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Abstract.

Quantifying the timescales over which landscapes evolve is critical for understanding past and future environmental change.

Computational landscape evolution models are one tool among many that have been used in this pursuit. We compare numer-

ically modeled times to reach steady state for a landscape adjusting to an increase in rock uplift rate. We use three different

numerical modeling libraries and explore the impact of time step, grid type, numerical method for solving the erosion equa-5

tion, and metric for quantifying time to steady state. We find that modeled time to steady state is impacted by all of these

variables. The sensitivity of time
::::
Time

:
to steady state to computational time step is not consistent among models or even

:::::
varies

:::::::::::
inconsistently

:::::
with

::::::::
time-step

::::::
length,

::::
both within a single model

:::
and

::::::
among

:::::::
different

::::::
models. In some cases, drainage

rearrangement extends the time to reach steady state, but this is not consistent in all models or grid types. The two sets of

experiments operating on voronoi
::::::
Voronoi

:
grids have the most consistent times to steady state when comparing across time10

step and metrics. On a raster grid, if we force the drainage network to remain stable, time to steady state varies much less

with computational time step. In all cases we find that
:::::
many

::::::::
measures

::
of

:
modeled time to steady state is

::
are

:
longer than that

predicted by an analytical equation
::
for

::::::::
bedrock

::::
river

:::::::
response

:::::
time. Our results show that the predicted time to steady state

from a numerical model is, in many cases, more reflective of drainage rearrangement
:::
and

:::::::::
numerical

:::::::
artefacts than the time for

an uplift wave to propagate through a fixed drainage network.15

1 Introduction

The concepts of steady-state landscapes and characteristic timescales for landscapes to transition from one steady state to

another, i.e., response times, have been widely used as a
:
framework for interpreting landforms and landscape evolution (e.g.,

Whipple, 2001; Whipple and Meade, 2004; Hilley et al., 2004; Stolar et al., 2006; Whipple and Meade, 2006; Roe et al.,

2008; Forzoni et al., 2014; Goren, 2016; Armitage et al., 2018), and what signals may be preserved in the sedimentary record20

(e.g., Castelltort and Van Den Driessche, 2003; Simpson and Castelltort, 2012; Romans et al., 2016; Li et al., 2018; Straub et al., 2020; Tofelde et al., 2021)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Allen and Densmore, 2000; Castelltort and Van Den Driessche, 2003; Simpson and Castelltort, 2012; Romans et al., 2016; Li et al., 2018; Straub et al., 2020; Tofelde et al., 2021).
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If landscapes evolve to a predictable steady form that is a function of environmental drivers, presumably we could invert land-

scape form to infer these environmental drivers (e.g., Snyder et al., 2000; Densmore, 2004; Kirby and Whipple, 2012; Whit-

taker, 2012; Hurst et al., 2019; Adams et al., 2020). Further, steady-state morphology is a well-established way to compare mod-

eled landscapes (e.g., Tucker and Bras, 1998; Tucker and Whipple, 2002; Gasparini et al., 2004; Anders et al., 2008; Roering, 2008; ?; Shobe et al., 2018; Campforts et al., 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Tucker and Bras, 1998; Tucker and Whipple, 2002; Gasparini et al., 2004; Anders et al., 2008; Roering, 2008; Han et al., 2015; Shobe et al., 2018; Campforts et al., 2022).25

While steady state can be used to imply a variety of different conditions, here we specifically consider topographic steady

state (e.g., Willett and Brandon, 2002). To determine whether a landscape has reached topographic steady state, we need

to know how to measure it (either in the field or in a simulation). There are many options for how to measure topographic

steady state in a computational model, and accordingly, an initial question is which steady-state metric in a numerical model

is most reliable. If we measure steady state using erosion rates or sediment fluxes, over what time scales should these fluxes30

be measured? Further, how much
:::
can

:::
we

::::::
expect variability in sediment flux can we expect under steady conditions? If steady

state is measured using landscape metrics, such as total relief, which metrics are used? Similarly, how much variability in these

metrics is acceptable while still maintaining at a
:
steady state?

Once a criterion for steady state is established, a computational model can be used to measure the time it takes for a landscape

to reach steady state following a perturbation. Given an understanding of time-to-steady-state
:::::::::
steady-state

:::::::::
timescales, many35

different inferences may be drawn with implications for the interpretation of specific landscapes on Earth or other planets.

If a particular configuration of initial and boundary conditions results in landscapes that reach steady state relatively quickly

(in comparison with variations in environmental forcings), then we can expect similarly configured real landscapes to reach

steady state. However, if landscapes take so long to adjust that environmental changes happen more frequently, we might

expect to rarely observe steady-state landscapes. Similarly, if we can establish that response times of simulated landscapes to40

perturbations behave systematically and predictably as a function of the environmental drivers, then simulated response times

could theoretically be used to establish characteristic time scales for processes (e.g., Whipple et al., 2017; Lyons et al., 2020).

Further, if time scales of landscape evolution and/or natural forcings are known in study landscapes, models could be used

to test competing landscape evolution scenarios, interpret processes controlling landscape evolution, and establish the impact

of competing timescales on landscape form (e.g., Densmore et al., 2007; Attal et al., 2008; Godard et al., 2013; Whittaker45

and Boulton, 2012; Mackey et al., 2014; Brocard et al., 2016). Establishing the reliability of time to steady state derived from

landscape evolution models is thus a consequence of this metric’s importance for interpreting landscape evolution
::::::::
important

::
for

::::::::::
interpreting

::::::::
outcomes

:::::
from

::::
these

:
models and connecting inferences drawn from them with datasets collected on Earth.

In this short communication we show how time to steady state changes in otherwise identical computationally modeled

landscapes. We
::
To

:::
our

::::::::::
knowledge,

::
no

:::::
study

:::
has

::::::::::::::
comprehensively

::::::::
evaluated

:::::::
whether

::::::::::
topographic

::::::
steady

::::
state

::::::::
extracted

::::
from

::
a50

::
2D

:::::
LEM

::
is

::
a

::::::
reliable

:::::::
measure

::
of
:::::::::

landscape
:::::::
response

:::::
time.

:::
To

::
fill

::::
this

::::
gap,

:::
we quantify steady state in different

:::
with

::::::::
different

::::::::
landscape

::::::::
evolution models that use different numerical methods and grid types. In all of our model scenarios we evaluate four

different metrics for quantifying steady state. We show that flow routing methodology is the biggest
::
has

::
a
::::
large

:
control on time

to steady state in our modeling experiments, but that the impact of flow routing on drainage reorganization also varies with

grid type. Similarly, computational time step and method for quantifying steady state also impact the time to steady state. In55
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other words, we find time to steady state from numerical models to be inconsistent, and, in some cases, of minimal use when

interpreting real landscapes, especially when considering the outcome of a single or very small set of landscape simulations.

2
:::::::::
Motivation

::::::::::
Determining

:::::
when

::
a
::::::::
landscape

::::::::
evolution

::::::
model

::::
has

::::::
reached

::::::
steady

:::::
state

:::::
seems

::::
like

:
a
::::::

simple
:::::

task,
:::
yet

:::::::::
landscape

::::::::
evolution

:::::::
modelers

:::
are

:::
not

:::::::::
consistent

::
in

::::
their

::::::::
practice.

::
To

:::::::
identify

:::::
some

::
of

:::
the

::::::::
different

::::::
criteria

::::
used

::
to
:::::::::
determine

:::::
when

::::::
steady

::::
state

::
is60

:::::::
reached,

::
we

::::::::
surveyed

::
30

::::::::
different

::::::::::
publications

:::
that

:::::
apply

:::
the

::::::
concept

::
of

::::::
steady

::::
state

:::::
using

:
a
::::::::
numerical

::::::
model


(Howard, 1994; Fernandes and Dietrich, 1997; Tucker and Bras, 1998; Roering et al., 2001; Stark and Stark, 2001; Istanbulluoglu and Bras, 2005; Gasparini et al., 2007; Stolar et al., 2007; Anders et al., 2008; Attal et al., 2008; Davy and Lague, 2009; Armitage et al., 2011; Perron and Fagherazzi, 2012; Refice et al., 2012; Braun and Willett, 2013; Goren et al., 2014; Han et al., 2015; Croissant and Braun, 2014; Carretier et al., 2016; Shelef and Hilley, 2016; Zhang et al., 2016; Campforts et al., 2017; Kwang and Parker, 2017; Shobe et al., 2017; Whipple et al., 2017; Li et al., 2018; Theodoratos et al., 2018; O’Hara et al., 2019; Salles, 2019; Steer, 2021).

:::::
These

::::::::::
publications

::::
span

:::::
three

:::::::
decades.

:::
The

:::
list

:::
has

:::
30

::::::
unique

:::
first

:::::::
authors,

:::::::
although

:::::
some

::::
first

::::::
authors

:::
are

::::
later

::::::
authors

::
in

:::::
other

:::::
papers

:::
on

:::
the

:::
list.

::::
We

::::::::
recognize

::::
that

:::
this

::
is
:::
not

:::
an

:::::::::
exhaustive

::::
list,

:::
but

:::
we

::::
think

:::::
these

:::
30

::::::
papers

::::::::
generally

:::::::
illustrate

:::::
what

:::
we

::::
have

:::::::::
informally

:::::::
observed

::::::::::
throughout

:::
our

::::::::
modeling

:::::::
careers.

