Articles | Volume 12, issue 2
https://doi.org/10.5194/esurf-12-537-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-537-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benthos as a key driver of morphological change in coastal regions
Peter Arlinghaus
CORRESPONDING AUTHOR
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Corinna Schrum
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Center for Earth System Sustainability, Institute of Oceanography, Universität Hamburg, Hamburg, Germany
Ingrid Kröncke
Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University, Oldenburg, Germany
Department for Marine Research, Senckenberg am Meer, Wilhelmshaven, Germany
Institute of Coastal Systems – Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Related authors
Jakub Miluch, Wenyan Zhang, Jan Harff, Andreas Groh, Peter Arlinghaus, and Celine Denker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1931, https://doi.org/10.5194/egusphere-2024-1931, 2024
Short summary
Short summary
We present a high-resolution paleogeographic reconstruction of the Baltic Sea for the Holocene period by combining eustatic sea-level change, glacio-isostatic movement, and sediment dynamics. In the north-eastern part, morphological change is dominated by regression caused by post-glacial rebound that outpaces the eustatic sea level rise, whereas a transgression together with active sediment erosion/deposition constantly shape the coastal morphology in the south-eastern part.
Hoa T. T. Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2710, https://doi.org/10.5194/egusphere-2024-2710, 2024
Short summary
Short summary
Parameterisation is key in modeling to reproduce observations well but is often done manually. This study presents a Particle Swarm Optimizer-based toolbox for marine ecosystem models, compatible with the Framework for Aquatic Biogeochemical Models, thus enhancing its reusability. Applied to the Sylt ecosystem, the toolbox effectively (1) identified multiple parameter sets that matched observations well, thus providing different insights into ecosystem dynamics, (2) optimized model complexity.
Jakub Miluch, Wenyan Zhang, Jan Harff, Andreas Groh, Peter Arlinghaus, and Celine Denker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1931, https://doi.org/10.5194/egusphere-2024-1931, 2024
Short summary
Short summary
We present a high-resolution paleogeographic reconstruction of the Baltic Sea for the Holocene period by combining eustatic sea-level change, glacio-isostatic movement, and sediment dynamics. In the north-eastern part, morphological change is dominated by regression caused by post-glacial rebound that outpaces the eustatic sea level rise, whereas a transgression together with active sediment erosion/deposition constantly shape the coastal morphology in the south-eastern part.
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Short summary
Seafloor sediments store a large amount of carbon, helping to naturally regulate Earth's climate. If disturbed, some sediment particles can turn into CO2, but this effect is not well understood. Using computer simulations, we found that bottom-contacting fishing gears release about 1 million tons of CO2 per year in the North Sea, one of the most heavily fished regions globally. We show how protecting certain areas could reduce these emissions while also benefitting seafloor-living animals.
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2024-2, https://doi.org/10.5194/bg-2024-2, 2024
Revised manuscript accepted for BG
Short summary
Short summary
The transformation of dissolved organic carbon (DOC) in estuaries is vital for costal carbon cycling. We studied source-to-sink pathways of DOC in the Changjiang Estuary using a physics-biogeochemistry model. Results showed a transition from sink to source of DOC in the plume area during summer, with a transition from terrestrial-dominant to marine-dominant. Terrigenous and marine DOC exports account for about 31 % and 69 %, respectively.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Johannes Bieser, David J. Amptmeijer, Ute Daewel, Joachim Kuss, Anne L. Soerensen, and Corinna Schrum
Geosci. Model Dev., 16, 2649–2688, https://doi.org/10.5194/gmd-16-2649-2023, https://doi.org/10.5194/gmd-16-2649-2023, 2023
Short summary
Short summary
MERCY is a 3D model to study mercury (Hg) cycling in the ocean. Hg is a highly harmful pollutant regulated by the UN Minamata Convention on Mercury due to widespread human emissions. These emissions eventually reach the oceans, where Hg transforms into the even more toxic and bioaccumulative pollutant methylmercury. MERCY predicts the fate of Hg in the ocean and its buildup in the food chain. It is the first model to consider Hg accumulation in fish, a major source of Hg exposure for humans.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Ralf Weisse, Inga Dailidienė, Birgit Hünicke, Kimmo Kahma, Kristine Madsen, Anders Omstedt, Kevin Parnell, Tilo Schöne, Tarmo Soomere, Wenyan Zhang, and Eduardo Zorita
Earth Syst. Dynam., 12, 871–898, https://doi.org/10.5194/esd-12-871-2021, https://doi.org/10.5194/esd-12-871-2021, 2021
Short summary
Short summary
The study is part of the thematic Baltic Earth Assessment Reports – a series of review papers summarizing the knowledge around major Baltic Earth science topics. It concentrates on sea level dynamics and coastal erosion (its variability and change). Many of the driving processes are relevant in the Baltic Sea. Contributions vary over short distances and across timescales. Progress and research gaps are described in both understanding details in the region and in extending general concepts.
