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Abstract. The sediment of alluvial riverbeds plays a significant role in river systems both in engineering and 8 

natural processes. However, the sediment composition can show great spatial and temporal heterogeneity, even 9 

on river reach scale, making it difficult to representatively sample and assess. Indeed, conventional sampling 10 

methods in such cases cannot describe well the variability of the bed surface texture due to the amount of energy 11 

and time they would require. In this paper, an attempt is made to overcome this issue introducing a novel image-12 

based, Deep Learning algorithm and related field measurement methodology with potential for becoming a 13 

complementary technique for bed material samplings and significantly reducing the necessary resources. The 14 

algorithm was trained to recognise main sediment classes in videos that were taken underwater in a large river 15 

with mixed bed sediments, along cross-sections, using semantic segmentation. The method is fast, i.e., the videos 16 

of 300-400 meter long sections can be analysed within minutes, with very dense spatial sampling distribution. The 17 

goodness of the trained algorithm is evaluated mathematically and via intercomparison with other direct and 18 

indirect methods. Suggestions for performing proper field measurements are also given, furthermore, possibilities 19 

for combining the algorithm with other techniques are highlighted, briefly showcasing the multi-purpose of 20 

underwater videos for hydromorphological adaptation. The paper is to show the potential of underwater 21 

videography and Deep Learning through a case study. 22 

Keywords: rivers, sedimentology, mapping, Artificial Intelligence, Deep Learning, underwater, image-based 23 

1 Introduction 24 

The physical composition of a riverbed plays a crucial role in fluvial hydromorphological processes, as a sort of 25 

boundary condition in the interaction mechanisms between the flow and the solid bed. Within these processes, the 26 

grains on the riverbed are responsible for multiple phenomena, such as flow resistance (Vanoni and Hwang, 1967; 27 

Zhou et al., 2021), stability of the river bed (Staudt et al., 2018; Obodovskyi et al., 2020), development of bed 28 

armour (Rákóczi, 1987; Török et al., 2017), sediment clogging (Rákóczi, 1997; Fetzer et al., 2017), fish shelter 29 

(Scheder et al., 2015), etc. Through these physical processes, the bed material composition has a determining 30 

effect on numerous river uses, e.g., possibilities of fluvial navigation, drinking water supply through bank 31 

filtration, the quality of riverine habitats, etc. Knowledge of riverbed structure and grain composition is therefore 32 

of major importance in river hydromorphology. In order to gain information about river bed sediments, in situ 33 

field sampling methodologies are implemented.  34 

 35 
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Traditionally, bed material sampling methods are intrusive (i.e., sediment is physically extracted from the bed for 36 

follow-up analysis) and carried out via collecting the sediment grains one-by-one (areal, grid-by-number and 37 

pebble count methods, see e.g., Bunte and Abt, 2001; Guerit et al., 2018) or in a larger amount by a variety of 38 

grab samplers (volumetric methods, such as WMO, 1981; Singer, 2008). This is then followed by measuring their 39 

sizes individually on-site or transporting them to a laboratory for mass-sieving analysis (Kellerhals and Bray, 40 

1971; Fehr, 1987; Diplas, 1988; Bunte and Abt, 2001). These sampling procedures are time- and energy 41 

consuming, especially in large gravel and mixed bed rivers, where characteristic grain sizes can strongly vary both 42 

in time and space (Church et al., 1987; Wolcott and Church, 1991; Rice and Church, 1998; USDA, 2007), 43 

requiring a dense sampling point allocation. The same goes for critical river reaches, where significant human 44 

impact led to severe changes in the morphological state of the rivers (e.g., the upper-section of the Hungarian 45 

Danube; Török and Baranya, 2017). When assessing bed material composition on a river reach scale, experts 46 

usually try to extrapolate from the samples, and describe larger regions of the bed (even several thousand m2) by 47 

data gathered in a few, several dozen points (see e.g., USDA, 2007; Haddadchi et al., 2018; Baranya et al., 2018; 48 

Sun et al., 2021). Gaining a representative amount of the sediment samples is also a critical issue. For instance, 49 

following statistical criteria such as those of Kellerhals and Bray (1971) or Adams (1979), a representative sample 50 

should weigh ten-to-hundred kg. Additionally, physical bed material sampling methods are unable to directly 51 

quantify important, hydromorphological features such as roughness or bedforms (Graham et al., 2005). Due to 52 

these constraints, surrogate approaches have recently been intensively tested to analyse the riverbed (see Chapter 53 

2). Unlike the conventional methods, these techniques are non-intrusive and rely on computers and other 54 

instrumentation to decrease the need of human intervention and speed up the analyses. The goal of this paper is 55 

to introduce a Deep Learning-based technique and its first set of results which shows potential in complementing 56 

the traditional methods, while also providing broader knowledge of the riverbed than before through improved 57 

(continuous, quick, covering larger areas) data collection. First, a literature review is given to better understand 58 

the current state of surrogate approaches and their research, gradually leading up to the method of this paper and 59 

highlighting its relevance. In the third chapter the case studies and the methodology are introduced in details. The 60 

third chapter presents the results and their evaluation, followed by a discussion about the challenges, the novelty 61 

and possible continuations of the method. A brief discussion is also given on how the method can support 62 

traditional methods and what kind of additional hydromorphological parameters can be provided by such videos, 63 

uniquely improving the toolkits of sedimentation engineering.  Finally, the main conclusions of the paper are 64 

drawn.  65 

2 Literature review 66 

One group of the surrogate approaches is the acoustic methods, where an acoustic wave source (e.g., an Acoustic 67 

Doppler Current Profiler; ADCP) is pointed towards the riverbed from a moving vessel, emitting a signal. The 68 

strength and frequency of this signal is measured while it passes through the water column, reflecting back to the 69 

receiver from the sediment transported by the river, and finally from the riverbed itself. This approach is fast and 70 

larger areas can be covered relatively quickly (Guerrero and Lamberti, 2011; Grams et al., 2013). While it has 71 

already became widely used for describing movement (i.e., suspended sediment, bedload and indirectly flow 72 

velocity; Shields and Rigby, 2005; Guerrero et al., 2016; Muste et al., 2016) and channel shape (Zhang et al., 73 

2008), it has not reached similar breakthrough for riverbed material analysis. Researchers found that it is necessary 74 
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to apply instrument specific coefficients to convert the signal strength, and these coefficients can only be derived 75 

by first validating each instrument using collected sediment samples with corresponding ADCP data. Moreover, 76 

the method is sensitive to the bulk density of the sediment and to bedforms (Shields, 2010), while it is also not 77 

possible to measure individual grains this way (Buscombe et al., 2014a; 2014b). Hence, the separation of surface 78 

roughness from the effects of bedforms is also not possible. Clay and silt patches could be separated with the 79 

acoustic approach, but gravel could not be distinguished strongly from sand. 80 

 81 

Another group of the surrogate approaches is the application of photography (Kellerhals and Bray, 1971; Adams, 82 

1979; Ibbekken and Schleyer, 1986) and later computer vision or image-processing techniques. During the last 83 

two decades, two major subgroups emerged: one uses object- and edge detection (by finding abrupt changes in 84 

intensity and brightness of the picture, segmenting objects from each other; Butler et al., 2001; Sime and Ferguson, 85 

2003; Detert and Weitbrecht, 2013), and the other one analyses the textural properties of the whole image, using 86 

autocorrelation and semi-variance methods to define empirical relationship between image texture and the grain 87 

sizes of the photographed sediments (Carbonneau et al., 2004; Rubin, 2004; Verdú et al., 2005). The above-88 

mentioned image processing approaches were very time consuming and required mostly site-specific manual 89 

settings, however, a few transferable and more automated techniques have also been developed recently (e.g., 90 

Graham et al., 2005; Buscombe, 2013). Even though there is a continuous improvement in the applied image-91 

based bed sediment analysis methods, there are still major limitations the users face with, such as: 92 

 93 

• Most of the studies (all the ones listed above) focuses on gravel bed rivers, and only a few exceptions 94 

can be found in the literature where sand is also accounted for (texture-based methods; Chezar and 95 

Rubin, 2004; Buscombe and Masselink, 2008; Warrick et al., 2009; Buscombe, 2013). 96 

• The adaptation environment was typically non-submerged sediment, instead of underwater 97 

conditions (a few exceptions: Chezar and Rubin, 2004; Warrick et al., 2009). 98 

• The computational demand of the image processing is high (e.g., one to ten minutes per image; 99 

Detert and Weitbrecht, 2013; Purinton and Bookhagen, 2019). 100 

• The analysis requires operator expertise (higher than in case of any conventional method). 101 

• There is an inherent pixel- and image resolution limit (Graham et al., 2005; Buscombe and 102 

Masselink, 2008; Buscombe, 2013; Cheng, 2015; Purinton and Bookhagen, 2019). The finer the 103 

sediment, the higher resolution of the images should be (higher calculation time), or they must be 104 

taken from a closer position (smaller area and sample per image). 105 

• Due to the limitations above, most of the methods enable the analysis of smaller areas (in the order 106 

of ~10 m2) only and are not applicable for quick, continuous measurements of larger regions. 107 

