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Abstract. It is known that the spatial rainfall pattern can mark landslide distribution across the landscape during extreme 

triggering events. However, the current knowledge of rainfall controls on this distribution remains limited. Here, to reveal 

what rainfall characteristics control landslide spatial distribution, we explore the spatiotemporal pattern of a rainfall event 

that triggered over 7,500 landslides (area ≈ 100–104 m2) at a regional scale with an area of ≈ 400 km2 in Japan. Using a 5-10 

km resolution radar-driven hourly precipitation dataset with 32 years of records, we compared rainfall return levels for 

various time range from 1 to 72 h and landslide density in each ≈ 25 km2 grid cell. The results show that, even if the 

surface slope distribution within grid cells is similar, the number of landslides in a ≈ 25 km2 grid cell was substantially 

high when the rainfall return levels exceeded the 100-year return period in all examined timespans (i.e., 1–72 h). In 

contrast, when only specific-duration rainfall intensities (e.g., 6–48 h) exceeded the 100-year return level, the landslide 15 

density in corresponding grid cells tended to be low. Consequently, the landslide density increased with the increase in 

the rainfall return level of various timespans rather than a specific rainfall intensity, such as downpours for a few hours or 

long-term cumulative rainfall for 48 h. Moreover, with the increase in the landslide density, the number of relatively 

large landslides exceeding ≈ 400 m2 increased. Therefore, the spatial differences in rainfall return levels potentially 

constrain the density of total landsliding and relatively large landslides. In this sense, whether rainfall intensities reach 20 

high return levels rarely experienced in a wide timespan ranging from a few hours to several days is one of the key 

determinants of the spatial distribution of landslides and the extent of related hazards. 

1 Introduction 

Landslides are natural geomorphic processes driving long-term landscape evolution (Korup et al., 2010), which may 

impose substantial changes in hillslope and fluvial systems and significant human and economic losses (Froude and 25 

Petley, 2018; Jones et al., 2021). Rainfall is the most common trigger of landslides (Sidle and Bogaard, 2016). Although 

rainfall may provoke individual landslides with localized impacts, large-scale extreme and intense rainfall events often 

induce numerous landslides widely spread over the landscape (Emberson et al., 2022). In such cases, the impacts span the 

https://doi.org/10.5194/esurf-2022-67
Preprint. Discussion started: 30 November 2022
c© Author(s) 2022. CC BY 4.0 License.



2 

 

spatial extent of the triggering event, and their significance depends on the location, number, and size of triggered 

landslides (Medwedeff et al., 2020; Milledge et al., 2014; Benda and Dunne, 1997). Therefore, revealing rainfall controls 30 

on landslide spatial distribution is fundamental for assessing landscape changes and supporting hazard prediction efforts. 

Current knowledge on how rainfall controls spatial distribution and characteristics of landslides remains limited and 

difficult to constrain. A direct cause-effect link between rainfall and landslide occurrence does not exist because the 

landsliding mechanism is also governed by slope material properties (e.g., strength, soil depth, hydraulic conductivity) 

(Berti et al., 2012). Accordingly, landslide occurrence timing and geometric features (e.g., area, volume, and depth) differ 35 

within the catchment (Yamada et al., 2012; Yano et al., 2019; Guzzetti et al., 2004) and hillslope scales (Büschelberger et 

al., 2022) due to disparate hydromechanical responses of slopes to forcing rainfall. This suggests that the effective 

rainfall period that favors landsliding, which typically includes the rainfall that prepares hillslopes for failure “cause” and 

the one that lastly pushes slopes to slide “trigger” (Bogaard and Greco, 2018), is variable and hard to constrain. Physical 

process-based models can solve this problem by computing how rainfall exerts pore pressure variations that affect slope 40 

stability and predict landslide locations (e.g., Wu and Sidle, 1995; Iverson, 2000; Lanni et al., 2012) and sizes (e.g., 

Milledge et al., 2014). However, in practice, their application and calibration are often hindered by difficulties in 

collecting detailed input parameters (i.e., slope material properties) (Bogaard and Greco, 2018).  

