# Knickpoints and Fixpoints: The Evolution of Fluvial Morphology under the Combined Effect of Fault Uplift and Dam Obstruction on a Soft Bedrock River

4 Hung-En Chen<sup>1</sup>, Yen-Yu Chiu<sup>1</sup>, Chih-Yuan Cheng<sup>1</sup> and Su-Chin Chen<sup>1,2</sup>

<sup>1</sup> Department of Soil and Water Conservation, National Chung Hsing University, Taichung 40227, Taiwan

6 <sup>2</sup> Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan

7 *Correspondence to:* Su-Chin Chen (scchen@nchu.edu.tw)

8 Abstract. Rapid changes in river geomorphology can occur after being disturbed by external factors like earthquakes or large 9 dam obstructions. Studies documenting the evolution of river morphology under such conditions have advanced our 10 understanding of fluvial geomorphology. The Dajia River in Taiwan presents a unique example of the combined effects of a coseismic fault (the 1999 Mw 7.6 Chi-Chi earthquake) and a dam. As a result of the steep terrain and abundant precipitation, 11 12 rivers in Taiwan have exhibited characteristic post-disturbance evolution over 20 years. This study also considers two other 13 comparative rivers with similar congenital conditions: the Daan River was affected by a thrust fault Chi-Chi earthquake, too; 14 the Zhuoshui River was influenced by dam construction finished in 2001. The survey data and knickpoint migration model 15 were used to analyze the evolution of the three rivers and propose hypothesis models. Results showed that the mobile 16 knickpoint migrated upstream under the influence of flow, while the dam acted as a fixpoint, leading to an increased elevation 17 gap and downstream channel incision. Thereby, the Dajia river-River narrowing and incision began at both ends and 18 progressively spread to the whole reach under the combined effects.

19 KEYWORDS: dam obstruction; fixpoint; coseismic uplift; knickpoint; soft bedrock incision; river evolution

## Introduction

20 1.

21 Natural tectonic movements and artificial structures are the main factors that disturb river equilibrium. These external 22 influences often interact complexly; therefore, distinguishing between anthropogenic and natural drivers of landscape 23 evolution is difficult. In addition, changes in these external conditions, in turn drive adjustments in the riverbed, generating 24 new landscape patterns. River morphological development generally reflects the geology and flow stress conditions (Lyell, 25 1830). When a significant external impact occurs, a knickpoint (a localized discontinuity in the longitudinal profile of the 26 riverbed) often forms (Holland, 1976). Knickpoints can range in scale from a single waterfall to a zone of several kilometers 27 (Crosby and Whipple, 2006) and may result from natural factors such as extreme weather, sea-level fall, and earthquake-28 induced surface rupture (Seidl and Dietrich, 1992; Whipple, 2004, Bishop et al., 2005; Heijnen et al., 2020).

29 The active fault causes a prominent knickpoint in stream, known as tectonic uplift, leading to a local increase in channel 30 steepness (Hayakawa et al., 2009; Huang et al., 2013; Cook et al., 2013). The sudden elevation change in the riverbed divides 31 the river profile into two reaches with differing slopes, altering the base level of fluvial erosion. The increasing flow stress 32 erodes the knickpoints, causing it to migrate upstream-ward over time. A long duration is required for the fluvial response to 33 adapt to localized surface uplift or depositional blockage by knickpoint retreat and migration upstream with time, cutting a 34 narrow channel and even forming a canyon. The migration process and speed are highly variable and depend on the tectonic 35 setting and physical nature of the riverbed (Wipple et al., 2004). The emergence and migration of knickpoints caused by 36 disturbance from external conditions was studied extensively (Whipple, 2001; Whipple and Trucker, 2002; Crosby and 37 Whipple, 2006; Clark, 2014; Ahmed et al., 2018).

38 Anthropogenic factors, such as reservoir construction, which is one of the most common ways humans interfere with river 39 hydrology and sedimentation (Magilligan and Nislow, 2005; Petts and Gurnell, 2005; Graf, 2006; Nelson et al., 2013; Liro, 40 2017, 2019; Zhou et al., 2018). Dam as a fixpoint in the river influences two critical components of river geomorphology: the 41 sediment transport capacity of the flow and the oncoming sediment load (Williams and Wolman, 1984). If the sediment 42 transport capacity exceeds the oncoming sediment load, the amount of sediment may be insufficient to maintain the riverbed 43 level, and erosion may occur. Conversely, if the sediment load exceeds the sediment transport capacity, deposition on the 44 riverbed would be expected to occur. The self-adjustment mechanisms of river channels responding to insufficient or excess 45 sediment (Brandt, 2000) results in the change in cross-section geometry, bed material size, river pattern (Leopold and Wolman 46 1957), and slope. Previous studies on the evolution of areas downstream of dams have primarily analyzed changes in

downstream sandbars over large spatial scales (Horn et al., 2012; Słowik et al., 2018; Kong et al., 2020) or the ecology of the lower reaches in front of dams (Kingsford, 2000; Braatne et al., 2008; Shafroth et al., 2016). Few There have been few studies of exposed bedrock have been based on long-term observations (Inbar, 1990). In most cases, a dam effectively traps the sediment supply from the watershed. If sediment transfer to the downstream reaches of the dam is reduced, the armor layers of the riverbed are lost, which may cause an incision of the fluvial channel (Surian and Rindai, 2003). This incision subsequently narrows the river cross-sections and lowers the thalweg level.

53 Decades or hundreds of years are generally required for a riverbed to reach a new equilibrium after disturbance by external 54 conditions, so it is difficult to understand such changes based on short-period observational data (Howard et al., 1994; Tomkin 55 et al., 2003). Because of the abundant rainfall brought by typhoons and monsoons, the river terrain in Taiwan can alter 56 dramatically over a short period of time. Moreover, dams in Taiwan are built primarily in steep reaches, enhancing the rapid, 57 remarkable morphological evolution of the downstream reaches. The reservoirs of dams constructed on the rivers become 58 silted up, resulting in a lack of sediment downstream in the meantime, which causes loss of armor layers, exposure of soft rock, 59 and severe erosion. Another factor influencing the distinctive characteristics of Taiwanese rivers is the geological location; 60 Taiwan is located in a plate junction zone that experiences frequent earthquakes such as the Chi-Chi Earthquake of 1999 (Lin 61 et al., 2001; Ota et al., 2005), which caused the offset of Chelungpu thrust fault in central Taiwan. The surface rupture and 62 uplift induced the formation of knickpoints and river gorges. Twenty years later, the undercutting trend of the active channel 63 below dams and the migration of post-earthquake knickpoints have caused the rivers to evolve into their present forms. This 64 rapid evolution of river morphology over a short time makes Taiwan rivers suitable as case studies. The Dajia River is a unique 65 example, as a dam structure and coseismic uplift impact it simultaneously in a short reach. The current work aims to clarify 66 the river changes caused by the earthquake and a dam, and to propose a hypothesis for the evolution model. To compare the 67 various morphological developments under different external conditions, the Daan, Zhuoshui, and Dajia rivers in central 68 Taiwan are considered in this study.

69 2. Study area, materials, and methods

The longitudinal changes of the river bed and the accompanying river pattern changes are the objects of observation. A common type of longitudinal profile development for knickpoint retreat is illustrated in Fig. 1a (Gardner 1983; Whipple and Trucker, 1999; Parker and Izumi 2000; Alonso et al. 2002; Bressan et al., 2014). As the base level of erosion fell<u>a</u> the stream encountered an abrupt shift in slope from gentle to steep, which significantly accelerated and the abrupt slope caused

74 acceleration of the flow, and subsequently led to stream bed erosionerosion of the stream bed, the stream eroded the bed. 75 During this process, apparent upstream degradation and downstream aggradation occurred. The knickpoint migrated upward 76 with time, companying by slope replacement. After the river had reached a new equilibrium in a channelized pattern, the slope 77 replacement resulted in a natural profile. During the adjustment, the incision trend gradually slowed, and sedimentation may 78 commence downstream (dashed line in Fig. 1a). The profile evolved from a concave curve to a graded profile (Chamberlin 79 and Salisbury, 1904). The well-known result of dam construction is the progressive loss of the armor layer in the neighboring 80 downstream river (Fig. 1b). The scouring baseline extended downstream-ward from the dam (Olsen, 1999; Choi et al., 2005; 81 Słowik et al., 2018). Because of the fixpoint, the local slope at the dam toe became steeper progressively, and the dam caused 82 the downstream river profile to be gentle and sediment transport to decrease.

However, significant changes in the longitudinal profile must also be accompanied by variations in river patterns, which
have yet to receive much attention. Furthermore, the interaction between fault scarps and dam obstructions within a river reach
is rarely observed and studied. To address these gaps, we collected historical data <u>(incl. multiyear satellite images, orthographic images, cross-sectional and longitudinal profiles.)</u> for three rivers in Taiwan (Daan, Zhuoshui, and Dajia), each representing
the individual effects of faults and dams, as well as their combined effects.

