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Abstract. It is known that the spatial rainfall pattern can mark landslide distribution across the landscape during extreme 

triggering events. However, the current knowledge of rainfall controls on this distribution remains limited. Here, to reveal 

what rainfall characteristics control landslide spatial distribution, we explore the spatiotemporal pattern of a rainfall event 

that triggered over 7,500 landslides (area ≈ 100–104 m2) at a regional scale with an area of ≈ 400 km2 in Japan. Using a 5-10 

km resolution radar-driven and gauge-adjusted hourly precipitation dataset with 32 years of records, we compared rainfall 

return levels for various time ranges from 1 to 72 h and landslide density in each grid cell of the precipitation dataset (≈ 25 

km2). The results show that, even if local slope distributions within the grid cells are comparable, the number of landslides 

in a ≈ 25 km2 grid cell was substantially high when rainfall return levels exceeded the 100-year return period in all examined 

timespans (i.e., 1–72 h). In contrast, when only specific-duration rainfall intensities (e.g., 6–48 h) exceeded the 100-year 15 

return level, the landslide density in corresponding grid cells tended to be low. Consequently, the landslide density 

increased with the increase in rainfall return levels of various timespans rather than a specific rainfall intensity, such as 

downpours for a few hours or long-term cumulative rainfall for several days. Moreover, with the increase in the landslide 

density, the number of relatively large landslides exceeding ≈ 400 m2 increased. Therefore, the spatial differences in rainfall 

return levels potentially constrain the density of total landsliding and relatively large landslides. In this sense, whether 20 

rainfall intensities reach high return levels rarely experienced in a wide timespan ranging from a few hours to several days 

is one of the key determinants of the spatial distribution of landslides and the extent of related hazards. 

1 Introduction 

Landslides are natural geomorphic processes driving long-term landscape evolution (Korup et al., 2010), which may 

impose substantial changes in hillslope and fluvial systems and significant human and economic losses (Froude and Petley, 25 

2018; Jones et al., 2021). Rainfall is the most common trigger of landslides (Sidle and Bogaard, 2016). Although rainfall 

may provoke individual landslides with localized impacts, large-scale extreme rainfall events often induce numerous 

landslides widely spread over the landscape (Emberson et al., 2022). In such cases, landslide impacts span the spatial extent 
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of the triggering event, and their significance depends on the location and magnitude (i.e., number and size) of triggered 

landslides (Medwedeff et al., 2020; Milledge et al., 2014; Benda and Dunne, 1997). Therefore, revealing rainfall controls 30 

on landslide spatial distribution through investigating the relationship between rainfall and landsliding is fundamental for 

assessing landscape changes and supporting hazard prediction efforts. 

A well-established method for linking landslide occurrence to rainfall or hydrological characteristics (e.g., intensity, 

duration, soil moisture) is the use of rainfall thresholds (Guzzetti et al., 2008; Caine, 1980; Saito et al., 2010) and recently 

hydro-meteorological thresholds (Bogaard and Greco, 2018). These empirical thresholds offer a straightforward way to 35 

predict whether landslides will occur in the future. However, they cannot quantify the magnitude of landslides. Therefore, 

multiple studies attempted to constrain quantitative spatial relationships between landslide distribution, often described as 

density (e.g., number/km2 or area/km2), and dynamic explanatory variables that provide proxies for the critical rainfall 

conditions triggering landslides. Typically, these studies aimed at identifying the key rainfall variable(s) that drive 

landsliding by relying upon regression analysis and specific landslide records (i.e., a catalog of individual landslide 40 

information (e.g., Gao et al., 2018), detailed landslide inventories triggered by single or multiple rainfall events (e.g., Marc 

et al., 2018; Chang et al., 2008)). 

So far, we still lack information on the best rainfall variable(s) constraining the landslide spatial pattern during rainfall 

events. Some works showed increased landslide density with the increase in total rainfall amount, rainfall duration, the 

maximum rainfall amount for short durations (e.g., 3, 12, 24 h), or antecedent rainfall (Marc et al., 2018; Chen et al., 2013; 45 

Chang et al., 2008; Dai and Lee, 2001; Abanco et al., 2021). Other studies demonstrated that normalized rainfall amounts 

for specific timespans (e.g., 2, 24, 48 h) by the mean annual precipitation (Ko and Lo, 2016) or the 10-year return period 

rainfall amount (Marc et al., 2019), which explain the landscape coevolution with local climate (Benda and Dunne, 1997; 

Iida, 1999), are better predictors for landsliding. 

On the other hand, these statistical relationships allow the development of rainfall-based empirical models for predicting 50 

the number of landslides likely to be triggered by future rainfall events (e.g., Chang et al., 2008). However, their 

development and extrapolation to other regions are challenging. Constraining any spatial relationship requires 

comprehensive landslide inventories that contain sufficient landslides for an adequate statistical analysis. However, this 

need is extremely difficult to fulfill (Marc et al., 2018; Emberson et al., 2022). Furthermore, the constrained quantitative 

relationships are very sensitive to the landslide records and the characteristics of respective triggering rainfall events used 55 

in the statistical analysis. Therefore, they are case-specific and cannot always be extrapolated to predict the number of 

landslides likely to be triggered by future rainfall events, even in the same region (e.g., Gao et al., 2018).  

