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We thank the Associate Editor and three anonymous Referees for handling and assessing our 

manuscript. We are also grateful to the three referees for their insightful observations and 

critiques. Following their recommendations and concerns, we will carefully revise our manuscript 

to clarify the methods and significance of this research. 

Hereafter, we provide preliminary responses to these observations before addressing them in 

detail in a revised manuscript. 

The comments of the Associate Editor and the three Referees are in italic black font style. Our 

preliminary responses are in regular blue font style. 

 

Responses to the Associate Editor (EC1) 

EC1: Comments and responses 

Dear Authors, 

We have now received three referee comments (RCs). Based on the RCs, major revisions may be 

needed before the manuscript may be considered for publication. 

Please respond to the three Referee Comments. RC2, in particular, provided detailed critiques and 

suggestions for improving the manuscript. 

Upload a revised manuscript and a detailed response to the RCs by March 10, 2023. 

Best, 

Sagy Cohen, Associate Editor 

 Thank you again for handling our manuscript. We are grateful to the three referees for 

their insightful comments and critiques. We understand and respect the critiques given by RC2. 

However, we do feel that most of them originated from an intrinsic misunderstanding of our study 

hypothesis and methods, which might be due to an unclear explanation in the original manuscript. 

Hereafter, we provide preliminary responses to all observations of the referees to explain how 

we will revise our manuscript and clear out any potential misunderstandings. 

 We will carefully revise our manuscript following the recommendations of the three 

referees and upload a revised manuscript and detailed responses by the due date. 

 

 

 

 

 

 



2 
 

Responses to Referee 1 (RC1) 

RC1: Comment 1 and response 

In the introduction part, the authors should clearly indicate the research gap and the novelty of 

this research. 

 Thank you again for assessing our manuscript. We understand your concerns regarding 

the clarity of the research gap and novelty in our manuscript, which can be originated from an 

unclear explanation in the Introduction section. We will substantially revise the Introduction 

section in a revised manuscript to improve the presentation of our research gap and novelty. 

 

RC1: Comment 2 and response 

The research object of this paper is mainly shallow landslides. It is recommended to highlight the 

uniqueness of the research object in the abstract and introduction. 

 We acknowledge that most landslides triggered during the examined rainfall event are 

shallow (depth = 1 to 2 m), as indicated by Chigira et al. (2018). Still, some of the landslides could 

be relatively deep, as we observed a few landslides with large areas (area > 10,000 m2) in the FAD 

of the landslide inventory (Figure 2 of the original manuscript). 

 Because we did not use any fundamental criteria to differentiate shallow landslides (e.g., 

area < 10,000 m2 in Marc et al. (2019)) due to the unavailability of validation data (i.e., high-

resolution DEM data taken before and after the examined event), we believe that adding “shallow 

landslides” may cause some confusion for readers. Therefore, we prefer not to limit the study to 

shallow landslides. 

 

RC1: Comment 3 and response 

In Figure 1b, the north arrow is missing. 

 We will add the missed north arrow in Figure 1b. Also, we will add the missed label and 

unit in the color bar of Figure 1a. 

 

RC1: Comment 4 and response 

In Figure 3, the contour of the study area should be added. The color bars in Figure 3 lack labels 

and units. Please check similar issues in other figures. 

 We have added the contour lines of the study area in Figure 3 (please see Fig. RC1.1). 

However, we feel that the figure becomes unclear for readers as it overlays multiple different 

information (i.e., rainfall intensity, landslide distribution, TD, MLD, and contour lines). We believe 

that adding the contour lines may make the figure difficult to understand. Therefore, we prefer 

not to add it. On the other hand, we will add the missed labels and units in the color bars in Figure 

3 and all other figures in the Supplement file. 
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RC1: Comment 5 and response 

The discussion part needs to be reorganized. 

 We will reorganize the discussion section in a revised manuscript with sub-sections to 

make it more accessible for readers. 

 

RC1: Comment 6 and response 

Figure 4c: “TD 5.68 & MLD = 1.14” should be changed to “TD = 5.68 & MLD = 1.14”. 

 We will re-create Figure 4 to correct this mistake. 

 

RC1: Comment 7 and response 

Line 255: The 100-year rainfall anomaly was higher in the low landslide-density grid cell in P3 (Fig. 

