Articles | Volume 5, issue 4
https://doi.org/10.5194/esurf-5-669-2017
https://doi.org/10.5194/esurf-5-669-2017
Research article
 | 
17 Oct 2017
Research article |  | 17 Oct 2017

Bedload transport measurements with impact plate geophones in two Austrian mountain streams (Fischbach and Ruetz): system calibration, grain size estimation, and environmental signal pick-up

Dieter Rickenmann and Bruno Fritschi

Abstract. The Swiss plate geophone system is a bedload surrogate measuring technique that has been installed in more than 20 streams, primarily in the European Alps. Here we report about calibration measurements performed in two mountain streams in Austria. The Fischbach and Ruetz gravel-bed streams are characterized by important runoff and bedload transport during the snowmelt season. A total of 31 (Fischbach) and 21 (Ruetz) direct bedload samples were obtained during a 6-year period. Using the number of geophone impulses and total transported bedload mass for each measurement to derive a calibration function results in a strong linear relation for the Fischbach, whereas there is only a poor linear calibration relation for the Ruetz measurements. Instead, using geophone impulse rates and bedload transport rates indicates that two power law relations best represent the Fischbach data, depending on transport intensity; for lower transport intensities, the same power law relation is also in reasonable agreement with the Ruetz data. These results are compared with data and findings from other field sites and flume studies. We further show that the observed coarsening of the grain size distribution with increasing bedload flux can be qualitatively reproduced from the geophone signal, when using the impulse counts along with amplitude information. Finally, we discuss implausible geophone impulse counts that were recorded during periods with smaller discharges without any bedload transport, and that are likely caused by vehicle movement very near to the measuring sites.

Download
Short summary
The Swiss plate geophone system is a bedload surrogate measuring technique. Calibration measurements for this technique were performed in two mountain streams in Austria, using geophone impulse rates (a summary value) and directly measured bedload transport rates. Implausible geophone impulse counts are discussed that were recorded during periods with smaller discharges without any bedload transport, and that are likely caused by vehicle movement very near to the measuring sites.