In light of these problems, exploring spatial relationships between landslide distribution, often described as density (e.g., 

number/km2 or area/km2), and the characteristics of triggering events, deemed critical in the landsliding mechanism, 45 

emerges as an alternative empirical approach. Existing studies attempted to constrain these quantitative correlations by 

relying on a catalog of individual landslide information (e.g., Gao et al., 2018) or detailed landslide inventories triggered 

by a single or multiple rainfall events (e.g., Marc et al., 2018; Chang et al., 2008). So far, we lack information on the best 

rainfall attribute(s) that characterize triggering rainfall conditions. Some studies showed increased landslide density with 

increased cumulative rainfall amount, event duration, average rainfall intensity, the maximum amount for short durations 50 

(e.g., 1, 3, 4, 24 h), or antecedent rainfall (Marc et al., 2018; Chen et al., 2013; Chang et al., 2008; Dai and Lee, 2001; 

Abancó et al., 2020). Other works relied on the theory of landscape coevolution with local climate (Benda and Dunne, 

1997; Iida, 1999) and demonstrated that normalized rainfall metrics by the mean annual precipitation (Ko and Lo, 2016) 

or the 10-year return period rainfall amount (Marc et al., 2019) are better predictors for landsliding. These empirical 

relationships provided insights into rainfall controls on landslide spatial distribution. However, it often linked specific 55 

rainfall attributes such as the maximum rainfall amount for 48 h to landslide density, which leads to overlooking the 

potential control of temporal rainfall pattern (i.e., repeated fluctuations of rainfall intensity within the rainfall event) 

characteristics on landslide density. 

Analyzing the temporal rainfall pattern using multiple timespans would characterize landslide-triggering rainfall by 

disparate measures, in terms of duration and intensity, rather than a specific rainfall metric (e.g., total rainfall amount, the 60 

maximum rainfall amount for 48 h). Therefore, it can consider the different possible rainfall periods responsible for 
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triggering landslides from short to long duration. Note that high rainfall return level (i.e., recurrence interval) can be a 

proxy of the critical conditions causing landslides (Iida, 2004; Griffiths et al., 2009; Segoni et al., 2014, 2015). Given 

this, focusing on an extreme rainfall event that triggered over 7,500 landslides in an area of around 400 km2 in the 

northern part of the Kyushu region in southern Japan, we investigated whether spatial patterns of rainfall return levels 65 

govern landslide density. Using a gridded rainfall dataset with a ≈ 5-km resolution, we compared rainfall return level for 

various time range from 1 to 72 h and landslide density in each ≈ 25-km2 grid cell to investigate whether the landslide 

density increase in grid cells where rainfall intensities reach high return levels that are rarely experienced. The present 

research is expected to provide insights into what rainfall characteristics control landslide spatial distribution and when 

rainfall may cause high landslide density. Thus, it can have promising implications for supporting hazard prediction 70 

efforts and understanding landscape evolution. 

2 Material and Methods 

2.1 Study site and landslide characteristics 

The study focuses on an area of around 400 km2 in the northern part of the Kyushu region in southern Japan (Fig. 1a). 

The examined area experienced an extreme rainfall event on July 5 and 6, 2017, caused by a linear mesoscale convective 75 

system (Hirockawa et al., 2020), that triggered over 7,500 landslides (Fig. 1a). 

If the landslides occurred in a homogeneous regolith, which reduces the likelihood of their link to complex geotechnical 

site characteristics (Marc et al., 2019), the interpretation of the potential rainfall controls on landslide occurrence would 

be possible. Indeed, most landslides triggered by the examined rainfall event occurred on forested hillslopes with similar 

lithological settings (granodiorite and pelitic schist) but disparate density and geomorphic features (Chigira et al., 2018). 80 

Moreover, most landslides were shallow and affected mainly the soil mantle. Thus, the examined area provided an 

adequate test field to investigate relationships between rainfall return levels and landslide density because at least the 

land cover and lithological settings of the hillslopes can be deemed relatively homogenous. 

Our research relied on the landslide inventory prepared by the Ministry of Land, Infrastructure, Transport, and Tourism 

of Japan from orthophotos of 0.1-m resolution and digital elevation models (DEM) of 1-m resolution acquired by 85 

Airborne Laser Scanning in July 2017 (i.e., immediately after the landslide occurrence). The mapping method of 

landslide scars involves three steps. The first step identifies bare land hillslopes as landslides and delineates them 

manually from the orthophotos. The second step rectifies the delineated landslide scars using DEM data acquired after 

the disaster and maps them as polygons. The third step compares these polygons to satellite and aerial images dated 

before July 2017 to exclude landslides that formerly occurred in the region. The inventory counts 7,676 polygons 90 

identifying widespread landslides in the examined area (Fig. 1b). These polygons represent only landslide source areas 