:
It
::
is

:::
not

:::
our

:::::::
intention

::
to
:::::::
criticize

::::
any

::::::
papers.

::::::::::
Accordingly,

:::
we

:::
do

:::
not

:::::::
describe

:::::::
practices

::
of

:
a
::::::
single

:::::
study.

:::
We

::::
were

::
as

::::::::
generous65

::
as

::
we

:::::
could

:::
be

::::
with

:::
our

:::::::::::
interpretation

::
of

:::::
what

::::::
criteria

::::
were

:::::
used

::
to

::::::::
determine

::::::
steady

::::
state.

::::
For

:::::::
example,

::
if

:::
the

::::::
criteria

::::
was

:::
not

::::::::
described

::
in

:::
the

::::
text,

:::
but

:::::
could

::
be

:::::::
implied

::::
from

:
a
::::
plot,

:::
we

:::::::::
interpreted

::::
that

:::::
study

::
as

::::::
having

:
a
:::::::
criteria.

::
20

::
of

:::::
these

:::
30

::::::
papers

:::::
stated

::::
that

:::::
steady

:::::
state

::
is

:::::::
reached

:::::
when

::::
rock

:::::
uplift

:::
and

:::::::
erosion

::::
rates

:::
are

::::::
equal,

::
or

:::::::::::
equivalently

:::
the

:::::::
sediment

::::
flux

:::
rate

::
is
:::::
equal

::
to

:::
the

:::::::
product

::
of

:::
the

::::::
average

::::::::
upstream

::::
rock

:::::
uplift

:::
rate

::::
and

:::
the

:::::::
drainage

::::
area.

:::
In

::::
other

::::::
words,

::::::
steady

::::
state

::
is

::::::
reached

:::::
when

:::
the

::::::
change

::
in
::::::::
elevation

::
is

:::::
zero.

::
Of

:::::
these

::
20

:::::::
papers,

::::
three

::::::
papers

::::
state

::::
that

::::
they

::::
used

:
a
:::::::
defined

::::::::
threshold70

::::
other

::::
than

:::::
zero.

::::
Four

::
of

:::
the

:::
30

::::::
papers

:::::::
assumed

::::::
steady

::::
state

::
is
:::::::
reached

:::::
when

:::
the

:::::
mean

::::::::
elevation

::
is

::::::::::
unchanging,

::::
and

::::
none

:::
of

::::
these

::::::::
provided

:
a
::::::::
threshold

::
to

::::::::
determine

:::::
when

::::::::::
unchanging

:
is
::::::::
reached.

:::
Two

:::
of

::
the

::::::
papers

::::
used

::::::::::
unchanging

::::::::
sediment

:::
flux

:::::::
through

::::
time

::
to

:::::::
indicate

:::::
steady

:::::
state,

:::
and

::::
they

::::
did

:::
not

::::
state

:
a
:::::::::
threshold.

::::
Four

::
of

:::
the

::::::
papers

:::
did

:::
not

:::::
state

:::
the

::::::
criteria

::::
used

::
to

:::::::::
determine

:::
that

::::::
steady

::::
state

:
is
::::::::
reached.

::::
None

::
of
:::::
these

::::::
papers

:::::::
provided

:::::::
enough

:::::::::
information

::
to
:::::::
recreate

:::
the

:::::::
criteria.

:::
For

::::::::
example,

:::::
papers

::::
that

::
do

:::
not

:::
use

:::
an

:::::::
averaged

::::::
criteria

:::
do

:::
not

::::
state

::::::
where

:::::::::::
measurements

:::
are

::::::
made:

::::
Does

:::::
every

:::::
point

::
on

:::
the

:::::::::
landscape

::::
have

::
an

:::::::
erosion75

:::
rate

:::
that

::::::::
matches

::
the

:::::
rock

::::
uplift

:::::
rate?

::
Or

::
is
:::
the

:::::::
average

::::::
erosion

::::
rate

:::::
equal

::
to

:::
the

::::::
average

::::
rock

:::::
uplift

::::
rate?

:

:::::
Based

::
on

:::::
these

:::::::::::
observations,

:::
we

:::
are

:::::::::
motivated

::
to

:::
test

:::::::
whether

::
or

::::
not

:::
the

:::::
metric

::::
and

:::
the

::::::::
threshold

:::::
matter

:::::
when

::::::::::
calculating

::::
time

::
to

:::::
steady

:::::
state.

3 Modeling environments

The three modeling environments used in this paper were chosen because the authors have experience using them. The choice80

of these models says nothing about the value of these modeling environments or the
::::
value

::::
and

:
variety of other modeling

environmentsthat exist. We do not assume that these models represent the behavior of all modeling environments. That said,

these three modeling environments allow us to explore the sensitivity of time to steady state to multiple grid types and numerical

methods.

3.1 CHILD
:::::::
TTLEM85
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The CHILD modelling environment was developed in the late 1990s (e.g., Tucker et al., 1999, 2001a, b). It operates on a

triangular irregular network, forming a voronoi diagram, here referred to as a voronoi grid for consistency with the other grid

types. CHILD uses an explicit finite difference solution of the stream power process equation.

CHILD is a C++ code that is open source and available through GitHub (
:::::::
TTLEM

::
is

:::
part

::
of

:::
the

:::::::::::
TopoToolbox

:::::::
Matlab

::::::
library.

:::::
Many

::::::
readers

::::
may

:::
be

::::::
familiar

:::::
with

:::
the

:::::
DEM

::::::
(digital

::::::::
elevation

::::::
model)

:::::::
analysis

:::::
tools

:::
that

:::
are

:::::::::
contained

:::::
within

::::::::::::
TopoToolbox90

::::::::::::::::::::::::::::::::
(e.g., Schwanghart and Scherler, 2014).

:::::::
TTLEM

:
is
:::
an

::::
LEM

::::
that

:
is
:::::::::
distributed

::::
with

:::::
these

::::
tools

:::
and

::::
uses

:::
the

:::::::::::
TopoToolbox

::::::
library

::
for

:::::
many

::
of

:::
the

::::
core

::::::::
functions

:::::
within

:::
the

:::::
LEM,

::::
e.g.,

::::
flow

::::::
routing

::::::::::::::::::::::::::::
(Campforts et al., 2017) (Available

::
at https://github.com/childmodel

::::::::::::
wschwanghart/child;

accessed 08 September
:::::::::::
topotoolbox;

:::::::
accessed

:::::::::
December

::
7,

:
2022). Although CHILD is no longer actively in development, it

was widely used in the past 20 years and continues to be used at the time of writing. Because of its familiarity to the authors,

its application on a voronoi grid, and its advanced stage of development, we used it in this study95

:::::::
TTLEM

:::::::
contains

:::::
three

::::::::
numerical

:::::::::
algorithms

:::
for

:::::::
solving

:::
the

::::::
stream

::::::
power

:::::::
equation

:::
on

:
a
:::::
raster

:::::
grid.

::
In

:::
this

:::::
study

:::
we

::::
use

:::::::
TTLEM

::::::::
computer

::::::
models

::::
that

:::::::::
implement

:::
the

::::::::
Fastscape

:::::::
implicit

:::::::::
numerical

::::::::
algorithm,

:::
an

:::::::
explicit

::::
finite

:::::::::
difference

:::::::::
algorithm,

:::
and

:::
the

::::
total

:::::::
variation

::::::::::
diminishing

:::::
finite

::::::
volume

:::::::
method

::::::::::::
(TVD_FVM).

:::
The

::::::::
Fastscape

:::::::::
numerical

::::::::
algorithm

::::
was

:::::::
designed

::
to
:::
be

::::
more

:::::
stable

::::
than

:::::
most

:::::
finite

::::::::
difference

:::::::
methods

::::::::::::::::::::::
(Braun and Willett, 2013).

::::::::::
TVD_FVM

::
is

::::::::
designed

::
to

::
be

::::::
highly

:::::::
accurate

::::
and

::::
limit

::::::::
numerical

::::::::
diffusion

:::::::::::::::::::::::::
(Campforts and Govers, 2015).100

3.2 Landlab

Landlab is Python library for modeling surface processes on regular and irregular grids (Hobley et al., 2017; Barnhart et al.,

2020). In this study we implement computer models that use raster, hexagonal, and voronoi
::::::
Voronoi

:
grids. (Landlab also sup-

ports radial grids but these are not tested in this study.) Landlab is open source and available through GitHub (https://github.com/landlab/landlab;

accessed October 14, 2022). This study used Landlab version 2.4.2.dev0. Landlab is in active development and is currently105

maintained through CSDMS (Tucker et al., 2022). The stream power process component used in all Landlab computer models

in this study implements a version of the Fastscape implicit finite difference numerical algorithm (Braun and Willett, 2013). The

Fastscape numerical algorithm was designed to be more stable than most finite difference methods (Braun and Willett, 2013).