For a given rainfall event, the return period of any rainfall episode with specific duration and intensity can be assessed 

using the Intensity-Duration-Frequency (IDF) curves, which are equipotential lines of probabilities linking rainfall 

durations and maximum intensities from long-term records (Chow et al., 1988). This information can potentially evaluate 60 

whether a rainfall event is likely to cause landslides as a high rainfall return level (i.e., rare rainfall event) is generally 
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considered a proxy for the critical rainfall conditions triggering landslides (Frattini et al., 2009; Griffiths et al., 2009; Segoni 

et al., 2015, 2014; Iida, 2004). Several studies showed the usefulness of considering rainfall return levels to indirectly 

evaluate the potential of a forecast rainfall to trigger landslides without the need for historical landslide records in the 

targeted region (e.g., Kim et al., 2021; Tsunetaka, 2021; Vaz et al., 2018). Still, the potential relation between the spatial 65 

patterns of rainfall return levels and landsliding remains unrevealed. 

Clearly, rainfall controls on landslide spatial distribution differ depending on rainfall characteristics and local terrain 

settings (e.g., Bogaard and Greco, 2018). Even during the same triggering rainfall event, multiple inventories showed 

discrepancies in landslide occurrence timing and geometric features (e.g., area, volume, and depth) at the catchment 

(Yamada et al., 2012; Yano et al., 2019; Guzzetti et al., 2004) and hillslope scales (Büschelberger et al., 2022). This suggests 70 

that landslides are triggered by disparate rainfall timespans due to different hydromechanical responses of hillslopes to 

forcing rainfall. If so, then it is reasonable to hypothesize that landsliding can be constrained by the return levels of multiple 

rainfall timespans. This study focused on an extreme rainfall event that triggered over 7,500 landslides in an area of around 

400 km2 in the northern part of the Kyushu region in southern Japan to investigate whether spatial patterns of rainfall return 

levels govern landslide density. Using a gridded rainfall dataset with a ≈ 5-km resolution, we compared rainfall return 75 

levels for various time ranges from 1 to 72 h and landslide density in each ≈ 25-km2 grid cell to investigate whether the 

landslide density increase in grid cells where rainfall intensities reach high return levels that are rarely experienced. The 

present research is expected to provide insights into what rainfall characteristics control landslide spatial distribution and 

when rainfall may cause high landslide density. Thus, it can have promising implications for supporting hazard prediction 

efforts and understanding landscape evolution. 80 

2 Material and Methods 

2.1 Study site and landslide characteristics 

The study focuses on an area of around 400 km2 in the northern part of the Kyushu region in southern Japan (Fig. 1a). The 

examined area experienced an extreme rainfall event on July 5 and 6, 2017, caused by a linear mesoscale convective system 

(Hirockawa et al., 2020), that triggered over 7,500 landslides (Fig. 1a). 85 

If the landslides occurred in a homogeneous regolith, which reduces the likelihood of their link to complex geotechnical 

site characteristics (Marc et al., 2019), the interpretation of the potential rainfall controls on landslide occurrence would be 

possible. Indeed, most landslides triggered by the examined rainfall event were shallow, affected mainly the soil mantle, 

and occurred on forested hillslopes with similar lithological settings (granodiorite and pelitic schist) (Chigira et al., 2018). 

Accordingly, previous investigations of the importance of multiple predisposing factors (e.g., rainfall, slope, elevation, 90 

land cover, etc.) in the occurrence of these landslides using machine learning methods showed the outweighing of rainfall 

conditions on the other predisposing factors (Dou et al., 2020; Ozturk et al., 2021). Thus, the examined area provides an 
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adequate test field to investigate the rainfall controls on landslide density because at least the land cover and lithological 

settings of hillslopes can be deemed relatively homogenous. 

Our research relied on the landslide inventory prepared by the Ministry of Land, Infrastructure, Transport, and Tourism of 95 

Japan from orthophotos of 0.1-m resolution and digital elevation models (DEM) of 1-m resolution acquired by Airborne 

Laser Scanning in July 2017 (i.e., immediately after the landslide occurrence). The mapping method of landslide scars 

involves three steps. The first step identifies bare land hillslopes as landslides and delineates them manually from the 

orthophotos. The second step rectifies the delineated landslide scars using DEM data acquired after the disaster and maps 

them as polygons. The third step compares these polygons to satellite and aerial images dated before July 2017 to exclude 100 

landslides that formerly occurred in the region. The inventory counts 7,676 polygons identifying widespread landslides in 

the examined area (Fig. 1b). These polygons represent only landslide source areas (scars) and omit runout zones. 

 

Figure 1: (a) Cumulative rainfall for 5 and 6 July 2017 (> 50 mm) and location of triggered landslides (black polygons in the 

inset figure). (b) Distribution of the landslides (black polygons) over the Slope map of the affected region. 105 

We investigated landslide size characteristics by examining the frequency-area distribution (FAD), which plots landslide 

sizes (i.e., measures of the area) with corresponding frequencies (Malamud et al., 2004). The FAD can determine whether 

the landslide inventory follows the fundamental property of landslides (Hovius et al., 1997). For the landslide inventory 

this study relied on, the FAD exhibited a rollover (i.e., the peak point of the distribution) at around 102 m2, below which 

the frequency of small landslides decreases, and a cutoff point of 439 m2 (Fig. 2), which was derived using the method of 110 

Clauset et al., (2009). The frequency distribution of landslides with area size exceeding the cutoff (area > 439 m2), which 
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accounted for 28.12 % of the total inventory and referred to, hereafter, as medium and large landslides, fitted a power-law 

function with the scaling parameter (β) of 2.26. This exponent is within the typical range of 2–3 derived by other landslide 

inventories (e.g., Guzzetti et al., 2002; Marc et al., 2018) and suggests that the small landslides were more frequent than 

medium and large landslides (area > cutoff point of 439 m2) during the studied event. Accordingly, it is important to note 115 

that the landslide inventory follows the fundamental properties of landslides, as the FAD can fit an inverse gamma 

distribution with a right tail that decays as a power law (Stark and Hovius, 2001). Considering the high resolution of DEM 

and orthophotos used for constructing the examined landslide inventory, which is significantly lower than the cutoff point 

and allowed capturing the geometric features of landslides with size in the order of 0.02 m2, it is evident that the observed 

divergence was due to physical processes rather than under-sampling of small landslides (Frattini and Crosta, 2013; 120 

Medwedeff et al., 2020). 

