
1 
 

We thank the Associate Editor for handling our manuscript. Also, we are grateful to the three 1 

referees for their insightful observations and critiques. Following their constructive comments, 2 

we carefully revised our manuscript to clarify the methods and significance of this research. 3 

Hereafter, we provide detailed responses to all received comments. The comments of the 4 

Associate Editor and the three Referees are in italic black font style. Our responses are in regular 5 

blue font style. The changes we made in the manuscript are in regular brown font style. 6 

 7 

Responses to the Associate Editor (EC1) 8 

EC1: Comments and responses 9 

Dear Authors, 10 

We have now received three referee comments (RCs). Based on the RCs, major revisions may be 11 

needed before the manuscript may be considered for publication. 12 

Please respond to the three Referee Comments. RC2, in particular, provided detailed critiques and 13 

suggestions for improving the manuscript. 14 

Upload a revised manuscript and a detailed response to the RCs by March 10, 2023. 15 

Best, 16 

Sagy Cohen, Associate Editor 17 

 Thank you again for handling our manuscript. We have considered the insightful 18 

comments of the three Referees to improve our manuscript.  19 

 We understand and respect the critiques given by RC2. However, we do feel that most of 20 

them originated from an intrinsic misunderstanding of our study hypothesis and methods, which 21 

might be due to an unclear explanation in the original manuscript. Therefore, we thoroughly 22 

improved our manuscript to avoid any possible future misunderstandings by readers. 23 

 Hereafter, we provide our responses to all observations of the referees to explain how we 24 

revised our manuscript to consider their constructive comments. 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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Responses to Referee 1 (RC1) 34 

RC1: Comment 1 and response 35 

In the introduction part, the authors should clearly indicate the research gap and the novelty of 36 

this research. 37 

 Thank you again for assessing our manuscript. We have thoroughly revised the 38 

Introduction section of our manuscript to clearly state the research gap, hypothesis, and novelty. 39 

Revision: P2 L24–80 40 

Landslides are natural geomorphic processes driving long-term landscape evolution (Korup et al., 2010), 41 

which may impose substantial changes in hillslope and fluvial systems and significant human and economic 42 

losses (Froude and Petley, 2018; Jones et al., 2021). Rainfall is the most common trigger of landslides (Sidle 43 

and Bogaard, 2016). Although rainfall may provoke individual landslides with localized impacts, large-scale 44 

extreme rainfall events often induce numerous landslides widely spread over the landscape (Emberson et 45 

al., 2022). In such cases, landslide impacts span the spatial extent of the triggering event, and their 46 

significance depends on the location and magnitude (i.e., number and size) of triggered landslides 47 

(Medwedeff et al., 2020; Milledge et al., 2014; Benda and Dunne, 1997). Therefore, revealing rainfall 48 

controls on landslide spatial distribution through investigating the relationship between rainfall and 49 

landsliding is fundamental for assessing landscape changes and supporting hazard prediction efforts. 50 

A well-established method for linking landslide occurrence to rainfall or hydrological characteristics (e.g., 51 

intensity, duration, soil moisture) is the use of rainfall thresholds (Guzzetti et al., 2008; Caine, 1980; Saito 52 

et al., 2010) and recently hydro-meteorological thresholds (Bogaard and Greco, 2018). These empirical 53 

thresholds offer a straightforward way to predict whether landslides will occur in the future. However, 54 

they cannot quantify the magnitude of landslides. Therefore, multiple studies attempted to constrain 55 

quantitative spatial relationships between landslide distribution, often described as density (e.g., 56 

number/km2 or area/km2), and dynamic explanatory variables that provide proxies for the critical rainfall 57 

conditions triggering landslides. Typically, these studies aimed at identifying the key rainfall variable(s) 58 

that drive landsliding by relying upon regression analysis and specific landslide records (i.e., a catalog of 59 

individual landslide information (e.g., Gao et al., 2018), detailed landslide inventories triggered by single 60 

or multiple rainfall events (e.g., Marc et al., 2018; Chang et al., 2008)). 61 

So far, we still lack information on the best rainfall variable(s) constraining the landslide spatial pattern 62 

during rainfall events. Some works showed increased landslide density with the increase in total rainfall 63 

amount, rainfall duration, the maximum rainfall amount for short durations (e.g., 3, 12, 24 h), or 64 

antecedent rainfall (Marc et al., 2018; Chen et al., 2013; Chang et al., 2008; Dai and Lee, 2001; Abanco et 65 

al., 2021). Other studies demonstrated that normalized rainfall amounts for specific timespans (e.g., 2, 24, 66 

48 h) by the mean annual precipitation (Ko and Lo, 2016) or the 10-year return period rainfall amount 67 

(Marc et al., 2019), which explain the landscape coevolution with local climate (Benda and Dunne, 1997; 68 

Iida, 1999), are better predictors for landsliding. 69 

On the other hand, these statistical relationships allow the development of rainfall-based empirical models 70 

for predicting the number of landslides likely to be triggered by future rainfall events (e.g., Chang et al., 71 

2008). However, their development and extrapolation to other regions are challenging. Constraining any 72 

spatial relationship requires comprehensive landslide inventories that contain sufficient landslides for an 73 

adequate statistical analysis. However, this need is extremely difficult to fulfill (Marc et al., 2018; Emberson 74 
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et al., 2022). Furthermore, the constrained quantitative relationships are very sensitive to the landslide 75 

records and the characteristics of respective triggering rainfall events used in the statistical analysis. 76 

Therefore, they are case-specific and cannot always be extrapolated to predict the number of landslides 77 

likely to be triggered by future rainfall events, even in the same region (e.g., Gao et al., 2018).  78 

For a given rainfall event, the return period of any rainfall episode with specific duration and intensity can 79 

be assessed using the Intensity-Duration-Frequency (IDF) curves, which are equipotential lines of 80 

probabilities linking rainfall durations and maximum intensities from long-term records (Chow et al., 1988). 81 

This information can potentially evaluate whether a rainfall event is likely to cause landslides as a high 82 

rainfall return level (i.e., rare rainfall event) is generally considered a proxy for the critical rainfall 83 

conditions triggering landslides (Frattini et al., 2009; Griffiths et al., 2009; Segoni et al., 2015, 2014; Iida, 84 

2004). Several studies showed the usefulness of considering rainfall return levels to indirectly evaluate the 85 

potential of a forecast rainfall to trigger landslides without the need for historical landslide records in the 86 

targeted region (e.g., Kim et al., 2021; Tsunetaka, 2021; Vaz et al., 2018). Still, the potential relation 87 

between the spatial patterns of rainfall return levels and landsliding remains unrevealed. 88 

Clearly, rainfall controls on landslide spatial distribution differ depending on rainfall characteristics and 89 

local terrain settings (e.g., Bogaard and Greco, 2018). Even during the same triggering rainfall event, 90 

multiple inventories showed discrepancies in landslide occurrence timing and geometric features (e.g., 91 

area, volume, and depth) at the catchment (Yamada et al., 2012; Yano et al., 2019; Guzzetti et al., 2004) 92 

and hillslope scales (Büschelberger et al., 2022). This suggests that landslides are triggered by disparate 93 

rainfall timespans due to different hydromechanical responses of hillslopes to forcing rainfall. If so, then it 94 

is reasonable to hypothesize that landsliding can be constrained by the return levels of multiple rainfall 95 

timespans. This study focused on an extreme rainfall event that triggered over 7,500 landslides in an area 96 

of around 400 km2 in the northern part of the Kyushu region in southern Japan to investigate whether 97 

spatial patterns of rainfall return levels govern landslide density. Using a gridded rainfall dataset with a ≈ 98 

5-km resolution, we compared rainfall return levels for various time ranges from 1 to 72 h and landslide 99 

density in each ≈ 25-km2 grid cell to investigate whether the landslide density increase in grid cells where 100 

rainfall intensities reach high return levels that are rarely experienced. The present research is expected 101 

to provide insights into what rainfall characteristics control landslide spatial distribution and when rainfall 102 

may cause high landslide density. Thus, it can have promising implications for supporting hazard prediction 103 

efforts and understanding landscape evolution. 104 

 105 

RC1: Comment 2 and response 106 

The research object of this paper is mainly shallow landslides. It is recommended to highlight the 107 

uniqueness of the research object in the abstract and introduction. 108 

 We acknowledge that most landslides triggered during the examined rainfall event are 109 

shallow (depth = 1 to 2 m), as indicated by Chigira et al. (2018). Still, some of the landslides could 110 

be relatively deep, as we observed a few landslides with large areas (area > 10,000 m2) in the FAD 111 

of the landslide inventory (Figure 2 in Page 5).  112 

 Because we did not use any fundamental criteria to differentiate shallow landslides (e.g., 113 

area < 10,000 m2 in Marc et al. (2019)) due to the unavailability of validation data (i.e., high-114 
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resolution DEM data taken before and after the examined event), we believe that adding “shallow 115 

landslides” may cause some confusion for readers. Therefore, we prefer not to limit the study to 116 

shallow landslides. 117 

 118 

RC1: Comment 3 and response 119 

In Figure 1b, the north arrow is missing. 120 

 We added the missed north arrow in Figure 1b. Also, we added the missed label and unit 121 

in the color bar of Figure 1a. 122 

Revision: Please see Figure 1 in P4 L105 123 

 124 

RC1: Comment 4 and response 125 

In Figure 3, the contour of the study area should be added. The color bars in Figure 3 lack labels 126 

and units. Please check similar issues in other figures. 127 

 We have added the contour lines of the study area in Figure 3 (please see Fig. RC1.1). 128 

However, we feel that the figure becomes unclear for readers as it overlays multiple different 129 

information (i.e., rainfall intensity, landslide distribution, TD, MLD, and contour lines). We believe 130 

that adding the contour lines may make the figure difficult to understand. Therefore, we prefer 131 

not to add it. 132 

On the other hand, we added the missed labels and units in the color bars in Figure 3 and all other 133 

figures in the Supplement file. 134 

Revision: Please see Figure 3 in P11 135 

Revision: Please see Supplement file, P5–P10 136 

 137 

RC1: Comment 5 and response 138 

The discussion part needs to be reorganized. 139 

 We reorganized the discussion section in the revised manuscript with sub-sections to 140 

make it more accessible for readers. In section “4.1 Rainfall return levels govern landslide density”, 141 

we discussed the key findings of our research. In section “4.2. Importance of considering rainfall 142 

return levels as explanatory for landslide spatial distribution”, we showed why the conventional 143 

quantitative statistical relationships could not explicitly investigate rainfall controls on landslide 144 

density and the importance of comparing rainfall return levels for multiple timespans to 145 

understand landslide spatial distribution. 146 

Revision: P16 L348–418 147 

4.1. Rainfall return levels govern landslide density 148 

Our results demonstrate that landslide density in terms of TD and MLD varied depending on rainfall return 149 

levels for the examined timespans ranging from 1 to 72 h, which characterize the spatiotemporal rainfall 150 
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pattern of the triggering rainfall event and provide proxies for the disparate rainfall periods needed for 151 

landsliding. 152 

When rainfall exhibited return levels exceeding the 100-year return period for the various timespans from 153 