3.3 TTLEM

TTLEM is part of the TopoToolbox Matlab library. Many readers may be familiar with the DEM (digital elevation model)110

analysis tools that are contained within TopoToolbox (e.g., Schwanghart and Scherler, 2014). TTLEM is an LEM that is

distributed with these tools and uses the TopoToolbox library for many of the core functions within the LEM, e.g., flow

routing (Campforts et al., 2017) (Available at

3.3
::::::

CHILD
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:::
The

:::::::
CHILD

:::::::::
modelling

:::::::::::
environment

::::
was

:::::::::
developed

::
in

:::
the

::::
late

:::::
1990s

::::::::::::::::::::::::::::::
(e.g., Tucker et al., 1999, 2001a, b).

::
It

:::::::
operates

:::
on

::
a115

::::::::
triangular

:::::::
irregular

::::::::
network,

:::::::
forming

:
a
:::::::
Voronoi

::::::::
diagram,

::::
here

::::::
referred

::
to
:::
as

:
a
:::::::
Voronoi

::::
grid

:::
for

:::::::::
consistency

::::
with

:::
the

:::::
other

::::
grid

:::::
types.

::::::
CHILD

::::
uses

:::
an

::::::
explicit

:::::
finite

::::::::
difference

:::::::
solution

::
of

:::
the

::::::
stream

::::::
power

::::::
process

::::::::
equation.

:

::::::
CHILD

::
is

:
a
::::
C++

::::
code

::::
that

:
is
:::::
open

:::::
source

:::
and

::::::::
available

:::::::
through

::::::
GitHub

:
(https://github.com/wschwanghart

:::::::::
childmodel/topotoolbox;

accessed December 7,
::::
child;

::::::::
accessed

:::
08

:::::::::
September

:
2022).

:::::::
Although

:::::::
CHILD

::
is

:::
no

:::::
longer

:::::::
actively

:::
in

:::::::::::
development,

::
it
::::
was

:::::
widely

:::::
used

::
in

:::
the

::::
past

::
20

:::::
years

::::
and

::::::::
continues

::
to

::
be

:::::
used

::
at

:::
the

::::
time

::
of

:::::::
writing.

:::::::
Because

:::
of

::
its

:::::::::
familiarity

::
to

:::
the

:::::::
authors,

:::
its120

:::::::::
application

::
on

::
a
:::::::
Voronoi

::::
grid,

:::
and

:::
its

::::::::
advanced

::::
stage

::
of

::::::::::::
development,

:::
we

::::
used

:
it
::
in
::::
this

:::::
study.

TTLEM contains three numerical algorithms for solving the stream power equation on a raster grid. In this study we use

TTLEM computer models that implement the Fastscape implicit numerical algorithm, an explicit finite difference algorithm,

and the total variation diminishing finite volume method (TVD_FVM). TVD_FVM is designed to be highly accurate and limit

numerical diffusion (Campforts and Govers, 2015).125

3.4 LEMs and comparison rational

Using the three modeling environments described above, we created seven different LEMs which we use to calculate time to

steady state. These different LEMs are described in Table 1. These three modeling environments allow us to compare how grid

type and the numerical method for solving the stream power equation impact time to steady state.

LEM Modeling Environment Grid Type Numerical Method

CVE
::
TRI

:
CHILD

::::::
TTLEM

:
voronoi

::::
raster

:
explicit

:::::
implicit

:::::::::
(Fastscape)

LVI
:::
TRE

:
Landlab

::::::
TTLEM voronoi

::::
raster

:
fastscape (implicit)

::::::
explicit

LHI
:::
TRT

:
Landlab

::::::
TTLEM hexagonal

::::
raster fastscape (implicit)

::::::::
TVD_FVM

:

LRI Landlab raster fastscape (implicit
:::::
implicit

:::::::::
(Fastscape)

TRI
:::
LHI

:
TTLEM

::::::
Landlab raster

:::::::
hexagonal fastscape (implicit

:::::
implicit

:::::::::
(Fastscape)

TRT
:::
LVI

:
TTLEM

::::::
Landlab raster

::::::
Voronoi

:
TVD_FVM

::::::
implicit

:::::::::
(Fastscape)

TRE
::::
CVE TTLEM

:::::
CHILD

:
raster

::::::
Voronoi

:
explicit

Table 1. Table of different LEMs used in this study. We use the LEM abbreviated names in column 1 to refer to the different model

scenarios. The first letter in the abbreviated name stands for the modeling environment: C
:
T for CHILD

::::::
TTLEM; L for Landlab; and T

:
C
:
for

TTLEM
:::::
CHILD. The second letter stands for the grid type: V

:
R for voronoi

::::
raster; H for hexagonal; and R

::
V for raster

::::::
Voronoi. The third letter

stands for the numerical method used to solve the stream power equation: E for explicit; I for implicit;
:
E
:::
for

::::::
explicit;

:::
and T for TVD_FVM.

4 Stream power equation130

All of the model environments we consider use the stream power equation to represent the evolution of fluvial profiles. We

only consider fluvial erosion in our LEMs. Erosion is sustained throughout all simulations by uniform, steady rock uplift. The
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equation controlling the change in topographic elevation at each node is,

dz

dt
= U −KAmSn (1)

where z is node elevation; t is time, and dt is the computational time step; U is the rock uplift rate; K is the erodibility135

parameter; A is the drainage area at a node; S is the topographic slope (negative of the spatial derivative in elevation, assuming

directionality is in the downslope direction) at a node; and m and n are positive exponents. Note that the second set of terms

on the right-hand-side of equation 1 is the widely used stream power equation (SPE) that describes detachment limited fluvial

incision,

E =KAmSn (2)140

where E is fluvial incision. Derivations, dynamics, and limitations of the SPE have been described in detail in numerous

publications and we refer interested readers to such sources (e.g., Howard, 1994; Whipple and Tucker, 1999; Lague, 2014).

5 Experimental set-up

Each of our numerical experiments quantified the time it takes for a low rock uplift rate, steady-state landscape to fully adjust

to an increase in rock uplift rate using a specific LEM scenario (Table 1), initial condition, and a range of computational145

timesteps
:::
time

::::
step

::::::
lengths. We did not formally quantify that the initial low uplift landscapes were at steady state. Instead

we generated initial conditions with simulations that ran for 100 million years. As will be apparent from our results, this is

more than enough time for our landscapes to reach steady state regardless of chosen metric or threshold for identifying steady

state. In some cases we stopped the initial runs before 100 million years because the landscape became perfectly static. This

experimental design, in which an initially steady landscape is perturbed by changing the uplift rate, is similar to previous150

modeling studies (e.g., Rosenbloom and Anderson, 1994; Whipple and Tucker, 1999, 2002; Gasparini et al., 2007; Attal et al.,

2011), which is why we chose it.

As described below, we kept as much constant among the simulations with different LEMs as possible. However, we did not

do anything to change the models from "off the shelf". In other words, we used the modeling environments without changing

any of the internal code that implements the numerical algorithms. Where appropriate, we did change parameters within the155

different modelling environments to try to assure that their behavior was as comparable as possible. For example, all the raster

models use D8 flow routing (Tarboton, 1997), and this was an option that we chose when using the LRI model to make it

more similar to the TRI model. In contrast, there are multiple ways to calculate a topographic gradient at a grid cell in a

computational model. Choosing the algorithm used to make this calculation is not exposed to the user for these models, and

accordingly we can not ensure that each model calculates topographic gradient in the same way.160

The simulations that created the initial steady state landscape were started from a surface with elevation values randomly

chosen between 0.0 and 1.0 meters. The random elevation initial surface was used because it creates more realistic looking

drainage networks. The raster grids had 200 by 200 nodes, and the spacing between nodes in the x and y direction was 100
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meters. All the simulations using a raster grid in different models used the same exact initial topographic surface (LRI, TRI,

TRT, and TRE). The simulations
::::::::
numerical

::::::::::
experiments

:
that use a voronoi grid had an average node spacing of

::::::
Voronoi

::::
grid165

::
are

:::::::
created

::::
from

::
a

::::::::
Delaunay

::::::::::
triangulation

:::
of

::::::::
staggered

::::
rows

::
of

:::::
nodes

::::::
spaced

:
100 m , but the spacing varied (in a regular way)

to define the grid
::::
apart

::
in

:::
the

:
x
::::::::
direction. The initial condition was a similar noisy surface as used with the raster grids, and the

same exact initial surface was used in the CVE and LVI simulations. Regardless of the type of grid, all the grids were ≈ 20 km

by ≈ 20 km with ≈ 100 m resolution.

The boundary conditions used in all simulations were the same. All of the nodes on the perimeter of grid were open bound-170

aries where water can exit, but not enter, the grid. The elevation of the perimeter boundary nodes was fixed at zero meters

and did not change during the simulations. In other words, the perimeter nodes were not uplifted but the rest of the grid was

uplifted. U and K were spatially uniform and set at 1e-4
::::
10−4

:
m/yr and 5e-6

:::::::
5x10−6 yr−1, respectively, in all the initial

simulations. m and n were also spatially uniform and set at 0.5 and 1, respectively.