88 2.1 Study area

89 Taiwan's climate is strongly affected by the western Pacific tropical cyclone. There are approximately three to four 90 typhoons and heavy rain events yearly, and the average annual precipitation is about 2500 mm. The heavy rains during the 91 monsoons and typhoons cause dramatic changes to riverbeds over short periods of time. In addition, because Taiwan is located 92 at the compressive tectonic boundary between the Eurasian and Philippine Sea plates, the collision of the two continental plates 93 causes tectonic breakage of the strata. On September 21, 1999, the Chi-Chi earthquake ( $M_w = 7.6$ ) resulted in uneven uplift in 94 the island. Three central Taiwan rivers illustrate dams or faults' effects (Figure 2): The Daan River has been affected by vertical 95 fault scarps, the Dajia River by both fault scarps and a dam, and the Zhuoshui River by dam obstruction. These three important 96 rivers have very similar characteristics: their east-to-west flow direction; their range of elevation from sea level to ~3000 m; 97 their steep river slopes (the average slope of each river 1.5% - 2.4%, Kuo et al.(2021)the average slopes of the middle and 98 upper reaches are greater than 1/60); and the presence of soft rock in the mid-stream (as shown in the pink region in Figure 99 Fig. 2). The locations of the three rivers and the Chelungpu thrust fault are marked in Figure-Fig. 2. The southern termination 100 of the fault crosses the Zhoushui River trending north-southnorth south; the northern termination near the Dajia and the Daan

101 rivers shows a complex deformation pattern trending NE–SW to E–W (Lee et al., 2002), composed of several parallel thrust 102 faults. In the three studied reaches, the Pleistocene sedimentary rocks are mainly composed of soft rocks consisting of 103 sandstone, siltstone, shale, and mudstone. Soft rocks have intermediate strength between soils and hard rocks with possessing 104 unconfined compressive strengths ranging from 0.5 to 25.0 MPa (Lai et al., 2011). These rocks are generally poorly lithified 105 and weakened by a high water content; therefore, their resistance to water erosion is poor. The riverbed rock is readily incised 106 by flooding flow when the upper armoring protective layer was lost (Huang et al., 2014).

107 The Chi-Chi earthquake produced a surface rupture 80 km long-(Lee et al., 2002). Several fracture planes at the north .08 end of the fault caused uneven uplift in the region (Lee et al., 2002). One of the ruptures passed through the right bank of the 109 Shigang Dam (constructed in 1977) on the Dajia River, causing serious damage to the dam structure. The maximum vertical 110 displacement of the surface rupture was 9 m, increasing the drop height of the bed level between the face and the back of the 111 dam markedly. The dam reconstruction was finished in 2000. The repaired Shigang Dam was intended to store  $2.4 \times 10^6$  m<sup>3</sup> 112 of water after the Chi-Chi earthquake; however, owing to deposition in the reservoir, only  $\sim 1.4 \times 10^6$  m<sup>3</sup> of water can now be 113 retained. After the earthquake and the reconstruction, the fluvial morphology has been changed rapidly. The original armor 114 layers on the riverbed in front of the Shigang Dam were lost rapidly, and the soft bedrock was exposed. The two rupture 115 surfaces at the north end of the Chelungpu Fault uplifted a 1 km reach of bed in the Daan River, with a maximum vertical 116 uplift of 10 m.

117 Although the southern end of the Chelungpu Fault passes downstream of the Jiji Dam (Zhuoshui River), the fault uplifted 118 the bed level by  $\sim 2$  m, less than the uplifts in the Daan and Dajia rivers. The Jiji Dam was built in 2001 (after the 1999 Chi-119 Chi earthquake), is situated on the narrowest part of the Zhuoshui River, and has a maximum designed storage capacity of 10 120  $\times 10^6$  m<sup>3</sup>. Due to the large sediment yield in the Zhuoshui River watershed, the present-day adequate water storage capacity is 121 only  $\sim 4 \times 10^6$  m<sup>3</sup>. The Jiji Dam downstream is known for its soft bedrock canyon features, formed by dam-obstructed water 122 scouring.

## 123 2.2 Materials

124Analysis of the effects of faults and dams, alteration of river patterns, changes in thalweg levels, and variations in river125cross-sections are crucial to revealing the process of river evolution. SPOT-5 and SPOT-6 satellite images (2 m in)126resolutions) and orthographic images (25 - 50 m in resolutions) obtained by the Center for Space and Remote Sensing127Research, National Central University (CSRSR/NCU) and the Aerial Survey Office (AFASI) of Taiwan were used to

128 assess changes in river patterns. Multiyear cross-sectional and longitudinal profiles were established from historical 129 surveys by the Water Resources Agency (WRA). The survey was conducted using Total Station, GPS, and depth sounder. 130 The interval of survey points should be 5-10 m, and the elevation error must not exceed cm. Additional analyses of 131 knickpoint retreat and variations in river elevation and width were carried out. The locations of knickpoints were 132 determined by identifying abrupt terrain changes and the positions of splash in the images. In order to analyze the 133 variation of channel width (W), depth (D), and aspect ratio (W/D), we calculated the bank-full discharge width and depth, 134 which represents the maximum flow that can occur in a river before water starts overflowing and spreading out onto the 135 floodplain. We identified the river banks and extracted channel widths from orthographic images. The banks were defined 136 as the boundaries between the main channel and the adjacent floodplain.

137 2.3 Mathematical model

The application of the mathematical model provides an abstract description of a concrete system using physical concepts
and mathematical language. A one-dimensional Exner equation (Exner, 1925) is used to describe the advective and diffusive
knickpoint migration (Bressan et al., 2014):

141 
$$\frac{\partial z}{\partial t} + \frac{1}{(1-p_s)} \frac{\partial q_s}{\partial x} = 0$$
(1a)

where z is the bed elevation along the thalweg,  $p_s$  is the porosity of bed sediment, t is the time, x is the distance, and  $q_s$  is the sediment discharge per unit width that is estimated by the product of the surface height change  $\eta$ , and the knickpoint migration rate dx/dt is expressed as equation 1b.

$$145 q_s = -\eta \frac{dx}{dt} (1b)$$

146 The migration rate as a sediment separation per unit area homogeneously distributed over the eroding surface is expressed147 as equation (1c).

$$148 \qquad \frac{dx}{dt} = k_d [\tau(x) - \tau_c] \tag{1c}$$

149 where  $k_d$  is the erodibility,  $\tau$  is the bed shear stress, and  $\tau_c$  is the critical shear stress of the bed material. The condition of 150 an obvious knickpoint face,  $\tau$  should be estimated using a formula that considers knickpoint as a submerged obstacle 151 (equation (1d)) (Engelund, 1970).

152 
$$\tau(x) = M\tau_0 \left[ 1 + A \frac{(z-z_0)}{H_0} + B \frac{\partial z}{\partial x} \right]$$
(1d)

153 The factors *M*, *A*, and *B* in equation (1d) are parameters related to localized phenomena.  $\tau_0$ ,  $z_0$ , and  $H_0$  are the shear 154 stress, bed elevation and the water depth upstream of the knickpoint. The term  $B \frac{\partial z}{\partial x}$  represents the change in shear stress due to the local slope. The shear stress in the channel section upstream of the knickpoint crest ( $\tau_0 = \gamma H_0 S_0$ , where  $\gamma$  is the specific weight of water changes across the knickpoint due to the abrupt change in bed topography (equation (1d)). Substituting equations (1b)–(1d) into equation (1a), equations (2a)–(2c) were obtained in below:

158 
$$\frac{\partial z}{\partial t} - C \frac{\partial z}{\partial x} - D \frac{\partial^2 z}{\partial x^2} = 0$$
(2a)

159 
$$C = \left(\frac{\eta k_d \gamma}{1 - p_s}\right) S_0 M A \tag{2b}$$

$$160 D = \left(\frac{\eta k_d \gamma}{1 - \nu_s}\right) S_0 H_0 M B (2c)$$

161 where the coefficients of the first- and second-order spatial derivatives, C and D, are known as the advection and diffusion 162 coefficients, respectively. It can be concluded that the key controls of the knickpoint retreat are the channel slope, the erodibility 163 of the bed of the river reach, the knickpoint face height, and the upstream water depth. Therefore, the present equation is a 164 physical-based model that can be solved with the second-order accurate implicit finite difference scheme which was 165 implemented in MATLAB. However, it is essential to recognize that the numerical model is conceptual and involves several .66 assumptions, such as not considering variations in the horizontal 2D plane of the terrain and assuming homogeneous 167 parameters within the simulation area, among others. The numerical model cannot fully capture the actual scenario's detailed 68 morphology and environmental conditions; it serves as a conceptual model based on physical mechanisms, providing trends 169 rather than precise representations.