5i) than in the low landslide-density grid cell in P1 (Fig. 5c) (< 1.5 times). Why could the comparison 

of the 100-year rainfall anomaly explain the substantial difference in landslide density between 

the two grid cells (≈ 110 times for TD). 

 This important question leads us to notice an insufficient explanation regarding the use of 

the 100-year rainfall anomaly in our study. Therefore, we will substantially clarify it in our revised 

manuscript. 

 It is worth noting that the 100-year rainfall anomaly was proposed in our study to assess 

the rainfall intensity for multiple timespans (i.e., rainfall intensity maxima) in terms of rarity and 

extremity rather than rainfall intensity. For instance, a 100-year rainfall anomaly for a 3-h 

timespan higher than 1 means that the 3-h maximum rainfall intensity was extreme and rare 

compared to previously experienced 3-h rainfall intensity in the study area as it has a return level 

of > 100-year return period. Thus, the 100-year rainfall anomaly can provide important 

information on the potential of the multiple rainfall timespans to induce landslides, as high return 

level rainfall is generally needed for landsliding (Iida, 1999; Segoni et al., 2015). Accordingly, it can 

be a standard method to compare the potential of rainfall intensity maxima observed in the 

different R/A grid cells to trigger landsliding, irrespective of the differences in rainfall intensity 

maxima. 

 We found that the 100-year rainfall anomaly was higher in the low landslide-density grid 

cell in P3 (Fig. 5i) than in the low landslide-density grid cell in P1 (Fig. 5c). This means that rainfall 

timespans in the former were more extreme (i.e., high potential to cause landslides) than those 

experienced over the latter. Accordingly, the differences in the 100-year rainfall anomaly, which 

dictate the potential of rainfall periods to cause landsliding, could explain the substantial 

difference in landslide density over the two R/A grid cells. 
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Figure RC1.1. Spatial distribution maps of rainfall intensity maxima for 1 to 72 h timespans 

within the Pstd in mm/h, triggered landslides (grey polygons), and landslide density metrics 

(circles). The brown lines show the contour lines of the study area. 
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Responses to Referee 2 (RC2) 

RC2: Comment 1 and response 

The study relates a large data set of landslides with rainfall characteristics in Japan, using 7,500 

landslides over an area of 400km2. The study uses radar precipitation at 25km2 resolution with 1 

to 72 h durations. Land cover and lithology are deemed homogenous in the study site. 

A power-law distribution is used to identify the landslide size cutoff for moderate and large sizes. 

Landslide densities are only calculated where slopes exceeded a threshold of 16.26 degrees (slopes 

that include >90% of slides). Landslides are separated into total landslide density (TD), which 

includes all the observations, and medium and large landslide size density (MLD), which includes 

the slides greater that the size cutoff (>439 m2). 

A standardized rainfall that accumulates maximum rainfall over 72h period is used as Pstd. Within 

this Pstd, multiple time periods that record maximum intensities were also identified (1h to 72h). 

That aided the authors to develop a rainfall intensity-duration relation threshold curves based on 

I-D data. 

Figure 3 presents a map of 1h to 72h maximum rainfall depths (25km2 resolution) along with TD 

and MLDs. Higher landslide densities are observed where rainfall intensities are high. 

More landslides occurred with rainfall exceeded 100 year return interval. 

 Thank you for assessing our manuscript. We like to clarify a potential misunderstanding 

about how we calculated landslide density in this study. Our study intended to examine the 

interplay between rainfall intensity for multiple timespans, which can be assessed by their return 

levels, and the spatial variation of landslide density. Given that the rainfall information was 

derived from a 5-km radar-driven gauge-adjusted precipitation dataset (referred to as R/A), we 

calculated landslide density by considering the number of landslides that occurred within each 

R/A grid cell. This is different from other studies that intended to examine how landslide density 

varies with slope angle, and therefore they calculated landslide density by counting the number 

of landslides that occurred within particular ranges of local hillslope angles (Coe et al., 2004; De 

Rose, 2013; Prancevic et al., 2020).  