We explored how the time step value, dt in equation 1, impacts the time to steady state. Each model should be stable, and175

produce the correct analytical solution, when the time step satisfies the Courant–Friedrichs–Lewy condition:

Cmax >
vdt

dx
v
dt

dx
:::

(3)

where Cmax is the Courant number, ≈ 1.0 in stable conditions; v is the speed that
:::::
which

:
an erosional wave will move

through the network, and dx is the spacing between nodes. When using the stream power process equation with n= 1, v is

approximated as180

v ≈KAm. (4)

To calculate the maximum time step for a stable Courant condition (dt, equation 3), we needed to know the largest drainage

area in the modeled network to estimate the fastest wave speed (equation 4). Because we started with a noisy surface and

drainages evolved out of the noise, the area of the largest watershed was unknown until the landscape reached steady state.

However, we had to choose a stable dt before the landscape evolved. Therefore we
::
We

:
estimated the size of the largest drainage185

. We assumed the maximum drainage area will
::
to be one-fourth of the total area of the grid, or 49 km2. This value was intended

as an overestimation, ensuring that we calculated a stable time step with Eqs. 3 and 4.

We combined equations 4 and 3 to calculate a value of dt. For the values chosen for K and m, Cmax = 1, and our estimated

value for the maximum drainage area, we calculated a stable dt of 2857 years. We then chose dt =2,500 yrs as the base-case

model time step because it should result in stable simulations. We explored how landscape response time
::::
time

::
to

::::::
steady

::::
state190

changed by changing dt. We ran four simulations with each model, reducing dt to 250 yrs and increasing dt to 25,000 and

100,000 yrs, or approximately 10 and 40 times greater than the stable condition, respectively.

The decision to use time steps longer than the estimated stable time step is motivated by the results shown in (Braun and Willett, 2013)
::
by

::::::::::::::::::::
Braun and Willett (2013). They state that their numerical algorithm, which is the implicit numerical method used in TRI and all

Landlab models, is accurate even when the time step is more than 100 times the stable condition. The stability of the algorithm195

is also discussed in (Braun and Deal, 2023). However, simulations from models employing either the explicit finite difference
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or TVD_FVM algorithms did not produce accurate, or even sensible results, with time steps longer than the predicated stable

value. Hence results with all times steps are only shown from models using the implicit solution. In one case, TRI, we also

performed two extra simulations with dt = 1,000 and 10,000 yrs. This was done based on preliminary results to fully explore

sensitivity of time to steady state to dt.200

We use the steady initial conditions
::::::::
(elevation

::::::::::
unchanging

:::::::::
everywhere

:::::::
through

:::::
time) produced from each model simulation

and time step combination as the initial condition for the corresponding transient simulations. We increase rock uplift rate

uniformly across the grid by a factor of five, to U=5e-4
::::::::::
U = 5x10−4 m/yr. As the landscape evolves in response to the new,

higher uplift rate, we track the steady-state metrics to quantify differences in time to steady state.

In all of our initial simulations we re-calculated flow directionality at every time step. However, after running the simulations205

we observed that in some cases the drainage network rearranged, and we wanted to explore how this affects time to steady

state. Thus, we performed two more numerical experiments using TTLEM with the three different numerical methods (TRI,

TRE, TRT). First , we re-ran all of the TTLEM empirical
::::::::
numerical models but did not reroute flow at every time step during

the transient simulations. In other words, we forced the network to remain static during the adjustment to a higher uplift rate.

::::
This

:
is
:::
an

:::::::
available

::::::
option

::::::
within

:::
the

:::::::
TTLEM

::::::::
modeling

::::::::::
environment

::::
that

::
is

::::::::
controlled

:::
in

::
the

:::::
input

::::
file. Second, we generated210

new steady-state initial conditions and used them for another set of uplift increase experiments. For these simulations, we

started with a different initial white noise grid to create the low uplift steady state topography. Because the initial white noise

determines the network details, these landscapes have a different network despite being run with the same model, parameters,

and boundary conditions.

6 Time to steady state215

Here we describe the metrics we use to empirically quantify time to steady state. We also describe the analytical equation

previously presented by Whipple and Tucker (1999) and Whipple (2001) that we use to predict time to steady state
:::
the

::::
time

::
for

::
a
::::
rock

:::::
uplift

:::::
signal

:::
to

::::::::
propagate

:::::::
through

::
a

::::::::::::::::
detachment-limited

::::
river

:::::::
network. In the results section we will compare the

empirically derived steady-state times with the analytically predicted values.

6.1 Numerically modeled220

Theoretically steady state is reached when equation 1 is equal to zero, or when rock uplift rate U and fluvial incision rate E are

equal at every node. Although steady state is often used and referred to in numerical modeling studies, the criteria for reaching

steady state, or determining when E = U everywhere on the grid, is not always explicitly described. Here we test four metrics

for determining when steady state is reached. We refer to these collectively as the steady-state metrics.

The temporal change in maximum elevation, ∆ztmax was calculated as,225

∆ztmax =|max
(
zti
)
−max

(
zt−100,000
i

)
|, (5)
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where max(zti) is the maximum grid elevation within the domain at time t; i
::
is
:::
the

:::::
node

:::::
index;

:
and max

(
zt−100,000
i

)
is the

maximum grid elevation within the domain at time t− 100,000.

The temporal change in mean elevation, ∆ztmean was calculated as,

∆ztmean =|mean
(
zti
)
−mean

(
zt−100,000
i

)
|, (6)230

where mean(zti) is the mean grid elevation within the domain at time t; and mean
(
zt−100,000
i

)
is the mean grid elevation

within the domain at time t− 100,000.

The
::::::::
maximum temporal change in maximum local elevation, ∆ztmax(loc) was calculated as,

∆ztmax(loc) =max
(
|zti − zt−100,000

i |
)
. (7)

The difference between equations 5 and 7 is that the former finds the difference between the maximum elevation of the entire235

domain at two different times, whereas the latter finds the difference in elevation at every node in the landscape between two

different time steps and uses the maximum of those differences. The units on all of the elevation change metrics are meters.

Finally, the temporal change in sediment flux, ∆Qst, was calculated as,

∆Qst =
∑

Qsti −
∑

Qst−100,000
i , (8)

where
∑

Qsti is the summation of the erosion rate at every node on the landscape at time t; and
∑

Qst−100,000
i is the summation240

of the erosion rate at every node on the landscape at time t−100,000.
::::
Here

::::::::
sediment

:::
flux

:::::
refers

::
to

:::
the

:::
flux

::
of
:::
all

:::::::
material

::::::
eroded

::::
from

:::
the

::::
bed. The models do not track the sediment flux

:::
flux

::
of

::::::::
sediment

::::
load explicitly when using the SPE, which is why we

use the local erosion rate as a proxy for sediment flux. In all of the grids the cell size is nearly uniform, hence the summation

of erosion rate is a good proxy for the sediment flux. The units of ∆Qs are meters per year.

In all cases the steady-state metrics are calculated over a temporal difference
:
of

:
100,000 yrs, which was set by the longest245

time step of the simulations being compared. This was done to ensure equivalent comparisons between the simulations as

some degree of differences in time to steady state would be expected if we calculated these metrics over different time intervals

between simulations. The first time that the topographic metrics were calculated is at 100,000 yrs into the simulation. With

the sediment flux metric, the first calculation is done at 200,000 yrs, because there is no sediment flux at time zero in the

simulation.250

As a landscape evolves towards steady state, all of the steady-state metrics should approach zero. When exactly a new

steady state is reached could be defined as when the metric value passes below a predetermined threshold. The strictest def-

inition would be when a metric reaches zero. We note that differences in the accuracy of calculations in different modeling

environments could lead to some of the metrics never reaching zero. Also, the time at which a particular metric appears to

reach zero will depend on the floating point precision of the programming environment in which the metric is calculated. One255

could also use the rate of change in the value of a steady-state metric as a criteria for reaching steady state.

Here we define the time to steady state to be 10−5 meters for the elevation metrics or 10−6 meters per year for the flux

metric. This may seem conservative. For example, this means the maximum elevation in a landscape changes by less than 10−5
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meters over 100,000 years. We chose that threshold after seeing the results , as we did not know exactly what to expect in

advance. However, the choice of the threshold value makes sense in light of the behavior of these metrics, as will be illustrated260

below
::
We

:::
do

:::
not

:::::
state

::::
what

:::::::
method

::::::
should

::
be

:::::
used

::
to

:::::::::
determine

:::::
when

:::::
steady

:::::
state

::
is

:::::::
reached.

:::
We

:::::::
present

:::
the

::::::
results

:::::
using

:::::::
different

::::::::
threshold

::::::
values.

:::
We

::::
also

::::::
present

:::
the

::::
time

:::::
series

:::
of

:::
the

:::::::
different

:::::::
metrics,

::
so

:::
the

::::::
reader

:::
can

::::::
decide

:::::::
whether

::
a

::::::
change

::
in

:::
the

::::
rate

::
of

::::::
change

::
of
::
a
:::::
metric

::::
over

:::::
time

:
is
::
a
:::::::::
reasonable

::::::
method

:::
for

::::::::::
determining

::::::
steady

::::
state.