Related subject area
Biological: Bio-Geomorphology
On the relative role of abiotic and biotic controls in channel network development: insights from scaled tidal flume experiments
Higher sediment redistribution rates related to burrowing animals than previously assumed as revealed by time-of-flight-based monitoring
Effect of hydro-climate variation on biofilm dynamics and its impact in intertidal environments
Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply
Using a calibrated upper living position of marine biota to calculate coseismic uplift: a case study of the 2016 Kaikōura earthquake, New Zealand
Mapping landscape connectivity as a driver of species richness under tectonic and climatic forcing
Effect of changing vegetation and precipitation on denudation – Part 1: Predicted vegetation composition and cover over the last 21 thousand years along the Coastal Cordillera of Chile
Effect of changing vegetation and precipitation on denudation – Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales
Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate
Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Paulina Grigusova, Annegret Larsen, Sebastian Achilles, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, Kirstin Übernickel, and Jörg Bendix
Earth Surf. Dynam., 10, 1273–1301, https://doi.org/10.5194/esurf-10-1273-2022, https://doi.org/10.5194/esurf-10-1273-2022, 2022
Short summary
Short summary
In our study, we developed, tested, and applied a cost-effective time-of-flight camera to autonomously monitor rainfall-driven and animal-driven sediment redistribution in areas affected by burrowing animals with high temporal (four times a day) and spatial (6 mm) resolution. We estimated the sediment redistribution rates on a burrow scale and then upscaled the redistribution rates to entire hillslopes. Our findings can be implemented into long-term soil erosion models.
Elena Bastianon, Julie A. Hope, Robert M. Dorrell, and Daniel R. Parsons
Earth Surf. Dynam., 10, 1115–1140, https://doi.org/10.5194/esurf-10-1115-2022, https://doi.org/10.5194/esurf-10-1115-2022, 2022
Short summary
Short summary
Biological activity in shallow tidal environments significantly influence sediment dynamics and morphology. Here, a bio-morphodynamic model is developed that accounts for hydro-climate variations in biofilm development to estimate the effect of biostabilisation on the bed. Results reveal that key parameters such as growth rate and temperature strongly influence the development of biofilm under a range of disturbance periodicities and intensities, shaping the channel equilibrium profile.
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Catherine Reid, John Begg, Vasiliki Mouslopoulou, Onno Oncken, Andrew Nicol, and Sofia-Katerina Kufner
Earth Surf. Dynam., 8, 351–366, https://doi.org/10.5194/esurf-8-351-2020, https://doi.org/10.5194/esurf-8-351-2020, 2020
Tristan Salles, Patrice Rey, and Enrico Bertuzzo
Earth Surf. Dynam., 7, 895–910, https://doi.org/10.5194/esurf-7-895-2019, https://doi.org/10.5194/esurf-7-895-2019, 2019
Short summary
Short summary
Mountainous landscapes have long been recognized as potential drivers for genetic drift, speciation, and ecological resilience. We present a novel approach that can be used to assess and quantify drivers of biodiversity, speciation, and endemism over geological time. Using coupled climate–landscape models, we show that biodiversity under tectonic and climatic forcing relates to landscape dynamics and that landscape complexity drives species richness through orogenic history.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Wietse I. van de Lageweg, Stuart J. McLelland, and Daniel R. Parsons
Earth Surf. Dynam., 6, 203–215, https://doi.org/10.5194/esurf-6-203-2018, https://doi.org/10.5194/esurf-6-203-2018, 2018
Short summary
Short summary
Sticky sediments are an important component of many rivers and coasts. Stickiness depends on many factors including the presence of micro-organisms, also known as biofilms. We performed a laboratory study to better understand the role of biofilms in controlling sediment transport and dynamics. We find that sand with biofilms requires significantly higher flow velocities to be mobilised compared to uncolonised sand. This will help improve predictions of sediment in response to currents and waves.
R. O. Tinoco and G. Coco
Earth Surf. Dynam., 2, 83–96, https://doi.org/10.5194/esurf-2-83-2014, https://doi.org/10.5194/esurf-2-83-2014, 2014
Cited articles
Adolph, W.: Praxistest Monitoring Küste 2008: Seegraskartierung: Gesamtbestandserfassung der eulitoralen Seegrasbestände im Niedersächsischen Wattenmeer und Bewertung nach EU-Wasserrahmenrichtlinie, NLWKN Küstengewässer und Ästuare, 2, 1–62, https://www.nlwkn.niedersachsen.de/download/54316/Seegraskartierung_Gesamtbestandserfassung_2008_....._Band_2_2010.pdf (last access: 19 April 2024), 2010.