(scars) and omit runout zones. 
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Figure 1: (a) Cumulative rainfall for 5 and 6 July 2017 (> 50 mm) and location of triggered landslides (black polygons in the 

inset figure). (b) Distribution of the landslides (black polygons) over the Slope map of the affected region. 95 

Size characteristics of the landslides were investigated by examining the frequency-area distribution (FAD), which plots 

landslide sizes (i.e., measures of the area) with corresponding frequencies (Malamud et al., 2004). The FAD can 

determine whether the landslide inventory follows the fundamental property of landslides (Hovius et al., 1997). For the 

landslide inventory this study relied on, the FAD exhibited a rollover (i.e., the peak point of the distribution) at around 

102 m2, below which the frequency of small landslides decreases, and a cutoff point of 439 m2 (Fig. 2), which was 100 

derived using the method of Clauset et al., (2009). The frequency distribution of landslides with area size exceeding the 

cutoff (area > 439 m2), which accounted for 28.12 % of the total inventory and referred to, hereafter, as medium and 

large landslides, fitted a power-law function with the scaling parameter (β) of 2.26. This exponent is within the typical 

range of 2–3 derived by other landslide inventories (e.g., Guzzetti et al., 2002; Marc et al., 2018) and suggests that small 

landslides were more frequent than medium and large landslides (area > cutoff point of 439 m2) during the studied event. 105 

Accordingly, it is important to note that the landslide inventory follows the fundamental properties of landslides, as the 

FAD can fit an inverse gamma distribution with a right tail that decays as a power law (Stark and Hovius, 2001). 

Considering the high resolution of DEM and orthophotos used for constructing the examined landslide inventory, which 

is significantly lower than the cutoff point and allowed capturing the geometric features of landslides with size in the 

order of 0.02 m2, it is evident that the observed divergence was due to physical processes rather than under-sampling of 110 

small landslides (Frattini and Crosta, 2013; Medwedeff et al., 2020). 
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Figure 2: Non-cumulative frequency area distribution of the landslide inventory. 

Additionally, we quantified landslide angles as the median slope at landslide scars derived from the analysis of a 10-m 

resolution DEM, which was developed by the Geospatial Information Authority of Japan (GSI) from 1:25,000-scale 115 

topographic maps dated before the disaster (Fig. 1b). For landslides with an area smaller than 100 m2 (i.e., DEM pixel 

size), the slope value of the pixel was taken as landslide angle. The landslide angles ranged between 0.45° and 51.03° 

(median = 27.20°). More than 90 % of the triggered landslides were associated with hillslopes of more than 16.26° slope 

(Supporting information, Fig. S1). This latter was used as a threshold angle for calculating metrics of landslide density. 

2.2 Rainfall data and processing methods 120 

We employed the radar/rain gauge analyzed (R/A) precipitation dataset (1988–2019) to examine the spatiotemporal 

pattern of the triggering rainfall and derive the return levels of rainfall intensities for multiple timespans in the Intensity 

Duration Frequency (IDF) curves. The R/A datasets are developed by the Japan Meteorological Agency (JMA) from 

reflected echo intensities and doppler velocities of 46 C-band radars and adjusted to rainfall measurements obtained from 

local rain gauges (Makihara, 2000; Nagata, 2011). This product provides hourly adjusted rainfall estimates with a spatial 125 

resolution of ≈ 5 km (1988–2001), ≈ 2.5 km (2002–2005), and ≈ 1 km (from 2006) (Mtibaa and Asano, 2022). Therefore, 

for homogeneity reasons, we downscaled the data from 2002 to ≈ 5 km spatial resolution (same as the resolution of the 

1988–2001 dataset) using the method recommended by Nagata and Tsujimura (2006). We selected this method because it 

produced homogenous maximum daily rainfall time series based on the homogeneity tests applied by Urita et al. (2011). 
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It spatially averages the 1 km product to 2.5 km spatial resolution and downscales the 2.5 km product to 5 km spatial 130 

resolution by selecting the maximum value of the four 2.5 km grid cells. 

As stressed in the Introduction, owing to the hillslope-scale variation in the effective rainfall needed for triggering 

landslides, using multiple rainfall durations is crucial for elucidating relationships between spatial patterns of rainfall 

return levels and landslide density. Because the correct timing of respective landslide occurrence is unknown and 

probably different within each grid cell of the R/A precipitation dataset, the setting of a standardized rainfall period 135 

covering the rainfall for “cause” and “trigger” of landsliding is required for comparisons between spatial distributions of 

rainfall and landslides. In this study, the 72 h that accumulated the maximum rainfall during the examined rainfall event 

was used as the standardized rainfall period (Pstd), as suggested by Tsunetaka. (2021). We assumed that the various 

landslides experienced in our study area occurred within this period. This assumption was based on the fact that the 

studied event brought unprecedented rainfall amount that outweighs the possible effects of antecedent rainfall on 140 

landslide occurrence (Marc et al., 2019; Guthrie and Evans, 2004). The temporal rainfall pattern was subsequently 

examined by computing the maximum rainfall intensity (rainfall intensity maxima) for multiple timespans (1, 2, 3, 6, 12, 

24, 48, and 72 h) within the Pstd. 