 108 

Nowadays, with the rising popularity of Artificial Intelligence (AI), several Machine Learning (ML) techniques 109 

have been implemented in image recognition as well.  110 

 111 

The main approaches of segmentation contra textural analysis still remain; however, an AI defines the empirical 112 

relationship between the object sizes (Igathinatane et al., 2009; Kim et al., 2020) or texture types (e.g., Buscombe 113 

and Ritchie, 2018) in the images and their real sizes. In the field of river sedimentology a few examples can 114 
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already be found, where ML (e.g., Deep Learning; DL) was implemented. For instance, Rozniak et al. (2019) 115 

developed an algorithm for gravel-bed rivers, performing textural analysis. With this approach, individual grains 116 

are not detected, but rather the general grain size distribution (GSD) of the whole images. At certain points of the 117 

studied river basins, conventional physical samplings (pebble count) were performed to provide real GSD 118 

information. Using this data, the algorithm was trained (with ~1000 images) to estimate GSD for the rest of the 119 

study site, based on the images. The method worked for areas where grain diameters were larger than 5 mm, and 120 

the sediment was well-sorted. The developed method showed sensitivity to sand coverage, blurs, reduced 121 

illuminations (e.g., shadows) and white pixels. Soloy et al. (2020) presented an algorithm which used object 122 

detection on gravel- and cobble covered beaches to calculate individual grain sizes and shapes. Approximately 50 123 

images were used for the model training, however, the number of images were multiplied with data augmentation 124 

(rotating, cropping, blurring the images; see Perez and Wang, 2017) to enhance the learning session and increase 125 

the input data. The method was able to reach a limited execution speed of a few seconds per m2 and adequately 126 

measured the sizes of gravels. Ren et al. (2020) applied an ensemble bagging-based Machine Learning (ML) 127 

algorithm to estimate GSD along the 70 km long Hanford Reach of the Columbia river. Due to its economic 128 

importance, a large amount of measurement data has been accumulated for this study site over the years, making 129 

it ideal for using ML. By the time of the study, 13,372 scaled images (i.e., their millimetre/pixel ratio was known) 130 

were taken both underwater and in the dry zones, covering approx. 1 m2 area each. The distance between the 131 

image-sampling points was generally between 50-70 m. An expert defined the GSD (8 sediment classes) of each 132 

image by using a special, visual evaluation-classification methodology (Bovee, 1982, Delong and Brusven, 1991; 133 

Geist et al., 2000). This dataset was fed to a ML algorithm along with their corresponding bathymetric attributes 134 

and hydrodynamic properties, simulated with a 2D hydrodynamic model. Then, it was tested to predict the 135 

sediment classes based on the hydrodynamic parameters only. The algorithm performed with a mean accuracy of 136 

53%. Even though this method was not image-based (only indirectly, via the origin of the GSD data), it highlighted 137 

the possibilities of an AI for a predictive model, using a high-dimensional dataset. Having such a large data of 138 

grain size information can be considered exceptional and takes a huge amount of time to gather, even with the 139 

visual classification approach they adapted. Moreover, this was still considered spatially sparse information 140 

(point-like measurements, 1 m2 covered area/image dozens of meters away from each other). Buscombe (2020) 141 

used a set of 400 scaled images to train a DL algorithm on image texture properties, using another image-142 

processing method (Barnard et al., 2007) for validation. The algorithm reached a good result for not only gravel, 143 

but sand GSD calculation as well, outperforming an earlier, but promising, texture-based method (wavelet 144 

analysis; Buscombe, 2013). In addition, the method required fewer calibration parameters than the wavelet image-145 

processing approach. The study also foresaw the possibility to train an AI which estimates the real sizes of the 146 

grains, without knowing the scale of one pixel (mm/pixel ratio) if the training is done properly. The AI might 147 

learn unknown relationships between the texture and sizes if it is provided with a wide variety (images of several 148 

sediment classes) and scale (mm/pixel ratio) ) of dataset (however, it is also prone to learn unwanted biases).  149 

Recently, Takechi et al. (2021) further elaborated on the importance of shadow- detection and removal, using a 150 

dataset of 500 pictures for training a texture-based AI, with the help of an object-detecting image-processing 151 

technique (Basegrain; Detert and Weitbrecht, 2013).  152 

 153 
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The previously presented studies, applying ML and DL techniques, significantly contributed to the development 154 

and improvement of surrogate sampling methods, incorporating the great potential in AI. However, there are still 155 

several shortcomings to these procedures. Firstly, none of the image-based DL studies used underwater recordings, 156 

even though the underwater environment offers completely different challenges. Secondly, the training images 157 

were always scaled, i.e., the sizes of the grains could be easily reconstructed, which is again complicated to 158 

accomplish in a river. Lastly, they were not adapted for continuous measurement, but rather focused on a grid-159 

like approach. 160 

 161 

The method introduced in this paper follows the ML and DL approach as well. The main novelty of our DL and 162 

measurement method, however, is that both the training and analysed videos are recorded underwater, 163 

continuously along cross-sections of a large river. Furthermore, the training is unscaled, i.e., the camera-riverbed 164 

distance could vary while recording the videos, without considering image-scale. Moreover, compared to the 165 

relatively low number of training images in most of the above referred studies, we used a very large dataset 166 

(~15000) of sediment images for the texture-based AI, containing mostly: sand, gravel, cobble, and to a smaller 167 

extent: bedrock together with some other, non-sediment related objects.  168 

3 Methods 169 

3.1 Case studies 170 

The results presented in this study are based on riverbed videos taken during three measurement campaigns, in 171 

sections of the Danube river, Hungary. The first one was at Site A, Ercsi settlement (~ 1606 rkm), the second one 172 

was at Site B, Gönyű settlement (~ 1791 rkm), and the third was at Site C, near to Göd settlement (~ 1667 rkm) 173 

(Fig. 1).  174 

 175 
Figure 1: The location of the riverbed videos, where the underwater recordings took place (upper section of the 176 
Hungarian Danube). 177 
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The training of the AI was done using the video images of Site C and a portion of A (test set; see later in Chapter 178 

3.3), while Site B and the rest of the images from A served for validation. The measurements were carried out 179 

during daytime, at mid-water regime (Q = 1900 m3/s) in case of Site A, and low water regime (Q = 1350 m3/s) at 180 

Site B, similarly to Site C (Q = 700 m3/s). This latter site served only for increasing the training image dataset 181 

(i.e., conventional samplings were not carried out at the time of recording the videos), thus we do not go into 182 

further details with it for the rest of the paper, but the main characteristics are listed in Table 1. As underwater 183 

visibility conditions are influenced by the suspended sediment, the characteristics of this sediment transport is 184 

also included in Table 1 (Qsusp - susp. sed. load; SSC – susp. sed. concentration). 185 

 186 

  Site A Site B Site C 

Q [m3/s] 1900 1350 700 

B [m] 300 – 450 

Hmean [m] 3.5 - 4.5 

S [cm/km] 15 

Characteristic riverbed 

sediment 

gravel, 

sandy 

gravel 

gravel, 

gravelly 

sand 

gravel, 

sandy 

gravel 

Qannual,av [m3/s] 2000 2200 1400 

SSC [mg/l] 25 20 14 
Table 1: Main hydromorphological parameters of the measurement sites. Q: discharge during survey; B: river width; 187 
Hmean: mean water depth during the survey; S: river bed slope; Qannual, av.: annual-average of the discharge at the site; 188 
SSC: average suspended sediment concentration during the survey. 189 

The highest water depths were around 6-7 m in all cases. In Site A, measurements included mapping of the 190 

riverbed with a camera along three separate transects (Fig.2). At Site B, two transects were recorded (Fig.3).  191 
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 192 
Figure 2: At Site A, three transects were measured. The vessel moved along these lines from one bank to the other, 193 
while carrying out ADCP measurement and recording riverbed videos. Physical bed material samples were also 194 
collected in certain points of these sections. 195 

 196 

 197 
Figure 3: At Site B, two transects were measured. The vessel moved along these lines from one bank to the other, while 198 
carrying out ADCP measurement and recording riverbed videos. Physical bed material samples were also collected in 199 
certain points of these sections. 200 

3.2 Field data collection 201 

Figure 4 presents a sketch of the measurement process with the equipment and a close-up of the underwater 202 

instrumentation. During the field measurements, the camera was attached to a streamlined weight and lowered 203 

into the water from the vessel by an electric reel. The camera was positioned perpendicularly to the water and the 204 

riverbed, in front of the nose of the weight. Next to the camera, two diving lights worked as underwater light 205 

sources, focusing into the camera’s field of view (FoV). In addition, four laser pointers were also equipped in 206 
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hand-made isolation cases to provide possible scales for secondary measurements. They were also perpendicular 207 

to the bottom, projecting their points onto the underwater camera field of view. Their purpose was to ensure a 208 

visible scale (mm/pixel ratio) in the video footages for validation. During the measurement procedure, a vessel 209 

crossed the river slowly through river transects, while the position of the above detailed equipment was constantly 210 

adjusted by the reel. Simultaneously, ADCP and RTK GPS measurement were carried out by the same vessel, 211 

providing water depth, riverbed geometry, flow velocity, ship velocity and position data. Based on this information 212 

and by constantly checking the camera’s live footage on deck, the camera was lowered or lifted to keep the bed 213 

in camera sight, and avoid colliding with it. The vessel’s speed was also adjusted based on the video and slowed 214 

down if the video was blurry or the camera got too far away from the bed (see later in Chapter 4.3). The 215 

measurements required three personnel to i) drive the vessel, ii) handle the reel, adjust the equipment position, 216 

and monitor the camera footage, iii) monitor the ADCP data, while communicating with the other personnel (see 217 

Fig. 4). 218 

 219 
Figure 4: Left: sketch of the measurement process. The vessel was moving perpendicular to the riverbank along a cross-220 
section (i). A reel was used to lower a camera close to the riverbed (ii). Simultaneously, the bed topography and water 221 
depth were measured by an ADCP (iii). Right: Close-up sketch of the underwater instrumentation. 222 

The video recordings were made with a GOPRO Hero 7 and a Hero 4 commercial action cameras. Image 223 

resolutions were set to 2704x2028 (2.7K) with 60 frame per second (fps) and 1920x1080 (1080p) with 48 fps, 224 

respectively. Other parameters were left at their default (see GOPRO 2014; 2018), resulting in slightly different 225 

quality of produced images between the two cameras. Illumination is a critical condition for riverbed imaging. 226 