 

Figure 2: Non-cumulative frequency area distribution of the landslide inventory. 

Additionally, we quantified landslide angles as the median slope at landslide scars derived from the analysis of a 10-m 

resolution DEM, which was developed by the Geospatial Information Authority of Japan (GSI) from 1:25,000-scale 125 

topographic maps dated before the disaster (Fig. 1b). For landslides with an area smaller than 100 m2 (i.e., DEM pixel 

size), the slope value of the pixel was taken as landslide angle. The landslide angles ranged between 0.45° and 51.03° 

(median = 27.20°). More than 90 % of the triggered landslides were associated with hillslopes of more than 16.26° slope 

(Supporting information, Fig. S1).  
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2.2 Rainfall data and processing methods 130 

2.2.1 Rainfall data 

We employed the radar/rain gauge analyzed (R/A) precipitation dataset to examine the spatiotemporal pattern of the 

triggering rainfall and derive the return levels of rainfall intensities for multiple timespans in the Intensity Duration 

Frequency (IDF) curves. The R/A dataset is a gridded hourly precipitation product developed by the Japan Meteorological 

Agency (JMA) based on 5-minutely reflected echo intensities and doppler velocities of 46 C-band radars (Nagata, 2011). 135 

The processing algorithm of this product includes three steps. First, accumulated radar echo intensity data were processed 

by a quality control algorithm for correcting precipitation observation errors attributed to various meteorological, 

topographic, and technical factors (e.g., beam blockage, ground clutter, anomalous beam propagation, and range effects) 

(Makihara, 2000). Subsequently, the hourly accumulated corrected radar data were adjusted to rainfall measurements 

obtained from local rain gauges to produce accurate Quantitative Precipitation Estimates (QPE). Finally, the calibrated 140 

QPE from the 46 radars were processed and assembled to derive nationwide hourly precipitation maps that compose the 

R/A product (Makihara, 2000; Nagata, 2011). This correction and processing scheme made the R/A dataset the most 

reliable long-term precipitation data over the Japanese archipelago. Accordingly, it has often been used as referential data 

for analyzing localized heavy rainfall (e.g., Kato, 2020; Hirockawa et al., 2020; Saito and Matsuyama, 2015), evaluating 

precipitation forecasts and estimates (e.g., Kubota et al., 2009; Iida et al., 2006; Yin et al., 2022), and constraining empirical 145 

relationships between rainfall information and landslide occurrence (e.g., Saito et al., 2010; Marc et al., 2019; Ozturk et 

al., 2021).  

In this study, we relied on the R/A data for 1988–2019. The product provides hourly adjusted rainfall estimates with a 

spatial resolution of ≈ 5 km (1988–2001), ≈ 2.5 km (2002–2005), and ≈ 1 km (from 2006) (Mtibaa and Asano, 2022). 

Therefore, for homogeneity reasons, we downscaled the data from 2002 to ≈ 5 km spatial resolution (same as the resolution 150 

of the 1988–2001 dataset) using the method recommended by Nagata and Tsujimura (2006). We selected this method 

because it produced homogenous maximum hourly and daily rainfall time series based on the homogeneity tests applied 

by Urita et al. (2011) and Saito and Matsuyama (2015). It spatially averages the 1 km product to 2.5 km spatial resolution 

and downscales the 2.5 km product to 5 km spatial resolution by selecting the maximum value of the four 2.5 km grid cells. 

Although the downscaling stage degrades the spatial details of rainfall events, it is unavoidable in this study due to the 155 

requirement of long-term rainfall data in investigating rainfall return levels. Still, the downscaled R/A dataset (i.e., 5-km 

resolution) can capture spatial rainfall patterns over the examined region as it could sufficiently resolve mesoscale 

convective systems that resulted in most heavy rainfall events in Japan (Hirockawa et al., 2020). 
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2.2.2 Rainfall processing methods 

As stressed in the Introduction, owing to the hillslope-scale variation in the effective rainfall needed for triggering 160 

landslides, using multiple rainfall durations is crucial for elucidating the relation between the potential of these rainfall 

timespans to trigger landslides and the spatial pattern of landslide density. Because the correct timing of respective landslide 

occurrence is unknown and probably different within each grid cell of the R/A precipitation dataset, setting a standardized 

rainfall period covering a combination of disparate rainfall timespans from short to long duration deemed responsible for 

triggering landslides is required for comparisons between spatial distributions of rainfall and landslide density. In this 165 

study, the 72 h that accumulated the maximum rainfall during the examined rainfall event was used as the standardized 

rainfall period (Pstd), as suggested by Tsunetaka. (2021). We assumed that the various landslides experienced in our study 

area occurred within this period. This assumption was based on the fact that the studied event brought unprecedented 

rainfall amount that outweighs the possible effects of antecedent rainfall on landslide occurrence (Marc et al., 2019; Guthrie 

and Evans, 2004). The temporal rainfall pattern was subsequently examined by computing the maximum rainfall intensity 170 

(rainfall intensity maxima) for multiple timespans (1, 2, 3, 6, 12, 24, 48, and 72 h) within the Pstd for all R/A grid cells. 

