Articles | Volume 10, issue 3
https://doi.org/10.5194/esurf-10-437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-10-437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Continuous measurements of valley floor width in mountainous landscapes
Fiona J. Clubb
CORRESPONDING AUTHOR
Department of Geography, Durham University, Durham, UK
Eliot F. Weir
Department of Geography, Durham University, Durham, UK
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Simon M. Mudd
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Related authors
Anya H. Towers, Mikael Attal, Simon M. Mudd, and Fiona J. Clubb
EGUsphere, https://doi.org/10.5194/egusphere-2024-3084, https://doi.org/10.5194/egusphere-2024-3084, 2024
Short summary
Short summary
We explore controls on channel sediment characteristics in post-glacial landscapes. In contrast to other studies that have focused on landscapes with little glacial influence, we find no apparent controls. We propose that Scotland's post-glacial legacy drives the lack of sedimentological trends, and that changes in landscape morphology and sediment sources caused by glacial processes lead to a complete decoupling between fluvial sediment grain size and environmental variables.
Anya H. Towers, Mikael Attal, Simon M. Mudd, and Fiona J. Clubb
EGUsphere, https://doi.org/10.5194/egusphere-2024-3084, https://doi.org/10.5194/egusphere-2024-3084, 2024
Short summary
Short summary
We explore controls on channel sediment characteristics in post-glacial landscapes. In contrast to other studies that have focused on landscapes with little glacial influence, we find no apparent controls. We propose that Scotland's post-glacial legacy drives the lack of sedimentological trends, and that changes in landscape morphology and sediment sources caused by glacial processes lead to a complete decoupling between fluvial sediment grain size and environmental variables.
Prakash Pokhrel, Mikael Attal, Hugh D. Sinclair, Simon M. Mudd, and Mark Naylor
Earth Surf. Dynam., 12, 515–536, https://doi.org/10.5194/esurf-12-515-2024, https://doi.org/10.5194/esurf-12-515-2024, 2024
Short summary
Short summary
Pebbles become increasingly rounded during downstream transport in rivers due to abrasion. This study quantifies pebble roundness along the length of two Himalayan rivers. We demonstrate that roundness increases with downstream distance and that the rates are dependent on rock type. We apply this to reconstructing travel distances and hence the size of ancient Himalaya. Results show that the ancient river network was larger than the modern one, indicating that there has been river capture.
Cited articles
Baynes, E. R., Lague, D., and Kermarrec, J.-J.: Supercritical river terraces
generated by hydraulic and geomorphic interactions, Geology, 46, 499–502,
2018. a
Baynes, E. R., Lague, D., Steer, P., Bonnet, S., and Illien, L.: Sediment
flux-driven channel geometry adjustment of bedrock and mixed gravel–bedrock
rivers, Earth Surf. Proc. Land., 45, 3714–3731,
https://doi.org/10.1002/ESP.4996, 2020. a
Beer, A. R., Turowski, J. M., and Kirchner, J. W.: Spatial patterns of erosion
in a bedrock gorge, J. Geophys. Res.-Earth, 122,
191–214, 2017. a
Beeson, H. W., Flitcroft, R. L., Fonstad, M. A., and Roering, J. J.:
Deep-Seated Landslides Drive Variability in Valley Width and Increase
Connectivity of Salmon Habitat in the Oregon Coast Range, JAWRA J.