Here, a diving light with 1500 lumen brightness and 75° beam divergence, and one with 1800 lumen and 8° were 227 
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used. The four lasers for scaling had 450-520 nm (purple and green) wavelength and 1-5 mW nominal power. 228 

Power supply was ensured with batteries for all instruments. 229 

 230 
At Site A and Site B, conventional bed material (physical) samplings were also carried out by a grabbing (bucket) 231 

sampler along the analysed transects. At each cross-section had 4-5 samples were taken. The collected samples 232 

were analysed in laboratory by drying, sieving, and weighing to provide local grain size distribution. The measured 233 

GSDs were used to validate results of the AI algorithm. Separately, a visual evaluation of the videos was also 234 

carried out, where a person divided the transects into subsections based on their dominant sediment classes, after 235 

watching the footages. 236 

3.3 Image analysis: Artificial Intelligence and the wavelet method 237 

A widely used deep neural network architecture was employed in this study, building on former experiences of 238 

the authors (Benkő et al., 2020), Google’s DeeplabV3+ Mobilnet, in which many novel and state-of-the-art 239 

solutions are implemented (e.g., Atrous Spatial Pyramid Pooling; Chen et al., 2018). The model was implemented 240 

with Pytorch, exploiting its handy API and backward compatibility. The main goal was to build a deep neural 241 

network model which is able to recognise and categorise (via semantic segmentation; Chen et al., 2018) at least 242 

three main sediment size classes, i.e., sand, gravel and cobble, in the images, while being quickly deployable. The 243 

benefit of the introduced method compared to conventional imagery methods lies in the potential of automation 244 

and increased speed. If the annotation and training is carried out thoroughly, analysing further videos can run 245 

effortlessly, while the computation time can be scaled down either vertically (using stronger GPUs) or horizontally 246 

(increasing the number of GPUs; if parallel analysis of images is desired). In this study a TESLA K80 24GB 247 

GDDR5 348bit GPU, an Intel Skylake Intel® Xeon® Gold 6144 Processor (24.75M Cache, 3.50 GHz) CPU with 248 

13GB RAM was used. Also, contrary to other novel image-processing approaches in riverine sediment research 249 

(Buscombe, 2013; Detert and Weitbrecht, 2013), the deep convolutional neural network is much less limited by 250 

image resolution and mm/pixel ratios, because it does not rely on precise pixel count. This is an important 251 

advantage to be exploited here, as we perform non-scaled  training and measurements with the AI, i.e., camera-252 

bed distance constantly changed and size-reference was not used in the images.  253 

 254 

The first step in the analysis was to cut the captured videos into frames, during which the videos were exploded 255 

into sequential images. Brightening and sharpening filters were applied on the images to improve their quality. 256 

Next, the ones with clearest outlines and best visibility were chosen. This selection process was necessary because 257 

this way the delineation process (learning the prominent characteristics of each class) can be executed accurately, 258 

without the presence of misleading or confusing images, e.g., blurry or dark pictures where the features are hard 259 

to recognise. For training purposes, we chose three footages from different sections each being ~15 minutes long 260 

with 60 fps and 48 fps, resulting in 129 600 frames. In fact, no such large dataset was needed due to the strong 261 

similarity of the consecutive frames. The number of images to be annotated and augmented were therefore 262 

decreased to ~2000.  263 

 264 

We also performed a white balance correction on some of the images to improve visibility, making it even easier 265 

to later define the sediment class boundaries. We used an additional algorithm to generate more data, with the so-266 
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called Simplest Colour Balance method (Limare et al., 2011). It is a simple, but powerful histogram equalisation 267 

algorithm which helps to equalise the roughness in pixel distribution.  268 

 269 

These steps were followed by the annotation, where we distinguished ten classes. Annotation was performed with 270 

the help of an open-source software called PixelAnnotationTool (Breheret, 2017), which enables the user to colour 271 

mask large parts of an image based on colour change derivatives (i.e., colour masking part of the images which 272 

belong to the same class, e.g., purple/red – sand, green – gravel, yellow – cobble, etc.). The masks and outlines 273 

were drawn manually, together with the so called watershed annotation. That is, when a line was drawn, the 274 

algorithm checked for similar pixels in the vicinity and automatically annotated them with the same class. The 275 

annotation was followed by a data augmentation step where beside mirroring, cropping, rotating the images (to 276 

decrease the chance of overfitting), we also convolved them with different filters. These filters added normally 277 

distributed noise to the photos to influence the watershed algorithm and applied sharpening, blurring, darkening, 278 

and white balance enhancement. Thus, at the data level, we tried to ensure that any changes in water purity, light, 279 

and transparency, as well as colour changes, were adequately represented during training. Images were uniformly 280 

converted to 960x540 resolution, scaling them down to make them more usable to fit in the GPU's memory. The 281 

next step was to convert all the images from RGB (Red-Green-Blue) based colour to grayscale. This is important 282 

because colour images have 3-channels, so that they contain a red, a green, and a blue layer, while grayscale 283 

images’ pixel can only take one value between 0 and 255. With this colour conversion we obtained a threefold 284 

increase in computational speed. In total, a dataset of 14,784 images was prepared (from the ~2000 images of the4 285 

training videos). The next step was to separate this into training and validation sets. In this study, approximately 286 

80% of the data was used for training the Artificial Intelligence, while 20% was to validate the training. It was 287 

important to mix the images so that the algorithm selects batches in a pseudorandom manner during training, thus 288 

preventing the model from being overfitted. Finally, after several changes in the hyperparameters, the evaluation 289 

and visualisation of the training results were performed. Learning rate was initialised to 0.01, with 30000 iteration 290 

steps, and the learning rate is reset after every 5000 iterations with a decay of 0.1. A batch size of 16 was used. 291 

We used a cross-entropy loss function. 292 

 293 

As previously mentioned, laser pointers were used to provide scale for the recorded videos, as a secondary 294 

validation. We used a textural image-processing method to analyse the video images of the spots, where the 295 

physical samples were taken. For this, the already mentioned, transferable wavelet-based signal- and image-296 

processing method (Buscombe, 2013) was chosen. The method enables to calculate the image-based grain size 297 

distribution of the selected pictures. The grey-scale intensity is analysed through pixel-rows and -columns of the 298 

image and handled as individual signals. Then, instead of Fourier-transform, the less-constrained wavelet-299 

transform is applied to decompose them. Finally, calculating the power spectra and the sizes (from pixel to 300 

millimetre, using the scale) of the wavelet components (each wavelet describes an individual grain) produces the 301 

grain size distribution for the given image. Beforehand, this method was proved to be the most efficient, non-AI 302 

image-processing method for mixed sediments (Buscombe, 2013; 2020) and was already tested for underwater 303 

circumstances in an earlier study by the authors of present paper (Ermilov et al., 2020). 304 
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4 Results and discussion 305 

4.1 Evaluation of the training  306 

To evaluate the training process, the image series used for the training was analysed by the developed Deep 307 

Learning algorithm.  Figure 5. shows results of original images (from the validation set), their ground truth 308 

(annotation by the training personnel), as well as the AI prediction (result of the model). The overlays of the 309 

original and the predicted images are also shown for better visualization. Calculating the over-all pixel accuracy 310 

(i.e., the percent of pixels that were correctly classified) returned a satisfactory result with an average 96% match. 311 

As this parameter in object detection and Deep Learning is not a stand-alone parameter (i.e., it can still be high 312 

even if the model performs poorly), the mean IoU (intersection-over-union or Jaccard index) was also assessed, 313 

indicating the overlap of ground truth area and prediction area, divided by their union (Rahman and Wang, 2016). 314 

This parameter showed a much slighter agreement of 41.46%. Interestingly, there were many cases, where the 315 

model gave better result, than the annotating personnel. The first row of Figure 5. showcases two examples for 316 

this: i) the correct appearance of cobble (yellow) in the prediction, even though the user (ground truth) did not 317 

define it during the training; ii) correctly sensing gravel in the middle of the image, contrary to a whole sand (red) 318 

patch in the ground truth image. As a matter of fact, these positive errors also decrease the IoU evaluation 319 

parameter, even though they increase the performance of the AI on the long term. Hence, this shows that pure 320 

mathematical evaluation may not describe the model performance entirely. Considering that others also reported 321 

similar experience with Deep Learning (Lu et al., 2018) and the fact that 40% and 50% are generally accepted 322 

IoU threshold values (Yang et al., 2018; Cheng et al., 2018; Padilla et al., 2020), we considered the 41.46% 323 

acceptable. The general quality of our underwater images may have also played a role in lowering the IoU result. 324 

 325 
Figure 5: Example comparisons of ground truth (taught) and AI predicted (learnt) sediment classes from the training 326 
videos showing satisfactory results. 327 
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4.2 Intercomparison of methods 328 

In each masked image, the occurring percentage of the given class (i.e., the percentage of the pixels belonging to 329 

that class/colour mask, compared to the total number of pixels in the image) was calculated and used as the fraction 330 

percentage in that given sampling point. These sediment classes reconstructed by the AI were then compared to 331 

three alternative results: i) visual estimation, ii) GSD resulted from conventional grab sampling, iii) wavelet-based 332 

image-processing. In the followings, results from two cross-sections will be shown, one from Site A, the video 333 

used for the training, and one from Site B, being new for the AI. An averaging window of 15 m was applied on 334 

each cross-sectional AI result to smoothen and despike the dataset. 335 

 336 

In Figure 6, the path of the vessel can be seen in Section K, at Site A. The path was coloured based on the visual 337 

evaluation of the riverbed images. The different colours represent the dominant sediment type seen at the given 338 

point of the bed. The locations of the physical bed material samplings are also shown (see yellow markers). Figure 339 