170 **3. RESULTS** 

# 171 3.1 Fault effect on Daan River canyon

172 The scarps across the Daan River that were uplifted by the Chi-Chi earthquake caused a dramatic change in the topography, 173 disturbing the dynamic equilibrium of the fluvial system. Cook et al. (2013) proposed that the knickpoint propagated rapidly 174 after 2004 and pointed out that, after the disappearance of bedload, the tool effect caused pronounced fluvial incision of the 175 bedrock after the disappearance of bedload. Knickpoint propagation was influenced by the antiformal geological structure of 176 the area, the presence and orientation of interbedded strong and weak lithologies, and the proportion of discharge entering the 177 main channel. Huang et al. (2013) also proposed that the knickpoint retreat rate can be affected by several factors, including 178 discharge, rock properties, geological structures, and bedrock orientation. The channel development of the studied reach and 179 the behavior of knickpoint retreat were assessed by analyzing multiyear data on the form and cross-section of the river. 180 Successive orthographic images of the studied reach of the Daan River from 2000 to 2017 and the corresponding flow

181 paths are illustrated in Fig. 3. River cross-sections constructed from precise survey data are provided in Fig. 4. Chronological 182 longitudinal profiles of the river reach are shown in Fig. 5. Longitudinal profile data from Cook et al. (2013) were included to 183 make information more complete. The effect of the earthquake on the surface elevation is clearly visible in Fig. 5. In addition 184 to the survey data, the advective and diffusive knickpoint migration model (equation 2) was solved to mathematize the 185 knickpoint retreat progress after the Chi-Chi earthquake. The initial condition and boundaries condition are needed to solve 186 the equation. The initial condition is the longitudinal profile in 1999, while the boundary conditions are the real bed changes 187 in upstream and downstream boundaries. The C and D are physical parameters and were calibrated by the survey data. In 188 equation 2, C represents the moving speed, and D represents the diffusion constant. These two coefficients reflect the rate of 189 bed erosion, which is physically composed mainly of bed shear stress (equations 2b and 2c). Due to the actual bed erosion 190 rates varying with time, the parameters were adjusted to match the real changes. Before 2004, C was 22.0 m/yr, and D was 191 10.0 m<sup>2</sup>/yr; after 2004, C was 91.5 m/yr, and D was 18.5 m<sup>2</sup>/yr, and the simulation was continued until 2011 when the 192 knickpoint disappear. The result of the modeling is shown at the top left corner in Fig. 5. The knickpoint progressively retreats, 193 companying by slope replacement. The variation trend of the simulation and survey data is generally consistent, and the speed 194 (C) has a larger value in 2004 - 2011, which is also consistent with the observation.

195 The long-term development of the studied reach of the Daan River in the past 20 years, after the coseismic uplift, can be 196 divided into three periods: downstream erosion and slow knickpoint migration (earthquake to 2004); sudden migration of the 197 knickpoint (2004\_\_2011); and gorge widening and eradication (2011\_\_present).

# 198 3.1.1 Downstream erosion and slow knickpoint migration (earthquake to 2004)

199 After the Chi-Chi earthquake, coseismic ground deformation created a pop-up obstruction across the river, forming a 200 barrier lake behind the rupture scarp. The obstacle blocked the river flow and trapped the sediment, causing the river bed 201 downstream of the rupture scarp completely lose the armor layer. When the armor layer was lost, bedrock incision occurred 202 downstream of the uplifted zone, and the knickpoint retreat appeared. On the other hand, no significant erosion occurred 203 between cross-sections **a** and **b** during that period (Figs 3 and 4). A comparison of the cross-sections for 2000 and 2004 (Fig. 204 4) reveals that most parts of the section **a** even experienced deposition. Slight erosion in some places can be detected in the 205 longitudinal profiles (Fig. 5) between 1999 (after the earthquake) and 2004. Although the seismic uplift produced an obvious 206 knickpoint on the riverbed, that knickpoint migrated only slightly (85 m; Table 1) between 2000 and 2004. The downstream 207 reach of the uplifted zone showed evidence of scour, but no noticeable bedrock incision or canyon landscape had developed

208 yet.

# 209

### 3.1.2 Sudden migration of knickpoint (2004–2011)

210 The orthographic image for 2007 (Fig. 3) clearly shows that the armor layer had been removed, the bedrock had been 211 exposed, and the deep incision had formed a narrow channel. The knickpoint retreated upstream-ward by approximately 422 212 m between 2004 and 2007, accompanied by continued scouring downstream. In the uplifted reach, under the stress of the 213 concentrated flow in the newly formed channel, the tool effect resulted in a deepened incision of the rock bed, and a canyon 214 landform gradually developed. In the 2007 cross-section data for section  $\mathbf{a}$ , a canyon close to the left bank can be observed, 215 which persisted until 2011. A rapid incision rate (5.6 m/yr) occurred in section  $\mathbf{a}$ , which also experienced a narrowing rate of 216 about 105.5 m/yr. Bed incision and narrowing of the main channel occurred in section **b** simultaneously, with a narrowing rate 217 of approximately 89.9 m/yr and an incision rate of about 2.1 m/yr. Between 2007 and 2011, the knickpoint retreated upstream 218 by about 412 m; the incision at section a was lessened, but section b experienced a notable incision into the rock bed 219 accompanied by knickpoint retreat. Because an obvious gorge channel had appeared in the uplifted zone, sediment from 220 upstream was transported downstream, and downstream scouring transformed gradually into sedimentation; therefore, the 221 convex longitudinal profile was gradually erased.

#### 222 3.1.3 Gorge widening and eradication (2011 to the present)

223 After 2011, the knickpoint became insignificant in the longitudinal profile, so the thalweg scouring trend slowed. The 224 morphology development is dominated by lateral erosion instead of vertical incision. The narrow, deep canyon evolved into a 225 U-shaped canyon with a wide bottom. River pattern migration from upstream caused the canyon-type channel to commence 226 transforming into a braided channel. The main channel of section **a** experienced deposition as a result of the sediment supply 227 being adequate (Fig. 5). Cook et al. (2014) proposed a mechanism of gorge eradication, called downstream sweep erosion, 228 which rapidly transformed the gorge into a beveled floodplain through the downstream propagation of a wide erosion front 229 located where the broad upstream channel abruptly became a narrow gorge. The sweep boundary is clearly visible in the 230 orthographic images for 2011 and 2017 (Fig. 3). Additional large floods are expected to cause a marked widening of the channel 231 instead of deepening (Huang et al., 2013). It has been estimated that removal of the gorge erosion will take 50 years (Cook et 232 al., 2014).

233 Significant incision of the channel is common after a riverbed has been uplifted suddenly by topographic-tectonic 234 movement and the bed slope changes dramatically (Merritts et al., 1989). This was the case for the Daan River after the ChiChi earthquake. After the coseismic uplift, the base level of erosion downstream reduced, so erosion increased. The river width became notably narrower and deeper. Upward movement of the knickpoint caused the river channel in the uplifted section to narrow rapidly. The concentrated flow caused a rapid incision of a weak geological layer in the riverbed, so the channel width decreased sharply. Therefore, the uplifted section formed a canyon landform. As the slope at the knickpoint gradually recovered, the incision slowed and sediment transport down the recovered river resulted in sediment deposition in the downstream channel. The river also gradually developed lateral erosion upstream, and the river channel tended to widen. The channelization is expected to have been swept because the sweep boundary migrated progressively downward.

## 242 3.2 Jiji Dam effect on Zhoushui River

243 Construction of the Jiji Dam on the Zhoushui River began in 1996 and operated in 2001. Orthographic images, flow paths 244 of the studied reach, and the locations of cross-sections c, d, and e below the Jiji Dam for 1998 to 2018 are provided in Fig. 6. 245 Chronological survey data of cross-sections c, d, and e are provided in Fig. 7. Chronological longitudinal profiles of the studied 246 reach are illustrated in Fig. 8. The river is located at the southern termination of the Chelungpu Fault (Fig. 1), where the 247 elevation gap caused by the earthquake is relatively small. In 1998, the Zhoushui River was a broad braided river, with many 248 sandbars downstream of the dam (Fig. 6). In 2003, two years after dam operation had commenced, the riverbed armor layer 249 had been lost and the exposed soft bedrock was clearly visible within 700 m of the toe of the dam, because of a lack of sediment. 250 The bedrock's incision deepened due to the tool effect, and the flow path concentrated gradually in front of the dam. From 251 2003 to 2007, the effect zone gradually expanded, and exposed bedrock extended to  $\sim$ 3.2 km downstream from the dam. The 252 bedrock's incision deepened due to the tool effect, and the flow path concentrated gradually in front of the dam.-Between 2007 253 and 2018, the channelization and the zone with exposed bedrock expanded continuously to 6.5 km downstream of the dam. 254 Due to the channelization, the river cross-section became narrow and deep.

The transformation of the river and the rates of lateral and vertical change are clearly visible in the river cross-sections (Fig. 7). There was no apparent erosion of section  $\mathbf{c}$  in 2008, but the sections closer to the dam ( $\mathbf{d}$  and  $\mathbf{e}$ ) exhibited obvious incision (Fig. 7). After the loss of the riverbed armor layer, the flow cut down into weak bedrock. The deep main channels' development is clearly visible in sections  $\mathbf{d}$  and  $\mathbf{e}$  between 1998 and 2008. During this time, the incision rate of section  $\mathbf{e}$  was around 1.2 m/yr, and the narrowing rate was around 25 m/yr. During 2008\_-\_2012, engineering measures were installed: **Between section d** and section  $\mathbf{e}$ , groundsills, spur dikes and tetrapod were added to the river channel to prevent erosion, and the riverbed level rose slightly at section  $\mathbf{e}$ . However, the channel width of section  $\mathbf{c}$  was markedly narrower, with a narrowing rate of roughly 65 m/yr. Between 2008 and 2015, the incision rates of sections **c** and **d** were roughly 1.4 m/yr. Stratified <u>Progressive</u> erosion <u>layer by layer</u> is apparent in the chronological longitudinal profiles (Fig. 8). Incision of the studied reach became increasingly severe: incision commenced at section **e** and subsequently extended downstream to sections **d** and **c**. We infer that headward erosion did not dominate the riverbed because the Chelungpu Fault passed through the river some distance from the dam and caused only 2 m of uplift; on the contrary, dam-induced downward incision of the riverbed caused degradation of the reach. There is an approximately 15 m difference between the bed level of 1998 and that of 2018.