Am. Water Resour. As., 54, 1325–1340,
https://doi.org/10.1111/1752-1688.12693, 2018. a, b
Bernard, T. G., Davy, P., and Lague, D.: Hydro-geomorphic metrics for high
resolution fluvial landscape analysis, J. Geophys. Res.-Earth, 127, e2021JF006535, https://doi.org/10.1029/2021JF006535, 2022. a
Bradski, G. and Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library, O'Reilly Media Inc, California, USA, 2008. a
Brardinoni, F., Picotti, V., Maraio, S., Bruno, P. P., Cucato, M., Morelli, C.,
and Mair, V.: Postglacial evolution of a formerly glaciated valley:
Reconstructing sediment supply, fan building, and confluence effects at the
millennial time scale, GSA Bulletin, 130, 1457–1473, https://doi.org/10.1130/B31924.1,
2018. a
Brocard, G. and van der Beek, P.: Influence of incision rate, rock strength,
and bedload supply on bedrock river gradients and valley-flat widths:
Field-based evidence and calibrations from western Alpine rivers (southeast
France), Special Paper of the Geological Society of America, 398, 101–126,
https://doi.org/10.1130/2006.2398(07), 2006. a, b, c, d, e, f, g, h
Bufe, A., Turowski, J. M., Burbank, D. W., Paola, C., Wickert, A. D., and
Tofelde, S.: Controls on the lateral channel-migration rate of braided
channel systems in coarse non-cohesive sediment, Earth Surf. Proc.
Land., 44, 2823–2836, https://doi.org/10.1002/ESP.4710, 2019. a
Clubb, F., Mudd, S., Milodowski, D., Hurst, M., and Slater, L.: Objective
extraction of channel heads from high-resolution topographic data, Water
Resour. Res., 50, 4283–4304, https://doi.org/10.1002/2013WR015167, 2014. a
Clubb, F. J., Mudd, S. M., Milodowski, D. T., Valters, D. A., Slater, L. J., Hurst, M. D., and Limaye, A. B.: Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds, Earth Surf. Dynam., 5, 369–385, https://doi.org/10.5194/esurf-5-369-2017, 2017. a, b, c
Cook, K. L., Turowski, J. M., and Hovius, N.: River gorge eradication by
downstream sweep erosion, Nat. Geosci., 7, 682–686,
https://doi.org/10.1038/ngeo2224, 2014. a, b, c, d
Cooper, D., Andersen, D., and Chimner, R. A.: Multiple pathways for woody plant
establishment on floodplains at local to regional scales, J. Ecol.,
91, 182196, https://doi.org/10.1046/j.1365-2745.2003.00766.x, 2003. a
Dadson, S. J. and Church, M.: Postglacial topographic evolution of glaciated
valleys: a stochastic landscape evolution model, Earth Surf. Proc.
Land., 30, 1387–1403, https://doi.org/10.1002/ESP.1199, 2005. a
Daxberger, H., Dalumpines, R., Scott, D. M., and Riller, U.: The ValleyMorph
Tool: An automated extraction tool for transverse topographic symmetry (T-)
factor and valley width to valley height (Vf-) ratio, Comput.
Geosci., 70, 154–163, https://doi.org/10.1016/J.CAGEO.2014.05.015, 2014. a
Felipe-Lucia, M., Comín, F., and Bennett, E.: Interactions Among Ecosystem
Services Across Land Uses in a Floodplain Agroecosystem, Ecol.