7 shows the cross-sectional visual classification compared to the AI-detected sediment fractions in percentage. 340 

 341 

 342 
Figure 6: The path of the vessel and camera in Section K, Site A. The polyline is coloured based on the sediment features 343 
seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 344 

345 created with © Google Earth Pro) 
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 346 

 347 
Figure 7: Section K. The visual evaluation of the dominant sediment features in the video (top) compared to sediment 348 
fraction percentage, recognised by the AI (bottom). The visual evaluation included four classes: gravel – G, sandy 349 
gravel – sG, gravelly sand – gS, sand – S,). The fractions from the physical samples are also shown (verticals). 350 

Comparing the two figures, the AI result show satisfactory match with the human evaluation. For example, around 351 

100 m from the left bank, between K1 and K2 sampling points, the AI peaks with around 70% sand an 30% gravel 352 

correctly. Furthermore, on the two side of this peak a steep transition to gravel and decreasing sand occurs, 353 

similarly to the eye observation, marked as sandy gravel and gravelly sand. Mixed sediment zones were also 354 

correctly identified by the AI at both riverbanks.  355 

 356 

Next, the AI estimated sediment classes were compared with both the physical samples and the wavelet method 357 

at each sampling locations (Fig. 8). The images of the bed from the sampling points are in shown in Figure 9. As 358 

for the AI results, a moving average-based smoothing was applied in the 15 m vicinity of the sampling locations. 359 

Overall, the AI based classification agrees well with the physical samples, however, at sample K3 the ~20% sand 360 

content was neither reconstructed by the AI, nor could be observed by eye (see Fig. 9). Considering that the gravel 361 

dominates the bed sediments, the absence of sand fraction in the AI results might be explained with the difference 362 

between the surface GSD and subsurface GSD. While both the AI and the eye observation-based assessment focus 363 

on the bed surface, the physical sampling represents a thicker layer, including the subsurface layer, too. Indeed, 364 

the so-called bed armouring phenomenon, taking place in the vicinity of the thalweg in mixed-bed rivers, leads to 365 

coarser surface grains and finer subsurface grains (see e.g., Wilcock, 2005). This may explain the case of K2 as it 366 

was located closer to the thalweq. As for the wavelet analysis-based imagery technique, an overall slight 367 

overestimation of the coarse particles can be observed, and the sand classes are, in fact, not reconstructed correctly. 368 

This finding agrees well with the field experiences of Ermilov et al. (2020), where the authors indicated the strong 369 

sensitivity of the wavelet technique on the image resolution, and showed that to detect a grain, the diameter must 370 

be at least three times larger than the pixel. In this survey, the camera was indeed closer to the riverbed at sampling 371 
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points K1 and K4 and the wavelet algorithm was able to detect coarse sand, but finer sand was neglected yielding 372 

the lower percentages seen in Figure 8.  373 

 374 

 375 
Figure 8: Comparison of sediment fraction % at the sampling locations from the moving-averaged AI detection, 376 
conventional sieving and the wavelet-based image processing method. Section K. 377 

 378 
Figure 9: Riverbed video images at the sampling points in Section K. 379 

 380 

At site B (Fig. 10) the river morphology is more complex compared to Site A as a groyne field is located along 381 

the left bank (see again Fig. 3). As such, the low flow regions between the groynes yields the, deposition of fine 382 

sediments, and much coarser bed composition in the narrowed main stream. Even though no images containing 383 

only fine sediments were applied in the training phase of the AI algorithm, the model still managed to successfully 384 
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distinguish these zones. The fine sediments in the deposition zone at the left bank was adequately estimated and 385 

showed a good match with the visual evaluation for the whole cross-section (see Fig. 11). 386 

 387 

 388 
Figure 10: The path of the vessel and camera in Section VM, Site B. The polyline is coloured based on the sediment 389 
seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 390 

 393 
 394 
Figure 11: Sediment fraction percentages in Section VM, recognised by the AI. The visual evaluation included two 395 
classes: gravel – G, sand – S). The fractions from the conventional, point samples are also shown (verticals). 396 

 397 

391 created with © Google Earth Pro) 

392  
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When comparing the AI results with the physical samples, the match is acceptable for most of the samples, such 398 

as 3/1, VM2, VM3, 3/3, VM4, 3/4, VM5, respectively, with a highest difference of 10%. The significant 399 

disagreements arose at sampling points VM1 and 3/2. Indeed, these points are located around the border of the of 400 

the sediment deposition zone, showing steeply decreasing amount of sand moving away from the left bank (see 401 

the variation from point 3/1 towards 3/2 in Fig. 12). This trend is successfully calculated by the AI algorithm, but 402 

the physical samples for points VM1 and 3/2 show strong gravel dominance with negligible amount of sand (see 403 

Fig. 13). Resembling the findings at the other study site, this difference can likely be explained with the disturbed 404 

physical samples, which contain the sediments of the subsurface layer, too. In this case, however, the fine sediment 405 

layer is accumulated on the gravel particles. It is also worth noting that the physical samples are analysed by 406 

weighing the different sediment size classes, resulting in volumetric distribution. On the other hand, the imagery 407 

methods provide surface distributions, hence having a thin layer of fine sediments on the top can strongly bias the 408 

resulted composition (Bunte and Abt, 2001; Sime and Ferguson, 2003; Rubin et al., 2007).  409 

 410 

At sampling point 3/5 a weaker, but still satisfactory agreement was found. Here, the AI indicated 20% sand in 411 

contrast with the physical samples. Analysis of the raw videos may indicate that the suspended sediment 412 

concentration was higher in this region and the transported fine particles frequently became visible passing 413 

through the light beams, eventually causing disturbance in the AI analysis. Another issue in the AI algorithm was 414 

associated with the illumination. As a matter of fact, a part of the images was sometimes overexposed, and the too 415 

high light intensity biased the results. Examples for these problems are illustrated in Figure 14 (a: overexposure, 416 

b: moving suspended sediment). 417 

 418 

The resolution was again not sufficient for the wavelet method, and it estimated gravel and cobble regions. 419 

Contrary to the previous example, it did not manage to identify coarse sand. 420 
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 421 
Figure 12: River bed video images at the sampling points in Section VM. 422 
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 423 
Figure 13: Comparison of sediment fraction % at the sampling locations from the moving-averaged AI detection, 424 
conventional sieving and the wavelet-based image processing method. Section VM. 425 
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 426 
Figure 14: The effect of strong diving light on the AI algorithm in: a) purely sand covered zone and b) darker zone with 427 
higher SSC. The original images are on the left, while the AI detections can be found on the right. 428 

 429 
Results of the other measurements can be found in the Appendix. Figure A2, B2 and C2 show that the trend of 430 

riverbed composition from the visual evaluation is well-captured by the AI in the other cross-sections of the study 431 

as well (see sampling points F/3, F/4, 1/1, 1/2 1/3, respectively). The resolution limit of the wavelet approach was 432 

further noticeable (see Figure A3, B3 and C3) as it was not able to detect sand, similarly to the sampling points 433 

presented earlier. In Section A, traces of possible bed armouring were found as neither the eye observation nor 434 

the AI detected sand class in the images (see Figure B4) of F/1 and F/2, even though the physical samples 435 

contained this fraction. In sampling point 1/4, the AI correctly detected the mixing of sand and gravel, but the 436 

physical sample showed the dominance of sand rather than the gravel fraction (see Figure C3). The possible 437 

explanation behind these differences resembles what was the case for the K3 sampling point, introduced earlier: 438 

there was an additional finer fraction in the subsurface layer, hidden from the camera. Based on the results 439 

presented in this paper, it could be established that the AI manages to recognise the main features of the riverbed 440 

material composition from underwater videos with satisfactory accuracy. 441 

4.3   Implementation challenges 442 

The power supply for the entire imaging infrastructure, i.e., for the camera, the diving lights and lasers, was 443 

ensured by batteries. However, due to the low temperature at the river bottom, the battery level decreased 444 

extremely fast, compared to normal circumstances. Providing the power supply directly from the motorboat 445 

engines can overcome this issue. To keep the camera in the adequate height also caused difficulties, since getting 446 

too close to the bed can harm the devices, lifting too high, on the other hand, will result in poor image quality. 447 

The measured instantaneous ADCP flow depth data was used therefore to keep the bed in camera sight, while 448 

maintaining proper boat velocity to avoid blurry images. We found that a 0.2-0.45 m/s vessel speed with 60 fps 449 

recording frequency was ideal to retrieve satisfactory images in a range of 0.4-1.6 m camera-bed distances. This 450 

meant approximately 15 minutes long measurements per transects. Higher vessel speed caused blurred images. 451 