The studied reach of the Zhoushui River was a braided river prior to building of the dam. After dam construction, sediment transport was restricted, causing loss of the armor layer downstream under the influence of the tool effect, a deeply incised channel formed in the weak soft bedrock in front of the dam. The flow gradually became concentrated in the deep channel, the river width decreased markedly, and the effect continued to extend downstream with time.

## 272 3.3 The combined effect of Shigang Dam and Fault on Dajia River

273 The studied reach of the Dajia River, which lies downstream of the Shigang Dam, was affected by both the dam and uplift 274 caused by the Chi-Chi earthquake. The Shigang Dam was broken by uneven uplift of the fault scarp across the dam (9 m on 275 the right side and 3 m on the left), and the downstream section f rose by  $\sim$ 7 m (see Fig. 2). The earliest knickpoint formed close 276 to section f. and moving The base level of erosion declined downstream after uplift eausing the knickpoint to move headward 277 with time. During 2000–2005, the knickpoint retreated by  $\sim 40400$  m, and another new knickpoint formed between sections g 278 and h (Fig. 9) under the co-effect of river pattern changes and bed rock differential erosion.-\_The damming effect of the 279 Shigang Dam also caused the armor layer to be removed. The bedrock became exposed shortly after the earthquake; however, 280 section **f** was obviously incised during 2000–2005, whereas incision of section **g** did not occur until 2005–2008 (Fig. 10). 281 Between 2000 and 2005, engineering measures were installed on several occasions to mitigate the obvious erosion. The river 282 pattern between section g and the dam waswere a braided river during the period. Groundsills and energy dissipation measures 283 were constructed in front of the dam; as a result, the flow path between section g and the dam became a floodplain. 284 The incision rate of section g was  $\sim 1.1$  m/yr during 2005–2008, and the narrowing rate was  $\sim 47.7$  m/yr. During the same 285 time interval, the downstream knickpoint (between sections f and g) disappeared due to river training in 2008. The knickpoint

between section g and section h retreated rapidly toward the dam (Figs 9, 11). During 2005–2008 and 2008–2017, the
knickpoint moved upstream by approximately 186 and 219 m, respectively. This retreat of the knickpoint implies that river
channel scouring did not stop. Because the riverbed strata trend northeast–southwest, flow scouring preferentially deepened

289 the left part of the rock bed, which moved the channel closer to the left bank. After 2008, the flow channel extended closer to 290 the toe of the dam. Due to the severe incision, the government started surveying section h after 2010 (Fig. 10). Significant 291 bedrock incision was recorded, with an incision rate of  $\sim 1.4$  m/yr at section **h** during 2010–2017. In 2008, it can be observed 292 that the knickpoint existed in the reach between sections g and h; therefore the slope of the channel is still discontinuous. The 293 channel starting from the toe of the dam was not connected with the channel caused by headward erosion from section f (Fig. 294 9) until 2017. The 2017 photograph shows a single, meandering channel that starts from the dam and runs through sections h 295 and g, eventually reaching section f, where the knickpoint had initially formed (Fig. 10). Overall, the area downstream of the 296 Shigang Dam displayed headward erosion of the knickpoint and incision of the rock bed in front of the dam.

297 In the Dajia River, the advection and diffusion equation (equation 2) was also used to represent the variation mode of 298 knickpoint and bed elevation. The initial condition is the longitudinal profile in 2000. The coefficients C and D were influenced 299 by bed shear stress. Due to the rapid increase in actual bed erosion rate after 2005, the parameters were adjusted to match the 300 actual changes. Before 2005, C was 7.5 m/yr, and D was  $1.825 \text{ m}^2/\text{yr}$ ; after 2005, C was 36.5 m/yr, and D was  $9.125 \text{ m}^2/\text{yr}$ , and 301 the simulation was continued until 2017. The downstream boundary adopts the real bed change, while the upstream boundary 302 condition is fixed, considering the dam is a fixed point. The bed is progressively scoured in the nearby downstream of the dam, 303 and the knickpoint retreats and gradually fades away. The variation trend of the simulation and survey is generally consistent, 304 excluding the fact that intensive engineering works have been conducted in front of the dam to stabilize the bed.

## 305 4. Discussion

306 Data on the changes in the riverbed, river width, and migration distance of the knickpoint for all three studied reaches are 307 provided in Table 1. Also, in Fig. 12(a), We use "T" symbols to represent the channel width (W) and depth (D) of the cross-308 sections in three study reaches. The, and the aspect ratio (W/D) is labeled above every "T." After the Chi-Chi earthquake, the 309 channel geometry was not disturbed immediately. The, and the aspect ratio of the Daan River exhibited only slight changes. 310 Consequently, the aspect ratio thalweg significantly decreased with time from the downstream section; subsequently, the aspect 311 ratio thalweg recovered a little after 2011. The deepening of the upstream was slower than that downstream, but the later 312 recovery was more obvious in the upstream area. The aspect ratio of the Zhuoshui River dramatically declined in the upstream 313 part after construction of the Jiji Dam; this change extended gradually to the downstream section with time. In the Dajia River, 314 owing to the combined effects of the upstream dam and the earthquake, channelization of the river started at both ends of the 315 reach and then met in the middle. The examples of these three rivers allow us to deduce the evolution of knickpoint retreat and

316 transformation of the river pattern under the influence of dams and/or uplift.

The river pattern of knickpoint retreat is illustrated in Fig. 12(b), and it was also observed in the Daan River. During the knickpoint retreat, the tool effect caused the river to narrow dramatically. However, after the river had reached a new equilibrium in a channelized pattern, the slope replacement resulted in a natural profile. The incision trend gradually slowed during the adjustment, and sedimentation may commence downstream (dashed line in Fig. 12(b)). The profile evolved from a concave curve to a graded profile (Chamberlin and Salisbury, 1904). In the case of the Daan River, the topography of the upstream gorge was gradually swept away, and the river pattern may be slowly restored to the original braided plain.

Before construction of the Jiji Dam, the studied reach of the Zhoushui River was a broad braided river. The river armor layer was lost due to sediment trapping by the dam. Under the influence of the tool effect, the flow path in front of the dam gradually narrowed (Fig. 12(c)). The scouring boundary extended downstream-ward from the dam. Because of the immovable knickpoint, the local slope at the dam toe became steeper, and the dam (acting as a non-erasable knickpoint) caused the river profile and sediment transport to remain non-equilibrium-state.

The reach downstream of the Shigang Dam on the Dajia River was simultaneously affected by coseismic uplift and the incision of a deep path in the soft rock in front of the dam. The knickpoint caused by fault uplift retreated upward with time. Although the uplift of the Dajia River was similar to that of the Daan River, the Shigang Dam (fixpoint) restricted knickpoint retreatment in the Dajia River, and led to scouring downward from the dam site. Therefore, we saw the river narrowing at the two ends of the affected reach, then progressively extending to the middle, as shown in Fig. 12(d). The knickpoint caused by the earthquake was gradually removed, but the effect of the dam remains. Therefore, <u>the start of recovery to a braided river</u> <u>cannot happen in the Dajia River, the restoration of the Daan River cannot be seen in the Dajia River.</u>

335 In Fig 13, the discharge data of outflow from Shigang Dam (Dajia River) and Jiji Dam (Zhuoshui River), and the flow 336 data of the Daan River from July 2005 to December 2019. The cumulative flow results show that the increasing trends of the 337 discharge in the Dajia and Zhuoshui Rivers are consistent. Both dams serve the purpose of controlling water levels for water 338 supply and irrigation. The direct discharge is influenced by the variations in dry and rainy seasons, resulting in intermittent 339 changes in the discharge. In contrast, the flow in the Daan River shows continuously and stable increasing. We observed a 340 positive correlation between the knickpoints retreat distances and the cumulative discharge in the Dajia River and also in Daan 341 River. However, the correlation between flow and retreat distance does not exist when comparing different rivers. Additionally, 342 A relationship between discharge and the changes in channel widening or the incision depth cannot be found.

343 Overall, there are apparent differences in the morphological changes to rivers caused by natural and human factors. A 344 knickpoint formed by fault-induced riverbed uplift is a moving point: as the knickpoint moves, the riverbed evolves gradually 345 from an unstable state to an equilibrium. Topographic development is like the process of childhood to old age (Davis, 1899). 346 In contrast, a dam can be regarded as a fixpoint on the river. The flow from the spillway outlet hits the riverbed continuously, 347 resulting in a decline of the erosion base level; therefore, downward erosion commences from the toe of the dam. To summarize, 348 changes resulting from natural tectonic movements of a riverbed may achieve equilibrium with time, whereas imbalance 349 caused by anthropogenic structures may be enhanced with time. Therefore, For the case under the combined effect of fault 350 uplift and dam obstruction, we inferred a schematic diagram of longitudinal profile development for the combined effects as 351 shown in Fig. 1314. In Fig 134, the uplift creates knickpoints that gradually retreat upstream. Meanwhile, Starting from the 352 dam toe, the continuous deepening. When these two phenomena meet, To summarize, changes resulting from natural tectonic 353 movements of a riverbed may achieve equilibrium with time, whereas imbalance caused by anthropogenic structures may be 354 enhanced with time. Therefore,

## 355 5. Conclusions

356 The Daan River, Zhoushui River, and Dajia River in central Taiwan exhibited changes in river morphology after 357 disturbance by earthquake uplift and dam obstruction during the past 20 years. The Daan River was affected by a thrust fault; 358 the Zhuoshui River was influenced by dam obstruction; and the Dajia River was both fault- and dam-influenced. In the Daan 359 River, the greater slope accelerated the flow velocity and drove knickpoint retreat after removal of the armor layer, resulting 360 in the progress of slope replacement. However, the incision faded with time, sediment deposition commenced, and the river 361 showed potential for recovery to braided river pattern. Because of sediment trapping by the Jiji Dam, the Zhoushui River has 362 transformed from braided to gorge. The channelization started from the dam and expanded downward, and the incision progress 363 caused the local slope at the toe to become steeper. Because the dam acts as an immovable knickpoint, the river's sediment 364 equilibrium could not be re-established. The Shigang Dam on the Dajia River also caused a downward incision. The incision 365 from the toe of the dam subsequently connected with the knickpoint retreat caused by headward erosion from downstream, 366 forming a single, meandering channel at the front of the dam.