To investigate the return levels (i.e., recurrence levels) of these rainfall intensity maxima, we developed the IDF curves 

that statistically fit the annual maxima series (AMS) of rainfall intensities observed over 1–72 h. We extracted the AMS 145 

from the 32-year (from 1988 to 2019) R/A precipitation dataset. Then, we used the Gumbel distribution, based on the L-

moments method (Hosking, 1990), to fit the extracted AMS due to its few shape parameters that may reduce the 

estimation uncertainty (Frattini et al., 2009). Such a statistical model assumes an asymptotic behavior of the rainfall 

dataset. To assess the ability of the estimated distributions to represent the extracted AMS, we used the Kolmogorov-

Smirnov (KS) test, which examines the goodness of fit between the estimated and observed cumulative distributions. 150 

Here, the null hypothesis assumes identical distributions. Therefore, the p-value calculated using an asymptotic 

distribution of the KS test statistic should be less than a significance level of 5 % to reject the null hypothesis. 

2.3 Investigating rainfall controls on landslide spatial distribution  

To investigate the spatial distribution of landslides over the landscape, we compared the spatial variation in landslide 

density among the grid cells of the R/A precipitation dataset. The landslide density is calculated as the number of 155 

landslides within a sliding window of about 25 km2 (= R/A grid cell). These numbers are generally affected by the 

differences in topographic features (i.e., hills, mountains, plains, lakes) within the sliding window because landslides 

commonly occur in hilly and mountainous areas rather than plains (Lombardo et al., 2021). To avoid such a possible 

influence, we normalized the number of landslides within each sliding window by the area where the slope is higher than 

a threshold angle (Sthreshold) assumed to be a minimum angle to allow landsliding. Sthreshold defines the threshold angle 160 

above which 90 % of landslides occurred (Prancevic et al., 2020) and was determined as 16.26° based on the DEM data 
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analysis (Fig. S1). To count the number of landslides in each grid cell, we first converted the polygons data of landslide 

scars to points locating the centroid of each polygon. Although medium and large landslides (landslides with area size 

exceeding the cutoff point of the FAD (439 m2)) counted only 28.12 % of the total landslides, their areas represented 

more than 70 % of the total landsliding area (i.e., the total scar areas of triggered landslides). Therefore, it is interesting to 165 

investigate rainfall controls on the density of both the total and only medium and large landslides. Accordingly, we 

computed two landslide density metrics, total landslide density (TD) and only medium and large landslide density 

(MLD), as the number of landslides per unit area (km2), for each grid cell using the following equations (1) and (2). 

𝑇𝐷 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠

𝐴𝑟𝑒𝑎 𝑤ℎ𝑒𝑟𝑒 𝑆𝑙𝑜𝑝𝑒> 𝑆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                      (1) 

𝑀𝐿𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑑𝑖𝑢𝑚 𝑎𝑛𝑑 𝑙𝑎𝑟𝑔𝑒 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠 

𝐴𝑟𝑒𝑎 𝑤ℎ𝑒𝑟𝑒 𝑆𝑙𝑜𝑝𝑒> 𝑆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
    (2) 170 

By comparing rainfall return levels and landslide density metrics (i.e., TD and MLD), we intended to evaluate whether 

the number of total and relatively large landslides increases when rarely experienced rainfall intensities occur.  

Our investigation started by evaluating the statistical correlation between calculated landslide density metrics (TD and 

MLD) and rainfall intensity maxima. We used Spearman’s rank coefficient (ρ) to measure the non-parametric 

monotonicity of these relationships. Subsequently, we compared the variation in rainfall intensity maxima and their 175 

return levels and landslide density at the R/A grid cell scale beyond these statistical relationships. For a fair comparison, 

it is important to focus on R/A grid cells with a comparable distribution of hillslope angles > Sthreshold because landslide 

density in the R/A grid cells may depend on hillslope steepness (Prancevic et al., 2020). To this end, we first tested the 

differences in slope angles > Sthreshold within the examined grid cells using the Kruskal-Wallis static (Kruskal and Wallis, 

1952). Then, we employed Dunn’s post hoc test (Dunn, 1961) with a Bonferroni correction for the p-value for detecting 180 

the grid cells with similar mean rank sums of slopes (similar slope conditions). Here, the null hypothesis assumes no 

significant differences in the slope angles within the R/A grid cells. Therefore, the p-value should be higher than a 

significant level of 5 % to accept the null hypothesis (Dinno, 2017).  

