Articles | Volume 10, issue 5
https://doi.org/10.5194/esurf-10-1017-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-1017-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geomorphic signature of segmented relief rejuvenation in the Sierra Morena, Betic forebulge, Spain
Inmaculada Expósito
CORRESPONDING AUTHOR
Departamento de Sistemas Físicos, Químicos y Naturales,
Universidad Pablo de Olavide, Seville 41013, Spain
Alejandro Jiménez-Bonilla
Departamento de Sistemas Físicos, Químicos y Naturales,
Universidad Pablo de Olavide, Seville 41013, Spain
Michele Delchiaro
CORRESPONDING AUTHOR
Department of Earth Sciences, Sapienza University of Rome, Rome
00185, Italy
José L. Yanes
Departamento de Sistemas Físicos, Químicos y Naturales,
Universidad Pablo de Olavide, Seville 41013, Spain
Juan C. Balanyá
Departamento de Sistemas Físicos, Químicos y Naturales,
Universidad Pablo de Olavide, Seville 41013, Spain
Francisco Moral-Martos
Departamento de Sistemas Físicos, Químicos y Naturales,
Universidad Pablo de Olavide, Seville 41013, Spain
Marta Della Seta
Department of Earth Sciences, Sapienza University of Rome, Rome
00185, Italy
Related authors
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
Michele Delchiaro, Marta Della Seta, Salvatore Martino, Maryam Dehbozorgi, and Reza Nozaem
Earth Surf. Dynam., 7, 929–947, https://doi.org/10.5194/esurf-7-929-2019, https://doi.org/10.5194/esurf-7-929-2019, 2019
Short summary
Short summary
This study provides insights into the causes and effects of the largest landslide and related damming that occurred on the emerged Earth surface. Understanding the hazard conditions is important for refining risk mitigation strategies for extreme landslide scenarios. We mapped and dated lacustrine and fluvial terrace sediments constraining the evolutionary model of the valley, thus providing the basis for future studies on the possible seismic trigger for such an extreme case study.
Florian Haas, Ludwig Hilger, Fabian Neugirg, Kathrin Umstädter, Christian Breitung, Peter Fischer, Paula Hilger, Tobias Heckmann, Jana Dusik, Andreas Kaiser, Jürgen Schmidt, Marta Della Seta, Ruben Rosenkranz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 16, 1269–1288, https://doi.org/10.5194/nhess-16-1269-2016, https://doi.org/10.5194/nhess-16-1269-2016, 2016
Short summary
Short summary
This study focuses on the quantification and analysis of geomorphic processes on the barely vegetated slopes of a recultivated iron ore mine on the Italian island of Elba using photographs from terrestrial laser scanning and digital photogrammetry by an unmanned aerial vehicle over a period of 5 1/2 years. Beside this, the study tried to work out the potential and the limitations of both methods to detect surface changes by geomorphic process dynamics within a natural environment.
Cited articles
Allmendinger, R. W.: Faultkin 8, https://www.rickallmendinger.net/faultkin (last access: 22 October 2022), 2019.
Andalusian Institute of Geophysics and Seismic Disaster Prevention Centre:
https://iagpds.ugr.es/, last access: 10 January 2022.
Azañón, J., Perez-Peña, J., Giaconia, F., Booth-Rea, G.,
Martinez-Martinez, J., and Rodriguez-Peces, M.: Active tectonics in the
central and eastern Betic Cordillera through morphotectonic analysis: the
case of Sierra Nevada and Sierra Alhamilla, J. Iber. Geol., 38, 225–238,
https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39214, 2012.
Balanyá, J. and García-Dueñas, V.: Les directions structurales
dans le Domaine d'Alborán de part et d'autre du Détroit de Gibraltar, C. R. Acad. Sci. Ser. II, 304, 929–933, 1987.
Balanyá, J., Crespo-Blanc, A., Azpiroz, M., Expósito, I., and
Luján, M.: Structural trend line pattern and strain partitioning around
the Gibraltar Arc accretionary wedge: Insights as to the mode of orogenic
arc building, Tectonics, 26, TC2005, https://doi.org/10.1029/2005TC001932, 2007.