1 to 72 hours (e.g., Fig. 5d, e), the number of total landsliding was substantially high (TD > 30 154 

landslides/km2). The high landslide density can dictate that the rare and extreme rainfall intensities for 155 

multiple timespans from 1 to 72 h could satisfy the trigger and dynamic predisposition factors for the 156 

landsliding of numerous hillslopes. The constraint of these unprecedented rainfall intensities on landslide 157 

density overwhelmed that of topographic conditions (Fig 5), as we observed substantial landslide density 158 

differences over R/A grid cells with comparable local slope distributions. This accentuates the importance 159 

of high rainfall return levels in inducing widespread landslides (Iida, 2004; Griffiths et al., 2009; Segoni et 160 

al., 2014). In parallel, the density of large and medium landslides was also the highest (MLD > 10 161 

landslides/km2) during the examined rainfall event. This implies that the high rainfall return levels for the 162 

various examined timespans constrain the occurrence of relatively large landslides and suggests that the 163 

spatiotemporal rainfall pattern characteristics can also govern the landslide size distribution, which is 164 

consistent with the findings of Marc et al. (2018). In contrast, when rainfall return levels did reach the 100-165 

year return period only at specific timespans, lower landslide density (TD < 30 and MLD < 10 166 

landslides/km2) was observed (e.g., Fig. 5a, c, f). In other words, only some periods of rainfall (e.g., 6–48 167 

h) exhibited extreme and rarely experienced intensities over the R/A grid cells, resulting in the failure of 168 

only the relatively vulnerable hillslopes. Therefore, we can conclude that whether rainfall intensities reach 169 

high return levels in a wide timespan, ranging from a few hours to several days, is one of the key 170 

determinants of the density of total landsliding and relatively large landslides. 171 

Given the relatively homogeneous regolith of the study area this research focused on, it is likely that the 172 

landslide spatial distribution was primarily governed by rainfall return levels. However, other landslide 173 

susceptibility factors may intervene if the studied rainfall event is experienced in a heterogeneous regolith. 174 

To examine the importance of rainfall controls on landslide spatial distribution during large-scale rainfall 175 

events, Crozier (2017) proposed a storm cell model linking landslide density to rainfall intensity, impact 176 

magnitude, and the criticality of landslide susceptibility parameters. The proposed model assumes the 177 

occurrence of landslides in a circular pattern mirroring rainfall intensity during rainfall events and defines 178 

three landslide response zones: the core (storm center), the middle, and the periphery zone. It further 179 

suggests an overwhelm of the influence of extremely intense rainfall in the core zone, where total rainfall 180 

> 500 mm, on other landslide susceptibility factors.  181 

In analogy to the storm cell model of Crozier (2017), the high rainfall return levels experienced over high 182 

landslide density grid cells may outweigh the influence of terrain-related parameters if experienced in 183 

other sites with heterogeneous regolith settings. Therefore, when rainfall intensities reach high return 184 

levels for a wide timespan ranging from an hour to a few days, high landslide density over the landscape 185 

can be expected regardless of the variations in terrain characteristics (land use, lithology, and topography). 186 

In contrast, when rainfall return intensities exceed the 100-year return level only for specific timespans 187 

(e.g., 6–48 h), the variation in landslide susceptibility factors can also govern landslide density. This can be 188 

supported in analogy to the findings of Crozier (2017) in the middle zone of the proposed storm model. 189 

Last, it is worth noting that landslides occurred even when rainfall did not reach the 100-year return level 190 

at any of the examined timespans (Fig S12 b, e, f). However, landslide density over these grid cells (i.e., 191 

grid cells where rainfall did not reach the 100-year return level) was considerably low (≈ 0.4–1.5 192 
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landslides/km2 in terms of TD) compared with most other grid cells. Dou et al. (2020) and Ozturk et al. 193 

(2021) used statistical machine-learning methods to investigate the importance of numerous predisposing 194 

factors in landslide occurrence by the examined rainfall event. Their findings showed that rainfall is the 195 

main factor controlling landslide occurrence in our study area, followed by the slope and land use 196 

parameters. Accordingly, landslide occurrence over these grid cells during the examined rainfall event 197 

could be constrained by terrain settings (e.g., land cover) as the rainfall return levels were low. Therefore, 198 

landslides can occur even if rainfall return levels do not reach the 100-year return period but with 199 

substantially low density. In any case, comparing rainfall return levels in the IDF curves can explain the 200 

substantial differences in landslide density due to considering multiple return periods. 201 

4.2. Importance of considering rainfall return levels as explanatory for landslide spatial distribution 202 

From a statistical perspective, the significant quantitative correlations between rainfall intensity maxima 203 

and landslide density (TD and MLD) suggest an increased landslide density with increased rainfall 204 

intensities for the various examined timespans (i.e., 1–72 h) (Table 1). These statistical relationships are 205 

not surprising since they likely arise from the correlations between the different rainfall intensity maxima 206 

(Table S2). However, this does not necessarily mean that landslide density increases with increased 207 

specific-duration rainfall intensity (e.g., rainfall intensity maxima for 6 h, Fig. 4a, c). Indeed, our results 208 

showed substantial differences in landslide density over R/A grid cells with comparable short-duration 209 

rainfall intensity maxima but disparate long-duration rainfall intensities (e.g., low landslide-density R/A 210 

grid cells in P1 and P3, Fig. 4a, c). The pronounced difference in landslide density is likely due to the 211 

disparity in rainfall characteristics that affected the slope stability differently, initiating a disparate number 212 

of landslides. Thus, although the quantitative correlations in Table 1 can successfully predict landslide 213 

density, as indicated by Chang et al. (2008) and Dai and Lee. (2001), relying on a single rainfall metric (e.g., 214 

6 h rainfall intensity maxima) may lead to spurious interpretations regarding rainfall controls on landslide 215 

density and subject to uncertainties if used for predicting the number of landslides due to concealing the 216 

characteristics of the temporal rainfall pattern (Gao et al., 2018). 217 

Regardless of the spatial variation in rainfall intensity maxima characterizing the temporal rainfall pattern, 218 

the return levels could evaluate the exceptionality and extremity of rainfall for various timespans. Indeed, 219 

by comparing the rainfall return levels over two R/A grid cells, it was clear that the R/A grid cells with the 220 

highest landslide density experienced higher rainfall return levels for the various timespans, as revealed 221 

by the proposed 100-year rainfall anomaly metric (e.g., Fig. 5g–i). This can dictate that rainfall with higher 222 

return levels was more extreme and less frequent, having a higher potential to cause numerous landslides 223 

over the landscape. This was also valid even for R/A grid cells with comparable rainfall intensities and local 224 

slope distributions emphasizing the constraint of rainfall return levels on landsliding rather than rainfall 225 

intensities (Fig 5i). Accordingly, the differences in rainfall return levels could explain the substantial spatial 226 

disparity in landslide density. Thus, the comparison of rainfall return levels can be a valid approach for 227 

understanding the substantial differences in landslide density regardless of the variation in temporal 228 

rainfall pattern characteristics. 229 

 230 

RC1: Comment 6 and response 231 

Figure 4c: “TD 5.68 & MLD = 1.14” should be changed to “TD = 5.68 & MLD = 1.14”. 232 

 We re-created Figure 4 to correct this mistake. 233 
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Revision: Please see Figure 4c in P12 L280 234 

 235 

RC1: Comment 7 and response 236 

Line 255: The 100-year rainfall anomaly was higher in the low landslide-density grid cell in P3 (Fig. 237 

5i) than in the low landslide-density grid cell in P1 (Fig. 5c) (< 1.5 times). Why could the comparison 238 

of the 100-year rainfall anomaly explain the substantial difference in landslide density between 239 

the two grid cells (≈ 110 times for TD). 240 

 It is worth noting that the 100-year rainfall anomaly was proposed in our study for setting 241 

a quantitative reference that assesses the spatial disparity in rainfall return levels and their 242 

relation to the variation in landslide density. Also, it reflects important information on the rarity 243 

and extremity of rainfall intensity for multiple timespans, irrespective of the differences in rainfall 244 

intensities. For instance, a 100-year rainfall anomaly for a 3-h timespan higher than 1 means that 245 

the 3-h maximum rainfall intensity was extreme and rare compared to previously experienced 3-246 

h rainfall intensity in the study area as it has a return level of > 100-year return period. Thus, the 247 

100-year rainfall anomaly can provide important information on the potential of the multiple 248 

rainfall timespans to induce landslides, as high return level rainfall is generally needed for 249 

landsliding (Iida, 1999; Segoni et al., 2015). Accordingly, it can be a standard method to compare 250 

the potential of rainfall intensity maxima observed in the different R/A grid cells to trigger 251 

landsliding, irrespective of the differences in rainfall intensity maxima. 252 

 We found that the 100-year rainfall anomaly was higher in the low landslide-density grid 253 

cell in P3 (Fig. 5i) than in the low landslide-density grid cell in P1 (Fig. 5c). This means that rainfall 254 

timespans in the former were more extreme (i.e., high potential to cause landslides) than those 255 

experienced over the latter. Accordingly, the differences in the 100-year rainfall anomaly, which 256 

dictate the potential of rainfall periods to cause landsliding, could explain the substantial 257 

difference in landslide density over the two R/A grid cells. 258 

  259 

 Please note that this statement (i.e., “the comparison of the 100-year rainfall anomaly 260 

could explain the substantial difference in landslide density between the two grid cells (≈ 110 261 

times for TD)”) was deleted from the revised manuscript to avoid any preliminary discussion of 262 

our findings in the “Results” section, following the recommendation of RC3 (please see RC3: 263 

Comment 4 and response). 264 
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265 
Figure RC1.1. Spatial distribution maps of rainfall intensity maxima for 1 to 72 h timespans 266 

within the Pstd in mm/h, triggered landslides (grey polygons), and landslide density metrics 267 

(circles). The brown lines show the contour lines of the study area. 268 
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Responses to Referee 2 (RC2) 284 

RC2: Comment 1 and response 285 

The study relates a large data set of landslides with rainfall characteristics in Japan, using 7,500 286 

landslides over an area of 400km2. The study uses radar precipitation at 25km2 resolution with 1 287 

to 72 h durations. Land cover and lithology are deemed homogenous in the study site. 288 

A power-law distribution is used to identify the landslide size cutoff for moderate and large sizes. 289 

Landslide densities are only calculated where slopes exceeded a threshold of 16.26 degrees (slopes 290 

that include >90% of slides). Landslides are separated into total landslide density (TD), which 291 

includes all the observations, and medium and large landslide size density (MLD), which includes 292 

the slides greater that the size cutoff (>439 m2). 293 

A standardized rainfall that accumulates maximum rainfall over 72h period is used as Pstd. Within 294 

this Pstd, multiple time periods that record maximum intensities were also identified (1h to 72h). 295 

That aided the authors to develop a rainfall intensity-duration relation threshold curves based on 296 

I-D data. 297 

Figure 3 presents a map of 1h to 72h maximum rainfall depths (25km2 resolution) along with TD 298 

and MLDs. Higher landslide densities are observed where rainfall intensities are high. 299 