3 Results 

3.1 Relationship between landslide density and rainfall intensity maxima 185 

A line-shaped band of high rainfall intensity maxima matched the overall spatial pattern of triggered landslides (Fig. 3), 

which indicates that the spatial distribution of rainfall intensities constrains the landslide distribution. These maxima 

exhibited substantial differences at the grid cell scale, suggesting spatial disparity in the characteristics of the temporal 

rainfall pattern. The total triggered landslides were distributed within 23 R/A grid cells with a TD varied between 0.05 

and 105.63 landslides/km2 and an MLD ranging between 0.00 and 36.26 landslides/km2 (Fig. 3). More than 65 % of total 190 

landslides occurred within only three R/A grid cells with a TD of 35.61, 103.88, and 105.63 landslides/km2. The MLD 
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values in these grid cells were 11.98, 36.26, and 28.03 landslides/km2, respectively, indicating the highest number of 

medium and large landslides occurred during the triggering event. From a statistical point of view, Spearman’s rank 

correlation coefficients (Table 1) showed significant monotonic positive relationships between all computed maxima and 

TD (0.62 < ρ < 0.80) and MLD (0.68 < ρ < 0.84) at the 1 % level. Therefore, rainfall controls on landslide density cannot 195 

be explicitly grasped from a single rainfall intensity metric. 

Focusing on three idealized pairs of grid cells with similar slope angles (P1, P2, and P3), as Dunn’s test could not reject 

the null hypothesis (Table S1), we investigated the relation between rainfall intensity maxima and landslide density over 

the paired grid cells (Fig. 4). Despite the similarity in slope angles, the differences in landslide density (TD and MLD) 

between the paired grid cells in P1 and P2 were well distinguishable, which makes them ideal candidates for evaluating 200 

the controls of rainfall intensity maxima on landslide density. On the other hand, these differences were less pronounced 

over the grid cells in P3. 

In P1, the rainfall intensity maxima observed over the grid cell that experienced high landslide density (TD = 35.61 and 

MLD = 11.98 landslide/km2) were 1.5 to 1.7 times higher than those observed in the low landslide density grid cell (Fig. 

4a). Similarly, the differences in rainfall intensity maxima over the paired grid cells in P2 varied between 1.7 to 3.3 times 205 

of rainfall intensity (Fig. 4b). We further noted that in P3, rainfall maxima recorded for 12–72 h over the two grid cells 

(Fig. 4c) were comparable. Unlikely, the grid cell with higher landslide density (TD = 20.91 and MLD = 5.65 

landslides/km2) experienced a little higher rainfall intensity for 1–6 h rainfall timespans (≈ 1.15 times). This means that a 

little higher rainfall intensity at short timespans may cause a relative increase in landslide density (≈ 3.5 times for TD). 

However, this increase was substantial when rainfall intensity maxima were much higher at all examined timespans 210 

within the Pstd. Indeed, the differences in TD between the paired grid cells in P1 and P2 reached ≈ 700 times and ≈ 70 

times, respectively. We further noted that irrespectively of the differences in slope angles, the low landslide density grid 

cells in P3 shared comparable rainfall intensity maxima for 1–3 h timespans with the low landslide density grid cells in 

P1 (Fig. 4a-c) but relatively higher 6–72 rainfall intensity maxima (≈ 1.25 times). Nonetheless, the difference in landslide 

density between the two grid cells was high (≈ 110 times for TD). 215 

Observing the other grid cells with landslides except three where most landslides occurred in areas affected by 

anthropogenic activities (e.g., slopes surrounding cropland and paddy field), we found that the observations over the three 

idealized pairs were also valid for most grid cells (Fig. S2). Indeed, we noticed a spatial disparity in rainfall intensity 

maxima that hamper distinguishing thresholds for the temporal rainfall pattern characteristics, which explain the 

differences in landslide density. Therefore, analyzing the potential relation between the spatial patterns of rainfall return 220 

levels and landslide density is needed. 
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Figure 3: Spatial distribution maps of rainfall intensity maxima for 1 to 72 h timespans within the Pstd in mm/h, triggered 

landslides (grey polygons), and landslide density metrics (circles) 
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Table 1: Spearman rank correlation between rainfall intensity maxima and landslide density metrics 225 

