Articles | Volume 3, issue 1
Earth Surf. Dynam., 3, 201–222, 2015
Earth Surf. Dynam., 3, 201–222, 2015

Research article 25 Mar 2015

Research article | 25 Mar 2015

Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California)

M. Attal1, S. M. Mudd1, M. D. Hurst1,*, B. Weinman2, K. Yoo2, and M. Naylor1 M. Attal et al.
  • 1School of GeoSciences, Univ. of Edinburgh, Drummond Street, Edinburgh, EH8 9XP, UK
  • 2Department of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108-6028, USA
  • *now at: British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK

Abstract. The characteristics of the sediment transported by rivers (e.g. sediment flux, grain size distribution – GSD) dictate whether rivers aggrade or erode their substrate. They also condition the architecture and properties of sedimentary successions in basins. In this study, we investigate the relationship between landscape steepness and the grain size of hillslope and fluvial sediments. The study area is located within the Feather River basin in northern California, and studied basins are underlain exclusively by tonalite lithology. Erosion rates in the study area vary over an order of magnitude, from >250 mm ka−1 in the Feather River canyon to <15 mm ka−1 on an adjacent low-relief plateau. We find that the coarseness of hillslope sediment increases with increasing hillslope steepness and erosion rates. We hypothesise that, in our soil samples, the measured 10-fold increase in D50 and doubling of the amount of fragments larger than 1 mm when slope increases from 0.38 to 0.83 m m−1 is due to a decrease in the residence time of rock fragments, causing particles to be exposed for shorter periods of time to processes that can reduce grain size. For slopes in excess of 0.7 m m−1, landslides and scree cones supply much coarser sediment to rivers, with D50 and D84 more than one order of magnitude larger than in soils. In the tributary basins of the Feather River, a prominent break in slope developed in response to the rapid incision of the Feather River. Downstream of the break in slope, fluvial sediment grain size increases, due to an increase in flow competence (mostly driven by channel steepening) as well as a change in sediment source and in sediment dynamics: on the plateau upstream of the break in slope, rivers transport easily mobilised fine-grained sediment derived exclusively from soils. Downstream of the break in slope, mass wasting processes supply a wide range of grain sizes that rivers entrain selectively, depending on the competence of their flow. Our results also suggest that, in this study site, hillslopes respond rapidly to an increase in the rate of base-level lowering compared to rivers.

Short summary
Steeper landscapes tend to erode faster. In this study, we also find that sediment produced on steeper landscapes is coarser. Soils are coarser because fragments spend less time in the soil so are less exposed to processes that can break them down. Change in sediment sources impact the sediment transported by rivers: rivers transport sediment up to cobble size in low-slope, soil-mantled areas; they transport much coarser sediment (including boulders supplied from landslides) in the steep areas.