Knickpoints resulting from fault-induced riverbed uplift are moving points: as the knickpoint moves, the riverbed
evolves gradually from an unstable state to an equilibrium state. In contrast, a dam, as a fixpoint on the river, causes continuous
degradation. When both effects exist on a reach, the impact of the knickpoint gradually fades away, but the results of the dam

| 370 | on the river persist.                                                                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 371 | Author contribution.                                                                                                   |
| 372 | The authors made the following contributions The following contributions were made by the authors: HEC was involved    |
| 373 | in methods development, modeling, data analysis, discussion, and paper preparation. YYC participated in data analysis, |
| 374 | discussion, and paper preparation. CYC conducted the field survey, collected and analyzed data. SCC contributed to the |
| 375 | hypothesis, concept, research design, conclusions, and paper preparation.                                              |
| 376 | Competing interests.                                                                                                   |
| 377 | The authors declare that they have no conflict of interest.                                                            |
| 378 | Acknowledgements.                                                                                                      |
| 379 | The Ministry of Science and Technology, Taiwan, partially supports this research under grant No. 111-2625-M-005-001.   |
| 380 | The authors would like to thank AFASI, MOST, and CSRSR/NCU for supplying satellite imagery data, and thank-WRA for     |

supplying river measurement data.

## 382 References

- 383 Ahmed, M. F., Rogers, J. D., and Ismail, E. H.: Knickpoints along the upper Indus River, Pakistan: an exploratory survey of
- 384 geomorphic processes, Swiss Journal of Geosciences, 111, 191-204, https://doi.org/10.1007/s00015-017-0290-3, 2018.
- 385 Alonso, C. V., Bennett, S. J., and Stein, O. R.: Predicting head cut erosion and migration in concentrated flows typical of
- 386 upland areas, Water Resources Research, 38, 39-31-39-15, https://doi.org/10.1029/2001wr001173, 2002.
- 387 Bishop, P., Hoey, T. B., Jansen, J. D., and Artza, I. L.: Knickpoint recession rate and catchment area: the case of uplifted
- rivers in Eastern Scotland, Earth Surface Processes and Landforms, 30, 767-778, https://doi.org/10.1002/esp.1191, 2005.
- 389 Braatne, J. H., Rood, S. B., Goater, L. A., and Blair, C. L.: Analyzing the impacts of dams on riparian ecosystems: a review
- 390 of research strategies and their relevance to the Snake River through Hells Canyon, Environmental Management, 41, 267-
- **391** 281, https://doi.org/10.1007/s00267-007-9048-4, 2008.
- Brandt, S. A.: Classification of geomorphological effects downstream of dams, Catena, 40, 375-401,
- 393 https://doi.org/10.1016/S0341-8162(00)00093-X, 2000.
- 394 Bressan, F., Papanicolaou, A. N., and Abban, B.: A model for knickpoint migration in first- and second-order streams,
- **395** Geophysical Research Letters, 41, 4987-4996, https://doi.org/10.1002/2014GL060823, 2014.
- **396** Chamberlin, T. C., and Salisbury, R. D.: Geology: Geologic processes and their results, H. Holt, 1904.
- 397 Choi, S. U., Yoon, B., and Woo, H.: Effects of dam-induced flow regime change on downstream river morphology and
- vegetation cover in the Hwang River, Korea, River Research and Applications, 21, 315-325, https://doi.org/10.1002/rra.849,
  2005.
- 400 Clark, M. K., Maheo, G., Saleeby, J., and Farley, K. A.: The non-equilibrium landscape of the southern Sierra Nevada ,
- 401 California, 5173, https://doi.org/10.1130/1052-5173(2005)15, 2014.
- 402 Cook, K. L., Turowski, J. M., and Hovius, N.: A demonstration of the importance of bedload transport for fluvial bedrock
- 403 erosion and knickpoint propagation, Earth Surface Processes and Landforms, 38, 683-695, https://doi.org/10.1002/esp.3313,
  404 2013.
- Cook, K. L., Turowski, J. M., and Hovius, N.: River gorge eradication by downstream sweep erosion, Nature Geoscience, 7,
  682-686, https://doi.org/10.1038/ngeo2224, 2014.
- 407 Crosby, B. T., and Whipple, K. X.: Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the
- Waipaoa River, North Island, New Zealand, Geomorphology, 82, 16-38, https://doi.org/10.1016/j.geomorph.2005.08.023,
  2006.
- 410 Davis, W. M.: Rivers and valleys of Pennsylvania, Geographical essays by William Morris Davis, 413-513, 1889.
- 411 Engelund, F.: Instability of erodible beds, Journal of Fluid Mechanics, 42, 225-244,
- 412 https://doi.org/10.1017/S0022112070001210, 1970.
- 413 Gardner, T. W.: Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogeneous material,
- 414 Geological Society of America Bulletin, 94, 664-672, 1983.
- 415 Graf, W. L.: Downstream hydrologic and geomorphic effects of large dams on American rivers, Geomorphology, 79, 336-
- 416 360, https://doi.org/10.1016/j.geomorph.2006.06.022, 2006.
- 417 Hayakawa, Y. S., Matsuta, N., and Matsukura, Y.: Rapid recession of fault-scarp waterfalls: Six-year changes following the
- 418 921 Chi-Chi Earthquake in Taiwan, Chikei/Transactions, Japanese Geomorphological Union, 30, 1-13, 2009.
- 419 Heijnen, M. S., Clare, M. A., Cartigny, M. J. B., Talling, P. J., Hage, S., Lintern, D. G., Stacey, C., Parsons, D. R., Simmons,
- 420 S. M., Chen, Y., Sumner, E. J., Dix, J. K., and Hughes Clarke, J. E.: Rapidly-migrating and internally-generated knickpoints
- 421 can control submarine channel evolution, Nature Communications, 11, 3129-3129, https://doi.org/10.1038/s41467-020-
- **422** 16861-x, 2020.

- 423 Holland, W. N., and Pickup, G.: Flume study of knickpoint development in stratified sediment, Geological Society of
- 424 America Bulletin, 87, 76-82, https://doi.org/10.1130/0016-7606(1976)87<76:FSOKDI>2.0.CO;2, 1976.
- 425 Horn, J. D., Joeckel, R. M., and Fielding, C. R.: Progressive abandonment and planform changes of the central Platte River
- 426 in Nebraska, central USA, over historical timeframes, Geomorphology, 139, 372-383,
- 427 https://doi.org/10.1016/j.geomorph.2011.11.003, 2012.
- 428 Howard, A. D., Dietrich, W. E., and Seidl, M. A.: Modeling fluvial erosion on regional to continental scales, Journal of
- 429 Geophysical Research, 99, https://doi.org/10.1029/94jb00744, 1994.
- 430 Huang, M.-W., Pan, Y.-W., and Liao, J.-J.: A case of rapid rock riverbed incision in a coseismic uplift reach and its
- 431 implications, Geomorphology, 184, 98-110, https://doi.org/10.1016/j.geomorph.2012.11.022, 2013.
- 432 Huang, M. W., Liao, J. J., Pan, Y. W., and Cheng, M. H.: Rapid channelization and incision into soft bedrock induced by
- 433 human activity Implications from the Bachang River in Taiwan, Engineering Geology, 177, 10-24,
- 434 https://doi.org/10.1016/j.enggeo.2014.05.002, 2014.
- 435 Inbar, M.: EFFECT OF DAMS ON MOUNTAINOUS BEDROCK RIVERS, Physical Geography, 11, 305-319,
- 436 https://doi.org/10.1080/02723646.1990.10642409, 1990.
- 437 Kingsford, R. T.: Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia,
- 438 Austral Ecology, 25, 109-127, https://doi.org/10.1046/j.1442-9993.2000.01036.x, 2000.
- 439 Kong, D., Latrubesse, E. M., Miao, C., and Zhou, R.: Morphological response of the Lower Yellow River to the operation of
- 440 Xiaolangdi Dam, China, Geomorphology, 350, 106931-106931, https://doi.org/10.1016/j.geomorph.2019.106931, 2020.
- 441 Kuo, C.-W., Tfwala, S., Chen, S.-C., An, H.-P., and Chu, F.-Y.: Determining transition reaches between torrents and
- 442 downstream rivers using a valley morphology index in a mountainous landscape, Hydrological Processes, 35, e14393,
- 443 <u>https://doi.org/10.1002/hyp.14393, 2021.</u>
- Lai, Y. G., Greimann, B. P., and Wu, K.: Soft Bedrock Erosion Modeling with a Two-Dimensional Depth-Averaged Model,
- 445 Journal of Hydraulic Engineering, 137, 804–814, https://doi.org/10.1061/(asce)hy.1943-7900.0000363, 2011.
- Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y., and Rau, R. J.: Geometry and structure of northern
- surface ruptures of the 1999 Mw = 7.6 Chi-Chi Taiwan earthquake: Influence from inherited fold belt structures, Journal of
  Structural Geology, 24, 173-192, https://doi.org/10.1016/S0191-8141(01)00056-6, 2002.
- Leopold, L. B. and Wolman, M. G.: River channel patterns: braided, meandering, and straight, US Government Printing
  Office, 1957.
- Lin, A., Ouchi, T., Chen, A., and Maruyama, T.: Co-seismic displacements, folding and shortening structures along the
- 452 Chelungpu surface rupture zone occurred during the 1999 Chi-Chi (Taiwan) earthquake, Tectonophysics, 330, 225-244,
- 453 https://doi.org/10.1016/S0040-1951(00)00230-4, 2001.
- Liro, M.: Dam-induced base-level rise effects on the gravel-bed channel planform, Catena, 153, 143-156,
- 455 https://doi.org/10.1016/j.catena.2017.02.005, 2017.
- 456 Liro, M.: Dam reservoir backwater as a field-scale laboratory of human-induced changes in river biogeomorphology: A
- 457 review focused on gravel-bed rivers, Science of the Total Environment, 651, 2899-2912,
- 458 https://doi.org/10.1016/j.scitotenv.2018.10.138, 2019.
- 459 Lyell Sir, C., and Deshayes, G. P.: Principles of geology; being an attempt to explain the former changes of the earth's
- 460 surface, by reference to causes now in operation, J. Murray, London, 1830.
- 461 Magilligan, F. J., and Nislow, K. H.: Changes in hydrologic regime by dams, Geomorphology, 71, 61-78,
- 462 https://doi.org/10.1016/j.geomorph.2004.08.017, 2005.

