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Abstract. The sediment of alluvial riverbeds plays a significant role in river systems both in engineering and 8 

natural processes. However, the sediment composition can show high spatial and temporal heterogeneity, even on 9 

river reach scale, making it difficult to representatively sample and assess. Conventional sampling methods are 10 

inadequate and time-consuming for effectively capturing the variability of bed surface texture in these situations. 11 

In this study, we overcome this issue by adopting an image-based, Deep Learning (DL) algorithm. The algorithm 12 

was trained to recognise main sediment classes in videos that were taken along cross-sections underwater in the 13 

Danube river. 27 river bed samples were collected and analyzed for validation.. The introduced DL-based method 14 

is fast, i.e., the videos of 300-400-meter-long sections can be analysed within minutes, with continuous spatial 15 

sampling distribution (i.e., the whole riverbed along the path is mapped with images, in cca. 0.3 – 1 m2 sized, 16 

overlapping windows). The quality of the trained algorithm was evaluated i) mathematically by dividing the 17 

annotated images into test and validation sets, and also via ii) intercomparison with other direct (sieving of 18 

physical samples) and indirect sampling methods (wavelet-based image processing of the riverbed images), 19 

focusing on the percentages of the detected sediment fractions. For the final evaluation, the sieving analysis of the 20 

collected physical samples were considered as the ground truth. After correcting for samples affected by bed 21 

armouring, comparison of the DL approach with 14 physical samples yielded a mean classification error of 22 

4.5%.Besides, the spatial trend in the fraction changes was also well captured along the cross-sections, based upon 23 

the visual evaluation of the footages. Suggestions for performing proper field measurements are also given, 24 

furthermore, possibilities for combining the algorithm with other techniques are highlighted, briefly showcasing 25 

the multi-purpose of underwater videos for hydromorphological assessment. 26 

Keywords: riverbed texture, underwater mapping, sediment classes, Artificial Intelligence, Deep Learning, 27 
image-based 28 

1 Introduction 29 

The physical composition of a riverbed plays a crucial role in fluvial hydromorphological processes, as a sort of 30 

boundary condition in the interaction mechanisms between the flow and the solid bed. Within these processes, the 31 

grains on the riverbed are responsible for multiple phenomena, such as flow resistance (Vanoni and Hwang, 1967; 32 

Zhou et al., 2021), stability of the riverbed (Staudt et al., 2018; Obodovskyi et al., 2020), development of bed 33 

armour (Rákóczi, 1987; Ferdowsi et al., 2017), sediment clogging (Rákóczi, 1997; Fetzer et al., 2017), fish shelter 34 

(Scheder et al., 2015), etc. Through these physical processes, the bed material composition has a determining 35 

effect on numerous river-uses, e.g., possibilities of inland waterway transport (Xiao et al., 2021), drinking water 36 

supply through bank filtration (Cui et al., 2021), or the quality of riverine habitats (Muñoz-Mas et al., 2019).. 37 

mailto:ermilov.alexander@emk.bme.hu


2 
 

Knowledge of riverbed morphology and sediment composition (sand, gravel and cobble content) is therefore of 38 

major importance in river hydromorphology. In order to gain information about riverbed sediments, in situ field 39 

sampling methodologies are implemented.  40 

 41 

Traditionally, bed material sampling methods are intrusive (i.e., sediment is physically extracted from the bed for 42 

follow-up analysis) and carried out via collecting the sediment grains one-by-one (areal, grid-by-number and 43 

pebble count methods, see e.g., Bunte and Abt, 2001; Guerit et al., 2018) or in a larger amount by a variety of 44 

grab samplers (volumetric methods, such as WMO, 1981; Singer, 2008). This is then followed by measuring their 45 

sizes individually on-site or transporting them to a laboratory for mass-sieving analysis (Fehr, 1987; Diplas, 1988; 46 

Bunte and Abt, 2001). These sampling procedures are time- and energy consuming, especially in large gravel and 47 

mixed bed rivers, where characteristic grain sizes can strongly vary both in time and space (Wolcott and Church, 48 

1991; USDA, 2007), requiring a dense sampling point allocation. The same goes for critical river reaches, where 49 

significant human impact led to severe changes in the morphological state of the rivers (e.g., the Upper section of 50 

the Hungarian Danube; Török and Baranya, 2017). When assessing bed material composition on a river reach 51 

scale, experts usually try to extrapolate from the samples, and describe larger regions of the bed (even several 52 

thousand m2) by data gathered in a few, several dozen points (see e.g., USDA, 2007; Haddadchi et al., 2018; 53 

Baranya et al., 2018; Sun et al., 2021). Gaining a representative amount of the sediment samples is also a critical 54 

issue. For instance, following statistical criteria such as those of Kellerhals and Bray (1971) or Adams (1979), a 55 

representative sample should weigh ten-to-hundred kg. Additionally, physical bed material sampling methods are 56 

unable to directly quantify important, hydromorphological features such as roughness or bedforms (Graham et al., 57 

2005). Due to these constraints, surrogate approaches have recently been tested to analyse the riverbed. Examples 58 

are introduced in the rest of this section. Unlike the conventional methods, these techniques are non-intrusive and 59 

rely on computers and other instrumentation to decrease the need of human intervention and speed up the analyses.  60 

 61 

One group of the surrogate approaches is the acoustic methods, where an acoustic wave source (e.g., an Acoustic 62 

Doppler Current Profiler; ADCP) is pointed towards the riverbed from a moving vessel, emitting a signal. The 63 

strength and frequency of this signal is measured while it passes through the water column, reflecting back to the 64 

receiver from the sediment transported by the river, and finally from the riverbed itself. This approach is fast and 65 

larger areas can be covered relatively quickly (Grams et al., 2013). While it has already become widely used for 66 

describing sediment movement (i.e., suspended sediment, Guerrero et al., 2016; bedload, Muste et al., 2016; and 67 

indirectly flow velocity; Shields and Rigby, 2005) and channel shape (Zhang et al., 2008), it has not reached 68 

similar breakthrough for riverbed material analysis. Researchers experimented with the reflecting signal strength 69 

[dB] from the riverbed (e.g., Shields, 2010) to establish its relationship with the riverbed material. Their hypothesis 70 

was that the absorption (and hence the reflectance) of the acoustic waves reaching the bed correlates with the type 71 

of bed sediment.  Following initial successes, the method presented several disadvantages and limitations, hence 72 

it could not establish itself as surrogate method for riverbed material measurements so far. For example, Shields 73 

(2010) showed that it was necessary to apply instrument specific coefficients to convert the signal strength into 74 

bed hardness, and these coefficients could only be derived by first validating each instrument using collected 75 

sediment samples with corresponding ADCP data. Moreover, the method was sensitive to the bulk density of the 76 

sediment and to bedforms. Based on his results and observations, the sediment classification could only extend to 77 
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differentiate between cohesive (clay, silt) and non-cohesive (sand, gravel) sediment patches, but gravel could not 78 

be distinguished strongly from sand as they produced similar backscatter strengths. Buscombe et al. (2014a; 79 

2014b) further elaborated on the topic and successfully developed a better, less limited, decision tree-based 80 

approach. They showed that spectral analysis of the backscatter is much more effective for differentiating the 81 

sediment types compared to the statistical analysis used by Shields. With this approach it became possible to 82 

classify homogenous sand, gravel, and cobble patches. However, Buscombe et al. (2014a, 2014b) also emphasizes 83 

that acoustic approaches are not capable of separating the effects of surface roughness from the effects of 84 

bedforms, therefore the selection of an appropriate ensemble averaging window size is of great importance for 85 

their introduced method. This size has to be small enough to not include morphological signal, for which however, 86 

the a priori analyses of riverbed elevation profiles is needed at each site. Furthermore, they suggest their method 87 

is sensitive to and limited by high concentrations of (especially cohesive) sediment, therefore its application to 88 

heterogeneous riverbeds would require site specific calibrations. The above-mentioned studies also note that 89 

acoustic methods in general inherently do not allow the measurement of individual sediment grains due to their 90 

spatial averaging nature. The detected signal strength correlates with the median grainsize of the covered area, 91 

information about other nominal grainsizes cannot be gained. 92 

 93 

Another group of the surrogate approaches is the application of photography (Adams, 1979; Ibbekken and 94 

