffusion equation with exponent p 

≠ 1 is numerically unstable, physically unexplained, and does not accommodate deposition (the result of negative 

curvature). What does it say about the utility of running LEMs on natural landscapes if the optimised parameter 

value (p ~ 2) cannot be implemented? Struble and Roering (2021) suggest that p ~ 2 enhances the influence of 

steep, rapidly eroding areas on average curvature, which are commonly underestimated by many methods. 

Below, we discuss how the influence of these steep areas may be approximated by the stream power equation 

coupled with linear diffusion.

 Our advection-diffusion model allows us to explore aspects of how hillslope and river processes govern 

sediment flux in river catchments. Theoretically, for a catchment in a perfect state of mass-flux equilibrium (or 

steady state), hillslopes and rivers are eroding at the same rate, so either one should be equally useful as a proxy 

for erosion rate. There would be no apparent advantage to combining advection and diffusion in the same model 

since they would both yield the same average erosion rate. Landscapes are, however, more often not at steady 

state (at least over timescales integrated by cosmogenic 10Be) and the slight dominance of advective erosion in 

our optimised model (Epredicted,diffusive/Etotal = 0.39, in Fig. 4f) suggests that transient signals disproportionately affect 

catchment-averaged erosion rates. 
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 The positive relationship we observe between optimised n and relative diffusivity gives rise to a 

compelling possibility: as diffusivity increases, advective erosion becomes less important as a proxy for the total 

average erosion rate within the catchment, and more of a proxy for transience focused at the most rapidly eroding

zones. However, in the absence of diffusion, river incision must account for all sediment that would be otherwise 

eroded diffusively from hillslopes. The increase in optimised n with diffusivity therefore represents the 

expanding role of steep transient zones in dictating the catchment-scale erosion rate. 

Our optimised result for the advection-diffusion model, n ~ 2.02 (Fig. 4b), is compatible with previous 

work suggesting that typically n > 1 (e.g., Lague, 2014; Harel et al., 2016). A value of n ~ 2.02 also has 

implications for the erosional response to climate change. When precipitation is included explicitly in the 

formulation (Eq. 8), erosion scales nearly linearly with changes in mean annual precipitation (assuming m/n = 

0.45). We return to this point in Section 4.2 below.

The best correlation between predicted and apparent erosion rates occurs when D/K ~ 4.56 × 105 (Fig. 4d). 

This outcome broadly agrees with other studies that use K values in the range ~ 10–8 to 10–5 m(n–1) yr–1 and D 

values in the expected range noted by Fernandes and Dietrich (1997) of 4.4 × 10–4 to 3.6 × 10–2 m2 yr–1. Whipple 

et al. (2017) reports an optimal D/K ratio of 5 × 102 from Himalayan catchments, although fixing n = 1 in their 

models is a limiting assumption because D/K covaries with n, as we show. The diffusion model employed here 

assumes that the long-term flux of hillslope material is similar to the amount transported in one time-step. In 

reality, the catchment may not be at steady state and the hillslope erosion rate may change notably so as to 

change the rate of hillslope flux within individual catchments.

4.2 Erosion and precipitation

Correlating topographically-derived metrics with mean annual precipitation (MAP) on a global scale has 

been a long-standing goal. Harel et al. (2016) examine correlations between stream-power variables and climate 

as defined by the Köppen-Geiger scheme. In general, they find that ks ref and temperature covary inversely: warm 

deserts yield the highest ks ref, and polar regions lowest, on average, although they also emphasise the large 

uncertainties. Because our approach compares model results to erosion rates, rather than using regression, we can

more directly correlate K as it is implemented in LEMs under differing precipitation regimes. 

We calculate coefficients D (for diffusion-only) or K (for advection models) for each of the optimised 

models using Eq. (5) in catchments that correspond to 40 different MAP bins distributed such that each bin has 

an approximately equal number of data points (N = 91 ± 1; Fig. 5). By looking at how these coefficients vary 
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within each bin, we effectively reduce the influence of topography and isolate the relationship between erosion 

rate and precipitation. For reference, we also show results which do not apply a log-transformation correction 

from Eq. 6, in Appendix C.