Rainfall timespan (h) 1 2 3 6 12 24 48 72 

ρ (TD) 0.62* 0.66* 0.74* 0.79* 0.79* 0.79* 0.79* 0.80* 

ρ (MLD) 0.68* 0.71* 0.77* 0.84* 0.82* 0.81* 0.81* 0.82* 

* significant at 1 % level 

 

Figure 4: Comparison of rainfall intensity maxima over grid cell pairs with similar slope angles. Dashed lines correspond to 

theoretical rainfall totals of 300, 800, and 1000 mm. 
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3.2 Return levels of rainfall intensity maxima 230 

The Gumbel distributions estimating rainfall return levels were able to represent the AMS of rainfall intensity for 1–72 

timespans, as the K-S test could not reject the null hypothesis (p-value > 0.05) (Fig. S3). Rainfall intensity maxima 

estimated for various return periods (5–100 years) and durations (1–72 h) displayed substantial spatial differences at the 

grid cell scale (Figs. S4–S8). For instance, the 100-year return level of 24-h rainfall intensity maxima varied between 16 

and 28 mm/h (Fig. S8f), indicating different IDF curves at the grid cell scale. Thus, evaluating the return levels of 235 

computed rainfall intensity maxima at the grid cell scale can be effective in setting a quantitative reference for spatial 

rainfall analysis. 

Comparing the position of rainfall intensity maxima in the IDF curves discloses disparate return levels (Figs. 5 and S9). 

These differences were clear for the paired grid cells with similar slope angle conditions (Fig. 5). The return levels of all 

rainfall intensity maxima over the high landslide density grid cells in P1 and P2 (Fig 5 b and c) exceeded or hit the IDF 240 

curve for the 100-year return period, mirroring unprecedented and extreme rainfall intensities. Accordingly, the ratio 

between the rainfall intensity maxima within the Pstd and the estimated rainfall intensity for a 100-year return period 

referred to hereafter as “100-year rainfall anomaly”, exceeded one at all timespans (Fig 5 c and f). On the other hand, the 

100-year rainfall anomaly exceeded one only at 6 and 12 h rainfall timespans for the low landslide density grid cell in P1 

(Fig 5c). It was lower than one at all timespans for the low landslide density grid cell in P2 (Fig 5f), meaning that rainfall 245 

intensities did not reach a return level of the 100-year order (Fig 5d). Therefore, the number of triggered landslides 

increased substantially (≈ 70 to ≈ 700 times in terms of TD) when rainfall return levels exceeded the 100-year return 

period in the IDF curves for the multiple examined timespans (i.e., 1–72 h).  

Focusing on the grid cells in P3 (Fig. 5g and h), we noted disparate return levels for 1–6 h-intensities, although the 

similarities in return levels of rainfall intensity maxima for 12–72 h. This led to a comparable 100-year rainfall anomaly 250 

for 12–72 h rainfall durations. However, the 100-year rainfall anomaly for 1–6 h periods was slightly higher in the high 

landslide density grid cell (Fig 5i), particularly for the 3-h rainfall duration, which exceeded one in the case of the high 

landslide density grid cell (TD = 20.91 and MLD = 5.65 landslides/km2). This means that the disparities in rainfall return 

levels could be the cause for the relative difference in landslide density between the two paired grid cells. Interestingly, 

irrespective of the variation in slope angle values and comparable rainfall conditions between the low landslide density 255 

grid cells in P1 (Fig. 5a) and P3 (Fig. 5g), the comparison of the 100-year rainfall anomaly could explain the substantial 

difference in landslide density between the two grid cells (≈ 110 times for TD). Indeed, the 100-year rainfall anomaly 

was higher in the low landslide-density grid cell in P3 (Fig. 5i) than in the low landslide-density grid cell in P1 (Fig. 5c), 

meaning that rainfall intensities experienced over the former were more extreme than those experienced over the latter.  

Overall, rainfall intensity maxima over grid cells with high landslide density exhibited higher return levels than those 260 

over lower landslide density (Fig. S9). Irrespective of the differences in slope angle distribution, we can categorize the 
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grid cells that experienced landslides based on differences in the 100-year rainfall anomaly and landslide density. 