- 463 Merritts, D., and Vincent, K. R.: Geomorphic response of coastal streams to low, intermediate, and high rates of uplift,
- 464 Medocino triple junction region, northern California, GSA Bulletin, 101, 1373-1388, https://doi.org/10.1130/0016-

465 7606(1989)101<1373:GROCST>2.3.CO;2, 1989.

- 466 Miodrag, S., and M, H. F.: 2-D Bed Evolution in Natural Watercourses—New Simulation Approach, Journal of Waterway,
- 467 Port, Coastal, and Ocean Engineering, 116, 425-443, https://doi.org/10.1061/(ASCE)0733-950X(1990)116:4(425), 1990.
- 468 Nelson, N. C., Erwin, S. O., and Schmidt, J. C.: Spatial and temporal patterns in channel change on the Snake River
- downstream from Jackson Lake dam, Wyoming, Geomorphology, 200, 132-142,
- 470 https://doi.org/10.1016/j.geomorph.2013.03.019, 2013.
- 471 Olsen, N. R. B.: Two-dimensional numerical modelling of flushing processes in water reservoirs, Journal of Hydraulic
- 472 Research, 37, 3-16, https://doi.org/10.1080/00221689909498529, 1999.
- 473 Ota, Y., Chen, Y.-G., and Chen, W.-S.: Review of paleoseismological and active fault studies in Taiwan in the light of the
- 474 Chichi earthquake of September 21, 1999, Tectonophysics, 408, 63-77, https://doi.org/10.1016/j.tecto.2005.05.040, 2005.
- 475 Parker, G., and Izumi, N.: Purely erosional cyclic and solitary steps created by flow over a cohesive bed, Journal of Fluid
- 476 Mechanics, 419, 203-238, https://doi.org/10.1017/S0022112000001403, 2000.
- 477 Petts, G. E., and Gurnell, A. M.: Dams and geomorphology: research progress and future directions, Geomorphology, 71,
- 478 27-47, https://doi.org/10.1016/j.geomorph.2004.02.015, 2005.
- 479 Seidl, M. A., and Dietrich, W. E.: The problem of channel erosion into bedrock, Functional geomorphology, 101-124, 1992.
- 480 Shafroth, P. B., Perry, L. G., Rose, C. A., and Braatne, J. H.: Effects of dams and geomorphic context on riparian forests of
  481 the Elwha River, Washington, Ecosphere, 7, e01621-e01621, https://doi.org/10.1002/ecs2.1621, 2016.
- 482 Słowik, M., Dezső, J., Marciniak, A., Tóth, G., and Kovács, J.: Evolution of river planforms downstream of dams: Effect of
- dam construction or earlier human-induced changes?, Earth Surface Processes and Landforms, 43, 2045-2063,
- 484 https://doi.org/10.1002/esp.4371, 2018.
- 485 Surian, N., and Rinaldi, M.: Morphological response to river engineering and management in alluvial channels in Italy,
- 486 Geomorphology, 50, 307-326, https://doi.org/10.1016/S0169-555X(02)00219-2, 2003.
- 487 Tomkin, J. H., Brandon, M. T., Pazzaglia, F. J., Barbour, J. R., and Willett, S. D.: Quantitative testing of bedrock incision
- 488 models for the Clearwater River, NW Washington State, Journal of Geophysical Research: Solid Earth, 108,
- 489 https://doi.org/10.1029/2001jb000862, 2003.
- 490 Whipple, K. X., and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of
- 491 mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research: Solid Earth, 104,
- **492** 17661-17674, https://doi.org/10.1029/1999jb900120, 1999.
- 493 Whipple, K. X.: Fluvial landscape response time: how plausible is steady-state denudation?, American Journal of Science,
- 494 301, 313-325, https://doi.org/10.2475/ajs.301.4-5.313, 2001.
- 495 Whipple, K. X., and Tucker, G. E.: Implications of sediment-flux-dependent river incision models for landscape evolution,
- Journal of Geophysical Research: Solid Earth, 107, ETG 3-1-ETG 3-20, doi.org/10.1029/2000JB000044, 2002.
- 497 Whipple, K. X.: BEDROCK RIVERS AND THE GEOMORPHOLOGY OF ACTIVE OROGENS, Annual Review of Earth
- 498 and Planetary Sciences, 32, 151-185, https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004.
- 499 Williams, G. P., and Wolman, M. G.: Downstream effects of dams on alluvial rivers1286, 1984.
- 500 Zhou, M., Xia, J., Deng, S., Lu, J., and Lin, F.: Channel adjustments in a gravel-sand bed reach owing to upstream damming,
- **501** Global and Planetary Change, 170, 213-220, https://doi.org/10.1016/j.gloplacha.2018.08.014, 2018.
- 502
- 503

| River    | Time interval | Section | Bed Change |                       | Channel Widening |                        | Knickpoint<br>retreat |                        | С                      |
|----------|---------------|---------|------------|-----------------------|------------------|------------------------|-----------------------|------------------------|------------------------|
|          |               |         | (m)        | (m yr <sup>-1</sup> ) | (m)              | ( m yr <sup>-1</sup> ) | (m)                   | ( m yr <sup>-1</sup> ) | ( m yr <sup>-1</sup> ) |
| Daan     | 2000-2004     | а       | -0.60      | -0.15                 | -103.77          | -25.94                 | 85                    | 21.25                  | 22                     |
|          |               | b       | -1.76      | -0.44                 | 47.50            | 11.88                  |                       |                        |                        |
|          | 2004–2007     | а       | -16.67     | -5.56                 | -316.50          | -105.50                | 422                   | 140 (7                 |                        |
|          |               | b       | -6.20      | -2.07                 | -269.82          | -89.94                 |                       | 140.67                 | 01.5                   |
|          | 2007-2011     | а       | 2.06       | 0.52                  | 19.30            | 4.83                   | 410                   | 102.00                 | 91.5                   |
|          |               | b       | -7.11      | -1.78                 | -64.19           | -16.05                 | 412                   | 103.00                 |                        |
|          | 2011–2016     | а       | -0.45      | -0.09                 | 31.19            | 6.24                   |                       |                        |                        |
|          |               | b       | -0.84      | -0.17                 | 41.27            | 8.25                   |                       |                        |                        |
| Zhuoshui | 1998–2008     | с       | -0.46      | -0.05                 | -96.22           | -9.62                  |                       |                        |                        |
|          |               | d       | -2.24      | -0.22                 | -130.41          | -13.04                 |                       |                        |                        |
|          |               | e       | -11.59     | -1.16                 | -246.32          | -24.63                 |                       |                        |                        |
|          | 2008-2012     | с       | -5.44      | -1.36                 | -258.44          | -64.61                 |                       |                        |                        |
|          |               | d       | -2.77      | -0.69                 | 18.43            | 4.61                   |                       |                        |                        |
|          |               | e       | 3.00       | 0.75                  | 5.22             | 1.31                   |                       |                        |                        |
|          | 2012-2015     | с       | -4.46      | -1.49                 | -171.56          | -57.19                 |                       |                        |                        |
|          |               | d       | -6.65      | -2.22                 | -133.24          | -44.41                 |                       |                        |                        |
|          |               | e       | -4.94      | -1.65                 | -73.11           | -24.37                 |                       |                        |                        |
|          | 2015-2018     | с       | -0.84      | -0.28                 | 13.57            | 4.52                   |                       |                        |                        |
|          |               | d       | -0.86      | -0.29                 | 1.31             | 0.44                   |                       |                        |                        |
|          |               | е       | -3.03      | -1.01                 | 8.70             | 2.90                   |                       |                        |                        |
| Dajia    | 2000-2005     | f       | -2.39      | -0.48                 | -14.12           | -2.82                  | 40                    | 8.00                   | 7.5                    |
|          |               | g       | -2.02      | -0.40                 | -116.44          | -23.29                 |                       |                        | 7.5                    |
|          | 2005-2008     | f       | -2.57      | -0.86                 | -39.90           | -13.30                 | 186                   | 62.00                  |                        |
|          |               | g       | -7.50      | -2.50                 | -142.97          | -47.66                 |                       | 02.00                  | 0                      |
|          | 2008–2014     | f       | -1.33      | -0.22                 | 12.28            | 2.05                   |                       |                        |                        |
|          |               | g       | -0.38      | -0.06                 | 2.21             | 0.37                   | _                     |                        | 265                    |
|          | 2010–2014     | h       | -4.20      | -1.05                 | -25.45           | -6.36                  | 210                   | 24.33                  | 36.5                   |
|          | 2014-2017     | f       | -1.39      | -0.46                 | -10.44           | -3.48                  | - 219                 | 24.33                  |                        |
|          |               | g       | -3.32      | -1.11                 | 8.84             | 2.95                   |                       |                        |                        |
|          |               | h       | -5.27      | -1.76                 | -20.63           | -6.88                  |                       |                        |                        |