To investigate the return levels (i.e., recurrence levels) of these rainfall intensity maxima, we developed the IDF curves 

that statistically fit the annual maxima series (AMS) of rainfall intensities observed over 1–72 h. We extracted the rainfall 

AMS from the 32-year (from 1988 to 2019) R/A precipitation dataset. Then, we used the Gumbel distribution based on the 

L-moments method (Hosking, 1990) to fit the extracted rainfall AMS due to its few shape parameters that may reduce the 175 

estimation uncertainty (Frattini et al., 2009). Such a statistical model assumes an asymptotic behavior of the rainfall dataset 

and a stationarity in the rainfall AMS. To assess the ability of the estimated distributions to represent the extracted rainfall 

AMS, we used the Kolmogorov-Smirnov (KS) test, which examines the goodness of fit between the estimated and observed 

cumulative distributions. Here, the null hypothesis assumes identical distributions. Therefore, the p-value calculated using 

an asymptotic distribution of the KS test statistic should be less than a significance level of 5 % to reject the null hypothesis.  180 

Although the Gumbel distributions may well fit the observed rainfall AMS based on the KS test, this does not mean that 

the derived IDF curves do not shift over time (i.e., stationary) due to climate change (Slater et al., 2021). It is, therefore, 

crucial to test the stationarity assumption in the Gumbel model parameters by assessing the existence of trends in rainfall 

AMS during the examined period. To this end, we employed the Mann-Kendall and Sen’s slope tests, two non-parametric 

statics frequently applied in hydro-meteorology for trend analysis (e.g., Yan et al., 2018). The Mann-Kendall test assesses 185 

the significance of trends in rainfall (Mann, 1945; Kendall, 1975), while Sen’s slope test quantifies the magnitude of these 

trends if exist (Sen, 1968). The null hypothesis of the Mann-Kendall test assumes no trends. Therefore, a p-value less than 

a significance level of 5 % would imply the existence of a significant trend in rainfall AMS. 
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2.3 Investigating rainfall controls on landslide spatial distribution 

2.3.1. Landslide density 190 

The spatial distribution of triggered landslides over the study area can be described as a spatial variation of landslide density 

(i.e., number/km2). Landslide density is generally calculated by counting the number of landslides that occurred within a 

specific area. Here, because we intended to reveal the potential control of rainfall return levels for multiple timespans 

derived from the R/A dataset on the variation of landslide density, we used the R/A grid cell (≈ 25 km2) as a sliding window 

to calculate landslide density. To count the number of landslides that occurred within each R/A grid cell, we converted the 195 

polygons data of landslide scars to points locating the centroid of each polygon. These numbers are generally biased by the 

non-uniformly distributed topographic features (i.e., hills, mountains, plains, lakes) within the different R/A grid cells 

because landslides commonly occur in hilly and mountainous areas rather than plains (Lombardo et al., 2021). To avoid 

such a possible bias, landslide density was calculated as the number of landslides within each R/A grid cell divided by the 

area of the R/A grid cell where the slope is higher than a threshold angle (Sthreshold) assumed to be a minimum angle to allow 200 

landsliding. Sthreshold defines the threshold angle above which 90 % of landslides occurred (Prancevic et al., 2020) and was 

determined as 16.26° based on the DEM data analysis (Fig. S1). 

Although medium and large landslides (landslides with area size exceeding the cutoff point of the FAD (439 m2)) counted 

only 28.12 % of the total landslides, their areas represented more than 70 % of the total landsliding area (i.e., the total scar 

areas of the triggered landslides). Therefore, it is interesting to investigate rainfall controls on the density of total and only 205 

medium and large landslides. Accordingly, we computed two landslide density metrics, total landslide density (TD) and 

only medium and large landslide density (MLD), as the number of landslides per unit area (km2), for each R/A grid cell 

using the following equations (1) and (2). Note these metrics represent averaged landslide density within the R/A grid cells. 

𝑇𝐷 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑛 𝑅/𝐴 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                                    (1) 

𝑀𝐿𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 𝑙𝑎𝑟𝑔𝑒 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑛 𝑅/𝐴 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                  (2) 210 

Where, 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is the area in km2 of an R/A grid cell where the slope > Sthreshold (i.e., 16.26°). 

2.3.2. Relationships between the spatial pattern of landslide density and rainfall information 

Similar to previous studies (e.g., Chang et al., 2008), our investigation started by evaluating the statistical correlations 

between calculated landslide density metrics (TD and MLD) and rainfall intensity maxima for multiple timespans (1–72 

h). We used Spearman’s rank coefficient (ρ) to measure the non-parametric monotonicity of these relationships. In doing 215 

so, we intended to explore whether the developed statistical relationships can explicitly explain the rainfall controls on 

landslide density. Subsequently, we compared the variation in rainfall intensity maxima and their return levels and landslide 

density at the R/A grid cell scale. 
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Although the use of 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as a normalization method for calculating TD and MLD suppresses the influence of the non-

uniformly distributed topographic features within the different R/A grid cells, still, these metrics can be biased by the non-220 

uniformly distribution of local slopes within the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as landslide occurrence also depends on hillslope steepness 