Choosing a higher recording frequency, however, can be beneficial and alter this limitation, when provided. Lower 452 

velocities could not be maintained as the river would have moved the vessel out of the section. Using a diving 453 

light with small beam divergence also proved counterproductive. The high intensity, focused light occasionally 454 

caused overexposed zones (white pixels) in the bed image, misleading the AI and resulting in detecting incorrect 455 
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classes there. The use of wide beam divergence lamps is recommended instead, with uniform light. Further 456 

attention needs to be paid to the reel and its cabel during the crossing when the equipment is on the upstream side 457 

of the boat. If the flow velocities are relatively high (compared to the total submerged weight of the underwater 458 

equipment), the cable can be pressed against the vessel-body due to the force from the flow itself, causing the reel 459 

cable to jump to the side and leave its guide. This results in the equipment falling to the riverbed and the 460 

measurement has to be stopped to reinstall the cable. 461 

 462 

As for the training of the AI algorithm with the underwater images, the illumination is indeed a more crucial 463 

aspect, compared to normal imagery methods. In many cases only the centre areas of the images were clearly 464 

visible, whereas the remaining parts were rather dark and shady. Determining the boundaries between distinct 465 

sediment classes for these images was challenging even for experienced eyes. This quality issue certainly 466 

generated some incorrect annotations. To overcome this issue, manually varying the white balance thus enhancing 467 

the visibility of the sediment could improve the training to some extent. It is worth noting that when Deep Learning 468 

methods are to be used, most of the problems arise from the data side (Yu et al., 2007), whereas issues related to 469 

the applied algorithms and hardware are rare. This is because data is more important from an accuracy perspective 470 

than the actual technical infrastructure (Chen et al., 2020). The time demand of image annotation (data 471 

preparation) is relatively high, i.e. an untrained person could analyse roughly 10 images per hour. On the other 472 

hand, as introduced earlier, a great advantage of using AI is the capability of improving the quality of training 473 

itself, often yielding better agreement with reality, compared to the manual annotation. Similar results have been 474 

reported by Lu et al., (2018). This at the same time proves that there is no need for very precise manual training, 475 

thus a fast and effective training process can eventually be achieved. 476 

 477 

The validation of the Deep Learning algorithm is far from straightforward. In this study, four approaches were 478 

adapted, i.e., a mathematical approach, and comparison with three other measurement methods, respectively. The 479 

mathematical approach was based on calculating pixel accuracy and the Intersection-over-union parameter, as it 480 

is usually done in case of Deep Learning methods to describe their efficiency (e.g. Rahman and Wang, 2016). 481 

However, the latter parameter was shown to be decreased even when the model improved. Consequently, using 482 

only the mathematical evaluation in this study could not describe adequately the model performance. Hence, the 483 

results were compared to those of three other methods: i) visual evaluation of the image series, ii) a wavelet-based 484 

image-processing method (using the method of Buscombe, 2013) and iii) riverbed composition data from physical 485 

samples. Considering the features of the applied methods, the first one, i.e. the visual observation, is expected to 486 

be the most suitable for the model validation. Indeed, when assessing the bed surface composition by eye, the 487 

same patterns are sought, i.e. both methods focus on the uppermost sediment layer. On the other hand, the physical 488 

sampling procedure inherently represents subsurface sediment layers, leading to different grain size distributions 489 

in many cases. For instance, as shown above, if bed armour develops in the riverbed and the sampler breaks-up 490 

this layer, the resulted sample can contain the finer particles from the subsurface layer. On the contrary, in zones 491 

where a fine sediment layer is deposited on coarse grains, i.e. a sand layer on the top of a gravel bed, the physical 492 

samples represent the coarse material too, moreover, considering that the sieving provides volumetric distribution 493 

this sort of bias will even enhance the proportion of the coarse particles. Attempts were made to involve a third, 494 

wavelet based method for model validation. However, this method failed when finer particles, i.e. sand, 495 
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characterized the bed. This is an inherent limitation of these type of methods, as shown already by Buscombe and 496 

Masselink (2008), Cheng (2015) or Ermilov et al (2020), as the image resolution, i.e. the pixel size, is simply not 497 

fine enough to reconstruct the small grain diameters in the range below fine gravel. 498 

 499 

As it is known, the ML and DL models can learn unknown relationships in datasets, but unwanted biases as well. 500 

With our current dataset, in our opinion, these biases would be the darker tones of visible grain texture and the 501 

lack of larger grain sizes. This way our model in its current state is only applicable effectively in the chosen study 502 

site, until the dataset is not expanded with additional images from other rivers or regions. However, the purpose 503 

of the paper was to introduce the methodology itself and its potential in general and not to create a universal 504 

algorithm. 505 

4.4 Novelty and future work  506 

The introduced image-based Deep Learning algorithm offers novel features in the field of sedimentation 507 

engineering. First, to the authors’ knowledge, underwater images of the bed of a large river have not yet been 508 

analysed by AI. Second, the herein introduced method enables continuous (and quick) mapping of the riverbed, 509 

in contrast to most of the earlier approaches, where only points or shorter sections were assessed with imagery 510 

methods. Third, the method is much faster compared to conventional samplings or non-AI based image-processing 511 

techniques. The field survey of a 400 m long transect took ~15 minutes, while the AI analysis took 4 minutes 512 

(approx. 7 image/s). The speed range of 0.2-0.45 m/s of the measurement vessel and the 15 minutes per transect 513 

complies with the operating protocol of general ADCP surveys on rivers (e.g., RD Instruments, 1999; Simpson, 514 

2002; Mueller and Wagner, 2013). Hence, the developed image-based measurement can be carried out together 515 

with the conventional boat-mounted ADCP measurements, further highlighting its time efficiency. Indeed, the 516 

method is a great alternative approach for assessing riverbed material on-the-go, in underwater circumstances. As 517 

a continuous and quick mapping tool, it can support other types of bed material samplings in choosing the 518 

sampling locations and their optimal number. Furthermore, it can be used for quickly detecting areas of 519 

sedimentation and their extent, as it was shown in Ch. 4.2. (Figure 11). This way, it may support decisions 520 

regarding the maintenance of the channel or the bank-infiltrated drinking water production (detecting colmation 521 

and colmated zones). Fourth, a novel approach was used for the imaging and model training. As the camera-bed 522 

distance were constantly changing, the mm/pixel ratio also varied. Hence, no scale was defined for the algorithm 523 

beforehand. Earlier Deep Learning methods for sediment analysis all applied fixed camera heights and/or provided 524 

scaling for the AI. It should be noted that these were airborne measurements, mapping the dry zone of the rivers. 525 

In an underwater manner, it is extremely challenging to keep a fixed, constant camera height due to the spatially 526 

varying riverbed elevations. Hence, it is of major importance that this paper introduces a methodology and a Deep 527 

Learning algorithm which neglect the need for scaling. This way, the method is faster and easier to build, but also 528 

simpler to use. Of course, as a trade-off, the method, as of now, cannot reconstruct detailed grainsize distributions. 529 

Indeed, the purpose was rather to provide a uniquely fast bed material mapping tool, additionally with a much 530 

denser spatial resolution than the conventional methods, saving up significant resources. 531 

  532 

Originally, beside the three main sediment grain classes introduced in the paper (sand, gravel, cobble), others were 533 

also defined during annotation (e.g., bedrock, clams), but due to class imbalance (i.e., dominance of the three 534 
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sediment classes), these were not adapted successfully. There is a good potential in improving the method through 535 

transfer learning (see Zamir et al., 2018) using broader dataset, involving other sediment types. Another possible 536 

way to counter imbalance is the use of so-called weighted cross entropy (see Lu et al., 2019) on the current dataset, 537 

which will also be investigated in our case. 538 

 539 

Since the introduced method offers a quick way to provide spatially continuous bed material information of its 540 

composition, it may be used to boost the training dataset of predictive, ensemble bagging-based Machine Learning 541 

techniques (e.g., Ren et al., 2020) and improve their accuracy. Furthermore, the method can support the 542 

implementation of other imagery techniques. For instance, using one of the training videos of this study the authors 543 

managed to reconstruct the grain-scale 3D model of a riverbed section with the Structure-from-Motion technique 544 

(Ermilov et al., 2020), enabling the quantitative estimation of surface roughness. Underwater field cameras can 545 

also be used for monitoring and estimating bedload transport rate (Ermilov et al., 2022) by adapting LS-PIV and 546 

the Statistical Background Model approach. This latter videography technique may also be used with moving 547 

cameras (e.g., Hayman and Ekhlund, 2003), which enables its adaptation into our method by e.g., detecting 548 

bedload movement in the cross-section. 549 

5 Conclusion 550 

A novel, artificial intelligence-based riverbed sediment analysis method has been introduced in this paper, which 551 

uses underwater images to reconstruct the spatial variation of the characteristic sediment classes. The method was 552 

trained and validated with a reasonably high number (~15000) of images, collected in a large river, in the 553 

Hungarian section of the Danube. The main novelties of the developed Deep Learning based procedure are the 554 

followings: i) underwater images are used, ii) the method enables continuous mapping of the riverbed along the 555 

measurement vessel’s route, iii) cost-efficient, iv) works without scaling, i.e., the distance between the camera 556 

and the riverbed can vary. Consequently, in contrast with conventional pointwise bed sediment analysis methods, 557 

this technique is robust and capable of providing continuous sediment composition data covering whole river 558 

reaches, eventually providing the possibility to set up 2D bed material maps. In this way, river reach scale 559 

hydromorphological assessments can be supported, where the composition of bed surface is of interest, e.g., when 560 

performing habitat studies, parameterising 2D and 3D computational hydrodynamic and morphodynamic models, 561 

or assessing the impact of restoration measures.  562 

Financial support. The first author acknowledges the support of the ÚNKP-21-3 New National Excellence 563 

Programme of the Ministry for Innovation and Technology, and the National Research, Development and 564 

Innovation Fund, Hungary. 565 

Code availability. The code written and used in this paper is available here: https://bmeedu-566 

my.sharepoint.com/:f:/g/personal/ermilov_alexander_emk_bme_hu/EjI2neM4AOZGsBkYgKReViEBBzRFRFo567 

YyLlmo6SzTB_qDQ?e=AqpqHI  568 

https://doi.org/10.5194/esurf-2022-56
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



23 
 

Data availability. The dataset and results can be accessed using the following link: https://bmeedu-569 

my.sharepoint.com/:f:/g/personal/ermilov_alexander_emk_bme_hu/EhoGx64sP1tFnj8Z1OdMZAsBZWd5gDY570 

zPyodSUDdWFjeiw?e=hKIXjq  571 

Author contributions. GB developed the code and carried out the training process. AAE carried out the 572 

fieldwork, evaluated the results, did the laboratory analysis, and collaborated with GB in improving the images. 573 