More landslides occurred with rainfall exceeded 100 year return interval. 300 

 Thank you for assessing our manuscript. We like to clarify a potential misunderstanding 301 

about how we calculated landslide density in this study. Our study intended to examine whether 302 

rainfall return levels govern landslide spatial distribution during rainfall events. Given that the 303 

rainfall information was derived from a 5-km radar-driven gauge-adjusted precipitation dataset 304 

(referred to as R/A), we calculated landslide density by considering the number of landslides that 305 

occurred within each R/A grid cell. This is different from other studies that intended to examine 306 

how landslide density varies with slope angle, and therefore they calculated landslide density by 307 

counting the number of landslides that occurred within particular ranges of local hillslope angles 308 

(e.g., Coe et al., 2004; De Rose, 2013; Prancevic et al., 2020).  309 

 So, differently from what is stated, “Landslide densities are only calculated where slopes 310 

exceeded a threshold of 16.26 degrees (slopes that include >90% of slides)”, landslide densities 311 

considered the number of all landslides (for total landslide density “TD”) and all landslides with 312 

area > 439 m2 (for medium and large landslides density “MLD”) occurred within each R/A grid cell 313 

(i.e., ≈ 25 km2). The threshold of 16.26° (considered in our study as a minimum slope threshold to 314 

allow landsliding and referred to as Sthreshold) was used to calculate the area of the R/A grid cells 315 

where the slope > 16.26° (referred to hereafter as Athreshold). The two Landslide density metrics 316 

were, therefore, calculated by dividing the number of landslides (i.e., all landslides for TD and all 317 

landslides with an area > 439 m2 for MLD) that occurred within each R/A grid cell by Athreshold 318 

following the equation (1) and (2). 319 

TD =
Total number of all landslides within the R/A grid cell

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                        (1) 320 
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MLD =
Number of medium and large landslides within the R/A grid cell 

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
     (2) 321 

Such a normalization method is fundamental to reduce bias in the numbers of triggered landslides 322 

within the different R/A grid cells caused by the differences in the distribution of local topographic 323 

features (Prancevic et al., 2020), as landslides commonly occur in hilly and mountainous areas 324 

rather than plains (Lombardo et al., 2021). Therefore, it makes assessing the relationship between 325 

rainfall information and landslide densities in the R/A grid cells less biased by the differences in 326 

local topographic conditions. We note that such a normalization method has been also adopted 327 

in some previous works by considering a 10° slope as the minimum slope threshold for landsliding 328 

(Marc et al., 2019) or the slope at which > 90 % of landslides occurred (Prancevic et al., 2020). 329 

  330 

 In the revised manuscript, we rewrote section 2.3 to explain clearly the method of 331 

landslide density calculation. Additionally, we reorganized this session into two sub-sections for 332 

clarity reasons. Section 2.3.1 explains how we calculated the landslide density metrics. Section 333 

2.3.2. describes the methods we followed in this research for investigating the relationships 334 

between the spatial pattern of landslide density and rainfall information. 335 

Revision: P8 L190–211 336 

2.3.1. Landslide density 337 

The spatial distribution of triggered landslides over the study area can be described as a spatial variation 338 

of landslide density (i.e., number/km2). Landslide density is generally calculated by counting the number 339 

of landslides that occurred within a specific area. Here, because we intended to reveal the potential control 340 

of rainfall return levels for multiple timespans derived from the R/A dataset on the variation of landslide 341 

density, we used the R/A grid cell (≈ 25 km2) as a sliding window to calculate landslide density. To count 342 

the number of landslides that occurred within each R/A grid cell, we converted the polygons data of 343 

landslide scars to points locating the centroid of each polygon. These numbers are generally biased by the 344 

non-uniformly distributed topographic features (i.e., hills, mountains, plains, lakes) within the different 345 

R/A grid cells because landslides commonly occur in hilly and mountainous areas rather than plains 346 

(Lombardo et al., 2021). To avoid such a possible bias, landslide density was calculated as the number of 347 

landslides within each R/A grid cell divided by the area of the R/A grid cell where the slope is higher than 348 

a threshold angle (Sthreshold) assumed to be a minimum angle to allow landsliding. Sthreshold defines the 349 

threshold angle above which 90 % of landslides occurred (Prancevic et al., 2020) and was determined as 350 

16.26° based on the DEM data analysis (Fig. S1). 351 

Although medium and large landslides (landslides with area size exceeding the cutoff point of the FAD (439 352 

m2)) counted only 28.12 % of the total landslides, their areas represented more than 70 % of the total 353 

landsliding area (i.e., the total scar areas of the triggered landslides). Therefore, it is interesting to 354 

investigate rainfall controls on the density of total and only medium and large landslides. Accordingly, we 355 

computed two landslide density metrics, total landslide density (TD) and only medium and large landslide 356 

density (MLD), as the number of landslides per unit area (km2), for each R/A grid cell using the following 357 

equations (1) and (2). Note these metrics represent averaged landslide density within the R/A grid cells. 358 

𝑇𝐷 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑛 𝑅/𝐴 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                                    (1) 359 
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𝑀𝐿𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 𝑙𝑎𝑟𝑔𝑒 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑛 𝑅/𝐴 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                  (2) 360 

Where, 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the area in km2 of an R/A grid cell where the slope > Sthreshold (i.e., 16.26°). 361 

 362 

RC2: Comment 2 and response 363 

Observations: P1, P2, P3-- can you clarify how the populations of landscape slopes similar in these 364 

groups, do you report any statistics somewhere? Where are those populations? Are they identified 365 

within each selected rainfall grid or can they be located in different rainfall grids? 366 

 It is worth noting that each of the pairs (i.e., P1, P2, and P3) represents two R/A grid cells 367 

with comparable local slope distributions within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 but different landslide density metrics 368 

(i.e., TD and MLD). The selection of the three pairs was based on the distribution of local slope 369 

conditions within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  of the different R/A grid cells rather than landslide data. In other 370 

words, we examined all slope pixels (resolution = 10 m) in 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and did not limit the analysis 371 

to only landslide slope pixels. By selecting these pairs, we intended to explicitly focus on rainfall 372 

controls and avoid any possible influence of the non-uniformly distributed slopes within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 373 

of the R/A grid cells on landslide occurrence. 374 

 The three pairs were selected by first comparing the distribution of slope conditions in 375 

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of all R/A grid cells (i.e., 23) using the Kruskal-Wallis static (Kruskal and Wallis, 1952) to 376 

validate the existence of significant differences in local slope conditions. To better highlight these 377 

differences, we provided a Figure showing the distribution of local slope degrees in 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 378 

the different R/A grid cells referred to in this figure by the corresponding TD (please see Fig. RC2.1). 379 

Subsequently, we employed Dunn’s post hoc test for detecting the R/A grid cells with a similar 380 

mean rank sum of slopes, meaning similar slope conditions. We note that the result of Dunn’s 381 

test has been already shown in Table S1 in the Supplement file, as stated in our preprint (P8, L198). 382 

From this result, we could find three pairs of R/A grid cells characterized by similar slope 383 

conditions (as Dunn’s test could not reject the null hypothesis) and different landslide density 384 

metrics. Therefore, to explicitly reveal the controls of rainfall information on landslide density, 385 

we mainly focused on these three pairs (i.e., P1, P2, and P3) as each pair of R/A grid cells includes 386 

two R/A grid cells with comparable local slope distributions. 387 
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 388 
Figure RC2.1. Distribution of local slope degree within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of the R/A grid cells. Note that 389 

the distributions are shown as box-and-whisker plots. The box delimitates the 25th and 75th 390 

percentiles. The black line indicates the median. The red cross ‘+’ displays the mean. The circles 391 

‘o’ designate the outliers. 392 

 393 

 In the revised manuscript, we rewrote section 2.3 to explain clearly how and why we 394 

selected the three pairs of R/A grid cells in this research. 395 

Revision: P8 L212–231 396 

2.3.2. Relationships between the spatial pattern of landslide density and rainfall information 397 

Similar to previous studies (e.g., Chang et al., 2008), our investigation started by evaluating the statistical 398 

correlations between calculated landslide density metrics (TD and MLD) and rainfall intensity maxima for 399 

multiple timespans (1–72 h). We used Spearman’s rank coefficient (ρ) to measure the non-parametric 400 

monotonicity of these relationships. In doing so, we intended to explore whether the developed statistical 401 

relationships can explicitly explain the rainfall controls on landslide density. Subsequently, we compared 402 

the variation in rainfall intensity maxima and their return levels and landslide density at the R/A grid cell 403 

scale. 404 

Although the use of 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  as a normalization method for calculating TD and MLD suppresses the 405 

influence of the non-uniformly distributed topographic features within the different R/A grid cells, still, 406 

these metrics can be biased by the non-uniformly distribution of local slopes within the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  as 407 

landslide occurrence also depends on hillslope steepness (Prancevic et al., 2020). Therefore, it is crucial to 408 

focus on R/A grid cells with comparable local slope distributions to explicitly investigate the potential 409 

control of rainfall intensity maxima and their return levels on landslide density. To this end, we first tested 410 

the differences in local slope angle distribution within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of the different R/A grid cells using the 411 

Kruskal-Wallis test (Kruskal and Wallis, 1952). Then, we employed Dunn’s nonparametric pairwise test 412 
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(Dunn, 1961) with a Bonferroni correction for the p-value for detecting the R/A grid cells with similar mean 413 

rank sums of slopes within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (similar slope conditions). Here, the null hypothesis assumes no 414 

significant differences in the distribution of slope angles within the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of the R/A grid cells. 415 

Therefore, the p-value should be higher than a significant level of 5 % to accept the null hypothesis (Dinno, 416 

2017). Accordingly, the pairwise R/A grid cells, where Dunn’s test accepts the null hypothesis, would be 417 

ideal examples for comparing the relation between rainfall intensity maxima and their return levels and 418 

the variation of landslide density metrics. 419 

 420 

 Additionally, we rewrote a part of the Result section to present the results of Dunn’s test 421 

used for selecting the three pairs of R/A grid cells and integrated Figure RC2.1. in the revised 422 

manuscript (Figure S3 in the Supplement Information) to provide the reader with clear 423 

information on the non-uniformly distributed slopes within the different R/A grid cells. 424 