6.2 Analytical equation

Following Whipple and Tucker (1999), Whipple (2001) showed that the predicted time to steady state following
:::::::
response

::::
time265

::
to an increase in rock uplift in a landscape

::::
river

:::::::
network evolving according to equation 1 and with n= 1 is

TA =
β

K
(9)

where

β = k
−m

n
a

(
1− hm

n

)−1(
L1−hm

n −x
1−hm

n
c

)
. (10)

In equation 9, TA is the analytical time to steady state, ;
:
K is the erodibility in equation 2;

::::
and

::
L

::
is

:::
the

:::::
length

::
of

:::
the

:::::::
longest270

::::::
channel

::
in

:::
the

:::::::
network. In equation 10, xc is hillslope length, and m and n are the exponents in equation 2. Equation 10 also

requires empirical parameters ka and h from the equation developed by Hack (1957):

A= ka

(
xd

)h

(11)

where x
::
xd:

is distance from the divide and A is drainage area. Note that equation 10 only holds when hm
n ̸= 1 which is the

case in all of our experiments.275

We use data from the largest watershed in the modeled landscapes to calculate ka and h. In simulations in which there

is drainage rearrangement, and hence slight changes in these parameters while the simulation approaches a steady state, we

use values
::::::::
calculated

:::::
from

:::
the

:::::::
network

:
at the end of the simulation time, which was 50 million years for the majority of

our simulations. As none of our simulations formally included hillslopes, i.e., we do not consider diffusion and the diffusion

constant was set to 0 in our simulations, we set xc in equation 10 to 0.280

:::
We

::::
note

:::
that

:::::::
equation

::
9
::
is

:::
the

::::
time

::
for

:::
the

::::::
signal

::::
from

::
an

:::::::
increase

::
in
::::
rock

:::::
uplift

::
to

:::::
move

:::::::
through

:
a
::::
river

::::::::
network.

::
It

::::
does

:::
not

::::::
include

:::
the

:::::::
response

::::
time

:::
of

::::::::
hillslopes.

:::::::::
However,

:::
our

::::::::
numerical

::::::::::
simulations

:::
do

:::
not

::::::
include

:::::::::
hillslopes,

::
so

:::
this

::::::::
equation

::::::
should

::::::::::
approximate

:::
the

::::
time

::
to

::::::
steady

::::
state

::
in

:::
our

:::::::::::
experiments.

7 Time to steady state results

Time series of all our metrics in all of our numerical experiments are illustrated in figure 3. Each column of figure 3 shows285

the
:::
The

:
time series of one of the four steady-state metrics. The different lines in each plot are the results using different

computational time steps .
::
the

:::::::
different

::::::
metric

::::::
values

:::
for

:::
the

:::
TRI

:::::::::::
experiments

::::
with

:::::::
different

::::
time

:::::
steps

:::
are

:::::
shown

::
in
::::::

figure
::
1.
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:::
For

:
a
:::::
given

::::::
metric,

:::
the

::::
time

:::::
series

:::
for

:::
the

:::::::
different

::::
time

::::
step

:::::
values

::::::::
(different

::::::
colored

:::::
lines)

:::::
have

::::::
similar

:::::::
patterns.

:::
For

::::::::
example,

::
the

:::::::
zoomed

:::
in

::::
view

::::
(left

::::::::
column)

::
of

:::
the

::::::
change

:::
in

::::::::
maximum

::::::::
elevation

::::
(top

:::::
row)

:::::::
remains

:::::::
constant

:::::::
initially,

:::
as

:::
the

:::::
value

::
is

::::::::
controlled

:::
by

:::
the

::::::
change

::
in

::::
rock

:::::
uplift

:::
rate

::::
until

:::
the

::::::::
erosional

::::
wave

::::
has

:::::::::
propagated

::::::::
upstream.

:::::
Once

:::
the

::::::::
erosional

::::
wave

:::::::
reaches290

::
the

:::::::::
uppermost

:::::
parts

::
of

:::
the

:::::::
network,

:::
the

:::::
value

::::::
begins

::
to

::::::::
generally

:::::::
decline,

:::
but

:::
not

::::::::::::
monotonically.

:::::
When

:::::::
looking

::
at

:::
the

:::::::
zoomed

:::
out

::::
view

:::::
(right

::::::::
column),

:::
the

:::::::
change

::
in

:::::::::
maximum

::::::::
elevation

::::::
appears

:::
to

::::::
bounce

::::::
around

:::
in

:
a
:::::::::
contained

:::::
range

::
of

::::::
values,

:::::
until

:::::
taking

:
a
:::::
sharp

:::::::
decline

::::
with

::::
time.

::
If
::
a

::::::
perfect

:::::
steady

:::::
state

:
is
::::::::
reached,

:::
this

::::::
metric

::::
(and

::
all

:::
the

:::::::
metrics)

::::::
would

::
go

:::
to

::::
zero,

::::::
within

::
the

:::::::::::::
computational

:::::::
accuracy

:::
of

:::
the

::::::
model.

::::
The

::::
time

::
at

:::::
which

::::
the

:::::
sharp

::::::
decline

::::::
occurs

:::::
varies

:::
by

::
≈

:::
40

:::
My

:::
for

:::
the

:::::::
change

::
in

::::::::
maximum

::::::::
elevation

::::::
metric,

:::
and

:::
the

::::
time

:::
of

::
the

:::::
sharp

:::::::
decline

::::
does

:::
not

::::::
change

::::::::::::
systematically

::::
with

::::
time

::::
step

:::::
value.

:
295

The top two rows of figure 3 illustrate the results for TRI and LRI LEMs, which have the same grid type and use the same

numerical method to solve equation 1. Using our threshold values (10−5 m for topographic metrics and 10−6 m/yr for the

flux metric) to reach steady state, the estimated time to steady state varies by tens of millions of years for the same model

environment and steady state metric, depending on the time step. There is no consistent trend between time to steady state

and time step. That is, time to steady state does not always increase or decrease with increasing time step. When comparing300

the steady-state elevation metrics among the TRI simulations, the time to steady state can increase by over 30 million years

between the fastest and slowest modeled times to steady state. When comparing between the two model environments but with

the same timestep and steady state metric, the predicted time to steady state can vary by more than 20 million years.

In contrast, if one were to use the time at which a metric levels off and oscillates around a value, the estimated times to

steady state would be closer for a given metric. This is regardless of the time step or the LEM in the simulations with a raster305

grid. However, the value that
:::
The

::::
time

:::::
series

:::
of

:::
the

:::::::
different

::::::
metric

:::::
values

:::
for

:::
the

::::
LRI

::::::::::
experiments

:::::
with

:::::::
different

::::
time

:::::
steps

::
are

::::::
shown

::
in

::::::
figure

::
2.

::::::::
Although

:::
the

:::::::
patterns

::
for

:
a given metric levels off at differs with time step in some cases (e. g. change

in maximum elevation for the LRI model). Also, it is not a smooth asymptotic approach, as one might expect from these

simulations. Notably, variation in the change in maximum local elevation stays fairly steady at a value between 10 and 100 m

for the entire simulation, until the landscape stabilizes and the value continually decreases. In other words, with
:::
are

::::::
similar

::
to310

::::
those

::::::::
observed

::
in

:::::
figure

::
1,

:::::
there

::
are

:::::
some

::::::::::
differences.

:::
For

::::::::
example,

::
in the

::::
TRI

::::::::::
experiments

::::::
(figure

::
1),

:::
the

::::
time

::
to

:::::
reach

::::::
steady

::::
state

::::::::
predicted

:::::
using

:::
the

:::::::
longest

:::::::
channel

::
in

::::
each

:::::::::
landscape

::::::::
(squares)

::::::
seems

::
to

:::::::
roughly

:::::
match

:::
an

::::::::
inflection

:::::
(here

::::::::
meaning

::::::
change

::
in

:::::
slope)

::
in

:::
the

::::
time

:::::
series

::
of

:::
the

:
change in maximum local elevation , there is no initial decrease in the metricand then

a stabilization, as occurs
::::
mean

::::::::
elevation

::::::
metric.

::::::
When

:::::::::
comparing with the change in mean elevation and flux metrics.

The steady-state metrics from the TRT and TRE simulations (third and fourth rows of figure 3)showed similar behavior as315

discussed above for the TRI and LRI simulations. The numerical methods used with TRT and TRE are not stable with larger

time steps. Thus, the impact of time step on the steady-state metric values was not as large, given we only illustrate results using

three stable time steps
:::::
metric

::
in

:::
the

::::
LRI

::::::::::
experiments

::::::
(figure

::
2),

:::
the

:::::::
general

::::::
pattern

::
of

:::
the

::::
time

:::::
series

:::
are

::::::
similar. However, the

shortest time step does result in the longest time to steady state for both TRT and TRE, regardless of the metric. In all cases

TRT and TRE predict shorter times to steady state for a given time step and metric than the TRI models predict.
::::::::
predicted

::::
time320

::
to

:::::
steady

::::
state

:::::
using

:::
the

::::::
longest

:::::::
channel

::
in

:::
the

::::
LRI

::::::::::
experiments

::::
does

:::
not

::::::::::
consistently

::::::
match

::
the

:::::::::
inflection

::
in

::
the

:::::
time

:::::
series

::
of

::
the

:::::::
change

::
in

::::
mean

::::::::
elevation

::::::
metric.

:
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Time series of four different steady-state metrics, in columns, that can be used for evaluating when a landscape has reached steady state.

Each row has the results from a different LEM (Table 1). The vertical lines are the analytical response times using the mean stream length

(dashed) or longest stream length (solid). The x axis is time in millions of years in all the plots. Note that the extent of the x and y axes is the

same in all the subplots.