Accordingly, we found that over the high landslide density grid cells (TD > 30 and MLD > 10 landslides/km2), of which 

the grid cells with high landslide density in P1 and P2, the 100-year rainfall anomaly exceeded one at all timespans (Fig 

S10b). In other words, rainfall intensities for all examined timespans (i.e., 1–72 h) exhibited return levels exceeding the 265 

100-year return period. While over low landslide density grid cells (TD < 30 and MLD < 10 landslides/km2), which 

include the grid cells with low landslide density in P1 and P2 and the two paired grid cells in P3, the 100-year rainfall 

anomaly was generally lower than one or exceeded one only at some timespans within the Pstd (Fig S10a). 

 

Figure 5: Return levels of rainfall intensity maxima for multiple timespans (1–72 h) within the Pstd in the IDF curves (a, b, d, e, 270 
g, h) and comparisons of the 100-year rainfall anomaly (c, f, i) over the paired grid cells in P1, P2, and P3 
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4 Discussion 

Our results demonstrate that landslide density in terms of TD and MLD varied depending on rainfall return levels for the 

examined timespans ranging from 1 to 72 h, which characterize the spatiotemporal rainfall pattern of the triggering 

rainfall event. 275 

When rainfall exhibited return levels exceeding the 100-year return period for the various timespans from 1 to 72 hours 

(e.g., Fig. 5b, e), the number of total landsliding was substantially high (TD > 30 landslides/km2). The high landslide 

density can dictate that the rare and extreme rainfall intensities for multiple timespans from 1 to 72 h could satisfy the 

trigger and dynamic predisposition factors for landsliding of numerous hillslopes. The constraint of these unprecedented 

rainfall intensities on landslide density overwhelmed that of topographic conditions (Fig 5), as we observed substantial 280 

landslide density differences over grid cells with comparable slope angles. This accentuates the importance of high 

rainfall return levels in inducing widespread landslides (Iida, 2004; Griffiths et al., 2009; Segoni et al., 2014). In parallel, 

the density of large and medium landslides was also the highest (MLD > 10 landslides/km2) during the examined rainfall 

event. This implies that the high rainfall return levels for the various examined timespans constrain the occurrence of 

relatively large landslides and suggests that the spatiotemporal rainfall pattern characteristics can also govern the 285 

landslide size distribution, which is consistent with the findings of Marc et al. (2018). In contrast, when rainfall return 

levels did reach the 100-year return period only at specific timespans, lower landslide density (TD < 30 and MLD < 10 

landslides/km2) was observed (e.g., Fig. 5a, g, h). In other words, only some periods of rainfall (e.g., 6–48 h) exhibited 

extreme and rarely experienced intensities over the grid cells, resulting in the failure of only the relatively vulnerable 

hillslopes. In any case, we can conclude that whether rainfall intensities reach high return levels in a wide timespan, 290 

ranging from a few hours to several days, is one of the key determinants of the density of total landsliding and relatively 

large landslides. 

From a statistical perspective, the significant quantitative correlations between rainfall intensity maxima and landslide 

density (TD and MLD) suggest an increased landslide density with increased rainfall intensities for the various examined 

timespans (i.e., 1–72 h) (Table 1). These statistical relationships are not surprising since they are likely arising from the 295 

correlations between the different rainfall intensity maxima (Table S2). However, this does not necessarily mean that 

landslide density increases with increased specific-duration rainfall intensity (e.g., rainfall intensity maxima for 6 h). 

Indeed, our results showed substantial differences in landslide density over grid cells with comparable short-duration 

rainfall intensity maxima but disparate long-duration rainfall intensities (e.g., low landslide-density grid cells in P1 and 

P3, Fig. 4a, c). The pronounced difference in landslide density is likely due to the disparity in rainfall characteristics that 300 

affected the slope stability differently, initiating a disparate number of landslides. Thus, although the quantitative 

correlations in Table 1 can successfully predict landslide density, as indicated by Chang et al. (2008) and Dai and Lee. 
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(2001), relying on a single rainfall metric (e.g., 6 h rainfall intensity maxima) may lead to spurious interpretations 

regarding rainfall controls on landslide density due to concealing the characteristics of the temporal rainfall pattern. 

Regardless of the spatial variation in rainfall intensity maxima characterizing the temporal rainfall pattern, the return 305 

levels could evaluate the exceptionality and extremity of rainfall for various timespans. Indeed, by comparing the rainfall 

return levels over two grid cells, it was clear that the grid cells with the highest landslide density experienced higher 

rainfall return levels for the various timespans (e.g., Fig. 5 c, f, a vs. g). This can dictate that rainfall with higher return 

levels was more extreme and less frequent, having a higher potential to cause numerous landslides over the landscape. 