 So, differently from what is stated, “Landslide densities are only calculated where slopes 

exceeded a threshold of 16.26 degrees (slopes that include >90% of slides)”, landslide densities 

considered the number of all landslides (for total landslide density “TD”) and all landslides with 

area > 439 m2 (for medium and large landslides density “MLD”) occurred within each R/A grid cell 

(i.e., ≈ 25 km2). The threshold of 16.26° (considered in our study as a minimum slope threshold to 

allow landsliding and referred to as Sthreshold) was used to calculate the area of the R/A grid cells 

where the slope > 16.26° (referred to hereafter as AS>16.26°). The two Landslide density metrics 

were, therefore, calculated by dividing the number of landslides (i.e., all landslides for TD and all 

landslides with an area > 439 m2 for MLD) that occurred within each R/A grid cell by AS>16.26° 

following the equation (1) and (2). 
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TD =
Total number of all landslides within the R/A grid cell

𝐴𝑆>16.26°
                        (1) 

MLD =
Number of medium and large landslides within the R/A grid cell 

𝐴𝑆>16.26°
     (2) 

Such a normalization method is fundamental to reduce bias in the numbers of triggered landslides 

within the different R/A grid cells caused by the differences in the distribution of local topographic 

features (Prancevic et al., 2020), as landslides commonly occur in hilly and mountainous areas 

rather than plains (Lombardo et al., 2021). Therefore, it makes assessing the relationship between 

rainfall information and landslide densities in the R/A grid cells less biased by the differences in 

local slope conditions. We note that such a normalization method has been also adopted in some 

previous works by considering a 10° slope as the minimum slope threshold for landsliding (Marc 

et al., 2019) or the slope at which > 90 % of landslides occurred (Prancevic et al., 2020). 

 

RC2: Comment 2 and response 

Observations: P1, P2, P3-- can you clarify how the populations of landscape slopes similar in these 

groups, do you report any statistics somewhere? Where are those populations? Are they identified 

within each selected rainfall grid or can they be located in different rainfall grids? 

 It is worth noting that each of the pairs (i.e., P1, P2, and P3) represents two R/A grid cells 

with similar local slope conditions within 𝐴𝑆>16.26° but different landslide density metrics (i.e., TD 

and MLD). The selection of the three pairs was based on the distribution of local slope conditions 

in 𝐴𝑆>16.26° of the different R/A grid cells rather than landslide data. In other words, we examined 

all slope pixels (resolution = 10 m) in 𝐴𝑆>16.26° and did not limit the analysis to only landslide slope 

pixels. By selecting these pairs, we intended to explicitly focus on rainfall controls and avoid any 

possible influence of the differences in local slope conditions of 𝐴𝑆>16.26° of the R/A grid cells on 

landslide occurrence. 

 The three pairs were selected by first comparing the distribution of slope conditions in 

𝐴𝑆>16.26° of all R/A grid cells (i.e., 23) using the Kruskal-Wallis static (Kruskal and Wallis, 1952) to 

validate the existence of significant differences in local slope conditions. To better highlight these 

differences, we provided a Figure showing the distribution of local slope degrees in 𝐴𝑆>16.26° of 

the different R/A grid cells referred to in this figure by the corresponding TD (please see Fig. RC2.1). 

Subsequently, we employed Dunn’s post hoc test for detecting the R/A grid cells with a similar 

mean rank sum of slopes, meaning similar slope conditions. We note that the result of Dunn’s 

test has been already shown in Table S1 in the Supplement file, as stated in our preprint (P8, L198). 

From this result, we could find three pairs of R/A grid cells characterized by similar slope 

conditions (as Dunn’s test could not reject the null hypothesis) and different landslide density 

metrics. Therefore, to explicitly reveal the controls of rainfall information on landslide density, 

we mainly focused on these three pairs (i.e., P1, P2, and P3) as each pair of R/A grid cells includes 

two R/A grid cells with similar local slope conditions. 
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Figure RC2.1. Distribution of local slope degree within 𝐴𝑆>16.26° of the R/A grid cells. Note that 

the distributions are shown as box-and-whisker plots. The box delimitates the 25th and 75th 

percentiles. The black line indicates the median. The red cross ‘+’ displays the mean. The circles 

‘o’ designate the outliers. 

 

RC2: Comment 3 and response 

Lines 195-220: I’m not sure what the objective here, if one is interested to find out where rainfall 

plays a stronger role, then shouldn’t you go and investigate the local conditions (area, slope, soil 

veg properties) of individual slides. 