SB oversaw and directed the project, while managing the financial- and equipment background.   574 

Competing interest. The contact author has declared that none of the authors has any competing interest. 575 

Acknowledgements. The authors would like to thank our students Dávid Koós, Gergely Tikász, Schrott Márton 576 

and our technicians István Galgóczy, István Pozsgai, Károly Tóth and András Rehák for fieldwork support. 577 

References 578 

Adams, J.: Gravel Size Analysis from Photographs. J. Hydraul. Div., 1979, 105, 1247–1255. 579 
doi/10.1061/JYCEAJ.0005283, 1979. 580 
 581 
Anglin, D. R., Haeseker, S. L., Skalicky, J. J., Schaller, H., Tiffan, K. F., Hatten, J. R., et al.: Effects of Hydropower 582 
Operations on Spawning Habitat, Rearing Habitat, and Standing/Entrapment Mortality of Fall Chinook Salmon 583 
in the Hanford Reach of the Columbia River. US Fish and Wildlife Service, final Report. Available at: 584 
https://pubs.er.usgs.gov/publication/70179516, 2006. 585 
 586 
Baranya, S., Fleit, G., Józsa, J., Szalóky, Z., Tóth, B., Czeglédi, I. and Erős, T.: Habitat mapping of riverine fish 587 
by means of hydromorphological tools. Ecohydrology, Volume 11, Issue 7 e2009. Available at: 588 
https://doi.org/10.1002/eco.2009 , 2018. 589 
 590 
Barnard, P., Rubin, D., Harney, J. and Mustain, N.: Field test comparison of an autocorrelation technique for 591 
determining grain size using a digital beachball camera versus traditional methods. Sedimentary Geology, 201(1–592 
2): 180–195., 2007. 593 
 594 
Benkő, G., Baranya, S., Török, T. G., and Molnár, B.: Folyami mederanyag szemösszetételének vizsgálata Mély 595 
Tanulás eljárással drónfelvételek alapján (in English: Analysis of composition of river bed material with Deep 596 
Learning based on drone video footages). Hidrológiai Közlöny, 100, 61–69., 2020. 597 
 598 
Bovee, K. D.: A guide to stream habitat analysis using the. Instream Flow Incremental Methodology. Instream 599 
Flow Information, Paper no. 12., U.S.D.I. Fish and Wildlife Service, Office of Biological Services. FWS/OBS-600 
82/26. 248 pp., 1982. 601 
 602 
Breheret, A.: Pixel Annotation Tool. Av. at:  https://github.com/abreheret/PixelAnnotationTool, 2017. 603 
 604 
Bunte, K. and Abt, S. R.: Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel- and 605 
Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring; General 606 
Technical Report (GTR), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort 607 
Collins, CO, USA, 2001. 608 
 609 
Butler, J. B., Lane, S. N. and Chandler, J. H.: Automated extraction of grain-size data from gravel surfaces using 610 
digital image processing. J. Hydraul. Res., 39, 519–529., 2001. 611 
 612 
Buscombe, D. and Masselink, G.: Grain size information from the statistical properties of digital images of 613 
sediment. Sedimentology, 56, 421–438. doi/10.1111/j.1365-3091.2008.00977.x, 2008. 614 
 615 
Buscombe, D.: Transferable wavelet method for grain-size distribution from images of sediment surfaces and thin 616 
sections, and other natural granular patterns. Sedimentology, 60 1709–1732., 2013. 617 

https://doi.org/10.5194/esurf-2022-56
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



24 
 

 618 
Buscombe, D., Grams, P. and Kaplinski, M.: Characterizing riverbed sediment using high-frequency acoustics: 1. 619 
Spectral properties of scattering. Journal of Geophysical Research: Earth Surface, doi: 10.1002/2014JF003189, 620 
119:12, (2674-2691), 2014a. 621 
 622 
Buscombe, D., Grams, P. and Kaplinski, M.: Characterizing riverbed sediment using high-frequency acoustics: 2. 623 
Scattering signatures of Colorado River bed sediment in Marble and Grand Canyons. Journal of Geophysical 624 
Research: Earth Surface, doi/full/10.1002/2014JF003191, 119:12, (2674-2691), 2014b. 625 
 626 
Buscombe, D. and Ritchie, A. C.: Landscape Classification with Deep Neural Networks. Geosciences, 8, 244. 627 
Available at: https://doi.org/10.3390/geosciences8070244 , 2018. 628 
 629 
Buscombe, D.: SediNet: a configurable deep learning model for mixed qualitative and quantitative optical 630 
granulometry optical granulometry. Earth Surface Processes and Landforms, 45, 638-651. DOI: 631 
10.1002/esp.4760, 2020. 632 
 633 
Butler, J. B., Lane, S. N. and Chandler, J. H.: Automated extraction of grain-size data from 634 
gravel surfaces using digital image processing. J. Hydraul. Res. 2001, 39, 519-529. Available at: 635 
https://doi.org/10.1080/00221686.2001.9628276, 2001. 636 
 637 
Carbonneau, P. E., Lane, S. N and Bergeron, N. E.: Catchment-scale mapping of surface grain size in gravel bed 638 
rivers using airborne digital imagery. Water Resources Research, 40(7): W07202., 2004. 639 
 640 
Chandler, J., Lane, S. N. and Ashmore, P.: Measuring river-bed and flume morphology and parameterising bed 641 
roughness with a KODAK DCS460 digital camera. International Archives of Photogrammetry and Remote 642 
Sensing, Vol. XXXIII, Part B7., 2000. 643 
 644 
Chen, C., Zhang, P., Zhang, H., Dai, J., Yi, Y., Zhang, H. and Zhang, Y.: Deep Learning on Computational-645 
Resource-Limited Platforms: A Survey. Volume 2020, Article ID 8454327. Available at: 646 
https://doi.org/10.1155/2020/8454327, 2020. 647 
 648 
Chen, L., Zhu, Y., Isola, P., Papandreou, G., Schroff, F. and Adam, H.: Encoder-Decoder with Atrous Separable 649 
Convolution for Semantic Image Segmentation. Proceedings of the European conference on computer vision 650 
(ECCV) (pp. 801-818). https://arxiv.org/abs/1802.02611., 2018. 651 
 652 
Cheng, D., Li, X., Li, W. H., Lu, C., Li, F., Zhao, H. and Zheng, W. S.: Large-Scale Visible Watermark Detection 653 
and Removal with Deep Convolutional Networks. In book: Pattern Recognition and Computer Vision. First 654 
Chinese Conference, PRCV, Guangzhou, China, Proceedings, Part III. DOI: 10.1007/978-3-030-03338-5_3, 655 
2018. 656 
 657 
Cheng, Z., and Liu, H.: Digital grain-size analysis based on autocorrelation algorithm. Sedimentary Geology, 327, 658 
21-31. Available at: https://doi.org/10.1016/j.sedgeo.2015.07.008, 2015. 659 
 660 
Chezar, H. and Rubin, D. M.: Underwater Microscope System. United States Patent Office, The United States  of  661 
America  as  represented by the Secretary of the Interior, US Patent No. 6,680,795 B2., 2004. 662 
 663 
Church, M. A., McLean, D. G., and Wolcott, J. F.: Sediments transport in Gravel Bed Rivers. Chap.: River Bed 664 
Gravels: Sampling and Analysis. John Wiley and Sons, New York, 43–88, 1987. 665 
 666 
Delong, M. D. and Brusven, M. A.: Classification and spatial mapping of riparian habitat with applications toward 667 
management of streams impacted by nonpoint source pollution. Environmental Management, 15:565-571. DOI: 668 
10.1007/BF02394745, 1991. 669 
 670 
Detert, M. and Weitbrecht, V.: User guide to gravelometric image analysis by BASEGRAIN. In Advances in 671 
Science and Research; Fukuoka, S., Nakagawa, H., Sumi, T., Zhang, H., Eds.; Taylor and Francis Group: London, 672 
UK, 2013; pp. 1789–1795. ISBN 978-1-138-00062-9., 2013. 673 
 674 
Diplas, P.: Sampling Techniques for Gravel Sized Sediments. Journal of Hydraulic Engineering. DOI: 675 
10.1061/(ASCE)0733-9429(1988)114:5(484), 1988. 676 
 677 

https://doi.org/10.5194/esurf-2022-56
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