Optimised coefficients show a local peak in erosion rates centred around 330 mm yr–1 and then dipping 

overall from around 1100 to 1600 mm yr–1 before increasing again for extremely wet regions (Fig. 5b). These 

results agree well with the classic work of Langbein and Schumm (1958), which suggests that the fastest eroding 

environments are semi-arid (~ 250 mm yr–1). This relationship is thought to be a product of the interplay between 

erosion, vegetation, total precipitation, and storm frequency in semi-arid regions—an outcome reproduced by 

Istanbulluoglu and Bras (2006), who show a positive relationship between sediment transport and the effects of 

reduced sediment cover/increased runoff during drought. 

While Langbein and Schumm (1958) had scant access to data from wetter settings, our results reveal an 

upward trend in coefficient values for MAP > 1500 mm yr–1 (Fig. 5). This is in line with Walling and Kleo’s 

(1979) global study of sediment yield and climate, which also shows a further major peak at ~ 800 mm yr–1 

attributed to the most expansive agricultural production globally (Hyman et al., 2016). In contrast to Walling and 

Kleo (1979), which does not isolate the effects of variable land use, topography, and geology on sediment yields, 

our use of long-term erosion rates means that we can largely ignore the effects of land use. This may explain the 

subdued peak ~ 800 mm yr–1 in our data. However, when no log transformation is applied to the coefficients, the 

peak at 800 mm yr–1 rises while the peak at 300 mm yr–1 is suppressed. 

Marder and Gallen (2022) find a nonlinear relationship between 10Be-derived erosion rate and ksn via 

regression; they also find that n increases with increasing erosion rate. However, ksn is calculated by integrating 

along different channel lengths (as with Harel et al., 2016), whereas we calculate erosion at every grid cell and so

capture local variations in erosion rate more effectively. We envisage cases in which steep zones, such as 

knickpoints, are responsible for a large proportion of the total catchment erosional flux, even though they 

represent a small fraction of the drainage area (e.g., Willenbring et al., 2013). Where erosion is a nonlinear 

function of slope and drainage area, an average of these erosion rates is unlikely to be proportional to the 

integrated ksn. 
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4.3 Erosion and lithology

The variability in LEM parameters within each lithological bin was assessed following a similar 

approach to Section 4.2, with the additional step of employing Klith (Eq. 8) to isolate the effects of lithology on K 

in the advection-only model in the face of variable precipitation within lithologic subgroups. 

Our results are largely as expected: all three models agree on the general tendency of sedimentary rocks 

being most erodible and plutonic/volcanic being least, although the relative magnitudes of these differences vary 

between models. Unconsolidated sedimentary rock is the most erodible of all according to the diffusion and 

advection-only models (Fig. 6b). Models disagree about the least erodible subcategories: basic plutonic, 

intermediate volcanic, or pyroclastic. The pyroclastic and basic plutonic rock-types show the most variance. For 

pyroclastic, the advection models suggest relatively low erodibility, whereas the diffusion-only models suggest 

moderate erodibility.

We note that the three-fold range in erodibility (Fig. 6b) is much lower than that reported elsewhere, in 

some cases by several orders of magnitude (Sklar and Dietrich, 2001; Garcia-Castellanos et al., 2018). This may 

be due to the greater focus on the differential erodibility within individual sites (Garcia-Castellanos et al., 2018). 

Despite our efforts to account for some of the covarying with MAP, our analysis inevitably smooths out some 

variability owing to the diversity of catchments incorporated within each lithological bin. Moreover, erodibility is

clearly a function of several additional factors such as fracture spacing (e.g., Neely et al., 2019), and weathering 

conditions, which is challenging to address in a global analysis such as ours.

5. Conclusions

We have examined the most widely used parameters applied to a set of three landscape evolution model set

ups: (1) a stream-power based, advection-only model; (2) a diffusion-only model; and (3) an advection-diffusion 

hybrid model. We optimised the parameter values by comparing directly the catchment-averaged erosion rates 

predicted by our three models with a global catalogue of 10Be-derived catchment-averaged erosion rates 

(Codilean et al., 2022).