Schleyer, 1986) and later computer vision or image-processing techniques. During the last two decades, two major 95 

subgroups emerged: one uses object- and edge detection (by finding abrupt changes in intensity and brightness of 96 

the image, segmenting objects from each other; Sime and Ferguson, 2003; Detert and Weitbrecht, 2013), and the 97 

other one analyses the textural properties of the whole image, using autocorrelation and semi-variance methods 98 

to define empirical relationship between image texture and the grain sizes of the photographed sediments ( Rubin, 99 

2004; Verdú et al., 2005). Both image processing approaches were very time consuming and required mostly site-100 

specific manual settings, however, a few transferable and more automated techniques have also been developed 101 

recently (e.g., Graham et al., 2005; Buscombe, 2013). Even though there is a continuous improvement in the 102 

applied image-based bed sediment analysis methods, there are still major limitations the users face with, such as: 103 

 104 

• Most of the studies (all the ones listed above) focuses on gravel bed rivers, and only a few exceptions 105 

can be found in the literature where sand is also accounted for (texture-based methods;e.g.: 106 

Buscombe, 2013). 107 

• The adaptation environment was typically non-submerged sediment, instead of underwater 108 

conditions (a few exceptions: Chezar and Rubin, 2004; Warrick et al., 2009). 109 

• The computational demand of the image processing is high (e.g., one to ten minutes per image; 110 

Detert and Weitbrecht, 2013). 111 

• The analysis requires operator expertise (higher than in case of any conventional method). 112 

• There is an inherent pixel- and image resolution limit ( Buscombe and Masselink, 2008 Cheng, 2015; 113 

Purinton and Bookhagen, 2019). The finer the sediment, the higher resolution of the images is 114 

required (higher calculation time), or they must be taken from a closer position (smaller area and 115 

sample per image). 116 

 117 
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Nowadays, with the rising popularity of Artificial Intelligence (AI), several Machine Learning (ML) techniques 118 

have been implemented in image recognition as well. The main approaches of segmentation contra textural 119 

analysis still remain; however, an AI defines the empirical relationship between the object sizes (Igathinatane et 120 

al., 2009; Kim et al., 2020) or texture types (Buscombe and Ritchie, 2018) in the images and their real sizes. In 121 

the field of river sedimentology a few examples can already be found, where ML (e.g., Deep Learning; DL) was 122 

implemented. For instance, Rozniak et al. (2019) developed an algorithm for gravel-bed rivers, performing 123 

textural analysis. With this approach, information is not gained on individual grains (e.g., their individual shape 124 

and position), but rather the general grain size distribution (GSD) of the whole images. At certain points of the 125 

studied river basins, conventional physical samplings (pebble count) were performed to provide real GSD 126 

information. Using this data, the algorithm was trained (with ~1000 images) to estimate GSD for the rest of the 127 

study site, based on the images. The method worked for areas where grain diameters were larger than 5 mm, and 128 

the sediment was well-sorted. The developed method showed sensitivity to sand coverage, blurs, reduced 129 

illuminations (e.g., shadows) and white pixels. Soloy et al. (2020) presented an algorithm which used object 130 

detection on gravel- and cobble covered beaches to calculate individual grain sizes and shapes. 46 images were 131 

used for the model training, however, the number of images were multiplied with data augmentation (rotating, 132 

cropping, blurring the images; see Perez and Wang, 2017) to enhance the learning session and increase the input 133 

data. The method was able to reach a limited execution speed of a few seconds per m2 and adequately measured 134 

the sizes of gravels. Ren et al. (2020) applied an ensemble bagging-based Machine Learning (ML) algorithm to 135 

estimate GSD along the 70 km long Hanford Reach of the Columbia River. Due to its economic importance, a 136 

large amount of measurement data has been accumulated for this study site over the years, making it ideal for 137 

using ML. By the time of the study, 13,372 scaled images (i.e., their millimetre/pixel ratio was known) were taken 138 

both underwater and in the dry zones, covering approx. 1 m2 area each. The distance between the image-sampling 139 

points was generally between 50-70 m. An expert defined the GSD (8 sediment classes) of each image by using a 140 

special, visual evaluation-classification methodology (Delong and Brusven, 1991; Geist et al., 2000). This dataset 141 

was fed to a ML algorithm along with their corresponding bathymetric attributes and hydrodynamic properties, 142 

simulated with a 2D hydrodynamic model. Then, it was tested to predict the sediment classes based on the 143 

hydrodynamic parameters only. The algorithm performed with a mean accuracy of 53%. Even though this method 144 

was not image-based (only indirectly, via the origin of the GSD data), it highlighted the possibilities of an AI for 145 

a predictive model, using a high-dimensional dataset. Having such a large data of grain size information can be 146 

considered exceptional and takes a huge amount of time to gather, even with the visual classification approach 147 

they adapted. Moreover, this was still considered spatially sparse information (point-like measurements, 1 m2 148 

covered area/image dozens of meters away from each other). Buscombe (2020) used a set of 400 scaled images 149 

to train an AI algorithm on image texture properties, using another image-processing method (Barnard et al., 2007) 150 

for validation. The algorithm reached a good result for not only gravel, but sand GSD calculation as well, 151 

outperforming an earlier, but promising, texture-based method (wavelet analysis; Buscombe, 2013). In addition, 152 

the method required fewer calibration parameters than the wavelet image-processing approach. The study also 153 

foresaw the possibility to train an AI which estimates the real sizes of the grains, without knowing the scale of 154 

one pixel (mm/pixel ratio) if the training is done properly. The AI might learn unknown relationships between the 155 

texture and sizes if it is provided with a wide variety (images of several sediment classes) and scale (mm/pixel 156 

ratio)) of dataset (however, it is also prone to learn unwanted biases).  Recently, Takechi et al. (2021) further 157 
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elaborated on the importance of shadow- detection and removal, using a dataset of 500 pictures for training a 158 

texture-based AI, with the help of an object-detecting image-processing technique (Basegrain; Detert and 159 

Weitbrecht, 2013). The previously presented studies, applying ML and DL techniques, significantly contributed 160 

to the development and improvement of surrogate sampling methods, incorporating the great potential in AI. 161 

However, there are still several shortcomings to these procedures. Firstly, none of the image-based AI studies 162 

used underwater recordings, even though the underwater environment offers completely different challenges. 163 

Secondly, the training images were always scaled, i.e., the sizes of the grains could be easily reconstructed, which 164 

is again complicated to accomplish in a river. Lastly, they were not adapted for continuous (i.e., spatially dense) 165 

measurement, but rather focused on a sparse grid-like approach.  166 

 167 

The goal of this study is to further investigate the applicability of image processing as a surrogate method, and 168 

attempt solve the shortcomings of previous AI-based approaches. Hence, we introduce a riverbed material 169 

analysing, DL algorithm and field measurement methodology, along with our first set of results. The introduced 170 

technique can be used to measure the gravel and sand content of the submerged riverbed surface. It aims to 171 

eventually become a practical tool for exploratory mapping, by detecting sedimentation features (e.g., deposition 172 

zones of fine sediment, colmation zones, bed armour) and helping decision making for river sedimentation 173 

management. Also, the long-term hypothesis of the authors includes the creation of an image-based measurement 174 

methodology, where underwater videos of the riverbed could serve multiple sediment related purposes 175 

simultaneously. Part of which is the current approach for mapping the riverbed material texture and composition. 176 

Others include measuring the surface roughness of the bed (Ermilov et al., 2020) and detecting bedload movement 177 

(Ermilov et al., 2022). 178 

 179 

Compared to the studies introduced earlier, the main novelty of our study is that both the training and analysed 180 

videos are recorded underwater, continuously along cross-sections of a large river. Furthermore, the training is 181 

unscaled, i.e., the camera-riverbed distance varies while recording the videos, without considering image-scale. 182 

Moreover, compared to the relatively low number of training images in most previous studies, we used a very 183 

large dataset (~15000) of sediment images for the texture-based AI, containing mostly sand, gravel, cobble, and 184 

to a smaller extent: bedrock together with some other, non-sediment related objects.  185 