Revision: P9 L247–254 425 

The 23 R/A grid cells, where the triggered landslides were distributed, exhibited significant non-uniformly 426 

distributed local slopes within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as shown in Fig. S3, and confirmed by the rejection of the null 427 

hypothesis of the Kruskal-Wallis test (p-value < 0.05). Applying Dunn’s post hoc test, we could idealize 428 

three pairs of R/A grid cells with comparable slope distributions within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as Dunn’s test could not 429 

reject the null hypothesis (Table S1). These three pairs of R/A grid cells were referred to as P1, P2, and P3 430 

and focused on hereafter to explicitly investigate the relation between rainfall intensity maxima and 431 

landslide density (Fig. 4). Note we excepted three R/A grid cells where most landslides occurred in areas 432 

affected by anthropogenic activities (e.g., slopes surrounding cropland and paddy field) from the Dunn’s 433 

post hoc test.  434 

 435 

RC2: Comment 3 and response 436 

Lines 195-220: I’m not sure what the objective here, if one is interested to find out where rainfall 437 

plays a stronger role, then shouldn’t you go and investigate the local conditions (area, slope, soil 438 

veg properties) of individual slides. 439 

 Here, we compared the relation between rainfall intensity maxima and landslide density 440 

in three pairs of R/A grid cells with comparable local slope distributions (i.e., P1, P2, and P3). We 441 

intended to explore the potential relation between the rainfall intensity maxima and the spatial 442 

variation of landslide density metrics (i.e., TD and MLD). In other words, we intended to 443 

investigate whether landslide density necessary increased with the increase in rainfall intensity 444 

maxima. 445 

 We agree that one of the methods is to investigate local conditions (e.g., slope, soil, 446 

vegetation properties, etc.). However, there are mainly one or two controlling factors in some 447 

specific regions which are worth exploring. In our study area in particular, two interesting 448 

previous works have investigated the importance of multiple predisposing factors (e.g., slope, 449 

land cover, elevation) in landslide occurrence using statistical machine-learning methods (Ozturk 450 

et al., 2021; Dou et al., 2020). Both works showed that rainfall is the main factor controlling 451 
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landslide occurrence in our study area, followed by the slope and land use parameters. These 452 

findings were also consistent with the in-field observation of Chigira et al. (2018). It is worth 453 

noting also that several previous works showed the feasibility to assess only rainfall conditions 454 

for landslide prediction by exploring the spatial relation between rainfall conditions and landslide 455 

density (Chen et al., 2013; Chang et al., 2008; Dai and Lee, 2001; Gao et al., 2017; Marc et al., 456 

2019), as rainfall is the main factor for landsliding. Given this, we mainly focused on rainfall 457 

controls on landslide density in this study. 458 

 459 

 In the revised manuscript, we added the findings of Ozturk et al. (2021) and Dou et al. 460 

(2020) to explain why we can focus on rainfall controls on landslide occurrence in the study area 461 

while ignoring other predisposing factors. 462 

Revision: P3 L86–94 463 

If the landslides occurred in a homogeneous regolith, which reduces the likelihood of their link to complex 464 

geotechnical site characteristics (Marc et al., 2019), the interpretation of the potential rainfall controls on 465 

landslide occurrence would be possible. Indeed, most landslides triggered by the examined rainfall event 466 

were shallow, affected mainly the soil mantle, and occurred on forested hillslopes with similar lithological 467 

settings (granodiorite and pelitic schist) (Chigira et al., 2018). Accordingly, previous investigations of the 468 

importance of multiple predisposing factors (e.g., rainfall, slope, elevation, land cover, etc.) in the 469 

occurrence of these landslides using machine learning methods showed the outweighing of rainfall 470 

conditions on the other predisposing factors (Dou et al., 2020; Ozturk et al., 2021). Thus, the examined 471 

area provides an adequate test field to investigate the rainfall controls on landslide density because at 472 

least the land cover and lithological settings of hillslopes can be deemed relatively homogenous. 473 

 474 

I think the selection process of P groups are based on some random selection routine, if you shuffle 475 

these landslides into another set of 3 populations you may get all three look like P1 and P2 with 476 

smaller differences in rainfall rate differences, then what would you do.? 477 

 From this comment, we believe the Referee interpreted the selection of the three pairs as 478 

it was based on a random selection from the landslide data. Very differently, the three selected 479 

pairs of R/A grid cells were selected based on local slope distributions within the R/A grid cells. 480 

Please see our response to your second comment (RC2: Comment 2 and response), where we 481 

have cleared out how we selected the three pairs of R/A grid cells and explained the revisions we 482 

made in the revised manuscript to avoid any potential future misunderstandings. 483 

 484 

I also could not figure out what those two different groups are within each plot in Figure 4. Why 485 

do the gray symbols have smaller landslide densities than red symbols? I think those were referred 486 

to as “pairs” but not sure how paired and why with different densities? Beyond all what is the 487 

purpose of pairing. 488 

 In Figure 4, each plot compared rainfall intensity for multiple timespans (i.e., rainfall 489 

intensity maxima) recorded in two R/A grid cells with comparable slope distributions (for the 490 
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𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), but different numbers of landslides as can be revealed by the two landslide density 491 

metrics (i.e., TD and MLD). For instance, in Fig. 4a, the gray symbols reflect the rainfall intensity 492 

maxima recorded in the R/A grid cell where TD = 0.05 and MLD = 0 landslides/km2. The red dots 493 

reflect the rainfall intensity maxima observed in the R/A grid cell where TD = 35.61 and MLD = 494 

11.98 landslides/km2. The black line showed the average rainfall intensity maxima in the two R/A 495 

grid cells in comparison. 496 

 The pairing approach we used in this paper aimed at selecting the R/A grid cells with 497 

comparable slope conditions to avoid any possible influence of the differences in slope conditions 498 

on landslide density and explicitly focus on rainfall controls, as we explained in our response to 499 

your second comment (RC2: Comment 2 and response). 500 

 501 

 To avoid any potential future misunderstandings by readers, we changed the title and 502 

legend of Figure 4 to show clearly that the red and gray points are rainfall intensity maxima from 503 

R/A grid cells with different landslide density metrics. 504 

Revision: Please see Figure 4 in P12 L280 505 

 506 

RC2: Comment 4 and response 507 

Rainfall data is very coarse for a rugged terrain to obtain any detailed and new science with 508 

respect to landslide process understanding and how rainfall controls it. The study may be useful 509 

for regional early warning systems, though still very coarse.  510 

 We agree that high-resolution rainfall data would provide more detailed information on 511 

spatial rainfall patterns. However, long-term gridded rainfall data with a spatial resolution finer 512 

than 5 km, needed in our study to estimate rainfall return levels, is currently unavailable in Japan. 513 

Indeed, the R/A dataset used in this study is, so far, the highest-resolution and most reliable long-514 

term gridded precipitation data available. Due to its relatively high resolution, long-term records, 515 

and accuracy, several studies used the R/A dataset as referential data for analyzing localized 516 

heavy rainfall (e.g., Kato, 2020; Hirockawa et al., 2020; Saito and Matsuyama, 2015), evaluating 517 

precipitation forecasts and estimates (e.g., Kubota et al., 2009; Iida et al., 2006; Yin et al., 2022), 518 

and constraining empirical relationships between rainfall information and landslide occurrence 519 

(e.g., Saito et al., 2010; Marc et al., 2019; Ozturk et al., 2021). All these works showed the 520 

usefulness of the R/A precipitation product in capturing the spatial pattern of extreme rainfall 521 

events experienced over the Japanese archipelago, as it could sufficiently resolve mesoscale 522 

convective systems (Hirockawa et al., 2020). 523 

 Interestingly, Ozturk et al. (2021) evaluated the performance of a coarsened R/A dataset 524 

to ≈ 10-km resolution in landslide forecasting using a logistic regression model and showed a 525 

comparable performance between the 5-km and 10-km R/A dataset, meaning that the spatial 526 

rainfall pattern over the mountainous study areas Ozturk et al. (2021) focused on can be 527 

satisfactorily captured even with a 10-km spatial resolution R/A data. Therefore, as our objective 528 
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was to explore the spatial relation between rainfall characteristics and landslide density, rather 529 

than explicitly examine the landsliding process of each of the triggered landslides, we believe that 530 

a resolution of 5 km could be sufficient due to its performance in capturing the spatial pattern of 531 

the studied rainfall event and given the unavailability of alternative product with finer resolution 532 

and long-term records. 533 

 534 

How do you take the next step from coarse-grain analysis to finer scale hazard mapping? 535 

 We believe that the R/A data can be downscaled to finer resolution by employing machine 536 

learning and data fusion methods (e.g., Peleg et al., 2018; Salcedo-Sanz et al., 2020) to address 537 

finer scale hazard analysis. However, several drawbacks can limit the application of these 538 

methods, such as the need for dense rain gauges network over mountainous regions, which is 539 

generally difficult to obtain. We believe that rainfall data downscaling is another research issue 540 

that needs to be addressed in detail in the future and is beyond the objective of the current study. 541 

 542 

RC2: Comment 5 and response 543 

What is the point of Figure 5, what is the question you are trying to address?  544 

  545 

            Thank you for this important question that leads us to notice an insufficient explanation 546 

about investigating rainfall return levels in our preprint (in particular, Figure 5). The question we 547 

tried to address in Figure 5 is to investigate whether rainfall return levels constrain landslide 548 

density during the examined rainfall event. In other words, we tried to evaluate whether landslide 549 

density increased with the increase in rainfall return levels. The use of the return levels in this 550 

study was motivated by the fact they can indirectly evaluate whether rainfall is likely to trigger 551 

landslides without the need for historical landslide records in the targeted regions, as shown in 552 

multiple previous works (e.g., Tsunetaka 2021). 553 

  554 

 We revised the Introduction section to clarify the motivation beyond investigating the 555 

relation between rainfall return levels and landslide density (Figure 5). 556 

Revision: P2 L43–66 557 

So far, we still lack information on the best rainfall variable(s) constraining the landslide spatial pattern 558 

during rainfall events. Some works showed increased landslide density with the increase in total rainfall 559 

amount, rainfall duration, the maximum rainfall amount for short durations (e.g., 3, 12, 24 h), or 560 

antecedent rainfall (Marc et al., 2018; Chen et al., 2013; Chang et al., 2008; Dai and Lee, 2001; Abanco et 561 

al., 2021). Other studies demonstrated that normalized rainfall amounts for specific timespans (e.g., 2, 24, 562 

48 h) by the mean annual precipitation (Ko and Lo, 2016) or the 10-year return period rainfall amount 563 

(Marc et al., 2019), which explain the landscape coevolution with local climate (Benda and Dunne, 1997; 564 

Iida, 1999), are better predictors for landsliding. 565 

On the other hand, these statistical relationships allow the development of rainfall-based empirical models 566 

for predicting the number of landslides likely to be triggered by future rainfall events (e.g., Chang et al., 567 
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2008). However, their development and extrapolation to other regions are challenging. Constraining any 568 

spatial relationship requires comprehensive landslide inventories that contain sufficient landslides for an 569 

adequate statistical analysis. However, this need is extremely difficult to fulfill (Marc et al., 2018; Emberson 570 

et al., 2022). Furthermore, the constrained quantitative relationships are very sensitive to the landslide 571 

records and the characteristics of respective triggering rainfall events used in the statistical analysis. 572 

Therefore, they are case-specific and cannot always be extrapolated to predict the number of landslides 573 

likely to be triggered by future rainfall events, even in the same region (e.g., Gao et al., 2018).  574 

For a given rainfall event, the return period of any rainfall episode with specific duration and intensity can 575 

be assessed using the Intensity-Duration-Frequency (IDF) curves, which are equipotential lines of 576 

probabilities linking rainfall durations and maximum intensities from long-term records (Chow et al., 1988). 577 

This information can potentially evaluate whether a rainfall event is likely to cause landslides as a high 578 

rainfall return level (i.e., rare rainfall event) is generally considered a proxy for the critical rainfall 579 

conditions triggering landslides (Frattini et al., 2009; Griffiths et al., 2009; Segoni et al., 2015, 2014; Iida, 580 