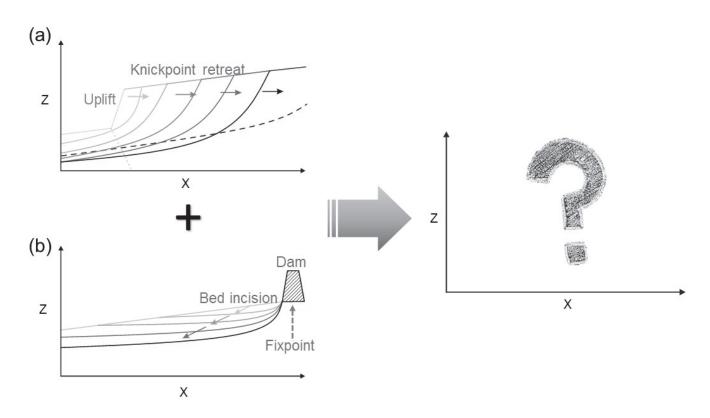



Figure 1: Schematic diagrams of longitudinal profile development for (a) fault scarp's knickpoint, (b) dam's fixpoint,
and (c) How will the combined effects develop longitudinal profile?

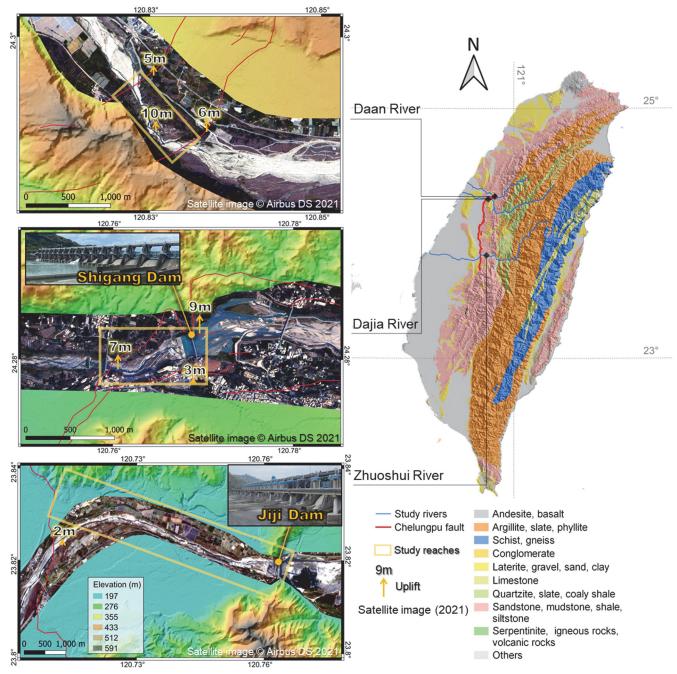
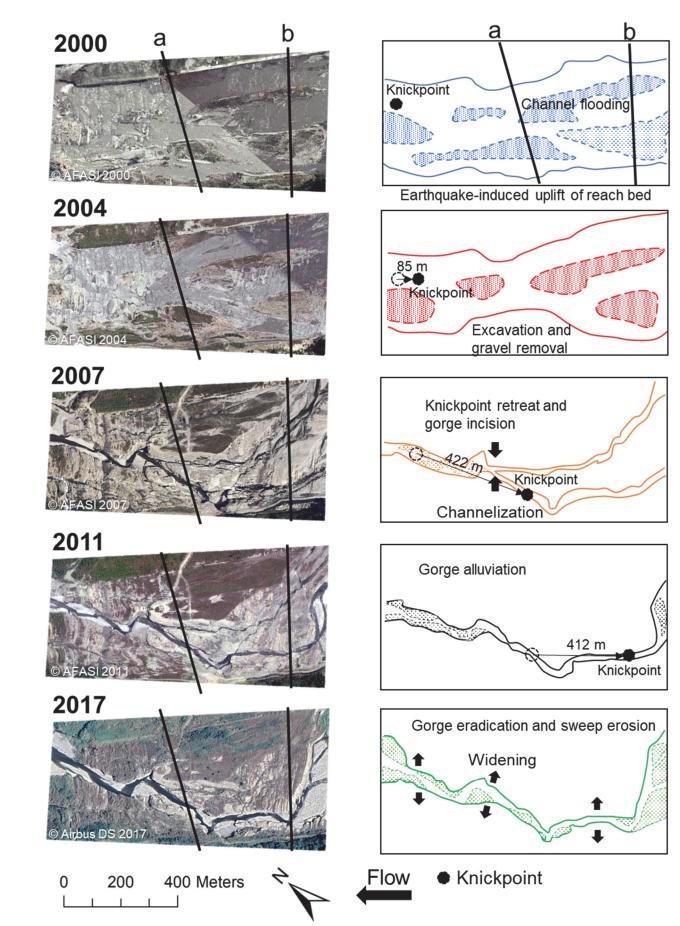
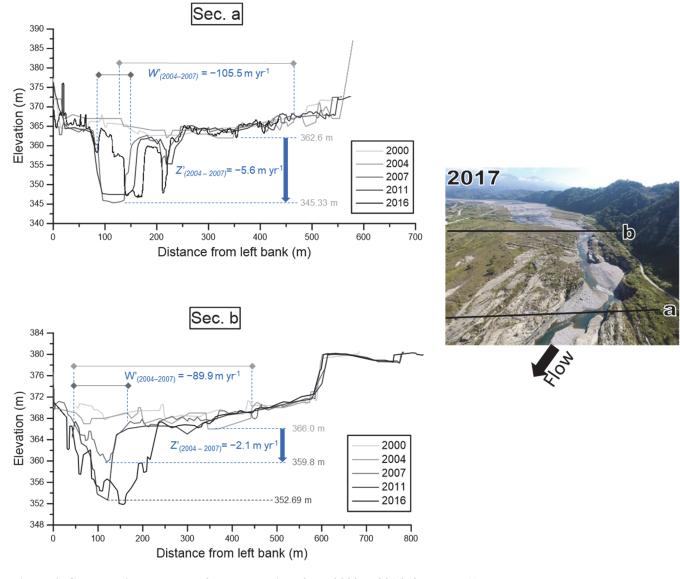





Figure 2: Locations of the Chelungpu Fault, the three studied rivers, and satellite images (from CSRSR/NCU<u>date:</u> <u>05-Feb-2021, 2m resolutions</u>) showing the studied reaches.