(Prancevic et al., 2020). Therefore, it is crucial to focus on R/A grid cells with comparable local slope distributions to 

explicitly investigate the potential control of rainfall intensity maxima and their return levels on landslide density. To this 

end, we first tested the differences in local slope angle distribution within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of the different R/A grid cells using 

the Kruskal-Wallis test (Kruskal and Wallis, 1952). Then, we employed Dunn’s nonparametric pairwise test (Dunn, 1961) 225 

with a Bonferroni correction for the p-value for detecting the R/A grid cells with similar mean rank sums of slopes within 

𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (similar slope conditions). Here, the null hypothesis assumes no significant differences in the distribution of 

slope angles within the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  of the R/A grid cells. Therefore, the p-value should be higher than a significant level of 

5 % to accept the null hypothesis (Dinno, 2017). Accordingly, the pairwise R/A grid cells, where Dunn’s test accepts the 

null hypothesis, would be ideal examples for comparing the relation between rainfall intensity maxima and their return 230 

levels and the variation of landslide density metrics. 

3 Results 

3.1 Relationship between landslide density and rainfall intensity maxima 

A line-shaped band of high rainfall intensity maxima matched the overall spatial pattern of triggered landslides (Fig. 3), 

indicating that the spatial distribution of rainfall intensities constrains the landslide distribution. These maxima exhibited 235 

substantial differences at the R/A grid cell scale, suggesting spatial disparity in the characteristics of the temporal rainfall 

pattern. The total triggered landslides were distributed within 23 R/A grid cells with a TD varied between 0.05 and 105.63 

landslides/km2 and an MLD ranging between 0.00 and 36.26 landslides/km2 (Fig. 3). More than 65 % of the total landslides 

occurred within only three R/A grid cells with a TD of 35.61, 103.88, and 105.63 landslides/km2. The MLD values in these 

R/A grid cells were 11.98, 36.26, and 28.03 landslides/km2, respectively, indicating the highest number of medium and 240 

large landslides occurred during the triggering event. From a statistical point of view, Spearman’s rank correlation 

coefficients (Table 1) showed significant monotonic positive relationships between all computed rainfall intensity maxima 

and TD (0.62 < ρ < 0.80) and MLD (0.68 < ρ < 0.84) at the 1 % level. However, these relationships did not necessarily 

mean that landslide density increases with increased rainfall intensity maxima, as we observed R/A grid cells with 

comparable rainfall intensity maxima but different TD and MLD (e.g., Fig. S2n and r). Therefore, rainfall controls on 245 

landslide density cannot be explicitly grasped from the developed statistical relationships. 

The 23 R/A grid cells, where the triggered landslides were distributed, exhibited significant non-uniformly distributed local 

slopes within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as shown in Fig. S3, and confirmed by the rejection of the null hypothesis of the Kruskal-Wallis 
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test (p-value < 0.05). Applying Dunn’s post hoc test, we could idealize three pairs of R/A grid cells with comparable slope 

distributions within 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, as Dunn’s test could not reject the null hypothesis (Table S1). These three pairs of R/A grid 250 

cells were referred to as P1, P2, and P3 and focused on hereafter to explicitly investigate the relation between rainfall 

intensity maxima and landslide density (Fig. 4). Note we excepted three R/A grid cells where most landslides occurred in 

areas affected by anthropogenic activities (e.g., slopes surrounding cropland and paddy field) from the Dunn’s post hoc 

test.  

Despite the similarity in local slope distributions, the differences in landslide density (TD and MLD) between the paired 255 

R/A grid cells in P1 and P2 were well distinguishable (≈ 700 times and ≈ 70 times, respectively). In P1, the rainfall intensity 

maxima observed over the R/A grid cell that experienced high landslide density (TD = 35.61 and MLD = 11.98 

landslide/km2) were 1.5 to 1.7 times higher than those observed in the low landslide density R/A grid cell (Fig. 4a). 

Similarly, the differences in rainfall intensity maxima over the paired R/A grid cells in P2 varied between 1.7 to 3.3 times 

of rainfall intensity (Fig. 4b). Thus, some paired R/A grid cells with comparable local slope distributions showed that 260 

landslide density increased with the increase in rainfall intensity maxima. 

Importantly, even with comparable rainfall intensities and slope distributions, landslide density over two R/A grid cells 

could be different (Fig. 4c). Unlike the observations in P1 and P2, rainfall maxima recorded for 12–72 h over the two R/A 

grid cells in P3 (Fig. 4c) were similar. The R/A grid cell with higher landslide density experienced little higher rainfall 

intensity maxima for 1–6 h timespans than those recorded in the R/A grid cell with lower landslide density. But, the 265 

differences in these rainfall intensity maxima were slight (≈ 1.15 times) compared to those observed between the paired 

R/A grid cells in P1 and P2. Because P1 and P2 paired two of the R/A grid cells with the lowest landslide density metrics 

during the examined rainfall event with two of the R/A grid cells with the highest landslide density metrics, the differences 

in landslide density metrics were much more pronounced than that observed over the R/A grid cells in P3 (≈ 3.5 times for 

TD). However, the R/A grid cell with higher landslide density in P3 indicated the fifth highest TD (20.91 landslides/km2) 270 

and MLD (5.65 landslides/km2) in the total of 23 R/A grid cells (Fig. S3), being a sufficiently high landslide density. Given 

this, the results in P3 indicated that differences in rainfall intensities and slope distributions (i.e., topography) do not 

necessarily constrain landslide density. 
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Figure 3: Spatial distribution maps of rainfall intensity maxima for 1 to 72 h timespans within Pstd in mm/h, triggered landslides 275 
(grey polygons), and landslide density metrics (circles) 
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Table 1: Spearman rank correlation between rainfall intensity maxima and landslide density metrics 