2004). Several studies showed the usefulness of considering rainfall return levels to indirectly evaluate the 581 

potential of a forecast rainfall to trigger landslides without the need for historical landslide records in the 582 

targeted region (e.g., Kim et al., 2021; Tsunetaka, 2021; Vaz et al., 2018). Still, the potential relation 583 

between the spatial patterns of rainfall return levels and landsliding remains unrevealed. 584 

 Also, we revised the Results section to clarify the point and outcomes of Figure 5 better.  585 

Revision: P13 L282–335 586 

3.2 Relationship between landslide density and return levels of rainfall intensity maxima 587 

During the examined rainfall event, the spatial patterns of rainfall return levels can be constraints for the 588 

variation of landslide density. The Gumbel distributions estimating these return levels were able to 589 

represent the observed AMS of rainfall intensities for 1–72 timespans, as the KS test could not reject the 590 

null hypothesis (p-value > 0.05) (Fig. S4). The rainfall intensities estimated for various return periods (5–591 

100 years) and durations (1–72 h) displayed substantial spatial differences at the R/A grid cell scale (Figs. 592 

S5–S9). The Mann-Kendall and Sen’s slope tests showed a spatial heterogeneity in the significance and 593 

magnitude of trends in observed rainfall AMS (Figs. S10 and 11). Specifically, some R/A grid cells in the 594 

western part of the study area showed statistically significant positive rainfall trends at the 95 % 595 

significance level, as the Mann-Kendall rejected the null hypothesis (p-value < 0.05). Other R/A grid cells 596 

exhibited no significant trends, especially for short-duration rainfall intensities (Fig. S10a–c), where Mann-597 

Kendall accepted the null hypothesis (p-value > 0.05). The increasing trends could be attributed to the 598 

climate change effect and indicated that the rainfall IDF curves developed for the examined region are 599 

already subject to climate change and may be altered in the future due to the persistent effect of climate 600 

change. Still, they could provide valuable information about the return levels of the rainfall intensity 601 

maxima characterizing the examined rainfall event. 602 

Comparing the position of rainfall intensity maxima in the IDF curves recorded for each R/A grid cell 603 

discloses disparate return levels (Figs. 5 and S12). The return levels of rainfall intensity maxima over the 604 

R/A grid cells with high landslide density metrics in the three idealized pairs (Fig. 5d–f) were generally 605 

higher than those observed over the corresponding R/A grid cells with lower landslide density metrics (Fig. 606 

5a–c). In P1 and P2, rainfall return levels of all maxima over the high landslide density R/A grid cells (Fig. 607 

5d and e) exceeded or hit the IDF curve for the 100-year return period. On the other hand, the return 608 
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levels of rainfall intensity maxima exceeded the 100-year return period only at 6 and 12 timespans (Fig. 609 

5a) and did not reach this level at any of the examined timespans (Fig. 5b) for the R/A grid cells with low 610 

landslide density in P1 and P2, respectively. Therefore, the number of triggered landslides increased 611 

substantially when rainfall return levels exceeded the 100-year return period in the IDF curves for the 612 

multiple examined timespans (i.e., 1–72 h). 613 

Interestingly, despite the comparable rainfall intensities and slope distributions within the R/A grid cells in 614 

P3 (Fig. 4c), return levels of short-duration rainfall intensity maxima differed, as for the landslide density 615 

metrics (Fig. 5c and f). The return levels of rainfall intensity maxima in both R/A grid cells exceeded the 616 

100-year return periods only for some timespans and shared comparable return levels for the rainfall 617 

intensity maxima at 12–72 h. Still, the rainfall return levels for 1–6 h-intensities in the high landslide density 618 

R/A grid cell (Fig. 5f) were higher than those observed in the R/A grid cells with lower landslide density 619 

(Fig. 5c). For instance, the return level of 3-h rainfall intensity exceeded the 100-year return period in the 620 

R/A grid cell with TD = 20.91 landslides/km2 (Fig. 5f), but it was in the order of 50-year return period in the 621 

R/A grid cell with TD = 5.68 landslides/km2 (Fig. 5c). Therefore, the results in P3 showed that the landslide 622 

density metrics over an R/A grid cell increased with the increase in rainfall return levels, rather than rainfall 623 

intensities. 624 

The observations over the three idealized pairs showed that the spatial patterns of rainfall return levels 625 

constrain the variation of landslide density metrics observed during the examined event. For setting a 626 

quantitative reference that assesses the spatial disparity in rainfall return levels and their relation to the 627 

variation in landslide density, we calculated the ratio between the rainfall intensity maxima within the Pstd 628 

and the estimated rainfall intensity for a 100-year return period derived from the IDF curves. This index 629 

was referred to hereafter as the “100-year rainfall anomaly” and serves as a comparative index of the 630 

severity and rarity of rainfall intensity maxima observed over the R/A grid cells.  631 

Clearly, the 100-year rainfall anomaly in the R/A grid cells with high landslide density was higher than that 632 

observed over the paired low landslide-density R/A grid cells in the idealized pairs (Fig. 5g–i). In P1 and P2, 633 

the 100-year rainfall anomaly exceeded one at all timespans in the case of the R/A grid cells with high 634 

landslide density, mirroring unprecedented and severe rainfall intensities. On the other hand, it was lower 635 

than or exceeded one only at some timespans for the R/A grid cells with lower landslide density (Fig 5 g, 636 

and h). In P3, the 100-year rainfall anomalies for 12–72 h rainfall durations observed over the two paired 637 

R/A grid cells were comparable. However, the 100-year rainfall anomalies for 1–6 h timespans were higher 638 

in the high landslide density R/A grid cell (Fig 5i), particularly for the 3-h rainfall duration, which exceeded 639 

one. Therefore, the comparison of the 100-year rainfall anomaly can indirectly reflect the difference in 640 

rainfall return levels and explain the spatial variation in landslide density observed over the R/A grid cells 641 

in the idealized pairs. 642 

Irrespective of the differences in local slope distributions and rainfall characteristics between the R/A grid 643 

cells in the idealized pairs, landslide density metrics increased with the increase in the 100-year rainfall 644 

anomaly, except for the low landslide density R/A grid cells in P2 (Fig. 5h). For instance, the low landslide 645 

R/A grid cell in P1 (i.e., TD = 0.05 landslides/km2) and P3 (i.e., TD = 5.68 landslides/km2) showed different 646 

landslide density metrics. In parallel, the rainfall anomaly in the R/A grid cell with a TD = 5.68 647 

landslides/km2 was higher than that observed over the R/A grid cell with a TD = 0.05 landslides/km2. Thus, 648 

comparing the 100-year rainfall anomaly may explain the spatial variation in landslide density observed in 649 

some of the R/A grid cells, irrespective of the differences in local slope distributions.  650 
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As far as I understood you have some randomly selected data pairs with different landslide 651 

densities and they seem to show some narrow range of variable ID trends, but this is expected 652 

isn’t it.  653 

 Sorry, you misunderstood how we selected the three pairs of R/A grid cells. The selection 654 

of these pairs was based on local slope distributions within the R/A grid cells rather than a random 655 

selection of landslide data. Please see our response to your second and third comments for more 656 

explanation (RC2: Comment 2 and response, RC2: Comment 3 and response). 657 

 658 

Another point I did not understand—in Figs 3 and 4, do each of the circles average many points 659 

with different landslide densities? 660 

 Fig. 3 shows the spatial distribution of rainfall intensities for multiple timespans, triggered 661 

landslides, and landslide density metrics. White circles designate the TD in corresponding R/A grid 662 

cells. Black circles indicate the MLD in corresponding R/A grid cells. 663 

 No, in Fig. 4, each plot compared rainfall intensities for multiple timespans recoded in two 664 

R/A grid cells with comparable slope distributions (for the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), but different numbers of 665 

landslides as can be revealed by the two landslide density metrics (i.e., TD and MLD). So, the 666 

circles (red and gray) are the rainfall intensities for multiple timespans recorded in two R/A grid 667 

cells. For instance, in Fig. 4a, the gray symbols reflect the rainfall intensities for multiple timespans 668 

recorded in the R/A grid cell where TD = 0.05 and MLD = 0 landslides/km2. The red dots reflect 669 

the rainfall intensities for multiple timespans recorded in the R/A grid cell where TD = 35.61 and 670 

MLD = 11.98 landslides/km2. The black line showed the average of rainfall intensities between 671 

the two R/A grid cells in comparison. 672 

  673 

 To avoid any potential future misunderstandings by readers, we changed the title and 674 

legend of Figure 4 to show clearly that the red and gray points are rainfall intensity maxima from 675 

R/A grid cells with different landslide density metrics. 676 

Revision: Please see Figure 4 in P12 L280 677 

 678 

RC2: Comment 6 and response 679 

Not having a clear research question and/or hypotheses makes it difficult to follow this paper.  680 

 Our scientific question was to investigate the potential relation between rainfall return 681 

levels for multiple timespans, which characterize the temporal rainfall pattern, and the spatial 682 

pattern of landslide distribution during the examined triggering rainfall event (i.e., landslide 683 

density spatial pattern). In other words, we intended to assess whether the spatial variation of 684 

landslide density during the examined triggering rainfall event is governed by rainfall return levels. 685 

 We understand your concern about the clarity of the research question and hypothesis. 686 

Therefore, following this comment and the comment of RC1, we have thoroughly revised the 687 

Introduction section to improve the research hypothesis and question statement. Please see our 688 
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response to RC1’s comment (RC1: Comment 1 and response), where we explained how we 689 

improved the introduction section. 690 

 691 

In addition, the methods rely on some comparisons of three similar slope populations (P1,2,3), and 692 

pairing of data among them, the purpose of which was not clear.  693 

 Sorry, you misunderstood how and why we select the three pairs of R/A grid cells with 694 

similar slope conditions. Please see our response to your second and third comments for more 695 

explanation (RC2: Comment 2 and response, RC2: Comment 3 and response).  696 

 697 

If the whole point of the paper is to show that rainfall patterns and return intervals matter, that 698 

is no surprise to anyone, that is why those intensity-duration thresholds were used for nearly a 699 

century.  700 

 First, it is worth noting the existence of two empirical approaches for quantifying rainfall 701 

characteristics that triggered landslides. The first approach is the traditional intensity-duration 702 

(ID) thresholds that determined the minimum rainfall conditions necessary for likely triggering 703 

landslides. The second approach, mainly used in this paper, relates the spatial variation of 704 

landslide density with rainfall information beyond the ID thresholds.  705 

 The objective of this paper was to primarily investigate whether the spatial patterns of 706 

rainfall return levels govern the variation of landslide density during rainfall events. We showed 707 

that landslide density is constrained by the return levels of rainfall for multiple timespans rather 708 

than rainfall intensities. Our finding is different from other studies’ findings that related the 709 

spatial variation of landslide density to the variation of a single rainfall variable for a specific 710 

timespan. Also, this is different from the ID thresholds that generally linked the occurrence of 711 

landslides to specific rainfall conditions in terms of intensity and duration. So, given this, we 712 

believe that the findings of our paper are novel and addressed a significant gap in the 713 

understanding of rainfall controls on landslide density. 714 

 715 

In addition, the rainfall data is at 5km spatial resolution, which for mountain ranges, is very coarse, 716 

and radar rainfall is usually not a good option for estimating mountain rainfall.  717 