Soc., 19, 24 pp., https://doi.org/10.5751/ES-06249-190120, 2014. a
Finnegan, N. J. and Dietrich, W. E.: Episodic bedrock strath terrace formation
due to meander migration and cutoff, Geology, 39, 143–146,
https://doi.org/10.1130/G31716.1, 2011. a, b
Finnegan, N. J., Roe, G., Montgomery, D. R., and Hallet, B.: Controls on the
channel width of rivers: Implications for modeling fluvial incision of
bedrock, Geology, 33, 229–232, https://doi.org/10.1130/G21171.1, 2005. a
Gallen, S. F.: Lithologic controls on landscape dynamics and aquatic species
evolution in post-orogenic mountains, Earth Planet. Sc. Lett.,
493, 150–160, https://doi.org/10.1016/J.EPSL.2018.04.029, 2018. a, b
Gilbert, G.: Geology of the Henry Mountains, Monograph, USGS Unnumbered Series, 160 pp.,
https://doi.org/10.3133/70038096, 1877. a
Gran, K. B., Finnegan, N., Johnson, A. L., Belmont, P., Wittkop, C., and
Rittenour, T.: Landscape evolution, valley excavation, and terrace
development following abrupt postglacial base-level fall, GSA Bulletin, 125,
1851–1864, https://doi.org/10.1130/B30772.1, 2013. a, b
Hancock, G. S. and Anderson, R. S.: Numerical modeling of fluvial
strath-terrace formation in response to oscillating climate, GSA Bulletin,
11, 1131–1142, https://doi.org/10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2,
2002. a
Hilley, G. E., Baden, C. W., Dobbs, S. C., Plante, Z., Sare, R., and
Steelquist, A. T.: A Curvature-Based Method for Measuring Valley Width
Applied to Glacial and Fluvial Landscapes, J. Geophys. Res.-Earth, 125, e2020JF005605, https://doi.org/10.1029/2020JF005605, 2020. a
Johnson, K. N. and Finnegan, N. J.: A lithologic control on active meandering
in bedrock channels, GSA Bulletin, 127, 1766–1776, https://doi.org/10.1130/B31184.1,
2015. a
Khan, S. and Fryirs, K. A.: Application of globally available,
coarse-resolution digital elevation models for delineating valley bottom
segments of varying length across a catchment, Earth Surf. Proc. Land., 45, 2788–2803, https://doi.org/10.1002/ESP.4930, 2020. a
Kirby, E. and Whipple, K.: Quantifying differential rock-uplift rates via
stream profile analysis, Geology, 29, 415–418,
https://doi.org/10.1130/0091-7613(2001)029<0415:QDRURV>2.0.CO;2, 2001. a
Knudsen, K., Sowers, J., Witter, R., Wentworth, C., Helley, E., Nicholson, R.,
Wright, H., and Brown, K.: Preliminary maps of Quaternary deposits and
liquefaction susceptibility, nine-county San Francisco Bay region,
California: a digital database, USGS Open-File Report 00-444, https://geo-nsdi.er.usgs.gov/metadata/open-file/00-444/metadata.html
(last access: 28 May 2022), 2000. a, b
Korup, O.: Geomorphometric characteristics of New Zealand landslide dams,
Eng. Geol., 73, 13–35, https://doi.org/10.1016/J.ENGGEO.2003.11.003, 2004. a
Kwang, J. S., Langston, A. L., and Parker, G.: The role of lateral erosion in
the evolution of nondendritic drainage networks to dendricity and the
persistence of dynamic networks, P. Natl. Acad. Sci. USA, 118, 2021, https://doi.org/10.1073/PNAS.2015770118, 2021. a
Lancaster, S. T.: Evolution of sediment accommodation space in steady state
bedrock-incising valleys subject to episodic aggradation, J. Geophys. Res.-Earth, 113, 4002, https://doi.org/10.1029/2007JF000938,
2008. a, b, c
Lane, S. N., Tayefi, V., Reid, S. C., Yu, D., and Hardy, R. J.: Interactions
between sediment delivery, channel change, climate change and flood risk in a
temperate upland environment, Earth Surf. Proc. Land., 32,
429–446, https://doi.org/10.1002/ESP.1404, 2007. a
Langston, A. L. and Tucker, G. E.: Developing and exploring a theory for the
lateral erosion of bedrock channels for use in landscape evolution models,
Earth Surface Dynamics, 6, 1–27, https://doi.org/10.5194/ESURF-6-1-2018, 2018. a, b, c
Leith, K., Fox, M., and Moore, J. R.: Signatures of Late Pleistocene fluvial
incision in an Alpine landscape, Earth Planet. Sc. Lett., 483,
13–28, 2018. a
Li, T., Fuller, T. K., Sklar, L. S., Gran, K. B., and Venditti, J. G.: A
Mechanistic Model for Lateral Erosion of Bedrock Channel Banks by Bedload