Rainfall timespan (h) 1 2 3 6 12 24 48 72 

ρ (TD) 0.62* 0.66* 0.74* 0.79* 0.79* 0.79* 0.79* 0.80* 

ρ (MLD) 0.68* 0.71* 0.77* 0.84* 0.82* 0.81* 0.81* 0.82* 

* significant at 1 % level 

 

Figure 4: Comparison of rainfall intensity maxima in three pairs of R/A grid cells with comparable local slope distributions 280 
within 𝑨𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅.  
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3.2 Relationship between landslide density and return levels of rainfall intensity maxima 

During the examined rainfall event, the spatial patterns of rainfall return levels can be constraints for the variation of 

landslide density. The Gumbel distributions estimating these return levels were able to represent the observed AMS of 

rainfall intensities for 1–72 timespans, as the KS test could not reject the null hypothesis (p-value > 0.05) (Fig. S4). The 285 

rainfall intensities estimated for various return periods (5–100 years) and durations (1–72 h) displayed substantial spatial 

differences at the R/A grid cell scale (Figs. S5–S9). The Mann-Kendall and Sen’s slope tests showed a spatial heterogeneity 

in the significance and magnitude of trends in observed rainfall AMS (Figs. S10 and 11). Specifically, some R/A grid cells 

in the western part of the study area showed statistically significant positive rainfall trends at the 95 % significance level, 

as the Mann-Kendall rejected the null hypothesis (p-value < 0.05). Other R/A grid cells exhibited no significant trends, 290 

especially for short-duration rainfall intensities (Fig. S10a–c), where Mann-Kendall accepted the null hypothesis (p-value 

> 0.05). The increasing trends could be attributed to the climate change effect and indicated that the rainfall IDF curves 

developed for the examined region are already subject to climate change and may be altered in the future due to the 

persistent effect of climate change. Still, they could provide valuable information about the return levels of the rainfall 

intensity maxima characterizing the examined rainfall event. 295 

Comparing the position of rainfall intensity maxima in the IDF curves recorded for each R/A grid cell discloses disparate 

return levels (Figs. 5 and S12). The return levels of rainfall intensity maxima over the R/A grid cells with high landslide 

density metrics in the three idealized pairs (Fig. 5d–f) were generally higher than those observed over the corresponding 

R/A grid cells with lower landslide density metrics (Fig. 5a–c). In P1 and P2, rainfall return levels of all maxima over the 

high landslide density R/A grid cells (Fig. 5d and e) exceeded or hit the IDF curve for the 100-year return period. On the 300 

other hand, the return levels of rainfall intensity maxima exceeded the 100-year return period only at 6 and 12 timespans 

(Fig. 5a) and did not reach this level at any of the examined timespans (Fig. 5b) for the R/A grid cells with low landslide 

density in P1 and P2, respectively. Therefore, the number of triggered landslides increased substantially when rainfall 

return levels exceeded the 100-year return period in the IDF curves for the multiple examined timespans (i.e., 1–72 h). 

Interestingly, despite the comparable rainfall intensities and slope distributions within the R/A grid cells in P3 (Fig. 4c), 305 

return levels of short-duration rainfall intensity maxima differed, as for the landslide density metrics (Fig. 5c and f). The 

return levels of rainfall intensity maxima in both R/A grid cells exceeded the 100-year return periods only for some 

timespans and shared comparable return levels for the rainfall intensity maxima at 12–72 h. Still, the rainfall return levels 

for 1–6 h-intensities in the high landslide density R/A grid cell (Fig. 5f) were higher than those observed in the R/A grid 

cells with lower landslide density (Fig. 5c). For instance, the return level of 3-h rainfall intensity exceeded the 100-year 310 

return period in the R/A grid cell with TD = 20.91 landslides/km2 (Fig. 5f), but it was in the order of 50-year return period 

in the R/A grid cell with TD = 5.68 landslides/km2 (Fig. 5c). Therefore, the results in P3 showed that the landslide density 

metrics over an R/A grid cell increased with the increase in rainfall return levels, rather than rainfall intensities. 
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The observations over the three idealized pairs showed that the spatial patterns of rainfall return levels constrain the 

variation of landslide density metrics observed during the examined event. For setting a quantitative reference that assesses 315 

the spatial disparity in rainfall return levels and their relation to the variation in landslide density, we calculated the ratio 

between the rainfall intensity maxima within the Pstd and the estimated rainfall intensity for a 100-year return period derived 

from the IDF curves. This index was referred to hereafter as the “100-year rainfall anomaly” and serves as a comparative 

index of the severity and rarity of rainfall intensity maxima observed over the R/A grid cells.  

Clearly, the 100-year rainfall anomaly in the R/A grid cells with high landslide density was higher than that observed over 320 

the paired low landslide-density R/A grid cells in the idealized pairs (Fig. 5g–i). In P1 and P2, the 100-year rainfall anomaly 

exceeded one at all timespans in the case of the R/A grid cells with high landslide density, mirroring unprecedented and 

severe rainfall intensities. On the other hand, it was lower than or exceeded one only at some timespans for the R/A grid 

cells with lower landslide density (Fig 5 g, and h). In P3, the 100-year rainfall anomalies for 12–72 h rainfall durations 

observed over the two paired R/A grid cells were comparable. However, the 100-year rainfall anomalies for 1–6 h timespans 325 

were higher in the high landslide density R/A grid cell (Fig 5i), particularly for the 3-h rainfall duration, which exceeded 

one. Therefore, the comparison of the 100-year rainfall anomaly can indirectly reflect the difference in rainfall return levels 

and explain the spatial variation in landslide density observed over the R/A grid cells in the idealized pairs. 