 We are aware of the intrinsic drawbacks of weather radars in reliably observing 718 

precipitation, which could be attributed to various meteorological, topographic, and technical 719 

factors (e.g., beam blockage, ground clutter, anomalous beam propagation, and range effects) 720 

(e.g., Borga et al., 2022). Therefore, we agree with the Referee's statement: “radar rainfall is 721 

usually not a good option for estimating mountain rainfall.” However, we believe this is the case 722 

for the raw uncorrected radar-driven precipitation data (e.g., Young et al., 1999). Differently, the 723 

R/A dataset used in this study was processed by a quality control algorithm involving various 724 

correction procedures for precipitation observation errors (Makihara, 2000; Hotta, 2018; Nagata, 725 

2011). For instance, ground clutter and beam blockage due to mountains are corrected using a 2-726 
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km Pseudo Constant Altitude Plan Position Indicator (PCAPPI) that processes echo intensity data 727 

from multiple elevation angles. Additionally, the R/A product involves a Gauge-adjustment 728 

algorithm that calibrates precipitation estimates with gauge measurements. These correction 729 

procedures made the R/A product valuable for providing reliable rainfall estimates over the 730 

mountainous areas in Japan, which cannot be captured by rain gauged due to a sparse network. 731 

Therefore, it is often used as benchmark rainfall data in multiple studies over mountainous areas 732 

(please see RC2: Comment 4 and response). 733 

 It is worth noting, finally, that several previous studies showed the usefulness of corrected 734 

radar-driven precipitation datasets in observing the rainfall over mountains (e.g., Germann et al., 735 

2006; Shimada et al., 2016; Nelson et al., 2016; Marra et al., 2022). Therefore, we believe that the 736 

R/A product used in our study provides reliable rainfall estimates over the mountainous areas in 737 

Japan. 738 

 739 

 In the revised manuscript, we added further information on the processing algorithm of 740 

the R/A dataset used for correcting rainfall observation errors. Also, we have added some 741 

references that proved the usefulness of the R/A product in multiple hydrological studies. 742 

Revision: P6 L132–147 743 

We employed the radar/rain gauge analyzed (R/A) precipitation dataset to examine the spatiotemporal 744 

pattern of the triggering rainfall and derive the return levels of rainfall intensities for multiple timespans 745 

in the Intensity Duration Frequency (IDF) curves. The R/A dataset is a gridded hourly precipitation product 746 

developed by the Japan Meteorological Agency (JMA) based on 5-minutely reflected echo intensities and 747 

doppler velocities of 46 C-band radars (Nagata, 2011). The processing algorithm of this product includes 748 

three steps. First, accumulated radar echo intensity data were processed by a quality control algorithm for 749 

correcting precipitation observation errors attributed to various meteorological, topographic, and 750 

technical factors (e.g., beam blockage, ground clutter, anomalous beam propagation, and range effects) 751 

(Makihara, 2000). Subsequently, the hourly accumulated corrected radar data were adjusted to rainfall 752 

measurements obtained from local rain gauges to produce accurate Quantitative Precipitation Estimates 753 

(QPE). Finally, the calibrated QPE from the 46 radars were processed and assembled to derive nationwide 754 

hourly precipitation maps that compose the R/A product (Makihara, 2000; Nagata, 2011). This correction 755 

and processing scheme made the R/A dataset the most reliable long-term precipitation data over the 756 

Japanese archipelago. Accordingly, it has often been used as referential data for analyzing localized heavy 757 

rainfall (e.g., Kato, 2020; Hirockawa et al., 2020; Saito and Matsuyama, 2015), evaluating precipitation 758 

forecasts and estimates (e.g., Kubota et al., 2009; Iida et al., 2006; Yin et al., 2022), and constraining 759 

empirical relationships between rainfall information and landslide occurrence (e.g., Saito et al., 2010; Marc 760 

et al., 2019; Ozturk et al., 2021).  761 

 762 

 763 

 764 

 765 
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 Also, we have added a paragraph to explain why the use of the R/A product in this study 766 

is unavoidable. 767 

Revision: P6 L155–158 768 

Although the downscaling stage degrades the spatial details of rainfall events, it is unavoidable in this study 769 

due to the requirement of long-term rainfall data in investigating rainfall return levels. Still, the 770 

downscaled R/A dataset (i.e., 5-km resolution) can capture spatial rainfall patterns over the examined 771 

region as it could sufficiently resolve mesoscale convective systems that resulted in most heavy rainfall 772 

events in Japan (Hirockawa et al., 2020). 773 

 774 

And finally, which is probably more important than any of the comments I made above, besides 775 

local slopes, the authors have not factored in elevation in their analysis. Elevation is also a good 776 

predictor of rainfall and variations in soils and vegetation. They used a slope threshold in their 777 

analysis to select landslides but a quick grouping by elevation would probably reveal a strong 778 

elevation control.  779 

 It is worth recalling that the slope threshold (16.26°) was used only for deriving normalized 780 

landslide densities over the R/A grid cells while accounting for the number of all landslides (for 781 

TD) and all landslides with area > 439 m2 (for MLD). 782 

 Of course, we agree that the elevation can have a strong control on landslide occurrence 783 

in addition to other predisposing factors for landslide occurrence (e.g., slope, land cover, rainfall, 784 

etc.). However, there are mainly one or two controlling factors in some specific regions which are 785 

worth exploring. For our study case in particular, Ozturk et al. (2021) evaluated the importance 786 

of multiple predisposing factors for landslide occurrence, including elevation and rainfall, using 787 

multivariate logistic regression. Their findings indicated that the rainfall information is the main 788 

control for the spatial distribution of triggered landslides, followed by the slope parameter. On 789 

the other hand, the elevation parameter was found to be very less important in controlling 790 

landslide occurrence according to their findings. 791 

 To further assess how landslide occurrence varies with elevation, we have plotted the 792 

histograms of landslide elevations (i.e., 7,676 landslides) from a 10-m DEM (please see Figure 793 

RC2.2.). We found that the landslides occurred in hillslopes with a wide range of elevation from ≈ 794 

50 to ≈ 800 m a.s.l. Although most of the landslides occurred in hillslopes with an elevation in the 795 

range of ≈ 50 to ≈ 600 m a.s.l., still, this elevation range is wide, meaning that landslide do not 796 

preferentially occurred on hillslopes with a specific elevation. 797 

 Given this, we believe that the elevation has a weak control on the spatial distribution of 798 

the landslides we focused on in this study. 799 
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 800 
Figure RC2.2. Non-cumulative (gray histogram) and cumulative (black line) frequency distribution 801 

of landslide elevations (bins = 500). Note that landslide elevations were calculated as the median 802 

of DEM pixel values at landslide scars. 803 

 804 

 In the revised manuscript, we added the findings of Ozturk et al. (2021) and Dou et al. 805 

(2020) to explain why we can focus on rainfall controls on landslide occurrence in the study area 806 

while ignoring other predisposing factors. 807 

Revision: P3 L86–94 808 

If the landslides occurred in a homogeneous regolith, which reduces the likelihood of their link to complex 809 

geotechnical site characteristics (Marc et al., 2019), the interpretation of the potential rainfall controls on 810 

landslide occurrence would be possible. Indeed, most landslides triggered by the examined rainfall event 811 

were shallow, affected mainly the soil mantle, and occurred on forested hillslopes with similar lithological 812 

settings (granodiorite and pelitic schist) (Chigira et al., 2018). Accordingly, previous investigations of the 813 

importance of multiple predisposing factors (e.g., rainfall, slope, elevation, land cover, etc.) in the 814 

occurrence of these landslides using machine learning methods showed the outweighing of rainfall 815 

conditions on the other predisposing factors (Dou et al., 2020; Ozturk et al., 2021). Thus, the examined 816 

area provides an adequate test field to investigate the rainfall controls on landslide density because at 817 

least the land cover and lithological settings of hillslopes can be deemed relatively homogenous. 818 

 819 

All in all, the paper left me with no new information. If the authors would want to salvage this 820 

paper, they would probably reconsider a set of new methods and pose clear questions and 821 

objectives. 822 

 We respect your critiques. However, we feel that most of them originated from an intrinsic 823 

misunderstanding of the research methods, especially the method of landslide density calculation 824 

and pairs selection. Considering the research objective was to mainly investigate whether rainfall 825 

return levels govern landslide spatial distribution (i.e., or density), we believe that the methods 826 

used in our study could sufficiently address the research question. 827 
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 Finally, we apologize for any misunderstandings that might be originated from unclear 828 

explanations of the research methods and hypothesis in the original manuscript. We substantially 829 

revised the manuscript to state our research question and hypothesis better and improve the 830 

presentation of the methods used in this study. We hope the current revised manuscript 831 

addressed our research objective and findings clearly. 832 

 833 
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 940 

Responses to Referee 3 (RC3) 941 

RC3: Comment 1 and response 942 

This paper analyzed > 7,500 landslides in a region of Japan and insisted that the landslide density 943 

would be high when the rainfall return period exceeded 100 years. This paper deals with an 944 

interesting topic; the interpretation of results is reasonable for me. I hope the authors consider 945 

the comments below to make this paper more attractive to readers. 946 

 Thank you again for commenting on our manuscript. We sincerely appreciate your 947 

constructive suggestions that improved our manuscript. Please see below how we revised the 948 

original manuscript to consider your recommendations. 949 

 950 

RC3: Comment 2 and response 951 

The authors assume the stable conditions of rainfall. The meaning of “100 years” would differ in 952 

changing climate conditions. I want the authors to consider and mention climate change. The first 953 

step may be to examine trends in rainfall. 954 

 Thank you for this very important observation. It is indeed interesting to see whether the 955 

100-year rainfall return level is already subject to climate change effect. Therefore, in the revised 956 

manuscript, we followed your recommendation and examined the possible alteration of the 957 

estimated 100-year rainfall return level due to climate change. We first assessed trends in the 958 

annual maxima series (AMS) of rainfall intensities for multiple durations we used for estimating 959 

the 100-year rainfall return level. To this end, we employed two non-parametric statistical tests 960 

for assessing the significance and magnitude of the possible trends in rainfall (i.e., the Mann-961 

Kendall test and the Sen’s slope estimator test). Then, we carefully added the outcomes of these 962 

two tests in the “Results” section. 963 

 964 

 The methods of the trend analysis were integrated in the Material and Methods section 965 

of the revised manuscript. 966 

Revision: P7 L181–188 967 

Although the Gumbel distributions may well fit the observed rainfall AMS based on the KS test, this does 968 

not mean that the derived IDF curves do not shift over time (i.e., stationary) due to climate change (Slater 969 

et al., 2021). It is, therefore, crucial to test the stationarity assumption in the Gumbel model parameters 970 

by assessing the existence of trends in rainfall AMS during the examined period. To this end, we employed 971 

the Mann-Kendall and Sen’s slope tests, two non-parametric statics frequently applied in hydro-972 

meteorology for trend analysis (e.g., Yan et al., 2018). The Mann-Kendall test assesses the significance of 973 

trends in rainfall (Mann, 1945; Kendall, 1975), while Sen’s slope test quantifies the magnitude of these 974 

trends if exist (Sen, 1968). The null hypothesis of the Mann-Kendall test assumes no trends. Therefore, a 975 

p-value less than a significance level of 5 % would imply the existence of a significant trend in rainfall AMS. 976 