 186 

2 Methods 187 

2.1 Case studies 188 

The results presented in this study are based on riverbed videos taken during three measurement campaigns, in 189 

sections of the Danube River, Hungary. The first campaign was at Site A, Ercsi settlement (~ 1606 rkm) where 3 190 

transects were recorded, the second one was at Site B, Gönyű settlement (~ 1791 rkm) with 2 transects, and the 191 

third was at Site C, near to Göd settlement (~ 1667 rkm) with 2 transects (Fig. 1). Each transect was recorded 192 

separately (one video per transect), therefore our dataset included a total of 8 videos. 193 
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 194 
Figure 1: The location of the riverbed videos, where the underwater recordings took place. All sites were located in 195 
Hungary, Central Europe. The surveys were carried out on the Danube River, Hungary’s largest river. 196 

The training of the DL algorithm was done using the video images of Site C and a portion of A (test set; see later 197 

in Section 2.3), while Site B and the rest of the images from A served for validation. The measurements were 198 

carried out during daytime, at mid-water regime (Q = 1900 m3/s) in case of Site A, and low water regime (Q = 199 

1350 m3/s) at Site B, and Site C (Q = 700 m3/s). This latter site served only for increasing the training image 200 

dataset (i.e., conventional samplings were not carried out at the time of recording the videos), thus we do not go 201 

into further details with it for the rest of the study, but the main characteristics are listed in Table 1. 202 

  203 
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  Site A Site B Site C 

Qsurvey [m3/s] 1900 1350 700 

Bsurvey [m] 300 – 450 

Hmean, survey [m] 3.5 - 4.5 

Ssurvey [cm/km] 15 

SSCsurvey [mg/l] 25 20 14 

Characteristic riverbed 

sediment 

gravel, 

sandy 

gravel 

gravel, 

gravelly 

sand 

gravel, 

sandy 

gravel 

Qannual,mean [m3/s] 
2000 2200 1400 

Q1% [m3/s] 5300 5500 4700 
Table 1: Main hydromorphological parameters of the measurement sites. Qsurvey: discharge during survey; Bsurvey: river 204 
width during survey; Hmean,survey: mean water depth during the survey; Ssurvey: riverbed slope during survey; SSCsurvey: 205 
mean suspended sediment concentration during the survey; Qannual, mean.: annual-mean of the discharge at the site; Q1%: 206 
flood with 1% annual exceedance probability. 207 

As underwater visibility conditions are influenced by the suspended sediment (SSCsurvey – susp. sed. 208 

concentration), the characteristics of this sediment transport is also included in Table 1. The highest water depths 209 

were around 6-7 m in all cases. In Site A, measurements included mapping of the riverbed with a camera along 210 

three separate transects (Fig. 2a). At Site B, two transects were recorded (Fig. 2b).  211 
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 212 

 213 
Figure 2: Bathymetry of Site A and B The measurement cross-sections are also marked. The vessel moved along these 214 
lines from one bank to the other, while carrying out ADCP measurement and recording riverbed videos. Physical bed 215 
material samples were also collected in certain points of these sections. The X and Y coordinates are given in EOV, 216 
which refers to the Hungarian Uniform National Projection system, 217 

 218 

2.2 Field data collection 219 

Fig. 3 presents a sketch of the measurement process with the equipment and a close-up of the underwater 220 

instrumentation. During the field measurements, the camera was attached to a streamlined weight (originally used 221 

as an isokinetic suspended sediment sampler) and lowered into the water from the vessel by an electric reel. The 222 

camera was positioned perpendicularly to the water and the riverbed, in front of the nose of the weight. Next to 223 

the camera, two diving lights worked as underwater light sources, focusing into the camera’s field of view (FoV). 224 

In addition, four laser pointers were also equipped in hand-made isolation cases to provide possible scales for 225 

secondary measurements. They were also perpendicular to the bottom, projecting their points onto the underwater 226 
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camera field of view. Their purpose was to ensure a visible scale (mm/pixel ratio) in the video footages for 227 

validation. During the measurement procedure, a vessel crossed the river slowly through river transects, while the 228 

position of the above detailed equipment was constantly adjusted by the reel. Simultaneously, ADCP and RTK 229 

GPS measurement were carried out by the same vessel, providing water depth, riverbed geometry, flow velocity, 230 

ship velocity and position data. Based on this information and by constantly checking the camera’s live footage 231 

on deck, the camera was lowered or lifted to keep the bed in camera sight and avoid colliding with it. The sufficient 232 

camera – riverbed distance depended on the suspended sediment concentration near the bed and the used 233 

illumination. The reel was equipped with a register, with its zero adjusted to the water surface. This register was 234 

showing the length of cable already released under the water, effectively the rough distance between the water 235 

surface and the camera (i.e., the end of the cable).Due to the drag force this distance was not vertical, but this 236 

value was continuously compared to the water depth measured by the ADCP. Differencing these two values, an 237 

approximation for the camera – riverbed distance was given all time. The sufficient difference could be established 238 

by monitoring the camera footage while lowering the device towards the bed. This value was then to be maintained 239 

with smaller corrections during the survey of the given cross-section, always supported by observing the camera 240 

recording, and adjusting to environmental changes. The vessel’s speed was also adjusted based on the video and 241 

slowed down if the video was blurry or the camera got too far away from the bed (see later in Section 3.3). The 242 

measurements required three personnel to i) drive the vessel, ii) handle the reel, adjust the equipment position, 243 

and monitor the camera footage, iii) monitor the ADCP data, while communicating with the other personnel (see 244 

Fig. 3).  245 
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 246 
Figure 3: Left: sketch of the measurement process. The vessel was moving perpendicular to the riverbank along a cross-247 
section (i). A reel was used to lower a camera close to the riverbed (ii). Simultaneously, the bed topography and water 248 
depth were measured by an ADCP (iii). Right: Close-up sketch of the underwater instrumentation. 249 

The video recordings were made with a GOPRO Hero 7 and a Hero 4 commercial action cameras. Image 250 

resolutions were set to 2704x2028 (2.7K) with 60 frame per second (fps) and 1920x1080 (1080p) with 48 fps, 251 

respectively. Other parameters were left at their default (see GOPRO 2014; 2018), resulting in slightly different 252 

quality of produced images between the two cameras. We found that a 0.2-0.45 m/s vessel speed with 60 fps 253 

recording frequency was ideal to retrieve satisfactory images in a range of 0.4-1.6 m camera-bed distances. This 254 

meant approximately 15 minutes long measurements per transects. Further attention needed to be paid to the reel 255 

and its cable during the crossing when the equipment was on the upstream side of the boat. If the flow velocities 256 

are relatively high (compared to the total submerged weight of the underwater equipment), the cable can be pressed 257 

against the vessel-body due to the force from the flow itself, causing the reel cable to jump to the side and leave 258 

its guide. This results in the equipment falling to the riverbed and the measurement must be stopped to reinstall 259 

the cable. For illumination, a diving light with 1500 lumen brightness and 75° beam divergence, and one with 260 

1800 lumen and 8° were used. The four lasers for scaling had 450-520 nm (purple and green) wavelength and 1-261 

5 mW nominal power. Power supply was ensured with batteries for all instruments. 262 

 263 
At Site A and Site B, conventional bed material (physical) samplings were also carried out by a grabbing (bucket) 264 

sampler along the analysed transects. At each cross-section 4-5 samples were taken, with one exception where we 265 

had 10. The measured GSDs were used to validate results of the AI algorithm. Separately, a visual evaluation of 266 

the videos was also carried out, where a person divided the transects into subsections based on their dominant 267 

sediment classes, after watching the footages. 268 
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2.3 Image analysis: Artificial Intelligence and the wavelet method 269 

In this study, we built on the former experiences of the authors, using Benkő et al., 2020 as a proof-of-concept, 270 

where the developed algorithm was applied for analysing drone videos of a dry riverbed. The same architecture 271 

was used in this study, which is based on the widely used Google’s DeeplabV3+ Mobilnet, in which many novel 272 

and state-of-the-art solutions are implemented (e.g., Atrous Spatial Pyramid Pooling; Chen et al., 2018). The 273 

model was implemented with Pytorch, exploiting its handy API and backward compatibility. The main goal was 274 

to build a deep neural network model which can recognise and categorise (via semantic segmentation; Chen et al., 275 