Figure 1.
::::
Time

:::::
series

:::
from

:::
the

:::
TRI

::::::::::
experiments

::
of

::
the

::::
four

::::::
different

:::::::::
steady-state

::::::
metrics,

::::
each

::
in

:
a
:::::::
different

:::
row.

:::
The

:::
two

:::::::
columns

::::
show

:::
the

::::
same

::::
data,

::
but

:::
the

:::
left

::::::
column

::
is

::::::
zoomed

::
in

::
on

::::
only

:::
the

:::
first

::
4

:::::
million

:::::
years

::
of

::
the

::::
time

:::::
series.

::::
The

::::::
different

:::::
colors

:::::::
represent

:::
the

:::::::
different

:::
time

::::
step

:::::
values;

:::
the

:::::
circles

:::
are

:::
the

:::::::
analytical

:::::::
response

::::
time

::::::::
calculated

::::
using

:::
the

::::::
average

::::::
channel

:::::
length

::
in

:::::::
equation

::
9;

::
the

::::::
squares

:::
are

:::
the

:::::::
analytical

:::::::
response

:::
time

::::::::
calculated

::::
using

:::
the

::::::
longest

::::::
channel

:::::
length

::
in

::::::
equation

::
9.

12



Figure 2.
::::
Time

:::::
series

::::
from

::
the

::::
LRI

:::::::::
experiments

::
of

::
the

::::
four

::::::
different

:::::::::
steady-state

:::::::
metrics.

::::
Refer

::
to

:::
the

:::::
caption

::
in

:::::
figure

:
1
:::
for

:::::
details.

The Landlab models using the hexagonal and voronoi grids (LVI and LHI, fifth and sixth rows

::::
Time

:::::
series

::
of

:::
all

:::
our

::::::
metrics

::
in

:::
all

::
of

:::
our

::::::::
numerical

:::::::::::
experiments

::::
with

::::::::
continual

::::
flow

::::::
routing

:::
are

::::::::
illustrated

::
in

:::::
figure

::
3.

:::::
Each

::::::
column

:
of figure 3 ) all reach steady state at shorter times than the LRI simulations, for a given time step and steady state325

metric. Further,
:::::
shows

:::
the

::::
time

:::::
series

::
of

::::
one

::
of

:::
the

::::
four

::::::::::
steady-state

:::::::
metrics.

:::
We

::::::::
recognize

::::
that

::::
these

:::::
plots

:::
are

:::::::
difficult

::
to

:::
see

:
at
::::
this

:::::::
zoomed

:::
out

:::::
scale.

::::::::
However,

:
it
::
is
:::::::
possible

::
to

:::
see

::::
that

:::
the

::::::
results

::
in

::::::
figures

:
1
:::
and

::
2
:::::::
illustrate

::::::::
behavior

:::
that

::
is
::::::
similar

::
to

:::
all

::
of the LVI and LHI simulations have less of a range in predicted steady state time as a function of dt when comparing with the

LRI simulations
::::::
models.

These results are summarized in Figure ?? which compares the ratio of the modeled330

:::
One

::::
way

::
to

:::::::::
determine

:::
the time to steady state using the metric threshold value TE with the analytically predicted

:::::
would

:::
be

::
to

::
set

::
a
::::::::
threshold

:::::
value

:::
that

::
a

:::::
metric

:::::
must

::::::
decline

:::::
below

:::
to

::::
reach

::::::
steady

:::::
state.

:::
We

:::::::::
calculated

:::
the time to steady state (9), TA.

In theory, this should normalize the response times by expected differences related to either channel length or differences in

length to drainage area scaling. One constant among all the simulations is that the empirical
:::::
using

::
the

::::::::
different

::::::
metrics

::::
with

::
a

13



Figure 3.
::::
Time

:::::
series

::
of

:::
four

:::::::
different

::::::::
steady-state

:::::::
metrics,

::
in

:::::::
columns.

::::
Each

:::
row

:::
has

::
the

:::::
results

::::
from

::
a

::::::
different

::::
LEM

:::::
(Table

:::
1).

:::
The

:
x
::::
axis

:
is
::::
time

::
in

::::::
millions

::
of
:::::
years

::
in

::
all

:::
the

::::
plots.

::::
Note

:::
that

:::
the

:::::
extent

::
of

:::
the

:
x
:::
and

::
y
::::
axes

:
is
:::
the

::::
same

::
in
:::
all

::
the

:::::::
subplots.

::::::
Circles

:::
and

::::::
squares

:::
are

:::
used

::
to

::::
show

:::
the

:::::::
different

:::::::
analytical

::::
times

::
to
:::::
steady

::::
state

:::
(see

::::::
caption

::
of

:::::
figure

::
1);

:::::::
however,

::::
they

::
are

::::::
difficult

::
to
:::
see

::
at

:::
this

::::
scale.
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::::
range

:::
of

::::::::
threshold

:::::
values

:::
for

:::
the

::::
TRI

::::::::
numerical

::::::::::
simulations

::::::
(figure

::
4).

::::::
When

:::
the

::::::::
threshold

::::
value

::
is
::::::::
relatively

:::::
large,

:::
the

::::::
metric335

:::::
values

:::::
often

:::::::
increase

:::
and

::::::::
decrease

::::::
around

:::
the

::::::
value.

::
In

:::::
those

:::::
cases,

:::
we

::::
used

:::
the

::::
first

::::
time

::::
that

:::
the

::::::
metric

::::::
crossed

::::::
below

:::
the

:::::::
threshold

::::::
value,

::
as

::::
that

:::::
would

:::::
likely

:::
be

:::
the

::::::
method

:::
in

:
a
:::::::::
numerical

::::::
model.

:::
(In

::::
other

::::::
words,

::
a
:::::
model

::::
may

::::
run

::::
until

:::
the

::::::
metric

:::::::
threshold

:::::
value

::
is

::::::::
reached.)

::::::::
However,

::
it

:
is
::::::
worth

:::::
noting

::::
that

:::::
given

::
the

:::::::::
variability

::::
that

::::::
persists

::
in

:::
the

::::::
metric

:::::
values

:::
for

::::::::
extended

::::::
periods

::::::
(figure

:::
3),

:::
and

:::::::::
depending

::
on

::::
the

:::::
choice

:::
of

::::::::
threshold,

:::
the

::::::::
apparent time to steady state is greater than the analytically

predicted value. In other words, TE

TA
> 1 always. This holds true regardless of time step or steady-state metric. The models340

using a voronoi grid (LVI and CVE) consistently have the smallest values of TE

TA
; these are the only two models that

:::
can

::::
vary

::::::::::
significantly

::
if

::::::
instead

:::
you

::::::::
consider

::
the

::::
last

::::
time

:::
that

::
a
:::::
given

:::::
metric

:::::
value

::
is

:::::
above

:::
the

::::::::
threshold

:::::
value.

:

:::
The

::::::
change

::
in

:::::::::
maximum

::::::::
elevation,

:::::
mean

::::::::
elevation,

::::
and

:::::::
sediment

::::
flux

::
all

:::::
have

::::::::
threshold

:::::
values

::::
that

::::::
provide

:::::
times

::
to

::::::
steady

::::
state

:::
that

::::::::
generally

:::::
agree

::::
with

:::
the

:::::::::
analytical

:::::::
response

:::::
time, regardless of the metric or time step, TE

TA
< 10 always. Note that

LVI and CVE use different numerical methods for solving the stream power equation.345

For some combinations of steady-state metrics and specific simulations, it would be possible to choose thresholds for the

respective metric that would approximately equal the analytical time
::::
step.

::::
The

::::::::
threshold

:::::
value

::::::
should

:::
be

::::::::
relatively

:::::
large

::::::::::
(considering

:::
the

:::::
range

:::
we

:::::
used)

:::
but

:::
not

:::
too

:::::
large.

:::::
When

:::::
using

:::
the

:::::::::
maximum

::::::
change

::
in

::::
local

:::::::::
elevation,

::::
none

::
of

:::
the

:::::::::
illustrated

:::::::
threshold

::::::
values

:::
are

:
a
:::::
good

:::::
match

:::
to

::
the

:::::::::
analytical

:::::::::
prediction.

:::
Of

:::::
course

:::
we

:::::
could

::::
have

::::::
found

:
a
::::::::
threshold

:::::
value

::
of

:::::::::
maximum

::::::
change

::
in

::::
local

::::::::
elevation

:::
that

::::::::
predicted

:::::
times

:
to steady state TA, but not consistently. For example, the ∆ztmax(loc) metric has350

limited change until well beyond TA for most simulations and thus it would be challenging to choose a threshold that would

result in a TE value near TA. For the other metrics, though,
:::
that

::::::
roughly

::::::
match

:::
the

::::::::
analytical

:::::::
solution,

:::
but

::::
that

:
is
:::
not

:::
the

:::::
point

::
of

:::
our

:::::
study.

:::::::
Further, it would be generally possible to choose a threshold such that TE ≈ TA. We emphasize that these threshold

values would largely be different depending on the particular simulation, would not be known until after the experiments had

been run, and that the continued variation in these metrics beyond TA imply that some amount of measurable landscape change355

persists beyond the predicted analytical response time
:::::::::
impossible

::
to

:::::
know

:::::
what

::::::::
threshold

:::::::
matches

:::
the

:::::::::
analytical

:::::::::
prediction

:::::
before

:::::
doing

:::
the

::::::::
modeling

::::::::::
experiments.