  977 
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We have also provided two new figures in the Supplement file showing the results of the 978 

Mann-Kendall and Sen’s slope tests. 979 

Revision: Please see Supplement file, P11- P12 980 

 981 

 We note that these two tests showed a spatial heterogeneity of the significance and 982 

magnitude of trends in rainfall annual maxima series for multiple timespans that need a detailed 983 

investigation of its drivers. Given that the main objective of this paper is to investigate the relation 984 

between rainfall return levels and landslide density, we avoided detailed analysis of the trend 985 

tests as it is beyond the objective of the current study. Accordingly, the outcomes of the trend 986 

analysis were briefly integrated in the Results section of the revised manuscript as shown below. 987 

Revision: P13 L287–295 988 

The Mann-Kendall and Sen’s slope tests showed a spatial heterogeneity in the significance and magnitude 989 

of trends in observed rainfall AMS (Figs. S10 and 11). Specifically, some R/A grid cells in the western part 990 

of the study area showed statistically significant positive rainfall trends at the 95 % significance level, as 991 

the Mann-Kendall rejected the null hypothesis (p-value < 0.05). Other R/A grid cells exhibited no significant 992 

trends, especially for short-duration rainfall intensities (Fig. S10a–c), where Mann-Kendall accepted the 993 

null hypothesis (p-value > 0.05). The increasing trends could be attributed to the climate change effect and 994 

indicated that the rainfall IDF curves developed for the examined region are already subject to climate 995 

change and may be altered in the future due to the persistent effect of climate change. Still, they could 996 

provide valuable information about the return levels of the rainfall intensity maxima characterizing the 997 

examined rainfall event. 998 

 999 

RC3: Comment 3 and response 1000 

The authors analyzed using the return period of rainfall and did not mention the absolute amount 1001 

(intensity) of rainfall. I am wondering whether the absolute amount of rainfall may be more 1002 

important than the return period for understanding the distribution of the landslides. 1003 

 Thank you for this important question. As explained in our revised manuscript (P3, L67–1004 

72 and P7, L160–170), determining the absolute amount (intensity) of rainfall responsible for all 1005 

landslides (i.e., 7,676) triggered during the examined rainfall event is difficult due to the disparate 1006 

hydromechanical responses of affected hillslopes to forcing rainfall. Therefore, in this study, we 1007 

used multiple timespans from 1 to 72 h within a standardized period (Pstd) of 3 days that 1008 

accumulated the maximum rainfall amount during the triggering event to examine the 1009 

relationship between rainfall information and landslide density. In doing so, we intended to 1010 

consider multiple combinations of rainfall durations that could represent the effective rainfall 1011 

duration needed for triggering the various landslides. 1012 

 If we consider the rainfall intensity maxima for a specific duration (e.g., 24, 48, or 72 h) 1013 

recorded during the examined rainfall event as the meaning of absolute rainfall intensity, we 1014 

could find a significant statistical correlation between landslide density and the absolute rainfall 1015 

intensity (Table 1 and Fig. 3). This means that the absolute rainfall intensity could also be 1016 
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important for explaining the spatial distribution of landslide density. But, this correlation did not 1017 

necessarily mean that landslide density increased with increased absolute rainfall intensity, as we 1018 

observed grid cells with similar rainfall intensities but different landslide density. The landslide 1019 

density differed even for grid cells with comparable local slope distributions and rainfall 1020 

intensities, as shown in as shown in Fig 4c. This led us to conclude that rainfall intensity (i.e., 1021 

absolute rainfall) do not necessarily constrain landslide density. On the other hand, landslide 1022 

density over the examined grid cells increased by the increase in rainfall return levels (Fig 5c, f). 1023 

Therefore, the results of our investigation showed that the landslide density is constrained by 1024 

rainfall return levels, rather than rainfall intensities. 1025 

 1026 

 We have thoroughly revised the Results section to clarify why we concluded that landslide 1027 

density is constrained by rainfall return levels rather than rainfall intensities. 1028 

Revision: P10 L262–273 1029 

Importantly, even with comparable rainfall intensities and slope distributions, landslide density over two 1030 

R/A grid cells could be different (Fig. 4c). Unlike the observations in P1 and P2, rainfall maxima recorded 1031 

for 12–72 h over the two R/A grid cells in P3 (Fig. 4c) were similar. The R/A grid cell with higher landslide 1032 

density experienced little higher rainfall intensity maxima for 1–6 h timespans than those recorded in the 1033 

R/A grid cell with lower landslide density. But, the differences in these rainfall intensity maxima were slight 1034 

(≈ 1.15 times) compared to those observed between the paired R/A grid cells in P1 and P2. Because P1 and 1035 

P2 paired two of the R/A grid cells with the lowest landslide density metrics during the examined rainfall 1036 

event with two of the R/A grid cells with the highest landslide density metrics, the differences in landslide 1037 

density metrics were much more pronounced than that observed over the R/A grid cells in P3 (≈ 3.5 times 1038 

for TD). However, the R/A grid cell with higher landslide density in P3 indicated the fifth highest TD (20.91 1039 

landslides/km2) and MLD (5.65 landslides/km2) in the total of 23 R/A grid cells (Fig. S3), being a sufficiently 1040 

high landslide density. Given this, the results in P3 indicated that differences in rainfall intensities and slope 1041 

distributions (i.e., topography) do not necessarily constrain landslide density. 1042 

Revision: P13 L305–313 1043 

Interestingly, despite the comparable rainfall intensities and slope distributions within the R/A grid cells in 1044 

P3 (Fig. 4c), return levels of short-duration rainfall intensity maxima differed, as for the landslide density 1045 

metrics (Fig. 5c and f). The return levels of rainfall intensity maxima in both R/A grid cells exceeded the 1046 

100-year return periods only for some timespans and shared comparable return levels for the rainfall 1047 

intensity maxima at 12–72 h. Still, the rainfall return levels for 1–6 h-intensities in the high landslide density 1048 

R/A grid cell (Fig. 5f) were higher than those observed in the R/A grid cells with lower landslide density 1049 

(Fig. 5c). For instance, the return level of 3-h rainfall intensity exceeded the 100-year return period in the 1050 

R/A grid cell with TD = 20.91 landslides/km2 (Fig. 5f), but it was in the order of 50-year return period in the 1051 

R/A grid cell with TD = 5.68 landslides/km2 (Fig. 5c). Therefore, the results in P3 showed that the landslide 1052 

density metrics over an R/A grid cell increased with the increase in rainfall return levels, rather than rainfall 1053 

intensities. 1054 

  1055 

 1056 

 1057 
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RC3: Comment 4 and response 1058 

The results section includes not only “results” but also “discussion”. It may be better to combine 1059 

these two sections as the “results and discussion” section. 1060 

 Because combining the results and discussion sections may make the paper difficult to 1061 

follow by readers, we believe that separated “results” and “discussion” sections may address our 1062 

findings better. 1063 

 We carefully revised the “results” section to avoid any possible preliminary discussion of 1064 

the study results. We removed some sentences (e.g., “This means that the disparities in rainfall 1065 

return levels could be the cause for the relative difference in landslide density between the two 1066 

paired grid cells.”, “the comparison of the 100-year rainfall anomaly could explain the substantial 1067 

difference in landslide density between the two grid cells (≈ 110 times for TD)”) that interpreted 1068 

our results were removed from the “results” section. We believe that now the Results section 1069 

only presents the findings of the current study. 1070 

Revision: P9 L233–343 1071 

3.1 Relationship between landslide density and rainfall intensity maxima 1072 

A line-shaped band of high rainfall intensity maxima matched the overall spatial pattern of triggered 1073 

landslides (Fig. 3), indicating that the spatial distribution of rainfall intensities constrains the landslide 1074 

distribution. These maxima exhibited substantial differences at the R/A grid cell scale, suggesting spatial 1075 

disparity in the characteristics of the temporal rainfall pattern. The total triggered landslides were 1076 

distributed within 23 R/A grid cells with a TD varied between 0.05 and 105.63 landslides/km2 and an MLD 1077 

ranging between 0.00 and 36.26 landslides/km2 (Fig. 3). More than 65 % of the total landslides occurred 1078 

within only three R/A grid cells with a TD of 35.61, 103.88, and 105.63 landslides/km2. The MLD values in 1079 

these R/A grid cells were 11.98, 36.26, and 28.03 landslides/km2, respectively, indicating the highest 1080 

number of medium and large landslides occurred during the triggering event. From a statistical point of 1081 

view, Spearman’s rank correlation coefficients (Table 1) showed significant monotonic positive 1082 

relationships between all computed rainfall intensity maxima and TD (0.62 < ρ < 0.80) and MLD (0.68 < ρ 1083 

< 0.84) at the 1 % level. However, these relationships did not necessarily mean that landslide density 1084 

increases with increased rainfall intensity maxima, as we observed R/A grid cells with comparable rainfall 1085 

intensity maxima but different TD and MLD (e.g., Fig. S2n and r). Therefore, rainfall controls on landslide 1086 

density cannot be explicitly grasped from the developed statistical relationships. 1087 

The 23 R/A grid cells, where the triggered landslides were distributed, exhibited significant non-uniformly 1088 

distributed local slopes within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as shown in Fig. S3, and confirmed by the rejection of the null 1089 

hypothesis of the Kruskal-Wallis test (p-value < 0.05). Applying Dunn’s post hoc test, we could idealize 1090 

three pairs of R/A grid cells with comparable slope distributions within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as Dunn’s test could not 1091 

reject the null hypothesis (Table S1). These three pairs of R/A grid cells were referred to as P1, P2, and P3 1092 

and focused on hereafter to explicitly investigate the relation between rainfall intensity maxima and 1093 

landslide density (Fig. 4). Note we excepted three R/A grid cells where most landslides occurred in areas 1094 

affected by anthropogenic activities (e.g., slopes surrounding cropland and paddy field) from the Dunn’s 1095 

post hoc test.  1096 
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Despite the similarity in local slope distributions, the differences in landslide density (TD and MLD) 1097 

between the paired R/A grid cells in P1 and P2 were well distinguishable (≈ 700 times and ≈ 70 times, 1098 

respectively). In P1, the rainfall intensity maxima observed over the R/A grid cell that experienced high 1099 

landslide density (TD = 35.61 and MLD = 11.98 landslide/km2) were 1.5 to 1.7 times higher than those 1100 

observed in the low landslide density R/A grid cell (Fig. 4a). Similarly, the differences in rainfall intensity 1101 

maxima over the paired R/A grid cells in P2 varied between 1.7 to 3.3 times of rainfall intensity (Fig. 4b). 1102 