2018) at least three main sediment size classes, i.e., sand, gravel and cobble, in the images, while being quickly 276 

deployable. The benefit of the introduced method compared to conventional imagery methods lies in the potential 277 

of automation and increased speed. If the annotation and training is carried out thoroughly, analysing further 278 

videos can run effortlessly, while the computation time can be scaled down either vertically (using stronger GPUs) 279 

or horizontally (increasing the number of GPUs; if parallel analysis of images is desired). In this study a TESLA 280 

K80 24GB GDDR5 348bit GPU, an Intel Skylake Intel® Xeon® Gold 6144 Processor (24.75M Cache, 3.50 GHz) 281 

CPU with 13GB RAM was used. Also, contrary to other novel image-processing approaches in riverine sediment 282 

research (Buscombe, 2013; Detert and Weitbrecht, 2013), the deep convolutional neural network is much less 283 

limited by image resolution and mm/pixel ratios, because it does not rely on precise pixel count. This is an 284 

important advantage to be exploited here, as we perform non-scaled training and measurements with the DL, i.e., 285 

camera-bed distance constantly changed, and size-reference was not used in the images by the DL.  286 

 287 

Fig. 4 presents the flowchart of our DL-based image processing methodology. The first step after capturing the 288 

videos was to cut them into frames, during which the videos were exploded into sequential images. Our 289 

measurement setup proved to be slightly nose-heavy. Due to this, and the drag force combined, the camera tilted 290 

forward during the measurements. As a result, the lower parts of the raw images were sometimes too dark, as the 291 

camera was looking over the riverbed, and not at the lit part of the bed. In this study, this problem was handled by 292 

simply cutting out the lower 25% of the images as this was the region usually containing the dark, unlit areas. 293 

Brightening and sharpening filters were applied on the remaining part of the images to improve their quality. Next, 294 

the ones with clearest outlines and best visibility were chosen. This selection process was necessary because this 295 

way the delineation process (learning the prominent characteristics of each class) can be executed accurately, 296 

without the presence of misleading or confusing images, e.g., blurry or dark pictures where the features are hard 297 

to recognise. For training purposes, we chose three videos from different sections each being ~15 minutes long 298 

with 60 fps and 48 fps, resulting in 129 600 frames. In fact, such a large dataset was not needed due to the strong 299 

similarity of the consecutive frames. The number of images to be annotated and augmented were therefore 300 
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decreased to ~2000. We also performed a white balance correction on some 301 

of the images to improve visibility, making it even easier to later define the 302 

sediment class boundaries. We used an additional algorithm to generate more 303 

data, with the so-called Simplest Colour Balance method (Limare et al., 304 

2011). It is a simple, but powerful histogram equalisation algorithm which 305 

helps to equalise the roughness in pixel distribution.  306 

 307 

These steps were followed by the annotation, where we distinguished ten 308 

classes: silt-clay, sand, gravel, cobble, boulder (mainly ripraps), bedrock, 309 

clam-upside, clam-downside, vegetation, unidentified (e.g., wreckages). 310 

Annotation was carried out by a trained personnel, not by the authors, and 311 

performed with the help of an open-source software called 312 

PixelAnnotationTool (Breheret, 2017), which enables the user to colour 313 

mask large parts of an image based on colour change derivatives (i.e., colour 314 

masking part of the images which belong to the same class, e.g., purple/red 315 

– sand, green – gravel, yellow – cobble, etc.). The masks and outlines were 316 

drawn manually, together with the so-called watershed annotation. That is, 317 

when a line was drawn, the algorithm checked for similar pixels in the 318 

vicinity and automatically annotated them with the same class. The 319 

annotation was followed by a data augmentation step where beside 320 

mirroring, cropping, rotating the images (to decrease the chance of 321 

overfitting), we also convolved them with different filters. These filters 322 

added normally distributed noise to the photos to influence the watershed 323 

algorithm and applied sharpening, blurring, darkening, and white balance 324 

enhancement. Thus, at the data level, we tried to ensure that any changes in 325 

water purity, light, and transparency, as well as colour changes, were 326 

adequately represented during training. Images were uniformly converted to 327 

960x540 resolution, scaling them down to make them more usable to fit in 328 

the GPU’s memory. The next step was to convert all the images from RGB 329 

(Red-Green-Blue) based colour to grayscale. This is important because 330 

colour images have 3-channels, so that they contain a red, a green, and a blue 331 

layer, while grayscale images’ pixel can only take one value between 0 and 332 

255. With this colour conversion we obtained a threefold increase in 333 

computational speed. In total, a dataset of 14,784 human-annotated images 334 

was prepared (from the ~2000 images of the 3 training videos). The next step 335 

was to separate this dataset into training and validation sets. In this study, we 336 

used 80% of it for training the DL algorithm, while 20% was withhold and 337 

reserved for the validation of the training. It was important to mix the images 338 

so that the algorithm selects batches in a pseudorandom manner during 339 

training, thus preventing the model from being overfitted. Finally, after 340 

Figure 4: Flowchart of the applied methodology. 
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several changes in the hyperparameters (i.e., tuning), the evaluation and visualisation of the training results were 341 

performed. Tuning is a general task to do when building DL Networks, as these hyperparameters determine the 342 

structure of the network and the training process itself. Learning rate, for example, describes how fast the network 343 

refreshes, updates itself during the training. If this parameter is set too high, the training process finishes quickly, 344 

but convergence may not be reached. If it is too low, the process is going to be slow, but it converges. For this 345 

reason, nowadays the learning rate decay technique is used, where one starts out with a large learning rate, then 346 

slowly reduces it. The technique generally improves optimization and generalization of the DL Networks (You et 347 

al., 2019). In our case, learning rate was initialised to 0.01, with 30000 iteration steps, and the learning rate was 348 

reset after every 5000 iterations with a decay of 0.1. Another important parameter was the batch size, which sets 349 

the number of samples fed to the network before it updates itself. Theoretical and empirical evidence suggest that 350 

learning rate and batch size are highly important for the generalization ability of a network (He et al., 2019). In 351 

our study, a batch size of 16 was used (other general values in the literature are 32, 64, 128, 256). We used a cross-352 

entropy loss function.  353 

 354 

As previously discussed, the training of the deep learning (DL) algorithm proceeded without the application of 355 

scaling, obviating the need for the laser equipment. Nevertheless, our original intention was to employ laser 356 

pointers to establish a spatial scale for the recorded videos, serving as a supplementary validation measure. 357 

Regrettably, the lasers did not operate as initially anticipated, rendering their continuous utilization during the 358 

cross-sectional surveys and the pursuit of transactional scaling and validation unfeasible. Consequently, we shifted 359 

our focus to validation at specific physical sampling points, where we could utilize the lasers properly. We adopted 360 

a textural image-processing approach to analyse the video images captured at these sampling locations. In this 361 

regard, we opted for the previously mentioned, transferable wavelet-based signal- and image-processing 362 

technique. This method allows for the computation of the image-based grain size distribution from the selected 363 

images. The analysis entails examining the grey-scale intensity along the pixel-rows and -columns within the 364 

image, treating them as individual signals. This technique utilises the less-constrained wavelet transform, instead 365 

of the Fourier transform, to decompose these signals. Ultimately, by computing the power spectra and determining 366 

the sizes (firstly in pixel, then changing to millimeter, using the scale) of the wavelet components (each 367 

corresponding to an individual grain), the user can derive the grain size distribution for the given image. Prior to 368 

this study, this methodology had demonstrated its efficiency as a non-DL image-processing technique for mixed 369 

sediments (Buscombe, 2013; 2020) and had previously been tested by us, under underwater conditions as well 370 