Andersen, T. and Pejrup, M.: Biological influences on sediment behavior and transport, in: Treatise on estuarine and coastal science, vol. 2, edited by: Wolanski, E. and McLusky, D. S., Academic Press, Waltham, 289–309, https://doi.org/10.1016/B978-0-12-374711-2.00217-5, 2011.
Arlinghaus, P., Zhang, W., Wrede, A., Schrum, C., and Neumann, A.: Impact of benthos on morphodynamics from a modeling perspective, Earth-Sci. Rev., 221, 103803, https://doi.org/10.1016/j.earscirev.2021.103803, 2021.
Arlinghaus, P., Zhang, W., and Schrum, C.: Small-scale benthic faunal activities may lead to large-scale morphological change- A model based assessment, Front. Mar. Sci., 9, 1011760, https://doi.org/10.3389/fmars.2022.1011760, 2022.
Baar, A. W., Boechat Albernaz, M., van Dijk, W. M., and Kleihans, M.: Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport, Nat. Commun., 10, 4903, https://doi.org/10.1038/s41467-019-12753-x, 2019.
Backer, A., Van Colen, C., Vincx, M., and Degraer, S.: The role of biophysical interactions within the IJzermonding tidal flat sediment dynamics, Cont. Shelf Res., 30, 1166–1179, https://doi.org/10.1016/j.csr.2010.03.006, 2010.
Becker, M.: Suspended Sediment Transport and Fluid Mud Dynamics in Tidal Estuaries, PhD thesis, University of Bremen, http://nbn-resolving.de/urn:nbn:de:gbv:46-00102481-14 (last access: 19 April 2024), 2011.
Benninghoff, M. and Winter C.: Recent morphologic evolution of the German Wadden Sea, Sci. Rep.-UK, 9, 9293, https://doi.org/10.1038/s41598-019-45683-1, 2019.
Beukema, J.: Seasonal changes in the biomass of the macro-benthos of a tidal flat area in the Dutch wadden Sea, Neth. J. Sea Res., 8, 94–107, https://doi.org/10.1016/0077-7579(74)90028-3, 1974.
Beukema, J. J. and Dekker, R.: Half a century of monitoring macrobenthic animals on tidal flats in the Dutch wadden Sea, Mar. Ecol. Prog. Ser., 8, 1–18, https://doi.org/10.3354/meps13555, 2020.
Borsje, B. W., de Vries, M., Hulscher, S., and de Boer, G.: Modeling large-scale cohesive sediment transport affected by small-scale biological activity, Estuar. Coast. Shelf S., 78, 468–480, https://doi.org/10.1016/j.ecss.2008.01.009, 2008.
Braat, L., van Kessel, T., Leuven, J. R. F. W., and Kleinhans, M. G.: Effects of mud supply on large-scale estuary morphology and development over centuries to millennia, Earth Surf. Dynam., 5, 617–652, https://doi.org/10.5194/esurf-5-617-2017, 2017.
Brückner, M., Schwarz, C., Coco, G., Baar, A., Boechat Albernaz, M., and Kleinhans, M.: Benthic species as mud patrol – modelled effects of bioturbators and biofilms on large-scale estuarine mud and morphology, Earth Surf. Proc. Land., 46, 1128–1144, https://doi.org/10.1002/esp.5080, 2021.
Cai, X.: Impact of Submerged Aquatic Vegetation on Water Quality in Cache Slough Complex, Sacramento-San Joaquin Delta: a Numerical Modeling Study. Dissertations, Theses, and Masters Projects, Paper 1550153628, William & Mary, https://doi.org/10.25773/v5-8snw-1660, 2018.
Calewaert, J. B., Weaver, P., Gunn, V., Gorringe, P., adnd Novellino, A.: The European Marine Data and Observation Network (EMODnet): Your Gateway to European Marine and Coastal Data, Springer, https://doi.org/10.1007/978-3-319-32107-3_4, 2016.
Carr, J., Mariotti, G., Fahgerazzi, S., McGlathery, K., and Wiberg, P.: Exploring the Impacts of Seagrass on Coupled Marsh-Tidal Flat Morphodynamics, Front. Environ. Sci., 6, 92, https://doi.org/10.3389/fenvs.2018.00092, 2018.
Chang, V.: An on-site assessment of chlorination impoatcs on benthic macroinvertebrates, Master thesis, University of Massachusetts Amherst, https://doi.org/10.7275/20482910, 1989.
Chen, X. D., Zhang, C. K., Paterson, D. M., Thompson, C. E., Townend, I. H., Gong, Z., Zhou, Z., and Feng, Q.: Hindered erosion: The biological mediation of noncohesive sediment behavior, Water Resour. Res., 53, 4787–4801, https://doi.org/10.1002/2016WR020105, 2017.