The diffusion-only model outperformed the advection-only model when applying p ~ 2. However, the 

physical implications and numerical limitations of this result make it impractical for implementation in landscape

evolution models. Instead, we propose that linear diffusion coupled with fluvial erosion (advection-diffusion) 

captures a high proportion of sediment derived from rapidly eroding, steep areas in a similar sense to a diffusion 
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model with exponent p ~ 2. In the advection-diffusion hybrid model, the best agreement between the predicted 

and apparent erosion rates is observed with n ~ 2.0 (assuming a fixed concavity, m/n = 0.45), while the ratio of 

diffusivity/advection coefficient (D/K) is optimised at ~ 4.56 × 105.

The Monte Carlo method employed here is a simple and powerful means of identifying ideal parameter 

sets over large spatial scales and is especially useful for dealing with sparse datasets. We applied the same 

approach to elucidate differences in optimal LEM parameters when considering lithology and precipitation. By 

looking at the LEM coefficients, we were able to better account for the influence of topography when isolating 

the relationship between erosion rate and precipitation/ lithology. Of particular interest was a general upward 

trend in the coefficients (K and D) with respect to precipitation, and a local maxima centred at ~300 mm/yr.  This

local maxima may represent the higher erodibility of semi-arid environments as identified by Langbein and 

Schumm (1958). Nevertheless, many other influences on erosion are yet to be explored in a satisfactory and 

robust way. Future studies may use these parameter ranges as a baseline to inform large landscape evolution 

studies. Moreover, our methodology could be extended to incorporate more complexity into the canonical 

advection and diffusion-based equations applied here.
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Tables and Figures

Table 1: Parameter values and ranges for the three model set ups.

Model set Parameter Range Sampling 

Stream power only n 0–4 Random, 1000 samples

Ac 0.01–8 km2 Random, log-uniform, 1000 samples

Diffusion only p 0–4 Linear increment by 0.2

Stream power + 

diffusion

n 0–4 Random, 10,000 samples

D/K 102–109 m0.9n+1 Random, log-uniform, 10,000 samples

Ac 0.01–8 km2 Random, log-uniform, 10,000 samples
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Figure 1: a) Catchment example (Swakop River, Namibia) clipped from a Hydrosheds DEM based on the 

shapefile provided in OCTOPUS v.2. Lower panels show corresponding relative erosion rates (colour ramp spans

0–98 % of the range) for different parameter values. No diffusion is included in (b) and (d), hence erosion is 

focused in the channels. In (c) and (e), a moderately high (107) diffusivity is used relative to advection, which 

causes erosion to be more focused on hillslopes. 
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Figure 2:  The advection-only model. a) optimised n = 1.31 (Q0.01 = 1.17–1.33), with a global maximum of 1.31, 

b) optimised Ac = 0.06 km2 (Q0.01 = 0.03–0.07 km2), c) apparent vs predicted erosion rate yields r2 = 0.47; no 

regression is performed, the black line indicates a perfect 1:1 fit.

23

595

https://doi.org/10.5194/esurf-2022-54
Preprint. Discussion started: 8 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 3: The diffusion-only model. a) the sole free parameter (p) is optimised at p = 2.00. b) Apparent vs 

predicted erosion rate yields r2 = 0.50; no regression is performed, the black line indicates a perfect 1:1 fit.
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Figure 4: Model parameters representing variations in the relative dominance of advection vs diffusion. a) 

Covariance of D/K with n; when D/K is low (no diffusion), optimal n approaches ~1.3 (y intercept). b) The best 

correspondence between E*
predicted and Eapparent is achieved with r2 = 0.51, where c) n ~ 2.02 (Q0.01 = 1.51–2.57); d) 

D/K ~ 4.56 × 105 (Q0.01 = 9.01 × 103–1.94 × 107), albeit with a fairly broad peak, and e) Ac ~ 0.04 km2 (Q0.01 = 