 Here, we compared the relation between rainfall intensity maxima and landslide density 

in three pairs of R/A grid cells with similar slope conditions (i.e., P1, P2, and P3). We intended to 

explore the potential interplay between the rainfall intensity maxima and the spatial variation of 

landslide density metrics (i.e., TD and MLD). 

 We agree that one of the methods is to investigate local conditions (e.g., slope, soil, 

vegetation properties, etc.). However, there are mainly one or two controlling factors in some 

specific regions which are worth exploring. In our study area in particular, two interesting 

previous works have investigated the importance of multiple predisposing factors (e.g., slope, 

land cover, elevation) in landslide occurrence using statistical machine-learning methods (Ozturk 

et al., 2021; Dou et al., 2020). Both works showed that rainfall is the main factor controlling 

landslide occurrence in our study area, followed by the slope and land use parameters. These 

findings were also consistent with the in-field observation of Chigira et al. (2018). It is worth 

noting also that several previous works showed the feasibility to assess only rainfall conditions 
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for landslide prediction by exploring the spatial relation between rainfall conditions and landslide 

density (Chen et al., 2013; Chang et al., 2008; Dai and Lee, 2001; Gao et al., 2017; Marc et al., 

2019), as rainfall is the main factor for landsliding. Given this, we mainly focused on rainfall 

controls on landslide density in this study. 

 

I think the selection process of P groups are based on some random selection routine, if you shuffle 

these landslides into another set of 3 populations you may get all three look like P1 and P2 with 

smaller differences in rainfall rate differences, then what would you do.? 

 From this comment, we believe you interpreted the selection of the three pairs as it was 

based on a random selection from the landslide data. Very differently, the three selected pairs of 

R/A grid cells were selected based on local slope conditions in the R/A grid cells. Please see our 

response to your second comment (RC2: Comment 2 and response), where we have cleared out 

how we selected the three pairs of R/A grid cells. 

 We believe this potential misunderstanding might be originated from unclear explanation 

of the selection method and intention of the three pairs (P1, P2, and P3). Therefore, we will clarify 

this by substantially revising our manuscript (in particular, Section 2.3.) 

 

I also could not figure out what those two different groups are within each plot in Figure 4. Why 

do the gray symbols have smaller landslide densities than red symbols? I think those were referred 

to as “pairs” but not sure how paired and why with different densities? Beyond all what is the 

purpose of pairing. 

 In Figure 4, each plot compared rainfall intensity for multiple timespans (i.e., rainfall 

intensity maxima) recorded in two R/A grid cells with similar slope conditions (for the 𝐴𝑆>16.26°), 

but different numbers of landslides as can be revealed by the two landslide density metrics (i.e., 

TD and MLD). For instance, in Fig. 4a, the gray symbols reflect the rainfall intensity maxima 

recorded in the R/A grid cell where TD = 0.05 and MLD = 0 landslides/km2. The red dots reflect 

the rainfall intensity maxima observed in the R/A grid cell where TD = 35.61 and MLD = 11.98 

landslides/km2. The black line showed the average rainfall intensity maxima in the two R/A grid 

cells in comparison. 

 The pairing approach we used in this paper aimed at selecting the R/A grid cells with 

similar slope conditions to avoid any possible influence of the differences in slope conditions on 

landslide density and explicitly focus on rainfall controls, as we explained in our response to your 

second comment (RC2: Comment 2 and response). 

 

RC2: Comment 4 and response 

Rainfall data is very coarse for a rugged terrain to obtain any detailed and new science with 

respect to landslide process understanding and how rainfall controls it. The study may be useful 

for regional early warning systems, though still very coarse.  
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 We agree that high-resolution rainfall data would provide more detailed information on 

spatial rainfall patterns. However, long-term gridded rainfall data with a spatial resolution finer 

than 5 km, needed in our study to estimate rainfall return levels, is currently unavailable in Japan. 