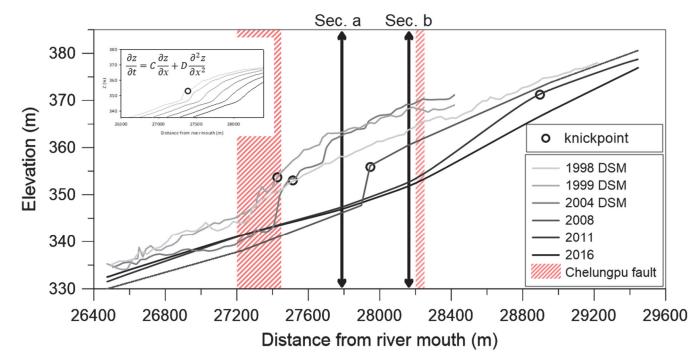


513 Figure 3: Orthographic images (2000–2011), satellite image (2017) and flow paths of the studied reach of the Daan

514 River from 2000 to 2017.



516 Figure 4: Cross-sections a and b of the Daan River from 2000 to 2016 (from WRA).



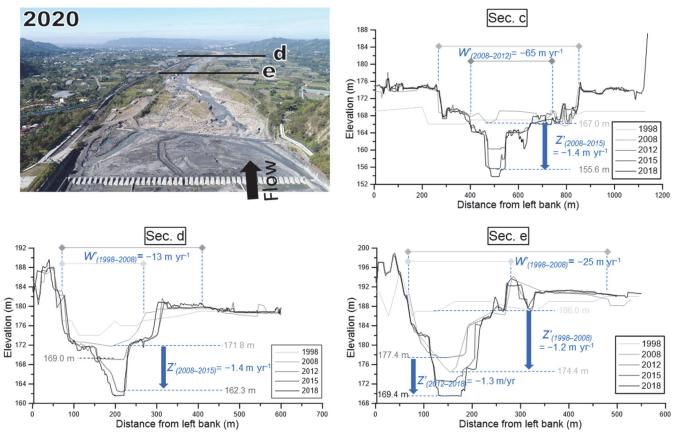
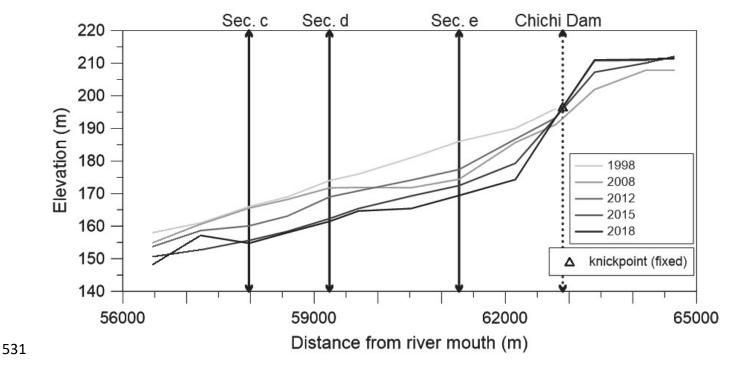
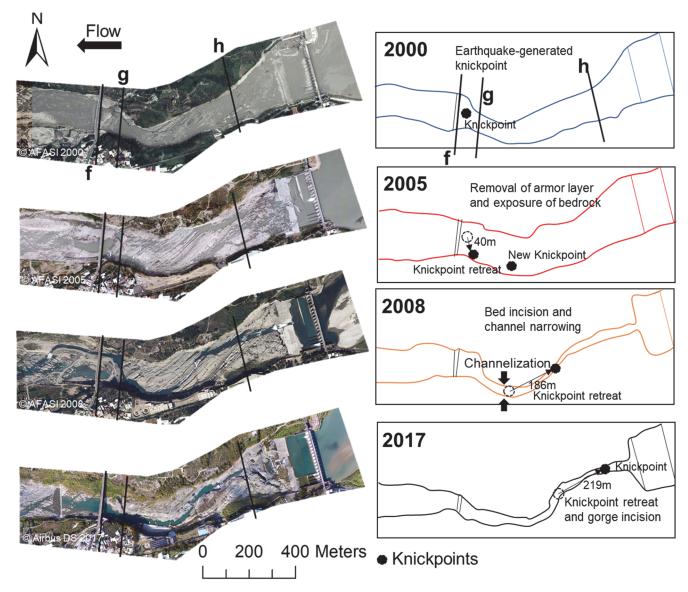



Figure 5: Longitudinal profiles of the studied reach of the Daan River from 2000 to 2016. Profiles for 1998–2008 are
from Cook et al. (2013), and 2011–2016 are from WRA. Data between 1998 and 2004 are derived from aerial photograph
generated Digital Surface Models (DSMs). Knickpoint retreats are simulated using the advective-diffusive model at the
top left.

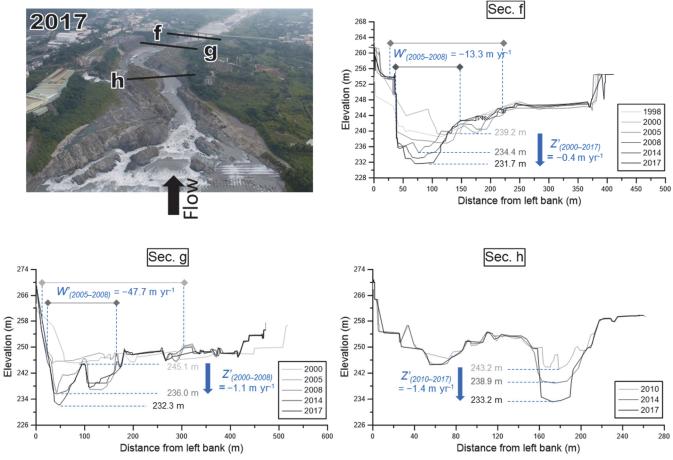


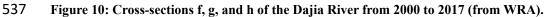

526 Figure 6: Orthographic images (1998–2007), satellite image (2018), and flow paths of the studied reach of the Zhuoshui


- 527 River from 1998 to 2018.
- 528



530 Figure 7: Profiles of cross-sections c, d, and e of the Zhuoshui River from 1998 to 2018 (from WRA).





532 Figure 8: Longitudinal profiles of the studied reach of the Zhuoshui River from 1998 to 2018 (from WRA).



534 Figure 9: Orthographic images (2000–2008), satellite image (2017), and flow paths of the studied reach of the Dajia

535 River from 2000 to 2017.





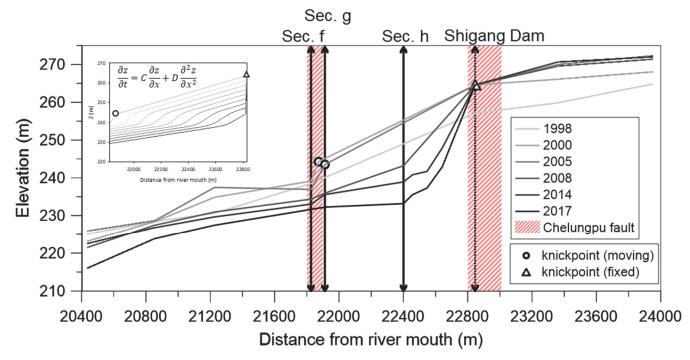



Figure 11: Longitudinal profiles of the studied reach of the Dajia River from 1998 to 2017 (from WRA). Knickpoint
retreats are simulated using the advective-diffusive model at the top left.

**\$**42

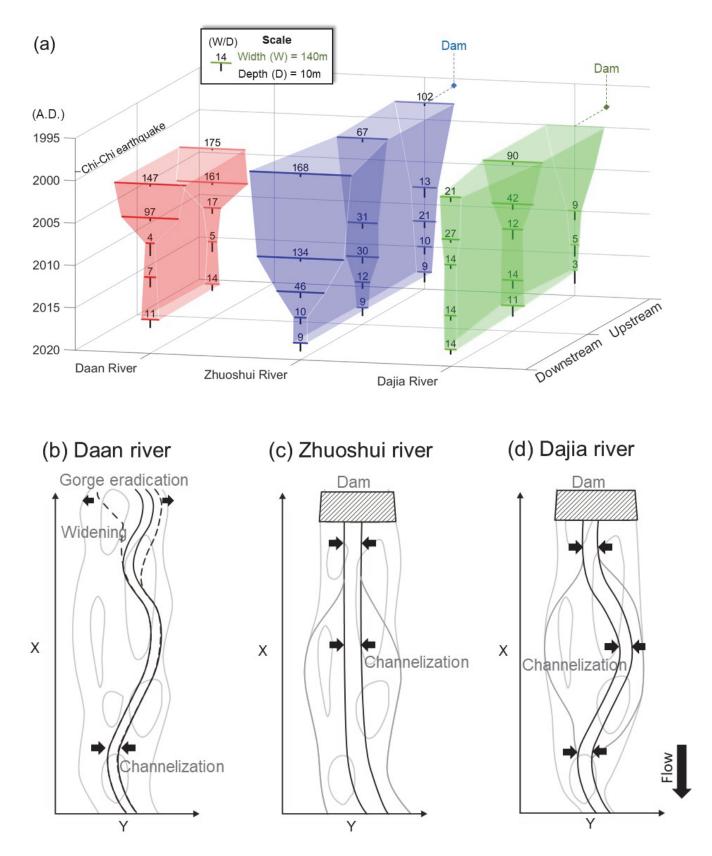
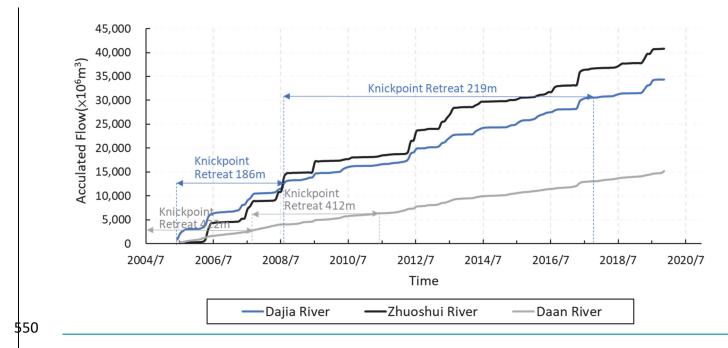






Figure 1212: (a) Channel width (*W*), depth (*D*), and aspect ratio (*W/D*) of the studied reaches of the three rivers. The aspect ratio was defined as the ratio of the bankfull width to the depth of the bankfull channel. The vertical axis shows the time from 1995 downward to 2020, the horizontal axis shows the rivers, and the normal axis shows the sections from downstream to upstream. Schematic diagrams of knickpoint retreat and river pattern development for (b) coseismic uplift, (c) dam obstruction, and (d) dam obstruction and coseismic uplift.



551 <u>Figure 13: The cumulative flow in the three study reaches and the corresponding knickpoint retreat distances.</u>





- 554 construction and coseismic uplift.