(Ermilov et al., 2020). 371 

3 Results and discussion 372 

3.1 Evaluation of the training  373 

To evaluate the training process, the 2957 images of the validation set were analysed by the developed DL 374 

algorithm and its results were then compared to their human-annotated counterparts. Fig. 5a-d shows results of 375 

original images (from the validation set), their ground truth (annotation by the training personnel), as well as the 376 

DL prediction (result of the model). The overlays of the original and the predicted images are also shown for 377 

better visualization. Calculating the overall pixel accuracy (i.e., the percent of pixels that were correctly classified 378 
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during validation) returned a satisfactory result with an average 96% match (over the 2957 validation images, 379 

each having 960x540 resolution, adding up to a total of 1 532 908 800 pixels as 100%). As this parameter in object 380 

detection and DL is not a stand-alone parameter (i.e., it can still be high even if the model performs poorly), the 381 

mean IoU (intersection-over-union or Jaccard index) was also assessed, indicating the overlap of ground truth 382 

area and prediction area, divided by their union (Rahman and Wang, 2016). This parameter showed a much 383 

slighter agreement of 41.46%. Interestingly, there were cases, where the trained model gave better result than the 384 

annotating personnel. While this highlighted the importance of thorough and precise annotation work, it also 385 

showcased that the number of poor annotations was relatively low, so that the algorithm could still carry out 386 

correct learning process and later detections, while not being severely affected by the mistake of the training 387 

personnel. Fig. 5e showcases an example for this: the correct appearance of cobble (yellow) in the prediction, 388 

even though the user (ground truth) did not define it during annotation. As a matter of fact, these false errors also 389 

decrease the IoU evaluation parameter, even though they increase the performance of the DL algorithm on the 390 

long term. Hence, this shows that pure mathematical evaluation may not describe the model performance entirely. 391 

Considering that others also reported similar experience with DL (Lu et al., 2018) and the fact that 40% and 50% 392 

are generally accepted IoU threshold values (Yang et al., 2018; Cheng et al., 2018; Padilla et al., 2020), we 393 

considered the 41.46% acceptable, while noting that the annotation and thus the model can further be improved. 394 

The general quality of our underwater images may have also played a role in lowering the IoU result. 395 

 396 

 397 
Figure 5: a-d) Example comparisons of ground truth (drawn by the annotating personnel, 3rd column) and DL 398 
predicted (result of analysing the raw image by the previously trained DL model, 4th column) during the validation 399 
process. The 1st column shows raw images, while the 2nd column overlays the result of the DL detection on the raw 400 
image for better visual context. e) Example of training personnel mistake during the annotation (i.e., lack of 401 
cobble/yellow annotation in ground truth) and how the DL performed better by hinting at the presence of the cobble 402 
fraction, leading to a false negative result during validation.  403 



15 
 

 404 

One of these quality issues for the DL algorithm was associated with the illumination. Using a diving light with 405 

small beam divergence proved counterproductive. The high intensity, focused light occasionally caused 406 

overexposed zones (white pixels) in the raw bed image, misleading the DL algorithm and resulting in detection 407 

of incorrect classes there (Fig. 6a). In darker zones, where the suspended sediment concentration was higher and 408 

at the same time, the effect of camera tilting was not completely removed by preprocessing, the focused light 409 

sometimes reflected from the suspended sediment itself and resulted in brighter patches in the images (Fig. 6b). 410 

This also caused false positive detections. 411 

 412 

 413 
Figure 6: The effect of strong diving light on the DL algorithm. a) Purely sand covered zone. b) Darker zone with 414 
higher SSC. The original images are on the left, while the DL detections can be found on the right. 415 

 416 

3.2 Comparison of methods 417 

In each masked image, the occurring percentage of the given class (i.e., the percentage of the pixels belonging to 418 

that class/colour mask, compared to the total number of pixels in the image) was calculated and used as the fraction 419 

percentage in that given sampling point. These sediment classes reconstructed by the DL algorithm were then 420 

compared to three alternative results: i) visual estimation, ii) GSD resulted from conventional grab sampling, iii) 421 

wavelet-based image-processing. In the followings, results from two cross-sections will be highlighted, one from 422 

Site A, the video used for the training, and one from Site B, being new for the DL. An averaging window of 15 m 423 

was applied on each cross-sectional DL result to smoothen and despike the dataset. The interval of physical sample 424 

collection in wider rivers can range anywhere between 20-200 m within a cross-section, depending on the river 425 

width and the homogeneity of riverbed composition. The averaging window size was chosen to be somewhat 426 

lower than our average applied physical sampling intervals in this study, but still in the same order of magnitude. 427 

The scope of the present study did not include further sensitivity analysis of the window size. In the followings, 428 

the reader is led through the comparison process via the example of two transects, and is given the over-all 429 

evaluation of the accuracy of the method. 430 
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3.2.1 Visual evaluation and physical samples 431 

In Fig. 7a, we depict the vessel's trajectory within Section A – II at Site A. The path is color-coded based on our 432 

visual assessment of the riverbed images, with distinct colors representing the prevalent sediment type at each 433 

specific location on the riverbed. Additionally, we have marked the positions of physical bed material samples 434 

with yellow markers for reference. App. Fig. A1 presents the unprocessed results of the DL detection for each 435 

analysed image along Section A – II, prior to any moving-average smoothing. It's important to note that our current 436 

approach is highly sensitive, occasionally resulting in substantial fluctuations in DL detection between successive, 437 

slightly displaced video frames. Owing to this sensitivity and the inherent uncertainty in the coordinates of the 438 

underwater photos and their corresponding physical samples, we discourage making direct comparisons by 439 

selecting a specific image and its DL detection. Instead, we have implemented a moving-average-based smoothing 440 

technique for each raw, cross-sectional DL detection, using a window size of 15 meters at each site. These moving 441 

averages serve as the basis for comparisons with the physical sampling data and the wavelet method. For the sake 442 

of clarity, we have included the raw DL detections of all sampling point images in the Appendix, although these 443 

results may not precisely reflect their corresponding moving-average values. In Fig. 7b, we present a comparison 444 

between the cross-sectional visual classification and the DL-detected sediment fractions in percentage after 445 

applying the moving-average smoothing (i.e., the smoothed version of App. Fig. A1). Any noise observed in these 446 

results is primarily attributable to abrupt changes in lighting conditions, which can occur either when visual 447 

contact with the riverbed is momentarily lost due to sudden bathymetrical changes or as a result of increased 448 

suspended sediment concentration. Overall, our DL results exhibit a commendable concordance with human 449 

evaluations. For instance, in the vicinity of 100 meters from the left bank, between sampling points AII-1 and AII-450 

2, the DL algorithm correctly identifies a peak with approximately 70% sand and 30% gravel. Moreover, on either 451 

side of this peak, a steep transition to gravel and a decline in sand content are observed, consistent with visual 452 

observations, which we have labelled as "sandy gravel" and "gravelly sand." The DL algorithm also accurately 453 

identifies mixed sediment zones on both riverbanks. 454 

 455 
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 456 

Figure 7: a) The path of the vessel and camera in Section A – II, Site A. The polyline is coloured based on the sediment 457 
features seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. 458 
(Map created with Google Earth Pro). b) The visual evaluation of the dominant sediment features in the video (top) 459 
compared to sediment fraction percentage, recognised by the DL algorithm (bottom). DL result after applying moving-460 
averaging. The visual evaluation included four classes: gravel – G, sandy gravel – sG, gravelly sand – gS, sand – S,). 461 
The fractions of the physical samples are shown as verticals. 462 

 463 

At site B (Fig. 8a) the river morphology is more complex compared to Site A as a groyne field is located along 464 

the left bank (see Fig. 2b). As such, the low flow regions between the groynes yield the deposition of fine 465 

sediments, and much coarser bed composition in the narrowed main stream. As it can be seen, the DL algorithm 466 

managed to successfully distinguish these zones: the extension of fine sediments in the deposition zone at the left 467 

bank were adequately estimated and showed a good match with the visual evaluation for the whole cross-section 468 

(see Fig. 8b). 469 

 470 
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 471 
Figure 8: a) The path of the vessel and camera in Section–B – II, Site B. The polyline is coloured based on the sediment 472 
seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 473 
created with Google Earth Pro). b) Sediment fraction percentages in Section–B – II, recognised by the AI. The visual 474 
evaluation included two classes: gravel – G, sand – S). The fractions of the physical samples are shown as verticals. 475 