Indeed, the R/A dataset used in this study is, so far, the highest-resolution and most reliable long-

term gridded precipitation data available. Due to its relatively high resolution, long-term records, 

and accuracy, several studies used the R/A dataset as referential data for analyzing localized 

heavy rainfall (e.g., Kato, 2020; Hirockawa et al., 2020; Saito and Matsuyama, 2015), evaluating 

precipitation forecasts and estimates (e.g., Kubota et al., 2009; Iida et al., 2006; Yin et al., 2022), 

and constraining empirical relationships between rainfall information and landslide occurrence 

(e.g., Saito et al., 2010; Marc et al., 2019; Ozturk et al., 2021). All these works showed the 

usefulness of the R/A precipitation product in capturing the spatial pattern of extreme rainfall 

events experienced over the Japanese archipelago.  Interestingly, Ozturk et al. (2021) evaluated 

the performance of a coarsened R/A dataset to ≈ 10-km resolution in landslide forecasting using 

a logistic regression model and showed a comparable performance between the 5-km and 10-km 

R/A dataset, meaning that the spatial rainfall pattern over the mountainous study areas Ozturk 

et al. (2021) focused on can be satisfactorily captured even with a 10-km spatial resolution R/A 

data. Therefore, as our objective was to assess the spatial relation between rainfall characteristics 

and landslide density, rather than explicitly examine the landsliding process of each of the 

triggered landslides, we believe that a resolution of 5 km could be sufficient due to its 

performance in capturing the spatial pattern of the studied rainfall event and given the 

unavailability of alternative product with finer resolution and long-term records. 

 

How do you take the next step from coarse-grain analysis to finer scale hazard mapping? 

 We believe that the R/A data can be downscaled to finer resolution by employing machine 

learning and data fusion methods (e.g., Peleg et al., 2018; Salcedo-Sanz et al., 2020) to address 

finer scale hazard analysis. However, several drawbacks can limit the application of these 

methods, such as the need for dense rain gauges network over mountainous regions, which is 

generally difficult to obtain. We believe that rainfall data downscaling is another research issue 

that needs to be addressed in detail in the future and is beyond the objective of the current study. 

 

RC2: Comment 5 and response 

What is the point of Figure 5, what is the question you are trying to address?  

 It is worth recalling that all rainfall intensity maxima (i.e., maximum rainfall intensities for 

multiple timespans within the Pstd) could explain the spatial variation of landslide density, as 

shown in Table 1 and Fig. 4. However, it is difficult to set a method to compare all rainfall intensity 

maxima between the different R/A grid cells that experienced landslides during the examined 

rainfall event. On the other hand, the return levels would assess the rainfall intensity maxima in 

terms of extremity and rarity comparing to rainfall intensity previously experienced in the R/A 
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grid cells. Accordingly, it can provide important information on the potential of these rainfall 

intensity maxima to induce landslides, as high return level rainfall is generally needed for 

landsliding (Iida, 1999; Segoni et al., 2015), irrespective of the rainfall intensity. Thus, rainfall 

return levels can be a standard method to compare the potential of rainfall intensity maxima to 

cause landslidiing at the spatial scale, irrespectively of the spatial disparity of rainfall intensity 

maxima of the examined rainfall event. Given this, In Figure 5, we compared the return levels of 

rainfall intensity maxima recorded over two R/A grid cells with similar local slope conditions and 

different landslide densities (i.e., P1, P2, and P3). Here, we intended to investigate whether the 

landslide density increases in the R/A grid cells where rainfall intensities reach high return levels 

that are rarely experienced. 

 

As far as I understood you have some randomly selected data pairs with different landslide 

densities and they seem to show some narrow range of variable ID trends, but this is expected 

isn’t it.  

 Sorry, you misunderstood how we selected the three pairs of R/A grid cells. The selection 

of these pairs was based on local slope conditions in the R/A grid cells rather than a random 

selection of landslide data. Please see our response to your second and third comments for more 

explanation (RC2: Comment 2 and response, RC2: Comment 3 and response). 

 

Another point I did not understand—in Figs 3 and 4, do each of the circles average many points 

with different landslide densities? 

 Fig. 3 shows the spatial distribution of rainfall intensities for multiple timespans, triggered 

landslides, and landslide density metrics. Each white and black circle is the TD and MLD in the 

corresponding R/A grid cell, respectively. 