Before doing the computational experiments, we had hypothesized that the empirical steady state would vary monotonically

with time step, in part because this is implied by results of Braun and Willett (2013), e.g., their figure 4, exploring the dynamics

of the implicit solution to the stream power equation. The
::::::::
However,

:::
our

::::::::::
experiments

::::::::
illustrate

:
a
:
lack of relationship between360

empirical steady state and time stepis especially noticeable in the TRI simulations, which we ran with six time steps.
:
.
::::
This

:
is
:::::::::
illustrated

::
in

:::::
figure

::
4.
::::

For
:::
any

:::::
given

::::::::
threshold

::::::
value,

:::
the

:::::::
smallest

::::::::
estimated

::::
time

::
to
::::::

steady
::::
state

:::
(y

::::
axis)

::
is

:::
not

::::::::::
necessarily

:::::::
produced

:::::
using

:::
the

:::::::
smallest

:::::
time

::::
step,

:::
and

:::
the

:::::::
longest

::::
time

::
to

::::::
steady

::::
state

::
is

:::
not

:::::::::
necessarily

::::::::
produced

:::::
using

:::
the

:::::::
longest

::::
time

::::
step.

We wanted to rule out that this lack of relationship was not because of an initial landscape and network that, just by chance,365

led to odd results. Thus, we reran all of the TTLEM simulations on different steady-state landscapes that were produced using

the same process as the first set of simulations, just with a different initial random surface. In these ALT-TTLEM
:::::::::
alternative

:::::::
TTLEM simulations, there is again no relationship between time to steady state and time step(second row of figure ??). Further,

these results do not match the patterns in the first set of TTLEM simulations. For example, comparing the TRT simulations, in
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Figure 4. Ratio
::::
Plots of the modeled to analytically predicted time to steady state as a function of time step for all of

::::
from the modeling

scenarios
:::
TRI

:::::::
numerical

::::::::::
experiments

::
(y

::::
axes)

:::::::
resulting

::::
from

::::::
different

:::::
metric

::::::::
threshold

:::::
values

::
(x

::::
axes). The second row of results indicates

:::::
dashed

::::::::
horizontal

:::
lines

:::::::
illustrate the set of TTLEM simulations that used a different network for

:::::::
analytical

::::
time

::
to

:::::
steady

:::
state

:::::
using the initial

conditions
:::::

average
::::::
channel

:::::
length. Other than this change, everything was

:::
The

::::
solid

::::::::
horizontal

:::
lines

:::::::
illustrate

:
the same between TTLEM and

TTLEM-ALT. Note that
:::::::
analytical

::::
time

:
to
::::::

steady
:::
state

:::::
using the extent of the x and y axes is the same in all of the subplots

::::::
longest

::::::
channel

:::::
length.
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our first set of simulations, the smallest time step produced the longest times to steady state,regardless of metric. Contrasting370

that with the ALT-TRT simulations, the smallest time step produced the shortest times to steady state, regardless of the metric.
:
.

:::::::
(Results

:::
are

:::
not

::::::
shown,

:::::::
although

::::
two

:::::
results

:::::
using

:::
the

::::
time

::::
step

:::::
2,500

:::
yrs

:::
are

::::::
shown

::
in

::::::
figures

:
1
::::
and

::
4.

:::
One

:::
of

::::
these

::::::
results

::
is

::::
from

:::
the

:::::::::
alternative

:::::
initial

:::::::::
condition.)

:

When comparing the evolving topographies, we observed that the CVE simulations have no drainage rearrangement, despite

rerouting flow at every time step. The LVI simulations have some drainage rearrangement , but very little and only in the375

headwaters. In contrast, in some of the TTLEM simulations, we observed that the network across the entire landscape changed,

though generally in subtle ways. Thus, we hypothesized that drainage rearrangement was playing a part in the variation in

times to steady state.

This figure is similar to Figures 3 and ?? except we only show TTLEM model results, and we did not reroute the flow after

every time step. In other words, there was no drainage rearrangement in these simulations. Note the x axis in the first four380

columns is time in millions of years. The extent of the x and y axes in all of the time series is the same. The extent of the x and

y axes

To test this hypothesis, we reran the initial set of TTLEM simulations, but this time we did not reroute the flow after every

time step during the transient simulations , which is an available option within the TTLEM modeling environment
:::::
(figure

::
5).

What we found is that there is much less variation in time to steady state with time step
::::::
among

:::
the

::::
time

:::::
series

::::
with

::::::::
different385

::::
time

::::
steps

:
when comparing with the initial set of simulations (figure 5)

::::
with

::::::::
continual

:::::::::
calculation

:::
of

::::
flow

::::::
routing. The time

series of all the steady-state metrics in the simulations without drainage rearrangement is very
:::
are different from the TTLEM

simulations with drainage rearrangement. With a fixed network, all of the metrics remain nearly steady in the initial response,

and then they monotonically decline.

8 Implications and Conclusions390

At a minimum, the results of our experiments highlight that when simulating landscape evolution scenarios and considering

topographic steady state—and especially time to steady state—it is critical to both report the metric being used and the threshold

value for that metric to assess steady state. Generally, the strictly topographic metrics, i.e., those only tracking mean and

maximum elevations, behaved similarly in the sense that a single threshold value can be used to estimate time to steady state

within a specific simulation (e.g., figures 3 & ??). The flux-based metric also behaved similarly among simulations, although395

it required a lower threshold value to yield a comparable estimate.

Given the variability in TE with respect to TA from our experiments, a deeper question, regardless of exactly how steady

state is assessed, is whether response times as interpreted from 2D landscape evolution models are meaningful or reliable. At

first glance, the combination of TE being consistently greater than TA but by inconsistent magnitudes for a given identical set

of conditions (e.g., uplift rate change, erosional efficiency, algorithm, grid type, and dt), would understandably give one reason400

to question the utility of response times from 2D landscape evolution models. An important related question, though, is the

extent to which we expect the conditions assumed in calculating analytical response times TA to be met in real landscapes, i.
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Figure 5.
::::
This

::::
figure

::
is
::::::
similar

::
to

::::
figure

::
3
:::::
except

:::
we

:::
only

:::::
show

::::::
TTLEM

:::::
model

:::::
results

::::::
without

:::::::
rerouting

:::
the

::::
flow

::::
after

::::
every

::::
time

::::
step.

::
In

::::
other

:::::
words,

::::
there

:::
was

:::
no

::::::
drainage

:::::::::::
rearrangement

::
in

::::
these

:::::::::
simulations.

:::
The

:::::
extent

::
of

:::
the

:
x
:::
and

::
y

:::
axes

::
in

::
all

::
of

:::
the

::::
time

::::
series

::
is

::
the

:::::
same.
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e., is TA a fair or reasonable benchmark? Implicit in the calculation of TA is an assumption of static stream length and drainage

area during response to a change in either K or U (e.g., Whipple, 2001; Goren, 2016). Further, TA reduces the network into

1-D, and the network structure provides a more complex transient response than predicted by 1-D models Li et al. (2018)
:::::
Based405

::
on

:::::
figure

::
4
:::
the

::::::
change

::
in
:::::

mean
::::::::

elevation
::::
and

::::::::
sediment

:::
flux

::::::
appear

:::
to

::::
have

:
a
::::::

range
::
of

::::::::
threshold

::::::
values

:::
that

::::
give

::::::
results

::::
that

:::::::::
reasonably

:::::::::
correspond

::
to
::::

the
:::::::
response

:::::
time

::::::::
predicted

::::
from

:::
the

:::::::::
analytical

:::::::
solution.

:::::::::
However,

::::
these

:::::::::
threshold

:::::
values

:::
are

::::
not

:::::::::
necessarily

:::
the

::::
same

::::::::
threshold

::::::
values

:::
that

::::::
should

:::
be

::::
used

::::
with

::::
other

:::::::::
modeling

:::::::::::
environments

:::
for

:::
the

::::
same

::::::
metric.

Comparing our experiments where flow routing is recomputed at every time step (figure 3) with those where the drainage

network is fixed (figure 5) suggests that small perturbations in drainage network structure
::::
over

::::
time (e.g., single pixel to pixel410

changes in divide location or along the course of individual drainages) likely cause the longer response time
:::
time

::
to

::::::
steady

::::
state

compared to the predictions of TA::::::::
analytical

:::::::::
predictions. Recent work highlighting that divide migration and drainage network

instability may be more the norm (e.g. Willett et al., 2014; Whipple et al., 2017; Beeson et al., 2017; Forte and Whipple, 2018;

Val et al., 2022), complicates the assumption of a static drainage network implied by calculations of TA. Importantly, the
:::
the

::::::::
analytical

:::::::
response

:::::
time.

::
In

::::
fact,

:::
the

::::::::
analytical

:::::::
response

::::
time

:::::::
predicts

::::
only

:::
the

::::
time

:::
for

::
an

::::::::
erosional

:::::
signal

::
to

::::::::
propagate

:::::::
through415

:
a
::::
fixed

:::::::
network

::::::::::::::
(Whipple, 2001).