 476 

Results of the other measurements can be found in the Appendix. App. Fig. C2, D2 and E2 show that the trend of 477 

riverbed composition from the visual evaluation is well-captured by the DL algorithm in the other cross-sections 478 

of the study as well. 479 

 480 

Next, the physically measured and DL-detected relative proportion of sand, gravel and cobble fractions were 481 

compared in each of the 27 sampling points. Firstly, however, outliers or incomparable data had to be identified. 482 

In our case, this meant the separation of sampling points where the differences between the results of the two 483 

methods were independent from the efficiency and performance of the DL algorithm. This selection was carried 484 

out after analysing the grainsize distribution curves of the weight-sieved physical samples (App. Fig. F1) and the 485 

riverbed images around the sampling points (App. Fig. A3, B1, C4, D4, E4). Based on our findings, the outliers 486 
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have been identified and separated into Outlier Type A, and Outlier Type B categories. First category included 487 

the sampling points where the GSD curves showcased bimodal (gap graded) distributions. This type of riverbed 488 

sediment distribution is a typical sign of riverbed armouring (Rákóczi, 1987; Marion & Fraccarollo, 1997), where 489 

a coarse surface layer protects the underlying finer subsurface substrate (see e.g., Wilcock, 2005). While the 490 

camera only sees the upper layer, the bucket sampler can penetrate the surface and gather sample from the 491 

subsurface as well. As a result, the two methods cannot be compared solely on the surface distribution. In App. 492 

Fig. A2, supportive images of bed armouring are provided, taken during our surveys in the Upper section of the 493 

Hungarian Danube. Out of the 27 sampling points, 11 were affected by armouring and categorised as Outlier Type 494 

A. The category of Outlier Type B consisted of points from the opposite case: where the riverbed image contained 495 

fine sediment, but the physical samples did not. In these cases, a relatively thin layer of fine sediment covered the 496 

underlying gravel particles. 2 sampling points were categorised as Outlier Type B, both of which were near to the 497 

borderline between a deposition zone behind a groyne, and the gravel bedded main channel. In these cases, the 498 

bucket sampler probably either stirred up the deposited fine sediment and washed it down during its lifting or was 499 

dragged through purely gravel bedded patch during sampling, as the surface composition was rapidly changing 500 

on this before-mentioned borderline. It is important to highlight that the analysis of physical samples involves 501 

measuring and weighing various sediment size classes, leading to weight distribution. In contrast, imaging 502 

methods offer surface distributions, and as a consequence, the presence of a thin layer of fine sediments on the 503 

surface can significantly skew the resulting composition (Bunte and Abt, 2001; Sime and Ferguson, 2003; Rubin 504 

et al., 2007). 505 

 506 

 Comparable data Outlier Type A Outlier Type B ∑ 

No. sampling 

points 
14 11 2 27 

Table 2: After evaluating the results of the sieving analyses and riverbed surface images, out of the 27 sampling points, 507 
14 were defined as comparable between the applied sampling methods. 11 points were categorised as Outlier Type A, 508 
because their GSD curves were bimodal. 2 points were defined as Outlier Type B, since their images showed the 509 
presence of fine sediment, while the sieve analyses did not. 510 

 511 

Overall, the DL-based classification agreed well within the comparable sampling points, with an average error of 512 

4.5% (Fig. 9). It can be seen that even though in outlier points AII-1 and AI-3 the DL algorithm coincidentally 513 

gave good match with the sieving analysis, in the rest of the outlier points the DL- and physical-based results 514 

systematically differ from each other, supporting our outlier selection methodology.  515 
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 516 

Figure 9: Comparison of relative sediment fractions between the DL detection and physical samples. The three main 517 
sediment types (sand-gravel-cobble) are marked with different colour and symbols. The name of the sampling points 518 
where the given relative proportion was measured/detected is also written for gravel and sand (cobble was negligible). 519 
The proportions of outlier sampling points are marked with white/grey, while the symbol represents the sediment type 520 
respectively. The comparable points have their proportions with green (gravel) and red (sand) symbols. 521 

 522 

3.2.2 Wavelet analysis 523 

Regarding the wavelet analysis-based imaging technique, it is evident that there is a slight overall overestimation 524 

of coarse particles, and the accurate reconstruction of sand classes is not achieved. This observation aligns with 525 

our earlier field experiences reported in Ermilov et al. (2020), where we highlighted the wavelet technique's 526 

pronounced sensitivity to image resolution. We demonstrated that to successfully detect a grain, its diameter must 527 

be at least three times larger than a pixel. In the subsequent analysis, we compare the sediment proportions 528 

determined by the wavelet-based method to those obtained earlier through DL and physical-based approaches, 529 

presenting the results in bar plots (Fig. 10, 11). For instance, when the camera was positioned closer to the riverbed 530 

at sampling points AII-1 and AII-4, resulting in a more favourable mm/pixel ratio, the wavelet algorithm was able 531 

to detect coarse sand accurately. However, it struggled to identify finer sand, leading to lower sand percentage 532 

estimates (Fig. 10). In other sampling points where sand particles were below the resolution limit, the wavelet 533 

method consistently identified the presence of cobbles instead (Fig. 10), a distinction not made by the other two 534 

methods. This pattern broadly characterizes the wavelet method's performance during our study. For illustrative 535 

purposes, we provide an example highlighting the differences in the capabilities of these two methods in Figure 536 

12. While both methods detect the presence of two major sediment categories, the wavelet technique interprets 537 
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the information as a mixture of gravel and cobbles, whereas the DL algorithm recognizes the presence of sand 538 

coverage and gravel particles. 539 

 540 

 541 
Figure 10: Comparison of relative sediment fraction proportions [%] at the sampling locations from the moving-542 
averaged DL detection, conventional sieving and the wavelet-based image processing method. Section A – II. 543 

 544 
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 545 
Figure 11: Comparison of relative sediment fraction proportions [%] at the sampling locations from the moving-546 
averaged DL detection, conventional sieving and the wavelet-based image processing method. Section–B – II. 547 
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 548 

Figure 12: a) Wavelet analysis result of the underwater image in BII-2. b) DL detection result of the same image. 549 

 550 

Overall, the comparison between the two image-based method showed greater discrepancies (Fig. 13), due to the 551 

limitations of the wavelet approach, discussed earlier. The same sampling points were labelled as outliers as 552 

earlier. As it can be seen, the wavelet significantly differed in the points where the physical samples and DL-553 

detections matched (green data points), due to its excessive, false cobble detections. However, it showed good 554 

agreement with the DL in most of the outlier points, supporting the earlier observation: the surface in those points 555 

was composed of solely gravel, and the finer fractions of the physical samples must have come from the 556 

subsurface. Hence, the outlier selection process was well based. 557 

 558 

Figure 13: Comparison of sediment fractions between the DL detection and the wavelet approach, for the selected 559 
sampling points. The three main sediment types (sand-gravel-cobble) are marked with different colour (red-green-560 
yellow) and symbols (diamond-circle-square) respectively. The name of the sampling points where the given relative 561 
proportion was measured/detected is also written for gravel. The proportions of outlier sampling points are marked 562 
with white/grey, while the symbol represents the sediment type respectively. The comparable points have their 563 
proportions with green (gravel), red (sand) symbols. 564 
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 565 

Based on the results presented in this study, it could be established that the DL algorithm managed to recognise 566 

the main features of the riverbed material composition from underwater videos with satisfactory accuracy in the 567 

comparable sampling points (based on the sieving analysis of physical samples) and along cross-sections (based 568 

on the visual evaluation). The method showed good potential for mapping heterogenous riverbeds along river 569 

cross-sections. Furthermore, the wavelet proved to be a limited comparison tool with the introduced field 570 

measurement methodology, as this latter did not provide it with the sufficient resolution most of the time. 571 