Irrespective of the differences in local slope distributions and rainfall characteristics between the R/A grid cells in the 

idealized pairs, landslide density metrics increased with the increase in the 100-year rainfall anomaly, except for the low 330 

landslide density R/A grid cells in P2 (Fig. 5h). For instance, the low landslide R/A grid cell in P1 (i.e., TD = 0.05 

landslides/km2) and P3 (i.e., TD = 5.68 landslides/km2) showed different landslide density metrics. In parallel, the rainfall 

anomaly in the R/A grid cell with a TD = 5.68 landslides/km2 was higher than that observed over the R/A grid cell with a 

TD = 0.05 landslides/km2. Thus, comparing the 100-year rainfall anomaly may explain the spatial variation in landslide 

density observed in some of the R/A grid cells, irrespective of the differences in local slope distributions.  335 

In this sense, we can categorize the R/A grid cells that experienced landslides (except three R/A grid cells where landslides 

were affected by anthropogenic activities) based on differences in the 100-year rainfall anomaly and landslide density. 

Accordingly, the high landslide density R/A grid cells (TD > 30 and MLD > 10 landslides/km2), of which the R/A grid 

cells with high landslide density in P1 and P2 showed a 100-year rainfall anomaly exceeded one at all timespans (Fig 

S13b). In other words, rainfall intensities for all examined timespans (i.e., 1–72 h) exhibited return levels exceeding the 340 

100-year return period. While over lower landslide density R/A grid cells (TD < 30 and MLD < 10 landslides/km2), which 

include the R/A grid cells with low landslide density in P1 and P2 and the two paired R/A grid cells in P3, the 100-year 

rainfall anomaly was generally lower than one or exceeded one only at some timespans within the Pstd (Fig S13a). 
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Figure 5: Return levels of rainfall intensity maxima for multiple timespans (1–72 h) within Pstd in the IDF curves (a–f) and 345 
comparisons of the 100-year rainfall anomaly (g–i) over the paired R/A grid cells in P1, P2, and P3 
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4 Discussion 

4.1. Rainfall return levels govern landslide density 

Our results demonstrate that landslide density in terms of TD and MLD varied depending on rainfall return levels for the 

examined timespans ranging from 1 to 72 h, which characterize the spatiotemporal rainfall pattern of the triggering rainfall 350 

event and provide proxies for the disparate rainfall periods needed for landsliding. 

When rainfall exhibited return levels exceeding the 100-year return period for the various timespans from 1 to 72 hours 

(e.g., Fig. 5d, e), the number of total landsliding was substantially high (TD > 30 landslides/km2). The high landslide 

density can dictate that the rare and extreme rainfall intensities for multiple timespans from 1 to 72 h could satisfy the 

trigger and dynamic predisposition factors for the landsliding of numerous hillslopes. The constraint of these unprecedented 355 

rainfall intensities on landslide density overwhelmed that of topographic conditions (Fig 5), as we observed substantial 

landslide density differences over R/A grid cells with comparable local slope distributions. This accentuates the importance 

of high rainfall return levels in inducing widespread landslides (Iida, 2004; Griffiths et al., 2009; Segoni et al., 2014). In 

parallel, the density of large and medium landslides was also the highest (MLD > 10 landslides/km2) during the examined 

rainfall event. This implies that the high rainfall return levels for the various examined timespans constrain the occurrence 360 

of relatively large landslides and suggests that the spatiotemporal rainfall pattern characteristics can also govern the 

landslide size distribution, which is consistent with the findings of Marc et al. (2018). In contrast, when rainfall return 

levels did reach the 100-year return period only at specific timespans, lower landslide density (TD < 30 and MLD < 10 

landslides/km2) was observed (e.g., Fig. 5a, c, f). In other words, only some periods of rainfall (e.g., 6–48 h) exhibited 

extreme and rarely experienced intensities over the R/A grid cells, resulting in the failure of only the relatively vulnerable 365 

hillslopes. Therefore, we can conclude that whether rainfall intensities reach high return levels in a wide timespan, ranging 

from a few hours to several days, is one of the key determinants of the density of total landsliding and relatively large 

landslides. 

Given the relatively homogeneous regolith of the study area this research focused on, it is likely that the landslide spatial 

distribution was primarily governed by rainfall return levels. However, other landslide susceptibility factors may intervene 370 

if the studied rainfall event is experienced in a heterogeneous regolith. To examine the importance of rainfall controls on 

landslide spatial distribution during large-scale rainfall events, Crozier (2017) proposed a storm cell model linking landslide 

density to rainfall intensity, impact magnitude, and the criticality of landslide susceptibility parameters. The proposed 

model assumes the occurrence of landslides in a circular pattern mirroring rainfall intensity during rainfall events and 

defines three landslide response zones: the core (storm center), the middle, and the periphery zone. It further suggests an 375 

overwhelm of the influence of extremely intense rainfall in the core zone, where total rainfall > 500 mm, on other landslide 

susceptibility factors.  
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In analogy to the storm cell model of Crozier (2017), the high rainfall return levels experienced over high landslide density 

grid cells may outweigh the influence of terrain-related parameters if experienced in other sites with heterogeneous regolith 

settings. Therefore, when rainfall intensities reach high return levels for a wide timespan ranging from an hour to a few 380 

days, high landslide density over the landscape can be expected regardless of the variations in terrain characteristics (land 

use, lithology, and topography). In contrast, when rainfall return intensities exceed the 100-year return level only for 

specific timespans (e.g., 6–48 h), the variation in landslide susceptibility factors can also govern landslide density. This 

can be supported in analogy to the findings of Crozier (2017) in the middle zone of the proposed storm model. 