0.02–0.37 km2). Clustering at r2 ~ 0.35 in panels (c, d, e) represents parameter sets where diffusion dominates 

over advection. f) Sediment transport derived from diffusional processes is maximised when Epredicted,diffusive/Etotal is 

~ 0.39.
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Figure 5: a) Global distribution of catchments in the OCTOPUS v.2 (Codilean et al., 2022) catalogue of erosion 

rates coloured by mean annual precipitation (MAP). b) Coefficients for diffusion (circle), advection (square), and 

advection-diffusion (X) calculated for each globally optimised model per MAP bin. Both panels use the same 

colour ramp, which corresponds to the MAP bin; blue shading represents the range spanned by the 3 models, and 

heavy blue-line is the mean.

26

610

https://doi.org/10.5194/esurf-2022-54
Preprint. Discussion started: 8 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 6: a) Global distribution of catchments in the OCTOPUS v.2 catalogue (Codilean et al., 2022) of erosion 

rates coloured by dominant lithology. b) Coefficients (normalised by their maximum values) for different best-fit 

models within twelve lithologic subsets from Hartmann et al. (2012). Coefficients for diffusion (x), advection 

(square), and advection-diffusion (circle) calculated for each globally optimised model per lithologic bin; blue 

shading represents the range spanned by the 3 models, and heavy blue-line is the mean. Both panels use the same 

colour ramp, which corresponds to the lithologic bin. 
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Appendix A: High-resolution (1-arc-sec DEM) model results

Results of advection-only and diffusion-only models run with 1-arc-sec resolution of the OCTOPUS catchments 

with fewer than 1.3 × 10 7 DEM cells (1 square degree) in area (N = 3414). The results are largely consistent with

those run with the 3-arc-sec DEM (Figs. 2 and 3). Much of the difference in n may be attributed to the higher 

average slopes from the higher-resolution 1-arc-sec model (see supplementary Table 1). The differences in the 

upper limits of the drainage area are consistent in that both 3-arc-sec and 1-arc-sec resolution models show steep 

drop-off in r2 at 0.05–0.08 km2.

Figure A1:  The advection-only model with 1-arc-sec DEM. a) Optimal n = 1.47 (Q0.01 = 1.23–1.61), which is 

slightly higher relative to the 3-arc-sec resolution model. b) Optimal Ac = 0.02 km2 (Q0.01 = 0.01–0.04 km2), which

is slightly lower relative to the low-resolution model. Note however, the similar r2 of 0.47 (c).
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Figure A2: The diffusion-only model 1-arc-sec DEM. a) Optimal p = 2.0 is consistent with that of the lower 

resolution model and gives a similar r2 = 0.53 (b).
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Appendix B: Supplemental likelihood function results

When using Mean absolute error as the likelihood function for the 3-arc-sec resolution models, the best-fit 

estimates are largely similar to the results using r2. However, MAE is meaningful for those looking for the quality

of the fit in more absolute terms. The best-fit models have MAE < 0.45 error in logged erosion rates (in mm yr–1),

which is notable given the high variability of catchments we are dealing with.

Figure B1: The optimal advection-only values, using MAE as a likelihood function a) n = 1.33 and b) Ac = 0.06 

km2 are nearly identical to the results from models optimised with r2 of n = 1.33 and Ac = 0.06, respectively. The 

optimal model (c) has an average absolute error of 0.45 (log (mm yr–1)) 
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Figure B2:  a) The optimal diffusion exponent (p) as determined from MAE as a likelihood function is similar to 

the optimal value using r2 (2.2 vs 2.0) and gives a minimum error of 0.42 log (mm yr–1).
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Appendix C: Coefficient analysis without bias correction 

Figure C1: Non-log-transformed coefficients display similar trends with respect to precipitation (a) and lithology

(b). The most notable difference between panel a) and Figures 5b is that the un-transformed coefficients display a

larger peak at 800 mm yr–1, and a smaller peak at 300 mm yr–1. Few differences are seen for lithological bins, 

although the maxima (ss and sc) are closer aligned.
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