Balanyá, J., Crespo-Blanc, A., Diaz-Azpiroz, M., Expósito, I., Torcal, F., Perez-Pena, V., and Booth-Rea, G.: Arc-parallel vs back-arc
extension in the Western Gibraltar arc: Is the Gibraltar forearc still
active?, Geol. Acta, 10, 249–263, https://doi.org/10.1344/105.000001771, 2012.
Barcos, L., Balanyá, J., Díaz-Azpiroz, M., Expósito, I., and
Jiménez-Bonilla, A.: Kinematics of the Torcal Shear Zone: Transpressional tectonics in a salient-recess transition at the northern Gibraltar Arc, Tectonophysics, 663, 62–77, https://doi.org/10.1016/j.tecto.2015.05.002, 2015.
Barcos, L., Díaz-Azpiroz, M., Balanyá, J., Expósito, I.,
Jiménez-Bonilla, A., and Faccenna, C.: Analogue modelling of inclined,
brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics), Tectonophysics, 682, 169–185, https://doi.org/10.1016/j.tecto.2016.05.021, 2016.
Brum da Silveira, A., Cabral, J., Perea, H., and Ribeiro, A.: Evidence for
coupled reverse and normal active faulting in W Iberia: The Vidigueira-Moura
and Alqueva faults (SE Portugal), Tectonophysics, 474, 184–189,
https://doi.org/10.1016/j.tecto.2009.04.013, 2009.
Bull, W. B.: Geomorphic Tectonic Classes of the South Front of the San
Gabriel Mountains, US Geological Survey Contract Report 14-08-001-G-394,
US Geological Survey, Office of Earthquakes, Volcanoes and Engineering, Menlo Park, 1978.
Bull, W. B. and McFadden, L. D.: Tectonic Geomorphology North and South of the Garlock Fault, California, in: Geomorphology in Arid Regions: A Proceedings Volume of the 8th Annual Geomorphology Symposium, edited by: Doehring, D. O., State University of New York, Binghamton, 115–138, https://doi.org/10.4324/9780429299230, 1977.
Butler, R. W. H., Holdsworth, R. E., and Lloyd, G. E.: The role of basement
reactivation during continental deformation, J. Geol. Soc. Lond., 154,
69–71, https://doi.org/10.1144/gsjgs.154.1.0069, 1997.
Cloetingh, S., Burov, E., Beekman, F., Andeweg, B., Andriessen, P. A. M.,
García-Castellanos, D., de Vicente, G., and Vegas, R.: Lithospheric
folding in Iberia, Tectonics, 21, 1041, https://doi.org/10.1029/2001TC901031, 2002.
Crespo-Blanc, A. and Orozco, M.: The Southern Iberian Shear Zone: a major
boundary in the Hercynian folded belt, Tectonophysics, 148, 221–227,
https://doi.org/10.1016/0040-1951(88)90130-8, 1988.
DeCelles, P. G.: Foreland basin systems revisited variations in response to
tectonic settings, in: Tectonics of sedimentary basins: Recent advances,
edited by: Busby, C. and Azor, A., Blackwell Publishing Ltd., Chichester, UK, 405–426, https://doi.org/10.1002/9781444347166.ch20, 2012.
Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X.,
Knipper, A. L. Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier,
C., Pechersky, D. H., Boulin, J., Sibuet, J. C., Savostin, L. A., Sorokhtin,
O., Westphal, M., Bazhenov, M. L., Lauer, J. P., and Biju-Duval, B.: Geological evolution of the Tethys Belt from the Atlantic to the Pamirs
since the Lias, Tectonophysics, 123, 241—15, https://doi.org/10.1016/0040-1951(86)90199-X, 1986.
De Vicente, G., Vegas, R., Muñoz Martín, A., Silva, P. G.,
Andriessen, P., Cloetingh, S., González Casado, J. M., VanWees, J. D.,
Álvarez, J., Carbó, A., and Olaiz, A.: Cenozoic thick-skinned
deformation and topography evolution of the Spanish Central System, Global
Planet. Change, 58, 335–381, https://doi.org/10.1016/j.gloplacha.2006.11.042, 2007.
Díaz-Azpiroz, M. and Fernández, C.: Kinematic analysis of the southern Iberian shear zone and tectonic evolution of the Acebuches metabasites (SW Variscan Iberian Massif), Tectonics, 24, TC3010, https://doi.org/10.1029/2004TC001682, 2005.