::::
Any

:::::::::
adjustment

::
in
:::::
river

:::::::
network

:::::::
topology

::
is

:::
not

:::::::::
considered

::
in

:::
the

::::::::::
calculation,

:::
nor

:
is
::::::::
hillslope

:::::::::
adjustment

::::
time.

:::::::::
Although

:::::::::
predictions

:::::
from

:::::::
equation

::
9

::::
have

::::
been

::::
used

:::::::::::::
synonymously

::::
with

::::
time

::
to

::::::
steady

:::::
state,

::::
they

:::
are

:::
not

::
the

:::::
same

:::::
thing.

::::
The

::::::::
analytical

:::::::
response

::::
time

:::::
might

:::
be

:::::
better

:::::::
captured

::
in

::
a

::
2D

:::::::::
numerical

:::::
model

:::
as

::
the

::::
time

::::
that

:::
the

:::
last

:::::::
channel

::::
reach

:::
on

:::
the

::::::::
landscape

:::::
starts

:::::::::
responding

::
to

:::
an

::::::::
erosional

:::::
wave.

:::
Any

::::::::
drainage

:::::::
network

::::::::::::
rearrangement

::
in

:::
the

::::::::
modeling

::::::
results

::::::::
presented

:::::
above

::::::
comes

:::::
solely

::::
from

:::
the

::::
flow

::::::
routing

:::::::::
algorithm420

:::
and

::::::::
numerical

::::::::
artifacts.

:::
Our

::::::::
modeling

::::::::
scenarios

:::
did

:::
not

:::::::
consider

::::
any

::::::::
processes

::
or

::::::
driving

:::::::::
conditions

:::
that

:::::
might

:::::::::
physically

::::
lead

::
to

:::::::
drainage

::::::::::::
rearrangement,

::::
such

::
as

:::::::::
landslides

:::::::::::::::::::::::::
(e.g. Campforts et al., 2022) or

:::::
lateral

:::::::
channel

::::::::
migration

:::::::::::::::::::::
(e.g. Kwang et al., 2021).

:::
The

:
majority of prior results arguing for pervasive drainage network reorganization consider scenarios with spatial gradients

in either K or U , which our simple experiments do not include. It is possible that response times
::::
time

::
to

::::::
steady

::::
state

:
from

2D simulations driven by spatial gradients in environmental drivers and which generally induce greater amounts of network425

reorganization, like those considered for divide migration by Whipple et al. (2017) or Lyons et al. (2020), may be less sensitive

to the initial conditions and small perturbations in the network than our simulations here. However, testing this is beyond the

scope of this short communication.

In summary, if we are primarily concerned with the legitimacy of using results of landscape simulations to establish the

time scale of processes or the evolution of specific landscapes, it is not immediately apparent that TE as
::::
time

::
to

:::::
steady

:::::
state430

estimated from 2D numerical simulations is any more or less grounded in reality than TA, but the variability of TE with respect

to TA is especially problematic
::
the

:::::::::
analytical

:::::::
solution.

::::::::
However

:::
the

::::::::
variability

::
of

::::::::
modeled

::::
time

::
to

:::::
steady

:::::
state

:::::
based

::
on

::::::
metric

:::
and

::::::::
threshold

::::::::
illustrates

:::
the

::::::::::
importance

::
of

::::::
stating

:::
all

:::::
model

:::::::::
conditions

::::
and

::::
how

::::
they

::::
were

::::::::::
determined. Based on our experi-

mentsand the above, we provide a set of recommendations for considering steady state and response times from 2D simulations.

First and foremost, it is critical to remain mindful of the importance of the initial conditions (e.g., the random noise grid, or esti-435

mates of paleotopography) in dictating landscape evolution (e.g., Willgoose et al., 1991; Perron and Fagherazzi, 2012; Ferrier et al., 2013; Han et al., 2014; Ward and Galewsky, 2014)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Willgoose et al., 1991; Perron and Fagherazzi, 2012; Ferrier et al., 2013; Han et al., 2014; Ward and Galewsky, 2014; Kwang and Parker, 2019) and

to treat properties related to response times as more stochastic. Thus, one potentially useful approach is to consider TA :::
the
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::::::::
analytical

:::::::
response

:::::
time as a minimum response time,

::
as

::::
was

:::::::::
suggested

::
by

::::::::::::::
Whipple (2001). Ranges of more reasonable re-

sponse times, incorporating some stochastic degree of minor drainage reorganization, can be estimated from multiple 2D

simulations with different initial topographic conditions (i.e., random noise) for a given fixed set of other environmental fac-440

tors.
::::::::
However,

:::
one

::::::
should

:::
be

:::::::
mindful

::
of

:::::::
whether

::::::::
drainage

::::::::::::
rearrangement

::
is

:
a
:::::::::
numerical

::::::
artifact

:::
or

:::::
driven

:::
by

::::::::
processes

::::
and

:::::::::::
environmental

:::::::::
variability

:::
that

::::::
might

:::
lead

::
to

:::::::
network

:::::::::::::
rearrangement. Also, our results highlight that choice of grid is meaningful

in terms of reliability of TE:::::::
modeled

::::
time

::
to
::::::
steady

::::
state, with either voronoi

:::::::
Voronoi or hex grids more likely to produce TE

estimates that do not vary as much as a function of dt. Thus these grid types may be more suitable where reliability of response

times is important or where simulations run with different dt might be compared. The absolute most conservative approach to445

our results is to largely ignore response times as derived from

::::::::::
Generalized

::::::::
modeling

::::::
studies

:::
that

::::
use

:::::::
synthetic

::::::::::
landscapes,

::
as

:::
we

:::
do

::::
here,

:::
are

:::::::::
extremely

:::::::
valuable

:::::
tools

::
in

:::
the

::::::::::
geomorphic

:::::::::
community.

::::
Our

:::::
study

::::
says

:::::::
nothing

:::::
about

:::::
using

:
2D landscape evolution models and instead focus on

::::::::
numerical

:::::::
models

:::
for

:::::::::
interpreting

:
landscape forms, either during the transient response or at quasi steady state, or as a function of non-dimensional

time within a simulation.
:::
The

:::::::
absolute

::::
most

:::::::::::
conservative

:::::::
reaction

::
to

:::
our

::::::
results

:::::
would

:::
be

::
to

::::::
ignore

:::::::
response

:::::
times

::
as

:::::::
derived450

::::
from

:::
2D

::::::::
landscape

::::::::
evolution

:::::::
models.

:::::::::
However,

::
we

::::::::
advocate

:::
for

::
a

::::
more

:::::::
nuanced

:::::::::
approach.

:::
We

:::::::
suggest

:::
that

::::
care

:::
be

:::::
taken

::
to

:::::
ensure

:::
the

:::::::::::
measurement

:::
fits

:::
the

::::::::
question.

::::
The

::::
time

::
it

::::
takes

:::
for

:
a
::::::::::

knickpoint
::
to

::::::::
propagate

:::::::
through

:
a
:::::::
network

::
is
:::
not

::::::::::
necessarily

::
the

::::
time

::
it
:::::
takes

:::
for

:
a
::::::::
numerical

::::::
model

::
to

:::::
reach

:
a
::::
pure

::::::
steady

:::::
state,

:::
and

:::::
these

:::
two

:::::
things

::::::
should

:::
not

:::
be

::::::::
conflated.

:

:::
We

:::::
stress

:::
that

:::::
none

::
of

::::
our

::::::
results

:::
are

:::::
based

:::
on

:::::::
observed

:::::::
natural

:::::::::
watersheds

:::
or

::::::::
landforms

::::
that

::::
have

::::
data

:::::::::
informing

:::::
local

::::
rates

:::
and

:::::::::
processes.

:::
For

::::::::
example,

:::::::::
numerical

::::::
models

::::
can

::
be

:::::
used

::
to

:::::::
interpret

:::
the

::::
time

:::
for

::
a
:::::::::
knickpoint

::
to
:::::::::
propagate

:::::::
through455

:
a
::::
river

::::::::
network,

::
as

:::::
long

::
as

:::
we

::::
have

:::::::::
calibrated

::::::::::
parameters

:::
and

::::
use

:::
the

::::::::
observed

:::::::
network

:::::::
pattern.

:::
Our

::::::
results

::::::::
illustrate

::::
that

::
the

::::::
details

:::
of

:
a
:::::
river

:::::::
network

::::::
matter,

::::
thus

::::::
results

::::
from

::::
one

::::
river

:::::::
network

:::
do

:::
not

::::::::::
necessarily

:::::
apply

::
to

:::::::
another

::::
river

::::::::
network.

::::::
Further,

:::::::::
numerical

:::::::
artefacts

::::::
should

:::
not

::
be

:::::::::
interpreted

:::
as

:::
real

:::::
model

::::::::
behavior.

:::::::
Finally,

::::
how

:::::::::
something

:
is
::::::::
measured

:::::::
matters,

::::
and

::::::::
clarifying

::::
how

::::::::::::
measurements

:::
are

::::
made

::
in
:::::::::
landscape

::::::::
evolution

::::::::
modeling

::::::
studies

::::::
should

::
be

:::::::
general

:::
best

::::::::
practice.
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