25 
 

Ermilov, A.A., Baranya, S. and Török, G.T.: Image-Based Bed Material Mapping of a Large River. Water, 12, 678 
916. Available at: https://doi.org/10.3390/w12030916, 2020. 679 
 680 
Ermilov, A. A., Fleit, G., Conevski, S., Guerrero, M., Baranya, S., & Rüther, N.: Bedload transport analysis using 681 
image processing techniques. ACTA GEOPHYSICA, 1895-6572 1895-7455. http://doi.org/10.1007/ s11600-022-682 
00791-x, 2022. 683 
 684 
Fehr, R.: Einfache Bestimmung der Korngrös¬senverteilung von Geschiebematerial mit Hilfe der 685 
Linienzahlanalyse (In English: Simple detection of grain size distribution of sediment material using line-count 686 
analysis). Schweizer Ing. und Archit., 105, 1104–1109., 1987. 687 
 688 
Fetzer, J., Holzner, M., Plötze, M. and Furrer, G.: Clogging of an Alpine streambed by silt-sized particles – 689 
Insights from laboratory and field experiments. Water Research, Volume 126, Pages 60-69. 690 
https://doi.org/10.1016/j.watres.2017.09.015, 2017. 691 
 692 
Geist, D. R., Jones, J., Murray, C. J. and Dauble, D. D.: Suitability criteria analyzed at the spatial scale of redd 693 
clusters improved estimates of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat use in the 694 
Hanford Reach, Columbia River. Canadian Journal of Fisheries and Aquatic Sciences, 57: 1636-1646., 2000. 695 
 696 
Gilcher, M. and Udelhoven, T.: Field Geometry and the Spatial and Temporal Generalization of Crop 697 
Classification Algorithms—A Randomized Approach to Compare Pixel Based and Convolution Based Methods. 698 
Remote Sens., 13, 775., 2021. 699 
 700 
GOPRO Hero 4 Silver: User Manual. Available at: https://gopro.com/content/dam/help/hero4-701 
silver/manuals/UM_H4Silver_ENG_REVA_WEB.pdf, 2014. 702 
 703 
GOPRO Hero 7 Black: User Manual. Available at:  https://gopro.com/content/dam/help/hero7-704 
black/manuals/HERO7Black_UM_ENG_REVA.pdf, 2018. 705 
 706 
Graham, D. J., Reid, I. and Rice, S. P.: Automated sizing of coarse-grained sediments: image-processing 707 
procedures. Mathematical Geology, 37, 1–28. https://doi.org/10.1007/s11004-005-8745-x, 2005. 708 
 709 
Graham, D. J. Rollet, A.J., Piégay, H. and Rice, S. P.: Maximizing the accuracy of image-based surface sediment 710 
sampling techniques. Water Resour. Res., 46, W02508. https://doi.org/ 711 
10.1029/2008WR006940, 2010. 712 
 713 
Grams, P. E., Topping, D. J., Schmidt, J. C., Hazel, J. E. and Kaplinski, M.: Linking morphody-namic response 714 
with sediment mass balance on the Colorado River in Marble Canyon: Issues of scale, geomorphic setting, and 715 
sampling design, J. Geophys. Res. Earth Surf., 118, 361–381, doi:10.1002/jgrf.20050., 2013. 716 
 717 
Guerit, L., Barrier, L., Liu, Y., Narteau, C., Lajeunesse, E., Gayer, E., Métivier, F.: Uniform grain-size distribution 718 
in the active layer of a shallow, gravel-bedded, braided river (the Urumqi River, China) and implications for paleo-719 
hydrology. Earth Surface Dynamics. 6. 1011-1021. DOI: 10.5194/esurf-6-1011-2018., 2018. 720 
 721 
Guerrero, M. and Lamberti, A.: Flow field and morphology mapping using ADCP and multibeam techniques: 722 
Survey in the Po River. J. Hydraul. Eng., 137, 1576–1587, doi:10.1061/ 723 
(ASCE)HY.1943-7900.0000464., 2011. 724 
 725 
Guerrero, M., Rüther, N., Szupiany, R., Haun, S., Baranya, S. and Latosinski, F.: The Acoustic Properties of 726 
Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability. Water, 8, 13; 727 
doi:10.3390/w8010013, 2016. 728 
 729 
Haddadchi, A., Booker, D.J. and Measures, R.J.: Predicting river bed substrate cover proportions across New 730 
Zealand. Catena, Volume 163, pp. 130-146. Available at: https://doi.org/10.1016/j.catena.2017.12.014, 2018. 731 
 732 
Hayman, E., Eklundh, J.: Statistical Background Subtraction for a Mobile Observer. Proceedings of the Ninth 733 
IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 0–7695–1950–4/03, 2003. 734 
 735 

https://doi.org/10.5194/esurf-2022-56
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



26 
 

Ibbeken, H., and Schleyer, R.: Photo-sieving: A method for grain-size analysis of coarse-grained, unconsolidated 736 
bedding surfaces. Earth Surf. Process. Landforms, 11, 59–77. Available at:  737 
https://doi.org/10.1002/esp.3290110108, 1986. 738 
 739 
Igathinathane, C., Melin, S., Sokhansanj, S., Bi, X., Lim, C .J., Pordesimo, L. O. and Columbus, E. P.: Machine 740 
vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets. 741 
Powder Technol., 196, 202–212. Available at: https://doi.org/10.1016/j.powtec.2009.07.024, 2009. 742 
 743 
Kellerhals, R. and Bray, D. I.: Sampling Procedures for Coarse Fluvial Sediments. J. Hydraul. Div., 97, 1165–744 
1180., 1971. 745 
 746 
Kim, H., Han, J. and Han, T. Y.: Machine vision-driven automatic recognition of particle size and morphology in 747 
SEM images. Nanoscale, 12, 19461–19469.  Available at: https://doi.org/10.1039/D0NR04140H, 2020. 748 
 749 
Le, Q. V.: Building high-level features using large scale unsupervised learning. In Proceedings of the 2013 IEEE 750 
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, pp. 8595–8598., 751 
2013. 752 
 753 
Leopold, L. B.: An Improved Method for Size Distribution of Stream Bed Gravel. Water Resour. Res., 6, 1357–754 
1366. https://doi.org/10.1029/WR006i005p01357, 1970. 755 
 756 
Limare, A., Tal, M., Reitz, M. D., Lajeunesse, E., and Métivier, F.: Optical method for measuring bed topography 757 
and flow depth in an experimental flume. Solid Earth, 2, 143–154, https://doi.org/10.5194/se-2-143-2011., 2011. 758 
 759 
Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer 760 
Vision, 60, pages 91–110, 2004. 761 
 762 
Lu, S., Gao, F., Piao, Ch. and Ma, Y.: Dynamic Weighted Cross Entropy for Semantic Segmentation with 763 
Extremely Imbalanced Data. 2019 International Conference on Artificial Intelligence and Advanced 764 
Manufacturing (AIAM). doi: 10.1109/AIAM48774.2019.00053, 2019. 765 
 766 
Mueller D. S., Wagner, Ch. R.: Measuring Discharge with Acoustic Doppler Current Profilers from a Moving 767 
Boat. USGS, Chapter 22 of Book 3, Section A. https://pubs.usgs.gov/tm/3a22/, 2009. 768 
 769 
Mueller D. S., Wagner, Ch. R.: Measuring discharge with acoustic Doppler current profilers from a moving boat, 770 
version 2.0. https://www.researchgate.net/publication/284587353_Measuring_discharge_with_acoustic_-771 
Doppler_current_profilers_from_a_moving_boat, 2013. 772 
 773 
Muste, M., Baranya, S., Tsubaki, R., Kim, D., Ho, H., Tsai, H. and Law, D.: Acoustic mapping velocimetry. Water 774 
Resour. Res., 52, 4132–4150, doi:10.1002/2015WR018354., 2016. 775 
 776 
Obodovskyi, O., Habel, M., Szatten, D., Rozlach, Z., Babiński, Z., Maerker, M.: Assessment of the Dnieper 777 
Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam. Water, 12(4):1104. 778 
https://doi.org/10.3390/w12041104, 2020. 779 
 780 
Padilla, R., Netto, S. M. and da Silva, E. A. B.: A Survey on Performance Metrics for Object-Detection 781 
Algorithms. Conference: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). 782 
DOI: 10.1109/IWSSIP48289.2020, 2020. 783 
 784 
Perez, L. and Wang, J.: The Effectiveness of Data Augmentation in Image Classification using Deep Learning. 785 
arXiv preprint arXiv:1712.04621. Av. at: https://arxiv.org/abs/1712.04621. 2017., 2017. 786 
 787 
Purinton, B. and Bookhagen, B.: Introducing PebbleCounts: A grain-sizing tool for photo surveys of dynamic 788 
gravel-bed rivers. Earth Surf. Dyn., 7, 859–877. https://doi.org/10.5194/esurf-7-859-2019, 2019. 789 
 790 
Rákóczi, L.: Selective erosion of noncohesive bed materials. Geografiska Annaler. Series A, Physical Geography, 791 
Vol. 69, No. 1, pp. 29-35. https://doi.org/10.2307/521364, 1987. 792 
 793 
Rákóczi, L.: Identification of river channel areas inclined for colmation, based on the analysis of bed material. 794 
Vízügyi Közlemények, LXXIX., chapter 3., 1997. 795 

https://doi.org/10.5194/esurf-2022-56
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