Particle Impacts, J. Geophys. Res.-Earth, 125,
e2019JF005509, https://doi.org/10.1029/2019JF005509, 2020. a
Lifton, Z. M., Thackray, G. D., Kirk, R. V., and Glenn, N. F.: Influence of
rock strength on the valley morphometry of Big Creek, central Idaho, USA,
Geomorphology, 111, 173–181, https://doi.org/10.1016/J.GEOMORPH.2009.04.014, 2009. a, b
Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for
flow path enforcement in digital elevation models, Hydrol. Process.,
30, 846–857, https://doi.org/10.1002/hyp.10648, 2016. a
Mackin, J. H.: Erosional history of the Big Horn Basin, Wyoming, GSA Bulletin,
48, 813–894, https://doi.org/10.1130/GSAB-48-813, 1937. a
Malatesta, L. C., Prancevic, J. P., and Avouac, J.-P.: Autogenic entrenchment
patterns and terraces due to coupling with lateral erosion in incising
alluvial channels, J. Geophys. Res.-Earth, 122,
335–355, https://doi.org/10.1002/2015JF003797, 2017. a
Marcotte, A. L., Neudorf, C. M., and Langston, A. L.: Lateral bedrock erosion
and valley formation in a heterogeneously layered landscape, Northeast
Kansas, Earth Surf. Proc. Land., 46, 2248–2263,
https://doi.org/10.1002/ESP.5172, 2021. a
May, C., Roering, J., Eaton, L., and Burnett, K.: Controls on valley width in
mountainous landscapes: The role of landsliding and implications for salmonid
habitat, Geology, 41, 503–506, https://doi.org/10.1130/G33979.1, 2013. a, b, c
Mudd, S., Clubb, F., Grieve, S., Milodowski, D., Gailleton, B., Hurst, M.,
Valters, D., Wickert, A., and Hutton, E.: LSDTopoTools2 v0.5, Zenodo [code],
https://doi.org/10.5281/zenodo.5788576, 2021. a
Mudd, S. M., Roda-Boluda, D. C., Goren, L., and Clubb, F. J.: 6.03 – Beyond
the Long Profile, in: Treatise on Geomorphology (Second Edition),
edited by: Shroder, J. J. F., Academic Press, Oxford, 22–52,
https://doi.org/10.1016/B978-0-12-818234-5.00026-2, 2022. a
Owens, P. N. and Walling, D. E.: Changes in sediment sources and floodplain
deposition rates in the catchment of the River Tweed, Scotland, over the last
100 years: The impact of climate and land use change, Earth Surf. Proc.
Land., 27, 403–423, 2002. a
Phillips, J. D., McCormack, S., Duan, J., Russo, J. P., Schumacher, A. M.,
Tripathi, G. N., Brockman, R. B., Mays, A. B., and Pulugurtha, S.: Origin and
interpretation of knickpoints in the Big South Fork River basin,
Kentucky–Tennessee, Geomorphology, 114, 188–198,
https://doi.org/10.1016/J.GEOMORPH.2009.06.023, 2010. a
Reed, M. and Kite, S.: Peripheral gully and landslide erosion on an extreme
anthropogenic landscape produced by mountaintop removal coal mining, Earth Surf. Proc. Land., 45, 2078–2090, https://doi.org/10.1002/ESP.4867,
2020. a
Saha, P. K., Borgefors, G., and Sanniti di Baja, G.: A survey on
skeletonization algorithms and their applications, Pattern Recogn.
Lett., 76, 3–12, https://doi.org/10.1016/j.patrec.2015.04.006, 2016. a
Schanz, S. A. and Montgomery, D. R.: Lithologic controls on valley width and
strath terrace formation, Geomorphology, 258, 58–68,
https://doi.org/10.1016/J.GEOMORPH.2016.01.015, 2016. a, b, c, d
Slater, L. J., Singer, M. B., and Kirchner, J. W.: Hydrologic versus geomorphic
drivers of trends in flood hazard, Geophys. Res. Lett., 42,
370–376, https://doi.org/10.1002/2014GL062482, 2015. a
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.: Landscape
response to tectonic forcing: Digital elevation model analysis of stream
profiles in the Mendocino triple junction region, northern California,
Geol. Soc. Am. Bull., 112, 1250–1263,
https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2, 2000. a
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J.: Channel
response to tectonic forcing: field analysis of stream morphology and
hydrology in the Mendocino triple junction region, northern California,
Geomorphology, 53, 97–127, https://doi.org/10.1016/S0169-555X(02)00349-5, 2003. a
Sugden, D. E.: Reconstruction of the Morphology, Dynamics, and Thermal
Characteristics of the Laurentide Ice Sheet at Its Maximum, Arct. Alp.