 No, in Fig. 4, each plot compared rainfall intensities for multiple timespans recoded in two 

R/A grid cells with similar slope conditions (for the 𝐴𝑆>16.26°), but different numbers of landslides 

as can be revealed by the two landslide density metrics (i.e., TD and MLD). So, the circles (red and 

gray) are the rainfall intensities for multiple timespans recorded in two R/A grid cells. For instance, 

in Fig. 4a, the gray symbols reflect the rainfall intensities for multiple timespans recorded in the 

R/A grid cell where TD = 0.05 and MLD = 0 landslides/km2. The red dots reflect the rainfall 

intensities for multiple timespans recorded in the R/A grid cell where TD = 35.61 and MLD = 11.98 

landslides/km2. The black line showed the average of rainfall intensities between the two R/A grid 

cells in comparison. 

 

RC2: Comment 6 and response 

Not having a clear research question and/or hypotheses makes it difficult to follow this paper.  

 Our scientific question was to investigate the potential interplay between rainfall intensity 

for multiple timespans, which characterize the temporal rainfall pattern and can be assessed by 
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their return levels, and the spatial pattern of landslide distribution during the examined triggering 

rainfall event (i.e., landslide density spatial pattern). In other words, we intended to assess 

whether the spatial variation of landslide density during the examined triggering rainfall event is 

governed by the return levels of rainfall intensity for multiple timespans rather than rainfall 

intensity of a specific timespan (e.g., 48 h maximum rainfall intensity). 

 We understand your concern about the clarity of our research question and hypothesis. 

Therefore, we will substantially improve the introduction section in a revised manuscript to 

clearly state our research question and hypothesis. 

 

In addition, the methods rely on some comparisons of three similar slope populations (P1,2,3), and 

pairing of data among them, the purpose of which was not clear.  

 Sorry, you misunderstood how and why we select the three pairs of R/A grid cells with 

similar slope conditions. Please see our response to your second and third comments for more 

explanation (RC2: Comment 2 and response, RC2: Comment 3 and response).  

 To clear this out and avoid any potential future misunderstanding, we will improve the 

Methods section in a revised manuscript. 

 

If the whole point of the paper is to show that rainfall patterns and return intervals matter, that 

is no surprise to anyone, that is why those intensity-duration thresholds were used for nearly a 

century.  

 First, it is worth noting the existence of two empirical approaches for quantifying rainfall 

characteristics that triggered landslides. The first approach is the traditional intensity-duration 

(ID) thresholds that determined the minimum rainfall conditions necessary for likely triggering 

landslides. The second approach, mainly used in this paper, relates the spatial variation of 

landslide density with rainfall information beyond the ID thresholds.  

 The objective of this paper was to mainly investigate the potential interplay between 

rainfall intensity for multiple timespans, which characterize the temporal rainfall pattern and can 

be assessed by their return levels, and the spatial variation of landslide density. We showed that 

landslide density is constrained by the return levels of rainfall variables for multiple timespans 

rather than the intensity of a single rainfall timespan (e.g., Maximum rainfall intensity for 48 h). 

Our finding is different from other studies’ findings that related the spatial variation of landslide 

density to a single rainfall variation for a specific timespan. Also, this is different from the ID 

thresholds that generally linked the occurrence of landslides to specific rainfall conditions in 

terms of intensity and duration. So, given this, we believe that the findings of our paper are novel 

and addressed a significant gap in the understanding of rainfall controls on landslide density. 
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In addition, the rainfall data is at 5km spatial resolution, which for mountain ranges, is very coarse, 

and radar rainfall is usually not a good option for estimating mountain rainfall.  

 We are aware of the intrinsic drawbacks of weather radars in reliably observing 

precipitation, which could be attributed to various meteorological, topographic, and technical 

factors (e.g., beam blockage, ground clutter, anomalous beam propagation, and range effects) 

(e.g., Borga et al., 2022). Therefore, we agree with the Referee's statement: “radar rainfall is 

usually not a good option for estimating mountain rainfall.” However, we believe this is the case 

for the raw uncorrected radar-driven precipitation data (e.g., Young et al., 1999). Differently, the 

R/A dataset used in this study was processed by a quality control algorithm involving various 

correction procedures for precipitation observation errors (Makihara, 2000; Hotta, 2018; Nagata, 

2011). For instance, ground clutter and beam blockage due to mountains are corrected using a 2-

km Pseudo Constant Altitude Plan Position Indicator (PCAPPI) that processes echo intensity data 

from multiple elevation angles. Additionally, the R/A product involves a Gauge-adjustment 

algorithm that calibrates precipitation estimates with gauge measurements. These correction 

procedures made the R/A product valuable for providing reliable rainfall estimates over the 

mountainous areas in Japan, which cannot be captured by rain gauged due to a sparse network. 

