Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.928 IF 3.928
  • IF 5-year value: 3.864 IF 5-year
    3.864
  • CiteScore value: 6.2 CiteScore
    6.2
  • SNIP value: 1.469 SNIP 1.469
  • IPP value: 4.21 IPP 4.21
  • SJR value: 1.666 SJR 1.666
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 21 Scimago H
    index 21
  • h5-index value: 23 h5-index 23
Volume 6, issue 4
Earth Surf. Dynam., 6, 955–970, 2018
https://doi.org/10.5194/esurf-6-955-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: From process to signal – advancing environmental...

Earth Surf. Dynam., 6, 955–970, 2018
https://doi.org/10.5194/esurf-6-955-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Oct 2018

Research article | 29 Oct 2018

Seismic detection of rockslides at regional scale: examples from the Eastern Alps and feasibility of kurtosis-based event location

Florian Fuchs1, Wolfgang Lenhardt2, Götz Bokelmann1, and the AlpArray Working Group* Florian Fuchs et al.
  • 1Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, UZA 2, 1090 Vienna, Austria
  • 2Central Institute for Meteorology and Geodynamics, ZAMG, Vienna, Austria
  • *For further information regarding the team, please visit the link the end of the paper.

Abstract. Seismic records can provide detailed insight into the mechanisms of gravitational mass movements. Catastrophic events that generate long-period seismic radiation have been studied in detail, and monitoring systems have been developed for applications on a very local scale. Here we demonstrate that similar techniques can also be applied to regional seismic networks, which show great potential for real-time and large-scale monitoring and analysis of rockslide activity. This paper studies 19 moderate-sized to large rockslides in the Eastern Alps that were recorded by regional seismic networks within distances of a few tens of kilometers to more than 200 km. We develop a simple and fully automatic processing chain that detects, locates, and classifies rockslides based on vertical-component seismic records. We show that a kurtosis-based onset picker is suitable to detect the very emergent onsets of rockslide signals and to locate the rockslides within a few kilometers from the true origin using a grid search and a 1-D seismic velocity model. Automatic discrimination between rockslides and local earthquakes is possible by a combination of characteristic parameters extracted from the seismic records, such as kurtosis or maximum-to-mean amplitude ratios. We attempt to relate the amplitude of the seismic records to the documented rockslide volume and reveal a potential power law in agreement with earlier studies. Since our approach is based on simplified methods we suggest and discuss how each step of the automatic processing could be expanded and improved to achieve more detailed results in the future.

Publications Copernicus
Download
Short summary
The work demonstrates how seismic networks installed in the Alps can be used for country-wide real-time monitoring of rockslide activity. We suggest simple methods that allow us to detect, locate, and characterize rockslides using the seismic signals they generate. We developed an automatic procedure to locate rockslides with kilometer accuracy over hundreds of kilometers of distance. Our findings highlight how seismic networks can help us to understand the triggering of rockslides.
The work demonstrates how seismic networks installed in the Alps can be used for country-wide...
Citation