Thus, some paired R/A grid cells with comparable local slope distributions showed that landslide density 1103 

increased with the increase in rainfall intensity maxima. 1104 

Importantly, even with comparable rainfall intensities and slope distributions, landslide density over two 1105 

R/A grid cells could be different (Fig. 4c). Unlike the observations in P1 and P2, rainfall maxima recorded 1106 

for 12–72 h over the two R/A grid cells in P3 (Fig. 4c) were similar. The R/A grid cell with higher landslide 1107 

density experienced little higher rainfall intensity maxima for 1–6 h timespans than those recorded in the 1108 

R/A grid cell with lower landslide density. But, the differences in these rainfall intensity maxima were slight 1109 

(≈ 1.15 times) compared to those observed between the paired R/A grid cells in P1 and P2. Because P1 and 1110 

P2 paired two of the R/A grid cells with the lowest landslide density metrics during the examined rainfall 1111 

event with two of the R/A grid cells with the highest landslide density metrics, the differences in landslide 1112 

density metrics were much more pronounced than that observed over the R/A grid cells in P3 (≈ 3.5 times 1113 

for TD). However, the R/A grid cell with higher landslide density in P3 indicated the fifth highest TD (20.91 1114 

landslides/km2) and MLD (5.65 landslides/km2) in the total of 23 R/A grid cells (Fig. S3), being a sufficiently 1115 

high landslide density. Given this, the results in P3 indicated that differences in rainfall intensities and slope 1116 

distributions (i.e., topography) do not necessarily constrain landslide density. 1117 

3.2 Relationship between landslide density and return levels of rainfall intensity maxima 1118 

During the examined rainfall event, the spatial patterns of rainfall return levels can be constraints for the 1119 

variation of landslide density. The Gumbel distributions estimating these return levels were able to 1120 

represent the observed AMS of rainfall intensities for 1–72 timespans, as the KS test could not reject the 1121 

null hypothesis (p-value > 0.05) (Fig. S4). The rainfall intensities estimated for various return periods (5–1122 

100 years) and durations (1–72 h) displayed substantial spatial differences at the R/A grid cell scale (Figs. 1123 

S5–S9). The Mann-Kendall and Sen’s slope tests showed a spatial heterogeneity in the significance and 1124 

magnitude of trends in observed rainfall AMS (Figs. S10 and 11). Specifically, some R/A grid cells in the 1125 

western part of the study area showed statistically significant positive rainfall trends at the 95 % 1126 

significance level, as the Mann-Kendall rejected the null hypothesis (p-value < 0.05). Other R/A grid cells 1127 

exhibited no significant trends, especially for short-duration rainfall intensities (Fig. S10a–c), where Mann-1128 

Kendall accepted the null hypothesis (p-value > 0.05). The increasing trends could be attributed to the 1129 

climate change effect and indicated that the rainfall IDF curves developed for the examined region are 1130 

already subject to climate change and may be altered in the future due to the persistent effect of climate 1131 

change. Still, they could provide valuable information about the return levels of the rainfall intensity 1132 

maxima characterizing the examined rainfall event. 1133 

Comparing the position of rainfall intensity maxima in the IDF curves recorded for each R/A grid cell 1134 

discloses disparate return levels (Figs. 5 and S12). The return levels of rainfall intensity maxima over the 1135 

R/A grid cells with high landslide density metrics in the three idealized pairs (Fig. 5d–f) were generally 1136 

higher than those observed over the corresponding R/A grid cells with lower landslide density metrics (Fig. 1137 

5a–c). In P1 and P2, rainfall return levels of all maxima over the high landslide density R/A grid cells (Fig. 1138 
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5d and e) exceeded or hit the IDF curve for the 100-year return period. On the other hand, the return 1139 

levels of rainfall intensity maxima exceeded the 100-year return period only at 6 and 12 timespans (Fig. 1140 

5a) and did not reach this level at any of the examined timespans (Fig. 5b) for the R/A grid cells with low 1141 

landslide density in P1 and P2, respectively. Therefore, the number of triggered landslides increased 1142 

substantially when rainfall return levels exceeded the 100-year return period in the IDF curves for the 1143 

multiple examined timespans (i.e., 1–72 h). 1144 

Interestingly, despite the comparable rainfall intensities and slope distributions within the R/A grid cells in 1145 

P3 (Fig. 4c), return levels of short-duration rainfall intensity maxima differed, as for the landslide density 1146 

metrics (Fig. 5c and f). The return levels of rainfall intensity maxima in both R/A grid cells exceeded the 1147 

100-year return periods only for some timespans and shared comparable return levels for the rainfall 1148 

intensity maxima at 12–72 h. Still, the rainfall return levels for 1–6 h-intensities in the high landslide density 1149 

R/A grid cell (Fig. 5f) were higher than those observed in the R/A grid cells with lower landslide density 1150 

(Fig. 5c). For instance, the return level of 3-h rainfall intensity exceeded the 100-year return period in the 1151 

R/A grid cell with TD = 20.91 landslides/km2 (Fig. 5f), but it was in the order of 50-year return period in the 1152 

R/A grid cell with TD = 5.68 landslides/km2 (Fig. 5c). Therefore, the results in P3 showed that the landslide 1153 

density metrics over an R/A grid cell increased with the increase in rainfall return levels, rather than rainfall 1154 

intensities. 1155 

The observations over the three idealized pairs showed that the spatial patterns of rainfall return levels 1156 

constrain the variation of landslide density metrics observed during the examined event. For setting a 1157 

quantitative reference that assesses the spatial disparity in rainfall return levels and their relation to the 1158 

variation in landslide density, we calculated the ratio between the rainfall intensity maxima within the Pstd 1159 

and the estimated rainfall intensity for a 100-year return period derived from the IDF curves. This index 1160 

was referred to hereafter as the “100-year rainfall anomaly” and serves as a comparative index of the 1161 

severity and rarity of rainfall intensity maxima observed over the R/A grid cells.  1162 

Clearly, the 100-year rainfall anomaly in the R/A grid cells with high landslide density was higher than that 1163 

observed over the paired low landslide-density R/A grid cells in the idealized pairs (Fig. 5g–i). In P1 and P2, 1164 

the 100-year rainfall anomaly exceeded one at all timespans in the case of the R/A grid cells with high 1165 

landslide density, mirroring unprecedented and severe rainfall intensities. On the other hand, it was lower 1166 

than or exceeded one only at some timespans for the R/A grid cells with lower landslide density (Fig 5 g, 1167 

and h). In P3, the 100-year rainfall anomalies for 12–72 h rainfall durations observed over the two paired 1168 

R/A grid cells were comparable. However, the 100-year rainfall anomalies for 1–6 h timespans were higher 1169 

in the high landslide density R/A grid cell (Fig 5i), particularly for the 3-h rainfall duration, which exceeded 1170 

one. Therefore, the comparison of the 100-year rainfall anomaly can indirectly reflect the difference in 1171 

rainfall return levels and explain the spatial variation in landslide density observed over the R/A grid cells 1172 

in the idealized pairs. 1173 

Irrespective of the differences in local slope distributions and rainfall characteristics between the R/A grid 1174 

cells in the idealized pairs, landslide density metrics increased with the increase in the 100-year rainfall 1175 

anomaly, except for the low landslide density R/A grid cells in P2 (Fig. 5h). For instance, the low landslide 1176 

R/A grid cell in P1 (i.e., TD = 0.05 landslides/km2) and P3 (i.e., TD = 5.68 landslides/km2) showed different 1177 

landslide density metrics. In parallel, the rainfall anomaly in the R/A grid cell with a TD = 5.68 1178 

landslides/km2 was higher than that observed over the R/A grid cell with a TD = 0.05 landslides/km2. Thus, 1179 
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comparing the 100-year rainfall anomaly may explain the spatial variation in landslide density observed in 1180 

some of the R/A grid cells, irrespective of the differences in local slope distributions.  1181 

In this sense, we can categorize the R/A grid cells that experienced landslides (except three R/A grid cells 1182 

where landslides were affected by anthropogenic activities) based on differences in the 100-year rainfall 1183 

anomaly and landslide density. Accordingly, the high landslide density R/A grid cells (TD > 30 and MLD > 1184 

10 landslides/km2), of which the R/A grid cells with high landslide density in P1 and P2 showed a 100-year 1185 

rainfall anomaly exceeded one at all timespans (Fig S13b). In other words, rainfall intensities for all 1186 

examined timespans (i.e., 1–72 h) exhibited return levels exceeding the 100-year return period. While over 1187 

lower landslide density R/A grid cells (TD < 30 and MLD < 10 landslides/km2), which include the R/A grid 1188 

cells with low landslide density in P1 and P2 and the two paired R/A grid cells in P3, the 100-year rainfall 1189 

anomaly was generally lower than one or exceeded one only at some timespans within the Pstd (Fig S13a). 1190 

 1191 

RC3: Comment 5 and response 1192 

I guess there are several studies focusing on the same landslides because these landslides would 1193 

affect a large-scale impact on this region. The authors did not mention the factor determining the 1194 

density of the grids with any return periods of < 100 years. Are there any tips from the previous 1195 

studies? 1196 

 We could find a few previous studies that focused on the same examined study case, but 1197 

using different landslide inventories, such as Dou et al. (2020) and Ozturk et al. (2021). Both works 1198 

used statistical machine-learning methods to investigate the importance of numerous 1199 

predisposing factors in landslide occurrence. Their findings showed that rainfall is the main factor 1200 

controlling landslide occurrence in our study area, followed by the slope and land use parameters. 1201 

These findings provided useful insights about possible influence of terrain settings (i.e., slope and 1202 

land cover) on landslide occurrence in the R/A grid cells with return periods < 100 years. 1203 

 Therefore, in the revised manuscript, we integrated the findings of these two important 1204 

works to add the potential influence of terrain settings (e.g., land cover) on landslide occurrence 1205 

when rainfall return levels are lower than 100 years. 1206 

Revision: P17 L385–394 1207 

Last, it is worth noting that landslides occurred even when rainfall did not reach the 100-year return level 1208 

at any of the examined timespans (Fig S12 b, e, f). However, landslide density over these grid cells (i.e., 1209 

grid cells where rainfall did not reach the 100-year return level) was considerably low (≈ 0.4–1.5 1210 

landslides/km2 in terms of TD) compared with most other grid cells. Dou et al. (2020) and Ozturk et al. 1211 

(2021) used statistical machine-learning methods to investigate the importance of numerous predisposing 1212 

factors in landslide occurrence by the examined rainfall event. Their findings showed that rainfall is the 1213 

main factor controlling landslide occurrence in our study area, followed by the slope and land use 1214 

parameters. Accordingly, landslide occurrence over these grid cells during the examined rainfall event 1215 

could be constrained by terrain settings (e.g., land cover) as the rainfall return levels were low. Therefore, 1216 

landslides can occur even if rainfall return levels do not reach the 100-year return period but with 1217 

substantially low density. In any case, comparing rainfall return levels in the IDF curves can explain the 1218 

substantial differences in landslide density due to considering multiple return periods. 1219 
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