Therefore, it is often used as benchmark rainfall data in multiple studies over mountainous areas 

(please see RC2: Comment 4 and response). 

 It is worth noting, finally, that several previous studies showed the usefulness of corrected 

radar-driven precipitation datasets in observing the rainfall over mountains (e.g., Germann et al., 

2006; Shimada et al., 2016; Nelson et al., 2016; Marra et al., 2022). Therefore, we believe that the 

R/A product used in our study provides reliable rainfall estimates over the mountainous areas in 

Japan. 

 

And finally, which is probably more important than any of the comments I made above, besides 

local slopes, the authors have not factored in elevation in their analysis. Elevation is also a good 

predictor of rainfall and variations in soils and vegetation. They used a slope threshold in their 

analysis to select landslides but a quick grouping by elevation would probably reveal a strong 

elevation control.  

 It is worth recalling that the slope threshold (16.26°) was used only for deriving normalized 

landslide densities over the R/A grid cells while accounting for the number of all landslides (for 

TD) and all landslides with area > 439 m2 (for MLD). 

 Of course, we agree that the elevation can have a strong control on landslide occurrence 

in addition to other predisposing factors for landslide occurrence (e.g., slope, land cover, rainfall, 

etc.). However, there are mainly one or two controlling factors in some specific regions which are 

worth exploring. For our study case in particular, Ozturk et al. (2021) evaluated the importance 

of multiple predisposing factors for landslide occurrence, including elevation and rainfall, using 

multivariate logistic regression. Their findings indicated that the rainfall information is the main 
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control for the spatial distribution of triggered landslides, followed by the slope parameter. On 

the other hand, the elevation parameter was found to be very less important in controlling 

landslide occurrence according to their findings. 

 To further assess how landslide occurrence varies with elevation, we have plotted the 

histograms of landslide elevations (i.e., 7,676 landslides) from a 10-m DEM (please see Figure 

RC2.2.). We found that the landslides occurred in hillslopes with a wide range of elevation from ≈ 

50 to ≈ 800 m a.s.l. Although most of the landslides occurred in hillslopes with an elevation in the 

range of ≈ 50 to ≈ 600 m a.s.l., still, this elevation range is wide, meaning that landslide do not 

preferentially occurred on hillslopes with a specific elevation. 

 Given this, we believe that the elevation has a weak control on the spatial distribution of 

the landslides we focused on in this study. To avoid any similar queries by readers, we will add 

this information in the revised manuscript to clearly state the importance of rainfall controls in 

our examined study case.  

 
Figure RC2.2. Non-cumulative (gray histogram) and cumulative (black line) frequency distribution 

of landslide elevations (bins = 500). Note that landslide elevations were calculated as the median 

of DEM pixel values at landslide scars. 

 

All in all, the paper left me with no new information. If the authors would want to salvage this 

paper, they would probably reconsider a set of new methods and pose clear questions and 

objectives. 

 We respect your critiques. However, we feel that most of them originated from an intrinsic 

misunderstanding of the research methods, especially the method of landslide density calculation 

and pairs selection. Considering the research objective was to mainly investigate the potential 

interplay between a wide range of rainfall explanatory variables, which characterize the temporal 

rainfall pattern, and the spatial variation of landslide density, we believe that the methods used 

in our study could sufficiently address the research question.  
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 Finally, we apologize for any misunderstandings which might be originated from unclear 

explanations of the research methods and hypothesis in the original manuscript. We will 

substantially improve the manuscript to clearly state our research questions and explain the 

methods. 
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Responses to Referee 3 (RC3) 

RC3: Comment 1 and response 

This paper analyzed > 7,500 landslides in a region of Japan and insisted that the landslide density 

would be high when the rainfall return period exceeded 100 years. This paper deals with an 

interesting topic; the interpretation of results is reasonable for me. I hope the authors consider 

the comments below to make this paper more attractive to readers. 

 Thank you again for commenting on our manuscript. We sincerely appreciate your 

constructive suggestions that would improve our manuscript. Please see below how we will revise 

the original manuscript to consider your recommendations. 