Accordingly, the differences in rainfall return levels could explain the substantial spatial disparity in landslide density. 310 

Thus, the comparison of rainfall return levels can be a valid approach for understanding the substantial differences in 

landslide density regardless of the variation in temporal rainfall pattern characteristics. 

Given the relatively homogenous regolith of the study area this research focused on, landslide spatial distribution was 

likely governed by only rainfall return levels. However, other landslide susceptibility factors may intervene if the studied 

rainfall event is experienced in a heterogenous regolith. In this context, Crozier (2017) proposed a storm cell model that 315 

links landslide density to rainfall intensity, impact magnitude, and the criticality of landslide susceptibility parameters to 

examine rainfall controls on landslide spatial distribution during large-scale rainfall events. The proposed model assumes 

the occurrence of landslides in a circular pattern mirroring rainfall intensity during rainfall events and defines three 

landslide response zones: the core (storm center), the middle, and the periphery zone. In analogy to the storm cell model 

of Crozier (2017), which suggests an overwhelm of the influence of extremely intense rainfall in the core zone, where 320 

total rainfall > 500 mm, on other landslide susceptibility factors, the high rainfall return levels experienced over high 

landslide density grid cells may outweigh the influence of terrain-related parameters if experienced in other sites with 

heterogenous regolith settings. Therefore, when rainfall intensities reach high return levels for a wide timespan ranging 

from an hour to a few days, high landslide density over the landscape can be expected regardless of variations in terrain 

characteristics (land use, lithology, and topography). In contrast, when rainfall return intensities exceed the 100-year 325 

return level only for specific timespans (e.g., 6–48 h), the variation in landslide susceptibility factors can also govern 

landslide density. This can be supported in analogy to the findings of Crozier (2017) in the middle zone of the proposed 

storm model. 

Last, it is worth noting that landslides occurred even when rainfall did not reach the 100-year return level at any of the 

examined timespans (Fig S9 b, e, f). However, landslide density over these grid cells (i.e., grid cells where rainfall did 330 

not reach the 100-year return level) was considerably low (≈ 0.4–1.5 landslide/km2 in terms of TD) compared with most 

other grid cells. Landslide occurrence over these grid cells during the examined rainfall event could be constrained by 

terrain settings (e.g., land cover) as the rainfall return levels were low. Also, it could likely arise from a misinterpretation 

of the orthophotos used for preparing the landslide inventory. Therefore, landslides can occur even if rainfall return levels 
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do not reach the 100-year return but with substantially low density. In any case, comparing rainfall return levels in the 335 

IDF curves can explain the substantial differences in landslide density due to considering multiple return periods. 

5 Conclusions 

This study explored the spatiotemporal pattern of an extreme rainfall event that triggered widespread landslides to reveal 

what rainfall characteristics control the spatial landslide distribution. We examined the temporal rainfall pattern by 

computing the maximum rainfall intensity for multiple timespans (1–72 h) within a 72-h duration that accumulated the 340 

maximum rainfall amount (Pstd) during the examined rainfall event. Landslide density, in terms of the total number of 

triggered landslides (TD) and only medium and large landslides (MLD), significantly correlated with all computed 

rainfall intensity maxima. However, this did not necessarily mean that landslide density increases with increased rainfall 

intensity maxima for a specific time span. More than 65 % of triggered landslides occurred in areas where all computed 

rainfall intensity maxima exceeded or hit the 100-year return levels, with a high density (TD > 30 landslides/km2 and 345 

MLD > 10 landslides/km2). This corresponds to a 100-year rainfall anomaly, which calculates the ratio between rainfall 

intensity maxima and estimated intensity for the 100-year return period, exceeding one at all timespans within the Pstd. 

On the other hand, lower landslide density was found in areas of rainfall characterized by intensities that did not or did 

reach the 100-year return period only at some timespans within the Pstd (e.g., 6–48 h). The constraint of rainfall return 

levels on landslide density overwhelmed that of topographic conditions, as we observed substantially different landslide 350 

densities in areas with similar slope angles but different rainfall return levels. Overall, this work reveals the role played 

by the spatial patterns of rainfall return levels for various timespans in controlling landslide density. It further suggests 

that whether rainfall intensities reach high return levels for a wide timespan, ranging from a few hours to several days, is 

one of the key determinants of the density of total landsliding and relatively large landslides. 
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