Res., 9, 21, https://doi.org/10.2307/1550407, 1977. a
Suzuki, T.: Rate of lateral planation by Iwaki river, Japan, Trans. Japan.
Geomorph. Union, 3, 1–24, 1982. a
Thorp, J. H., Thoms, M. C., and Delong, M. D.: The riverine ecosystem
synthesis: biocomplexity in river networks across space and time, River
Res. Appl., 22, 123–147, https://doi.org/10.1002/rra.901, 2006. a
Tockner, K. and Stanford, J. A.: Riverine flood plains: present state and
future trends, Environ. Conserv., 29, 308–330,
https://doi.org/10.1017/S037689290200022X, 2002. a, b
Tofelde, S., Savi, S., Wickert, A. D., Bufe, A., and Schildgen, T. F.: Alluvial channel response to environmental perturbations: fill-terrace formation and sediment-signal disruption, Earth Surf. Dynam., 7, 609–631, https://doi.org/10.5194/esurf-7-609-2019, 2019. a
Tomkin, J. H., Brandon, M. T., Pazzaglia, F. J., Barbour, J. R., and Willett,
S. D.: Quantitative testing of bedrock incision models for the Clearwater
River, NW Washington State, J. Geophys. Res.-Sol. Ea.,
108, 2308, https://doi.org/10.1029/2001JB000862, 2003. a, b
Tomscha, S. A., Gergel, S. E., and Tomlinson, M. J.: The spatial organization
of ecosystem services in river-floodplains, Ecosphere, 8, e01728,
https://doi.org/10.1002/ecs2.1728, 2017. a
Turowski, J. M.: Mass balance, grade, and adjustment timescales in bedrock channels, Earth Surf. Dynam., 8, 103–122, https://doi.org/10.5194/esurf-8-103-2020, 2020. a
Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., and Roberts, G. P.:
Bedrock channel adjustment to tectonic forcing: Implications for predicting
river incision rates, Geology, 35, 103–106, https://doi.org/10.1130/G23106A.1, 2007.
a
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K.,
Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise,
and pitfalls, Geol. Soc. Am. Spec. Pap., 398, 55–74,
https://doi.org/10.1130/2006.2398(04), 2006. a
Zhao, Y., Wu, P., Li, J., Lin, Q., and Lu, Y.: A new algorithm for the
automatic extraction of valley floor width, Geomorphology, 335, 37–47,
https://doi.org/10.1016/J.GEOMORPH.2019.03.015, 2019. a, b
Zhu, Y., Dortch, J. M., Massey, M. A., Haneberg, W. C., and Curl, D.: An
intelligent swath tool to characterize complex topographic features: Theory
and application in the Teton Range, Licking River, and Olympus
Mons, Geomorphology, 387, 107778, https://doi.org/10.1016/j.geomorph.2021.107778,
2021. a
Zimmer, P. D. and Gabet, E. J.: Assessing glacial modification of bedrock
valleys using a novel approach, Geomorphology, 318, 336–347, 2018. a
Short summary
River valleys are important components of mountain systems: they are the most fertile part of landscapes and store sediment which is transported from mountains to surrounding basins. Our knowledge of the location and shape of valleys is hindered by our ability to measure them over large areas. We present a new method for measuring the width of mountain valleys continuously along river channels from digital topography and show that our method can be used to test common models of river widening.
River valleys are important components of mountain systems: they are the most fertile part of...