 

RC3: Comment 2 and response 

The authors assume the stable conditions of rainfall. The meaning of “100 years” would differ in 

changing climate conditions. I want the authors to consider and mention climate change. The first 

step may be to examine trends in rainfall. 

 This is a very important observation. We agree and acknowledge that the 100-year rainfall 

return level may shift over time due to climate change. Therefore, in the revised manuscript, we 

will follow your recommendation and examine the possible alteration of the estimated 100-year 

rainfall return level due to climate change. We will first assess trends in the annual maxima series 

(AMS) of rainfall intensities for multiple durations we used for estimating the 100-year rainfall 

return level. To this end, we will employ non-parametric statistical tests for assessing the 

significance and magnitude of the possible trends in rainfall (e.g., the Mann-Kendall test and the 

Sen’s slope estimator test). Then, we will carefully revise our manuscript to add the new trend 

analysis tests and highlight the possible alteration of the 100-year rainfall return level in the future 

due to climate change. 

 

RC3: Comment 3 and response 

The authors analyzed using the return period of rainfall and did not mention the absolute amount 

(intensity) of rainfall. I am wondering whether the absolute amount of rainfall may be more 

important than the return period for understanding the distribution of the landslides. 

 As explained in our manuscript (P2, L32–39 and P6, L 132–143), constraining the absolute 

amount (intensity) of rainfall responsible for all landslides (i.e., 7,676) triggered during the 

examined rainfall event is difficult due to the disparate hydromechanical responses of affected 

hillslopes to forcing rainfall. Therefore, in this study, we used multiple timespans from 1 to 72 h 

within a standardized period (Pstd) of 3 days that accumulated the maximum rainfall amount 

during the triggering event to examine the relationship between rainfall information and landslide 
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density. In doing so, we intended to consider multiple combinations of rainfall durations that 

could represent the effective rainfall duration needed for triggering the various landslides. 

 If we consider the rainfall intensity maxima for a specific duration (e.g., 24, 48, or 72 h) 

recorded during the examined rainfall event as the meaning of absolute rainfall intensity, we 

could find a significant statistical correlation between landslide density and the absolute rainfall 

intensity (Table 1 and Fig. 3). This means that the absolute rainfall intensity could also be 

important for explaining the spatial distribution of landslide density. But, this correlation did not 

necessarily mean that landslide density increased with increased absolute rainfall intensity for a 

specific timespan (e.g., 24, 48, or 72 h). Indeed, as shown in Fig 4c, the landslide density metrics 

in two grid cells with similar slope conditions were different despite the similarity in the rainfall 

intensity for 24–72 h durations and slope conditions. This led us to conclude that all rainfall 

intensity maxima matter for landslide occurrence. Therefore, despite the absolute rainfall amount 

or intensity could explain the distribution of landslides from a statistical prospect, rainfall return 

level is a better proxy for landslide density as it can thoroughly assess the rainfall intensities for 

multiple timespans. We will clear this out better by improving the manuscript. 

  

RC3: Comment 4 and response 

The results section includes not only “results” but also “discussion”. It may be better to combine 

these two sections as the “results and discussion” section. 

 Because combining the results and discussion sections may make the paper difficult to 

follow by readers, we believe that separated “results” and “discussion” sections may address our 

findings better. We will carefully revise the “results” section to avoid any possible preliminary 

discussion of the study results. 

 

RC3: Comment 5 and response 

I guess there are several studies focusing on the same landslides because these landslides would 

affect a large-scale impact on this region. The authors did not mention the factor determining the 

density of the grids with any return periods of < 100 years. Are there any tips from the previous 

studies? 

 We could find a few previous studies that focused on the same examined study case, but 

using different landslide inventories, such as Dou et al. (2020) and Ozturk et al. (2021). Both works 

used statistical machine-learning methods to investigate the importance of numerous 

predisposing factors in landslide occurrence. Their findings showed that rainfall is the main factor 

controlling landslide occurrence in our study area, followed by the slope and land use parameters. 

These findings provided useful insights about possible influence of terrain settings (i.e., slope and 

land cover) on landslide occurrence in the R/A grid cells with return periods < 100 years. 

 Therefore, in the revised manuscript, we will settle for improving the paragraph (P14 L329-
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L333) to add the potential influence of terrain settings (e.g., land cover) on landslide occurrence 

when rainfall return levels are lower than 100 years. 
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