Díaz-Azpiroz, M., Barcos, L., Balanyá, J. C., Fernández, C.,
Expósito, I., and Czeck, D. M.: Applying a general triclinic transpression model to highly partitioned brittle-ductileshear zones: a case study from the Torcal de Antequera massif, External Betics, southern Spain, J. Struct. Geol., 68, 316–336, https://doi.org/10.1016/j.jsg.2014.05.010, 2014.
Expósito, I., Simancas, J. F., González-Lodeiro, F., Azor, A., and
Martínez Poyatos, D. J.: La estructura de la mitad septentrional de la
Zona de Ossa-Morena: deformación en el bloque inferior de un
cabalgamiento cortical de evolución compleja, Rev. Soc. Geol. Esp., 15,
3–14, 2002.
Expósito, I., Jiménez-Bonilla, A., Moral, F., and Balanyá, J. C.:
Deformación reciente y control tectónico del relieve de la Cuenca
del Guadalquivir entre las Béticas Centrales y Occidentales, Geo-Temas,
16, 93–96, 2016.
Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rosetti, F.:
Lateral slab deformation and the origin of the western Mediterranean arcs,
Tectonics, 23, TC1012, https://doi.org/10.1029/2002TC001488, 2004.
Fernández, M., Berástegui, X, Puig C., García-Castellanos, D.,
Jurado, M. J., Torne, M., and Banks, C.: Geophysical and geological constraints on the evolution of the Guadalquivir foreland basin, Spain,
Geol. Soc. Lond. Spec. Publ., 134, 29–48, https://doi.org/10.1144/GSL.SP.1998.134.01.03, 1998.
Fernández-Lozano, J., Sokoutis, D., Willingshofer, E., Dombrádi, E.,
Martín, A. M., de Vicente, G., and Cloetingh, S.: Integrated gravity and topography analysis in analog models: intraplate deformation in Iberia,
Tectonics, 31, TC6005, https://doi.org/10.1029/2012TC003122, 2012.
Flemings, P. B. and Jordan, T. E.: Stratigraphic modeling of foreland
basins: Interpreting thrust deformation and lithosphere rheology, Geology,
18, 430–434, https://doi.org/10.1130/0091-7613(1990)018<0430:SMOFBI>2.3.CO;2, 1990.
Fonseca, P. and Ribeiro, A.: Tectonics of the Beja-Acebuches ophiolite: A
major suture in the Iberian Variscan fold belt, Geol. Rundsch., 82, 440–447,
https://doi.org/10.1007/BF00212408, 1993.
Forman, S., Nelson, A., and McCalpin, J.: Thermoluminescence dating of
fault-scarp-derived colluvium-deciphering the timing of paleoearthquakes on
the weber segment of the wasatch fault zone, North Central Utah, J. Geophys.
Res.-Solid, 96, 595–605, https://doi.org/10.1029/90JB02081, 1991.
Fox, M., Goren, L., May, D. A., and Willett, S. D.: Inversion of fluvial channels for paleorock uplift rates in Taiwan, J. Geophys. Res.-Earth, 119, 1853–1875, https://doi.org/10.1002/2014JF003196, 2014.
García, R., Jiménez Bonilla, A., Díaz-Azpiroz, M., Pérez Valera, F., Balanyá, J. C., and Expósito, I.: Kinematics and geomorphology of the Algodonales-Badolatosa shear zone at the
fold-and-thrust belt of the western Subbetics, Geo-Temas, 16, 547–550, 2016.
García-Castellanos, D., Fernández, M., and Torne, M.: Modeling the
evolution of the Guadalquivir foreland basin (southern Spain), Tectonics, 21, 1018, https://doi.org/10.1029/2001TC001339, 2002.
García-Navarro, E. and Fernández, C.: Final stages of the Variscan
orogeny at the southern Iberian massif: Lateral extrusion and rotation of
continental blocks, Tectonics, 23, TC6001, https://doi.org/10.1029/2004TC001646, 2004.
García-Navarro, E. and Sierra, S.: Evolución tectónica del borde oriental de la cuenca del Viar (ZSP), Rev. Soc. Geol. España, 11, 223–232, 1998.
German Aerospace Center: DLR; project ID: DEM_HYDR3360r, https://tandemx-science.dlr.de (last access: 22 October 2022), 2016.
Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M., Azañón, J. M., Pérez-Peña, J. V., Pérez-Romero, J., and
Villegas, I.: Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain), Geomorphology, 145–146, 90–106,
https://doi.org/10.1016/j.geomorph.2011.12.043, 2012.
González-Delgado, J. A., Civis-Llovera, J., Dabrio, C. J., Goy, J. L.,
Ledesma, S., Pais, J., Sierro, F. J., and Zazo, C.: Cuenca del Gualdalquivir,
in: Geología de España, edited by: Vera, J. A., Sociedad
Geológica de España – Instituto Geológico y Minero de España, Madrid, 543–550, ISBN 978-84-7840-546-6, 2004.
Gutscher, M. A., Malod, J., Rehault, J. P., Contrucci, I., Klingelhoefer, F.,
Mendes-Victor, L., and Spakman, W.: Evidence for active subduction beneath
Gibraltar, Geology, 30, 1071–1074, https://doi.org/10.1130/0091-7613(2002)030<1071:EFASBG>2.0.CO;2, 2002.
Hack, J. T.: Studies of longitudinal stream profiles in Virginia and Maryland, USGS Professional Paper 295, USGS, 45–97, https://doi.org/10.3133/pp294B, 1957.
Hergarten, S., Robl, J., and Stüwe, K.: Tectonic geomorphology at small
catchment sizes – extensions of the stream-power approach and the χ method, Earth Surf. Dynam., 4, 1–9, https://doi.org/10.5194/esurf-4-1-2016, 2016.
Herraiz, M., de Vicente, G., Lindo, R., and Sanchez-Cabanero, J. G.:
Seismotectonics of the Sierra Albarrana area (southern Spain): Constraints
for a regional model of the Sierra Morena-Guadalquivir Basin limit,
Tectonophysics, 266, 425–442, https://doi.org/10.1016/S0040-1951(96)00201-6, 1996.
Herraiz, M., de Vicente, G., Lindo, R., Giner, J., Simón, J. L.,
González, J. M., Vadillo, O., Rodríguez, M. A., Cicuéndez, J. I.,
Casas, A., Rincón, P., Cortés, A. L., and Lucini, M.: The recent (Upper Miocene to Quaternary) and present tectonic stress distributions in
the Iberian Peninsula, Tectonics 19, 762–786, https://doi.org/10.1029/2000TC900006, 2000.
Hurtrez, J. E., Sol, C., and Lucazeau, F.: Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik
Hills (Central Nepal), Earth Surf. Proc. Land., 24, 799–808, https://doi.org/10.1002/(SICI)1096-9837(199908)24:9<799::AID-ESP12>3.0.CO;2-4, 1999.
Jiménez-Bonilla, A., Expósito, I., Balanyá, J. C., Díaz-Azpiroz, M., and Barcos, L.: The role of strain partitioning on
intermontane basin inception and isolation, External Western Gibraltar Arc,
J. Geodyn., 92, 1–17, https://doi.org/10.1016/j.jog.2015.09.001, 2015.
Keller, E. A. and Pinter, N.: Active Tectonics: Earthquakes, Uplift, and
Landscape, Prentice Hall, New Jersey, 362 pp., ISBN 978-0130882301, 2002.
Koukouvelas, I., Katsonopoulou, D., Soter, S., and Xypolias, P.: Slip rates
on the Helike Fault, Gulf of Corinth, Greece: new evidence from geoarchaeology, Terra Nova, 17, 158–164, https://doi.org/10.1111/j.1365-3121.2005.00603.x, 2005.
Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014.
López-Cuervo, S.: Medina Az-Zahara, Ingeniería y formas, Ministerio
de Obras Públicas y Urbanismo, Madrid, ISBN 9788474332414, 1983.
Mantero, E. M., Alonso-Chaves, F. M., García-Navarro, E., and Azor, A.:
Tectonic style and structural analysis of the Puebla de Guzmán Antiform
(Iberian Pyrite Belt, South Portuguese Zone, SW Spain), Geol. Soc. Lond. Spec. Publ., 349, 203–222, https://doi.org/10.1144/sp349.11, 2011.