 572 

3.3   Implementation challenges 573 

 574 

The power supply for the entire imaging infrastructure, including the camera, diving lights, and lasers, relied on 575 

batteries. However, due to the lower temperatures at the river bottom, the battery depletion rate was significantly 576 

accelerated compared to typical conditions. To address this issue, we explored the option of a direct power supply 577 

from the motorboat. Ensuring the camera's optimal positioning posed challenges as well. Proximity to the riverbed 578 

risked damage to the equipment, while excessive camera-bed distances compromised image quality. To maintain 579 

a clear view of the riverbed while avoiding blurry images, we utilized real-time ADCP water depth data to adjust 580 

the camera's position, while simultaneously optimizing the boat's velocity. Increasing the recording frequency and 581 

reducing exposure time emerged as potential solutions to mitigate this limitation. Lower vessel velocities were 582 

not feasible, as they would have caused the vessel to drift out of the desired section. Alternatively, moving along 583 

longitudinal (streamline) paths rather than transects may present the opportunity for slower vessel speeds, 584 

potentially resulting in higher-quality images in the future. However, the conventional approach for river 585 

bathymetry surveys typically involves transversal paths due to lower spatial variations along streamlines 586 

compared to the transverse direction (Benjankar et al., 2015; Kinsman, 2015). Therefore, implementing 587 

longitudinal paths may require a denser network to obtain sufficient data, thus increasing time demands. Hence, 588 

careful consideration of path selection and interpolation methods becomes critical for this alternative approach. 589 

Another challenge pertained to the impact of drag force on the measurement setup. Although the main body had 590 

a streamlined design, the addition of other tools disrupted the setup's geometry. Additionally, we encountered a 591 

slight imbalance in weight distribution. Long-term solutions could involve constructing a streamlined container 592 

(e.g., a 3D-printed body or a body resembling unmanned underwater vehicles) with designated slots for each 593 

device and improving weight distribution. Furthermore, we hypothesized that using lasers (as originally planned 594 

in this study) during measurements could assist in orthorectifying the images, leveraging the known structure and 595 

positioning of laser points' projections when the setup is perpendicular to the riverbed. This could reduce the 596 

impact of occasional tilting, which may affect size analysis if scaling is included. In our specific case, we 597 

demonstrated that the wavelet method had inherent limitations (e.g., image resolution limits) when applied within 598 

our methodology, issues not attributable to camera tilting, as these would have had a significantly lower error 599 

magnitude. 600 

 601 

As for the training of the DL algorithm with the underwater images, the illumination is indeed a more crucial 602 

aspect, compared to normal imagery methods. In many cases only the centre areas of the images were clearly 603 

visible, whereas the remaining parts were rather dark and shady. Determining the boundaries between distinct 604 
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sediment classes for these images was challenging even for experienced eyes. This quality issue generated 605 

incorrect annotations at first. To overcome this issue, manually varying the white balance thus enhancing the 606 

visibility of the sediment could improve the results of the training. It is known that when DL methods are to be 607 

used, most of the problems arise from the data side (Yu et al., 2007), whereas issues related to the applied 608 

algorithms and hardware are rare. This is because data is more important from an accuracy perspective than the 609 

actual technical infrastructure (Chen et al., 2020). The time demand of image annotation (data preparation) is 610 

relatively high, i.e., a trained person could analyse roughly 10 images per hour. On the other hand, as introduced 611 

earlier, a great advantage of using DL is the capability of improving the quality of training itself, often yielding 612 

better agreement with reality, compared to the manual annotation. Similar results have been reported by Lu et al., 613 

(2018). This at the same time proves that with the introduced approach, there is no need for very precise manual 614 

training, thus a fast and effective training process can eventually be achieved. 615 

 616 

The validation of the DL algorithm is far from straightforward. In this study, four approaches were adopted: a 617 

mathematical approach, and comparison with three other measurement methods, respectively. The mathematical 618 

approach was based on calculating pixel accuracy and the Intersection-over-union parameter, as it is usually done 619 

in case of DL methods to describe their efficiency (e.g., Rahman and Wang, 2016). However, the DL model in 620 

some cases overperformed, and provided more accurate results for the sediment composition than the human 621 

annotator did. This meant the calculated difference between the annotated validation images and their responding 622 

DL-generated result was not solely originated from underperformance of the DL-model, but from human error as 623 

well. Consequently, using only the mathematical evaluation in this study could not describe adequately the model 624 

performance. Hence, the results were compared to those of three other methods: i) visual evaluation of the image 625 

series, ii) a wavelet-based image-processing method (using the method of Buscombe, 2013) and iii) riverbed 626 

composition data from physical samples. Considering the features of the applied methods, the first one, i.e., the 627 

visual observation, is expected to be the most suitable for the model validation. Indeed, when assessing the bed 628 

surface composition by eye, the same patterns are sought, i.e., both methods focus on the uppermost sediment 629 

layer. On the other hand, the physical sampling procedure inherently represents subsurface sediment layers, 630 

leading to different grain size distributions in many cases. For instance, as shown earlier, if bed armour develops 631 

in the riverbed and the sampler breaks-up this layer, the resulted sample can contain the finer particles from the 632 

subsurface. On the contrary, in zones where a fine sediment layer is deposited on coarse grains, i.e., a sand layer 633 

on the top of a gravel bed, the physical samples represent the coarse material too, moreover, considering that the 634 

sieving provides weight distribution this sort of bias will even enhance the proportion of the coarse particles. 635 

Attempts were made to involve a third, wavelet-based method for model validation. However, this method failed 636 

when finer particles, i.e., sand, characterized the bed. This is an inherent limitation of these type of methods, as 637 

discussed earlier, i.e., when the pixel size is simply not fine enough to reconstruct the small grain diameters in the 638 

range below fine gravel. Lastly, the most comparable sample points were selected to quantify the performance of 639 

the DL. Holding the sieved physical samples as ground truth, the DL algorithm showed promising results. The 640 

average error (difference) between DL-detected and physically measured relative sediment fraction portion 641 

percentages was 4.5%. Furthermore, the DL algorithm successfully detected the trend of changing bed 642 

composition along complete river cross-sections.  643 

 644 
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As it is known, the ML and DL models can learn unknown relationships in datasets, but unwanted biases as well. 645 

With our current dataset, these biases would be the darker tones of visible grain texture and the lack of larger grain 646 

sizes. This way our model in its current state is only applicable effectively in the chosen study site, until the dataset 647 

is not expanded with additional images from other rivers or regions. However, the purpose of the study was to 648 

introduce the methodology itself and its potential in general and not to create a universal algorithm. 649 

3.4 Novelty and future work  650 

The introduced image-based DL algorithm offers novel features in the field of sedimentation engineering. First, 651 

to the authors’ knowledge, underwater images of the bed of a large river have not yet been analysed by AI. Second, 652 

the herein introduced method enables extensive mapping of the riverbed composition, in contrast to most of the 653 

earlier approaches, where only several points or shorter sections were assessed with imagery methods. Third, the 654 

method is much faster compared to conventional samplings or non-DL-based image-processing techniques. The 655 

field survey of a 400 m long transect took ~15 minutes, while the DL analysis took 4 minutes (approx. 7 image/s). 656 

The speed range of 0.2-0.45 m/s of the measurement vessel and the 15 minutes per transect complies with the 657 

operating protocol of general ADCP surveys on rivers (e.g., RD Instruments, 1999; Simpson, 2002; Mueller and 658 

Wagner, 2013). Hence, the developed image-based measurement can be carried out together with the conventional 659 

boat-mounted ADCP measurements, further highlighting its time efficiency. Hence, the method offers an 660 

alternative approach for assessing riverbed material on-the-go, in underwater circumstances. As an extensive and 661 

quick mapping tool, it can support other types of bed material samplings in choosing the sampling locations and 662 

their optimal number. Furthermore, it can be used for quickly detecting areas of sedimentation and their extent, 663 

as we showed in Section 3.2. (e.g., Fig. 12b). This way, it can support decision-making regarding the maintenance 664 

of the channel or the bank-infiltrated drinking water production (detecting colmation zones). Fourth, a novel 665 

approach was used for the imaging and model training. As the camera-bed distance was constantly changing, the 666 

mm/pixel ratio also varied. Hence, no scale was defined for the algorithm beforehand. As we discussed in Section 667 