27 
 

 796 
Rahman, M. A. and Wang, Y.: Optimizing Intersection-Over-Union in Deep Neural Networks for Image 797 
Segmentation. In: Bebis G. et al. (eds) Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer 798 
Science, vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_22, 2016.   799 
 800 
RD Instruments – Acoustic Doppler Current Profilers – Appliction Note: https://www.comm-801 
tec.com/library/Technical_Papers/RDI/FSA-004%20Mode1.pdf, 1999. 802 
 803 
Rice, S. and Church, M.: Grain size along two gravel-bed rivers: Statistical variation, spatial pattern and 804 
sedimentary links. Earth Surf. Process. Landf., 23, 345–363., 1998. 805 
 806 
Ren, H., Hou, Z., Duan, Z., Song, X., Perkins, WA., Richmond, M. C., Arntzen, E. V. and Scheibe, T. D.: Spatial 807 
Mapping of Riverbed Grain-Size Distribution Using Machine Learning. Front. Water, 2:551627. doi: 808 
10.3389/frwa.2020.551627, 2020. 809 
 810 
Rozniak, A., Schindler, K., Wegner, J. D. and Lang, N.: Drone images and Deep Learning for river monitoring in 811 
Switzerland. Semester project. Institute of Geodesy and Photogrammetry, Project, Swiss Federal Institute of 812 
Technology (ETH) Zurich, 2019. 813 
 814 
Rubin, D. M.: A simple autocorrelation algorithm for determining grain-size from digital images of sediment. J. 815 
Sed. Res., 74, 160–165., 2004. 816 
 817 
Rubin, D. M., Chezar, H., Harney, J. N., Topping, D. J., Melis, T. S., Sherwood, C. R.: Underwater microscope 818 
for measuring spatial and temporal changes in bed-sediment grain size. Sedimentary Geology, Volume 202, Issue 819 
3, Pages 402-408,  https://doi.org/10.1016/j.sedgeo.2007.03.020, 2007. 820 
 821 
Scheder, C., Lerchegger, B., Flödl, P., Csar, D., Gumpinger, C. and Hauer, C.: River bed stability versus clogged 822 
interstitial: Depth-dependent accumulation of substances in freshwater pearl mussel (Margaritifera margaritifera 823 
L.) habitats in Austrian streams as a function of hydromorphological parameters. Limnologica, Volume 50, 824 
January 2015, Pages 29-39. https://doi.org/10.1016/j.limno.2014.08.003, 2015. 825 
 826 
Shields, F. D., Jr. and Rigby, J. R.: River habitat quality from river velocities measured using acoustic Doppler 827 
current profiler. Environ. Manage.; 36(4):565-75. doi: 10.1007/s00267-004-0292-6., 2005. 828 
 829 
Shields, F. D. Jr.: Aquatic Habitat Bottom Classification Using ADCP. Journal of Hydraulic Engineering, Vol. 830 
136, Issue 5, 2010. 831 
 832 
Sime, L. C. and Ferguson, R. I.: Information on grain-sizes in gravel bed rivers by automated image analysis. J. 833 
Sed. Res., 73, 630–636., 2003. 834 
 835 
Simpson, M. R.: Discharge Measurements Using a Broad-Band Acoustic Doppler Current Profiler. USGS, Open-836 
File Report 01-1, https://pubs.usgs.gov/of/2001/ofr0101/, 2002. 837 
 838 
Singer, M. B.: A new sampler for extracting bed material sediment from sand and gravel beds in navigable rivers. 839 
Earth Surface Processes and Landforms 33(14):2277 – 2284 DOI: 10.1002/esp.1661, 2008. 840 
 841 
Soloy, A., Turki, I., Fournier, M., Costa, S., Peuziat, B. and Lecoq, N.: A Deep Learning-Based Method for 842 
Quantifying and Mapping the Grain Size on Pebble Beaches. Remote Sens., 12, 3659, doi:10.3390/rs12213659, 843 
2020. 844 
 845 
Staudt, F., Mullarney, J. C, Pilditch, C. A. and Huhn, K.:  Effects of grain‐size distribution and shape on sediment 846 
bed stability, near‐bed flow and bed microstructure. Earth Surface Processes and Landforms, 44(5). DOI: 847 
10.1002/esp.4559, 2018. 848 
 849 
Sun, Z., Zheng, H. and Sun, L.: Analysis on the Characteristics of Bed Materials in the Jinghong Reservoir on the 850 
Lancang River. Sustainability, 13, 6874. https://doi.org/10.3390/su13126874, 2021. 851 
 852 
Takechi, H., Aragaki, S. and Irie, M.: Differentiation of River Sediments Fractions in UAV Aerial Images by 853 
Convolution Neural Network. Remote Sens., 13, 3188. https://doi.org/10.3390/rs13163188, 2021. 854 
 855 

https://doi.org/10.5194/esurf-2022-56
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



28 
 

Taravat, A., Wagner, M. P., Bonifacio, R. and Petit, D.: Advanced Fully Convolutional Networks for Agricultural 856 
Field Boundary Detection. Remote Sens., 13, 722., 2021. 857 
 858 
Török, G. T., Baranya, S. (2017) Morphological Investigation of a Critical Reach of the Upper Hungarian Danube. 859 
Periodica Polytechnica Civil Engin-eering. 61(4), pp. 752–761. https://doi.org/10.3311/PPci.10530, 2017. 860 
 861 
Török, G. T., Baranya, S. and Rüther, N.: 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment 862 
Deposition. Water, 9(1), 56, https://doi.org/10.3390/w9010056, 2017. 863 
 864 
USDA: Guidelines for Sampling Bed Material. Technical Supplement 13A, 2007. 865 
 866 
Vanoni, V. A. and Hwang, L. S.: Relation between Bed Forms and Friction in Streams. J. Hydraulics Division., 867 
93 (3), 121–144. doi:10.1061/JYCEAJ.0001607, 1967. 868 
 869 
Verdú, J. M., Batalla, R. J. and Martinez-Casanovas, J. A.: High-resolution grain-size characterisation of gravel 870 
bars using imagery analysis and geo-statistics. Geomorphology, 72, 73–93., 2005. 871 
 872 
Warrick, J. A., Rubin, D. M., Ruggiero, P., Harney, J. N., Draut, A. E. and Buscombe, D.: Cobble cam: Grain-873 
size measurements of sand to boulder from digital photographs and autocorrelation analyses. Earth Surf. Process 874 
Landf., 34, 1811–1821. https://doi.org/10.1002/esp.1877, 2009. 875 
 876 
Wilcock, P. R.: Persistance of armor layers in gravel-bed streams. Hydrology and Land Surface Studies. 877 
https://doi.org/10.1029/2004GL021772, 2005. 878 
 879 
Wolcott, J. F., Church, M.: Strategies for sampling spatially heterogeneous phenomena: The example of river 880 
gravels. Journal of Sedimentary Research. v. 61, no. 4, p. 534–543, 1991. 881 
 882 
WMO: Measurement of river sediments: prepared by the Rapporteur on Sediment Transport of the Commission 883 
for Hydrology. Report, World Meteorological Organization - No. 561, Operational hydrology report (OHR)- No. 884 
16, 1981. 885 
 886 
Yang, F., Yi, M., Cai, Y., Blasch, E., Sullivan, N., Sheaff, C., Chen, G. and Ling, H.: Multitask Assessment of 887 
Roads and Vehicles Network (MARVN). Proceedings Volume 10641, Sensors and Systems for Space 888 
Applications XI, 106410D, https://doi.org/10.1117/12.2305972, 2018. 889 
 890 
Yu. L., Wang, S. and Lai, K.K.: Data Preparation in Neural Network Data Analysis. In book: Foreign-Exchange-891 
Rate Forecasting with Artificial Neural Networks. DOI: 10.1007/978-0-387-71720-3_3, 2007. 892 
 893 
Zamir, A. R., Sax, A., Shen, W., Guibas, L., Malik, J. and Savarese, S.: Taskonomy: Disentangling Task Transfer 894 
Learning. In Proceedings of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake 895 
City, UT, USA, pp. 3712–3722. doi: 10.1109/CVPR.2018.00391, 2018. 896 
 897 
Zhang, Q., Shi, Y., Chen, Z. and Jiang, T.: ADCP measured flow current of the middle-lower Changjiang River 898 
channel. Front. Earth Sci., China 2, 1–9. https://doi.org/10.1007/s11707-008-0016-y, 2008. 899 
 900 
Zhou, Y., Lu, J., Jin, Z., Li, Y., Gao, Y., Liu, Y. and Chen, P.: Experimental Study on the Riverbed Coarsening 901 
Process and Changes in the Flow Structure and Resistance in the Gravel Riverbed Downstream of Dams. Front. 902 
Environ. Sci., https://doi.org/10.3389/fenvs.2021.611668, 2021. 903 
 904 
Zhu, J., Park, T., Isola, P. and Efros, A. A.: Unpaired Image-to-Image Translation using Cycle-Consistent 905 
Adversarial Networks. arxiv, https://arxiv.org/abs/1703.10593, 2020. 906 
  907 

https://doi.org/10.5194/esurf-2022-56
Preprint. Discussion started: 14 November 2022
c© Author(s) 2022. CC BY 4.0 License.



29 
 

Appendix 908 

Appendix A Site A - Section F 909 

 910 
Figure A1: The path of the vessel and camera in Section F, Site A. The polyline is coloured based on the sediment seen 911 
during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 912 

 915 
Figure A2: Sediment fraction percentages in Section F, recognised by the AI. The visual evaluation included two classes: 916 
gravel – G, sand – S). The fractions from the physical samples are also shown (verticals). 917 

913 created with © Google Earth Pro)
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 918 

 919 

 920 
Figure A3: Comparison of sediment fraction % at the sampling locations from the moving-averaged AI detection, 921 
conventional sieving and the wavelet-based image processing method. Section F. 922 

 923 
Figure A4: Riverbed video images at the sampling points in Section F.  924 
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Appendix B Site A – Section A 925 

 926 
Figure B1: The path of the vessel and camera in Section A, Site A. The polyline is coloured based on the sediment seen 927 
during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 928 

 931 
Figure B2: Sediment fraction percentages in Section A, recognised by the AI. The visual evaluation included three 932 
classes: gravel – G, sandy gravel – sG, gravelly sand - gS). The fractions from the physical samples are also shown 933 
(verticals). 934 

929 created with © Google Earth Pro) 
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 935 
Figure B3: Comparison of sediment fraction % at the sampling locations from the moving-averaged AI detection, 936 
conventional sieving and the wavelet-based image processing method. Section A. 937 

 938 
Figure B4: Riverbed video images at the sampling points in Section A. 939 
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Appendix C Site B – Section NY 941 

 942 
Figure C1: The path of the vessel and camera in Section NY, Site B. The polyline is coloured based on the sediment 943 
seen during visual evaluation of the video. Yellow markers are the locations of physical bed material samplings. (Map 944 

 946 
Figure C2: Sediment fraction percentages in Section NY, recognised by the AI. The visual evaluation included two 947 
classes: gravel – G, sand – S). The fractions from the physical samples are also shown (verticals). 948 

945 created with © Google Earth Pro) 
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 949 
Figure C3: Comparison of sediment fraction % at the sampling locations from the moving-averaged AI detection, 950 
conventional sieving and the wavelet-based image processing method. Section NY. 951 

 952 
Figure C4: River bed video images at the sampling points in Section NY. 953 
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