Martín-González, F.: Cenozoic tectonic activity in a Variscan basement: Evidence from geomorphological markers and structural mapping (NW Iberian Massif), Geomorphology, 107, 210–225, https://doi.org/10.1016/j.geomorph.2008.12.008, 2009.
Matas, J., Martín Parra, L. M., Roldán, F., and Martín Serrano,
A.: Mapa Geológico de España 1:200.000, sheet 76, Córdoba,
Instituto Geológico Minero España, Madrid, https://info.igme.es/cartografiadigital/geologica/Geologico200.aspx (last access: 22 October 2022), 2010a.
Matas, J., Martín Parra, L. M., Rubio Pascual, F. J., Roldán, F. J.,
and Martín Serrano, A: Mapa Geológico de España 1:200.000,
sheet , Sevilla-Puebla de Guzmán, Instituto Geológico Minero
España, Madrid, https://info.igme.es/cartografiadigital/geologica/Geologico200.aspx (last access: 22 October 2022), 2010b.
Moral, F., Balanyá, J. C., Expósito, I., and Rodríguez-Rodríguez, M.: Análisis geomorfológico de las
terrazas fluviales del Bajo Guadalquivir e implicaciones tectónicas,
Geogaceta, 54, 143–146, 2013.
Niviere, B., Messager, G., Carretier, S., and Lacan, P.: Geomorphic expression of the southern Central Andes forebulge (37 degrees S, Argentina), Terra Nova, 25, 361–367, https://doi.org/10.1111/ter.12044, 2013.
Oliveira, J. T.: The South Portuguese Zone, Stratigraphy and Synsedimentary
Tectonism, in: Premesozoic Geology of Iberia, edited by: Dallmeyer, D. and
Martinez, E., Springer-Verlag, New York, 334–347, ISBN 9783642839825, 1990.
Pérez-Cáceres, I., Martínez-Poyatos, D., Simancas, J. F., and
Azor, A.: The elusive nature of the Rheic Ocean suture in SW Iberia,
Tectonics, 34, 2429–2450, https://doi.org/10.1002/2015tc003947, 2015.
Perez-Peña, J., Azañón, J., and Azor, A.: CalHypso: An ArcGIS
extension to calculate hypsometric curves and their statistical moments.
Applications to drainage basin analysis in SE Spain, Comput. Geosci., 35,
1214–1223, https://doi.org/10.1016/j.cageo.2008.06.006, 2009.
Perron, J. and Royden, L.: An integral approach to bedrock river profile
analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Rodríguez-Pascua, M. A., Perucha, M. A., Montejo, A. J., Silva, P. G.,
Giner-Robles, J. L., Élez, J., Bardají, T., and Roquero, E.:
Archaeoseismological evidence of the Medina Azahara destruction in the early
11th century (Córdoba, Spain), Zenodo [data set], https://doi.org/10.5281/zenodo.5126886, 2021.
Rodríguez Vidal, J. and Díaz del Olmo, F.: Macizo Ibérico
Meridional, in: Geomorfología de España, edited by: Gutiérrez,
M., Rueda, Madrid, 101–122, ISBN 9788472070752, 1994.
Roest, W. R. and Srivastava, S. P.: Kinematics of the plate boundaries
between Eurasia, Iberia, and Africa in the North Atlantic from the late
Cretaceous to the present, Geology, 19, 613–616, https://doi.org/10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2, 1991.
Salvany, J. M.: Tilting neotectonics of the Guadiamar drainage Basin, SW Spain, Earth Surf. Proc. Land., 29, 145–160, https://doi.org/10.1002/esp.1005, 2004.
Scherler, D. and Schwanghart, W.: Drainage divide networks – Part 1:
Identification and ordering in digital elevation models, Earth Surf. Dynam.,
8, 245–259, https://doi.org/10.5194/esurf-8-245-2020, 2020.
Schwanghart, W.: Topo-Toolbox, https://topotoolbox.wordpress.com/download (last access: 22 October 2022), 2014.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth
surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Schwanghart, W. and Scherler, D.: Bumps in river profiles: Uncertainty
assessment and smoothing using quantile regression techniques, Earth Surf.
Dynam., 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, 2017.
Schwanghart, W. and Scherler, D.: Divide mobility controls knickpoint migration on the Roan Plateau (Colorado, USA), Geology, 48, 698–702,
https://doi.org/10.1130/G47054.1, 2020.