1., earlier DL methods for sediment analysis (e.g., Soloy et al., 2020) all applied fixed camera heights and/or 668 

provided scaling for the AI. Furthermore, these studies were based on airborne measurements, mapping the dry 669 

zone of the rivers. In an underwater manner, it is extremely challenging to keep a fixed, constant camera height 670 

due to the spatially varying riverbed elevations. By avoiding the need for a scale, our method is faster and simpler 671 

to use. As a drawback, our method does not reconstruct  detailed grainsize distributions, but rather measures the 672 

relative portions of the main sediment classes: sand, gravel, cobble. In short, this study showcased a fast bed 673 

material mapping tool, with a much denser spatial resolution than the conventional methods, saving up significant 674 

resources. 675 

  676 

Originally, beside the three classes of main sediment types introduced in the study, others were also defined during 677 

annotation (e.g., bedrock, clams), but due to class imbalance (i.e., dominance of the three sediment classes), these 678 

were not discriminated successfully. In the future, improving the method through transfer learning (Zamir et al., 679 

2018) using broader dataset and involving other sediment types will be considered. Another option for developing 680 

the method is to counter imbalance with the use of so-called weighted cross entropy (see Lu et al., 2019) on the 681 

current dataset, which will also be investigated. 682 

 683 
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Since the introduced method offers a quick way to provide extensive, spatially dense bed material information of 684 

its composition, it can be used to boost the training dataset of predictive, ensemble bagging-based Machine 685 

Learning techniques (e.g., Ren et al., 2020) and improve their accuracy. Furthermore, the method can support the 686 

implementation of other imaging techniques. For instance, using one of the training videos of this study the authors 687 

managed to reconstruct the grain-scale 3D model of a riverbed section with the Structure-from-Motion technique 688 

(Ermilov et al., 2020), enabling the quantitative estimation of surface roughness. Underwater field cameras can 689 

also be used for monitoring and estimating bedload transport rate (Ermilov et al., 2022) by adapting Large-scale 690 

– Particle Image Velocimetry and the Statistical Background Model approach. This latter videography technique 691 

may also be used with moving cameras (e.g., Hayman and Ekhlund, 2003), which enables its adaptation into our 692 

method by e.g., detecting bedload movement in the cross-section. 693 

 694 

The statistical representativity of the introduced method, as a surface sampling technique, needs to also be 695 

addressed in future work. Following and building upon the experience of conventional, surface sampling 696 

procedures (e.g., grid sampling; Diplas, 1988) may prove to be beneficial, where they provided the exact number 697 

of gravel particles needed to be included (Wolman, 1954) to satisfy the representativity criteria. Then, using edge- 698 

and blob-detection would enable to calculate and compare the number of gravel particles in the images to this 699 

value. Furthermore, we intend to apply 2 cameras, with overlapping FOVs for increasing the covered area (and 700 

the representativity) during surveys. Besides, it would also improve the accuracy of the Structure-from-Motion 701 

technique mentioned earlier.  702 

4 Conclusion 703 

We introduced a novel, AI-based method for riverbed sediment analysis. The method uses underwater images to 704 

reconstruct spatial variations in sediment grain sizes. Trained and validated with ~15.000 underwater images 705 

collected in a section of the Danube in Hungary, we showed that the method can map the riverbed along the 706 

vessel's route at a high spatial density of approximately 60-100 overlapping sample images per meter. The method 707 

does not require a scale and thus allows the distance between the camera and the riverbed to vary. In contrast to 708 

conventional point samples of river-bed substrate, our method provides spatially continuous data, that can be 709 

further enhanced (e.g., by interpolation) to 2D maps. The method can be applied in studies where dense 710 

information about river-bed composition is required, such as riverine habitat studies, computational hydro- and 711 

morphodynamic models, or analyses of river-restoration measures. Financial support. The first author 712 
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Appendix 1063 

Appendix A Site A - Section A – II 1064 

 1065 
Figure A1: The sediment fraction percentage results of every image, analysed by the DL algorithm along Section A - 1066 
II. While the trends are apparent, the sensitivity of the method at its current state can be observed. DL result before 1067 
applying moving-averaging. 1068 

 1069 

 1070 
Figure A2: Images of bed armouring, taken during our surveys in the Upper section of the Hungarian Danube. We 1071 
broke the surface armour to showcase the presence of the underlying finer fractions. 1072 

 1073 
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 1074 
Figure A3: a) Riverbed video images at the sampling points in Section A - II. b) Riverbed video images overlapped with 1075 
their raw, DL detection result, at the sampling points in Section A - II. 1076 
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Appendix B Site B - Section B – II 1077 

 1078 
Figure B1: Riverbed video images at the sampling points in Section B - II. 1079 

 1080 
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 1081 

Figure B2: Riverbed video images overlapped with their raw, DL detection result, at the sampling points in Section B 1082 
- II. 1083 

 1084 
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Appendix C Site A - Section A – I 1085 

 1086 
Figure C1: The path of the vessel and camera in Section A - I, Site A. The polyline is coloured based on the sediment 1087 
seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 1088 
created with Google Earth Pro) 1089 

 1090 

 1091 
Figure C2: Sediment fraction percentages in Section A - I, recognised by the AI. The visual evaluation included two 1092 
classes: gravel – G, sand – S). The fractions of the physical samples are shown as verticals. 1093 

 1094 



39 
 

 1095 
Figure C3: Comparison of sediment fraction % at the sampling locations from the moving-averaged DL detection, 1096 
conventional sieving and the wavelet-based image processing method. Section A - I. 1097 

 1098 
Figure C4: Riverbed video images at the sampling points in Section A - I. 1099 

 1100 
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 1101 

Figure C5: Riverbed video images overlapped with their raw, DL detection result, at the sampling points in Section A 1102 
- I.  1103 
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Appendix D Site A – Section A - III 1104 

 1105 
Figure D1: The path of the vessel and camera in Section A - III, Site A. The polyline is coloured based on the sediment 1106 
seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 1107 
created with Google Earth Pro) 1108 

 1109 

 1110 
Figure D2: Sediment fraction percentages in Section A - III, recognised by the AI. The visual evaluation included three 1111 
classes: gravel – G, sandy gravel – sG, gravelly sand - gS). The fractions of the physical samples are shown as verticals. 1112 
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 1113 
Figure D3: Comparison of sediment fraction % at the sampling locations from the moving-averaged DL detection, 1114 
conventional sieving and the wavelet-based image processing method. Section A - III. 1115 
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 1116 
Figure D4: Riverbed video images at the sampling points in Section A - III. 1117 

 1118 

 1119 
Figure D5: Riverbed video images overlapped with their raw, DL detection result, at the sampling points in Section A 1120 
- III. 1121 

 1122 
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Appendix E Site B – Section B - I 1123 

 1124 
Figure E1: The path of the vessel and camera in Section B - I, Site B. The polyline is coloured based on the sediment 1125 
seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 1126 
created with Google Earth Pro) 1127 

 1128 
Figure E2: Sediment fraction percentages in Section B - I, recognised by the AI. The visual evaluation included two 1129 
classes: gravel – G, sand – S). The fractions of the physical samples are shown as verticals. 1130 



45 
 

 1131 
Figure E3: Comparison of sediment fraction % at the sampling locations from the moving-averaged DL detection, 1132 
conventional sieving and the wavelet-based image processing method. Section B - I. 1133 

 1134 
Figure E4: Riverbed video images at the sampling points in Section B - I. 1135 

 1136 
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1137 
Figure E5: Riverbed video images overlapped with their raw, DL detection result, at the sampling points in Section B 1138 
- I. 1139 

 1140 

Appendix F  1141 

 1142 
Figure F1: Grainsize distribution curves of the 27 sieved physical samples. 11 curves categorised as Outlier Type-A are 1143 
showcased with dashed lines. The shapes of these curves are representing bimodal (gap graded) sediment distributions, 1144 
which typically refers to bed armouring (i.e., excess of a certain particle size, a coarser surface layer protects a finer 1145 
subsurface layer from being washed away). Hence, analysing images of the surface layer could not represent these 1146 
complex distributions inherently. 1147 