Last, it is worth noting that landslides occurred even when rainfall did not reach the 100-year return level at any of the 385 

examined timespans (Fig S12 b, e, f). However, landslide density over these grid cells (i.e., grid cells where rainfall did not 

reach the 100-year return level) was considerably low (≈ 0.4–1.5 landslides/km2 in terms of TD) compared with most other 

grid cells. Dou et al. (2020) and Ozturk et al. (2021) used statistical machine-learning methods to investigate the importance 

of numerous predisposing factors in landslide occurrence by the examined rainfall event. Their findings showed that rainfall 

is the main factor controlling landslide occurrence in our study area, followed by the slope and land use parameters. 390 

Accordingly, landslide occurrence over these grid cells during the examined rainfall event could be constrained by terrain 

settings (e.g., land cover) as the rainfall return levels were low. Therefore, landslides can occur even if rainfall return levels 

do not reach the 100-year return period but with substantially low density. In any case, comparing rainfall return levels in 

the IDF curves can explain the substantial differences in landslide density due to considering multiple return periods. 

4.2. Importance of considering rainfall return levels as explanatory for landslide spatial distribution 395 

From a statistical perspective, the significant quantitative correlations between rainfall intensity maxima and landslide 

density (TD and MLD) suggest an increased landslide density with increased rainfall intensities for the various examined 

timespans (i.e., 1–72 h) (Table 1). These statistical relationships are not surprising since they likely arise from the 

correlations between the different rainfall intensity maxima (Table S2). However, this does not necessarily mean that 

landslide density increases with increased specific-duration rainfall intensity (e.g., rainfall intensity maxima for 6 h, Fig. 400 

4a, c). Indeed, our results showed substantial differences in landslide density over R/A grid cells with comparable short-

duration rainfall intensity maxima but disparate long-duration rainfall intensities (e.g., low landslide-density R/A grid cells 

in P1 and P3, Fig. 4a, c). The pronounced difference in landslide density is likely due to the disparity in rainfall 

characteristics that affected the slope stability differently, initiating a disparate number of landslides. Thus, although the 

quantitative correlations in Table 1 can successfully predict landslide density, as indicated by Chang et al. (2008) and Dai 405 

and Lee. (2001), relying on a single rainfall metric (e.g., 6 h rainfall intensity maxima) may lead to spurious interpretations 

regarding rainfall controls on landslide density and subject to uncertainties if used for predicting the number of landslides 

due to concealing the characteristics of the temporal rainfall pattern (Gao et al., 2018). 
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Regardless of the spatial variation in rainfall intensity maxima characterizing the temporal rainfall pattern, the return levels 

could evaluate the exceptionality and extremity of rainfall for various timespans. Indeed, by comparing the rainfall return 410 

levels over two R/A grid cells, it was clear that the R/A grid cells with the highest landslide density experienced higher 

rainfall return levels for the various timespans, as revealed by the proposed 100-year rainfall anomaly metric (e.g., Fig. 5g–

i). This can dictate that rainfall with higher return levels was more extreme and less frequent, having a higher potential to 

cause numerous landslides over the landscape. This was also valid even for R/A grid cells with comparable rainfall 

intensities and local slope distributions emphasizing the constraint of rainfall return levels on landsliding rather than rainfall 415 

intensities (Fig 5i). Accordingly, the differences in rainfall return levels could explain the substantial spatial disparity in 

landslide density. Thus, the comparison of rainfall return levels can be a valid approach for understanding the substantial 

differences in landslide density regardless of the variation in temporal rainfall pattern characteristics. 

5 Conclusions 

This study explored the spatiotemporal pattern of an extreme rainfall event that triggered widespread landslides to reveal 420 

what rainfall characteristics control the spatial landslide distribution. We examined the temporal rainfall pattern by 

computing the maximum rainfall intensity for multiple timespans (1–72 h) within a 72-h duration that accumulated the 

maximum rainfall amount (Pstd) during the examined rainfall event. Landslide density, in terms of the total number of 

triggered landslides (TD) and only medium and large landslides (MLD), significantly correlated with all computed rainfall 

intensity maxima. However, this did not necessarily mean that landslide density increases with increased rainfall intensity 425 

maxima for a specific time span. More than 65 % of triggered landslides occurred in areas where all computed rainfall 

intensity maxima exceeded or hit the 100-year return levels, with a high density (TD > 30 landslides/km2 and MLD > 10 

landslides/km2). This corresponds to a 100-year rainfall anomaly, which calculates the ratio between rainfall intensity 

maxima and estimated intensity for the 100-year return period, exceeding one at all timespans within the Pstd. On the other 

hand, lower landslide density was found in areas of rainfall characterized by intensities that did not or did reach the 100-430 

year return period only at some timespans within the Pstd (e.g., 6–48 h). The constraint of rainfall return levels on landslide 

density overwhelmed that of topographic conditions, as we observed substantially different landslide densities in areas with 

comparable slope distributions but different rainfall return levels. Overall, this work reveals the role played by the spatial 

patterns of rainfall return levels for various timespans in controlling landslide density. It further suggests that whether 

rainfall intensities reach high return levels for a wide timespan, ranging from a few hours to several days, is one of the key 435 

determinants of the density of total landsliding and relatively large landslides. 
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