Schwanghart, W., Molkenthin, C., and Scherler, D.: A systematic approach and
software for the analysis of point patterns on river networks, Earth Surf.
Proc. Land., 46, 1847–1862, https://doi.org/10.1002/esp.5127, 2021.
Sierro, F. J., González-Delgado J. A., Dabrio C. J., Flores J. A., and
Civis, J.: Late Neogene depositional sequences in the foreland basin of
Guadalquivir (SW Spain), in: Tertiary Basins of Spain: The Stratigraphic
Record of Crustal Kinematics, edited by: Friend, P. and Dabrio, C. J.,
Cambridge University Press, New York, 339–345, https://doi.org/10.1017/CBO9780511524851.048, 1996.
Silva, P. G., Goy, J. L., Zazo, C., and Bardaí, T.: Fault-generated
mountain fronts in southeast Spain: geomorphologic assessment of tectonic
and seismic activity, Geomorphology, 50, 203–225, https://doi.org/10.1016/S0169-555X(02)00215-5, 2003.
Simancas, J. F.: Geología de la extremidad oriental de la Zona Sudportuguesa, Tesis Doctoral, Univ. Granada, Granada, 439 pp., https://digibug.ugr.es/handle/10481/28636 (last access: 22 October 2022), 1983.
Simancas, J. F., Carbonell, R., González Lodeiro F.,
Pérez-Estaún, A., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A.,
Martínez-Poyatos, D., Almodóvar, G. R., Pascual, E., Sáez, R.,
and Expósito, I.: The crustal structure of the transpresional Variscan
Orogen of the SW Iberia: The IBERSEIS Deep Seismic Reflection Profile,
Tectonics, 22, 1062, https://doi.org/10.1029/2002tc001479, 2003.
Spakman, W. and Wortel, R.: A Tomographic View on Western Mediterranean
Geodynamics, in: The TRANSMED Atlas, The Mediterranean Region from Crust to
Mantle, edited by: Cavazza, W., Roure, F., Spakman, W., Stampfli, G. M., and
Ziegler, P A., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-18919-7_2, 2004.
Strahler, A. N.: Dynamic basis of geomorphology, Bull. Geol. Soc. Am., 63, 923–937, 1952.
Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., and
Lagabrielle, Y.: Crustal structure and evolution of the Pyrenean-Cantabrian
belt: a review and new interpretations from recent concepts and data,
Tectonophysics, 724–725, 146–170, https://doi.org/10.1016/j.tecto.2018.01.009, 2018.
Van der Beek, P. A. and Cloetingh, S.: Lithospheric flexure and the tectonic
evolution of the Betic cordilleras (SE Spain), Tectonophysics, 203, 325–344, https://doi.org/10.1016/0040-1951(92)90230-4, 1992.
Vázquez-Vílchez, M., Jabaloy-Sánchez, A., Azor, A., Stuart, F.,
Persano, C., Alonso-Chaves, F. M., Martín-Parra, L. M., Matas, J., and
García-Navarro, E.: Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology,
Tectonophysics, 663, 110–121, https://doi.org/10.1016/j.tecto.2015.06.034, 2015.
Wessel, B.: TanDEM-X Ground Segment – DEM Products Specification Document,
EOC, Public Document TD-GS-PS-0021, DLR, Oberpfaffenhofen, Germany, https://tandemx-science.dlr.de/ (last access: 22 October 2022), 2016.
Yanes, J. L., Expósito, I., Jiménez-Bonilla, A., Moral, F., Balanyá, J. C., and García Navarro, E.: Neo-tectonic reactivation
and relief rejuvenation in the western Betics foreland (Viar catchment),
Geogaceta, 66, 107–110, 2019.
Short summary
In long-lived areas, relief rejuvenation can be greatly controlled by both the geometry of reactivated structures and the kinematics setting. We have applied geomorphological qualitative analyses, geomorphic index, and knickpoint modelling to detect the Quaternary reactivation of fractures in the Betic foreland (southern Spain). The obtained relief rejuvenation pattern and fault kinematics agree with propagation of transpressional deformation from the Betic fold-and-thrust belt.
In long-lived areas, relief rejuvenation can be greatly controlled by both the geometry of...