Corenblit, D., Baas, A., Bornette, G., Darrozes, J., Delmotte, S., Francis, R., Gurnell, A., Julien, F., Naiman, R., and Steiger, J.: Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings, Earth-Sci. Rev., 106, 307–331, https://doi.org/10.1016/j.earscirev.2011.03.002, 2011.
Cozzoli, F., Gjoni, V., Del Pasqua, M., Hu, Z., Ysebaert, T., Herman, M. J. P., and Bouma, T.: A process based model of cohesive sediment resuspension under bioturbators' influence, Sci. Total Environ., 670, 18–30, https://doi.org/10.1016/j.scitotenv.2019.03.085, 2019.
Daggers, T. D., Herman, P. M., and van der Wal, D.: Seasonal and Spatial Variability in Patchiness of Microphytobenthos on Intertidal Flats From Sentinel-2 Satellite Imagery, Frontiers in Marine Science, 7, 392, https://doi.org/10.3389/fmars.2020.00392, 2020.
Desjardins, E., Van De Wiel, M., and Rousseau, Y.: Predicting, explaining and exploring with computer simulations in fluvial geomorphology, Earth-Sci. Rev., 209, 102654, https://doi.org/10.1016/j.earscirev.2018.06.015, 2018.
De Troch, M., Cnudde, C., Vyverman, W., and Vanreusel, A.: Increased production of faecal pellets by the benthic harpacticoid Paramphiascella fulvofasciata: Importance of the food source, Mar. Biol., 156, 469–477, https://doi.org/10.1007/s00227-008-1100-2, 2008.
Duong, T., Ranasinghe, R., Walstra, D. J., and Roelvink, D.: Assessing climate change impacts on the stability of small tidal inlet systems: Why and how?, Earth-Sci. Rev., 154, 369–380, https://doi.org/10.1016/j.earscirev.2015.12.001, 2016.
French, J., Payo, A., Murray, A. B., Orford, J., Eliot, M., and Cowell, P.: Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales, Geomorphology, 256, 3–16, https://doi.org/10.1016/j.geomorph.2015.10.005, 2015.
Gacia, E., Duarte, C. M., Marbà, N., Terrados, J., Kennedy, H., Fortes, M. D., and Tri, N. H.: Sediment deposition and production in SE-Asia seagrass meadows, Estuar. Coast. Shelf S., 56, 909–919, https://doi.org/10.1016/S0272-7714(02)00286-X, 2003.
Galbiati, L., Somma, F., and Zaldivar-Comenges, J. M.: Pilot River Basin Activity Report 15 Phase II: 2005–2006, EUR – Scientific and Technical Research series, 172 pp., https://doi.org/10.2788/72161, 2008.
Glud, R., Gundersen, J., Røy, H., and Jørgensen, B.: Seasonal Dynamics of Benthic O2 Uptake in a Semienclosed Bay: Importance of Diffusion and Faunal Activity, Limnol. Oceanogr., 48, 1265–1276, https://doi.org/10.4319/lo.2003.48.3.1265, 2003.
Götschenberg, A. and Kahlfeld, A.: The Jade, Kueste, 74, 263–274, 2008.
Graf, G. and Rosenberg, R.: Bioresuspension and biodeposition: a review, J. Marine Syst., 11, 269–278, https://doi.org/10.1016/S0924-7963(96)00126-1, 1997.
Grant, J. and Daborn, G.: The effects of bioturbation on sediment transport on an intertidal mudflat, Neth. J. Sea Res., 32, 63–72, https://doi.org/10.1016/0077-7579(94)90028-0, 1994.
Haas, T., Pierik, H., Van der Spek, A. J. F., Cohen, K., van Maanen, B., and Kleinhans, M.: Holocene evolution of tidal systems in The Netherlands: Effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference, Earth-Sci. Rev., 177, 139–163, https://doi.org/10.1016/j.earscirev.2017.10.006, 2018.
Jone, S. C., Lawton, J. H., and Shachak, M.: Organisms as Ecosystem Engineers, Ecosystem Management, Springer, https://doi.org/10.1007/978-1-4612-4018-1_14, 1994.
Kahlfeld, A. and Schüttrumpf, H.: UnTRIM modelling for investigating environmental impacts caused by a new container terminal within the Jade-Weser Estuary, German Bight, in: Proceedings of the Seventh International Conference on Hydroscience and Engineering, 18 April 2007 https://researchdiscovery.drexel.edu/esploro/outputs/991014632386204721 (last access: 19. April 2024), 2006.
Knaapen, M., Holzhauer, H., Hulscher, S. J. M. H., Baptist, M. J., de Vries, M., and van Ledden, M.: On the modelling of biological effects on morphology in estuaries and seas, in: Sánchez-Arcilla, A. and Bateman, A., RCEM 2003, Proceedings of the Third IAHR Symposium on River, Coastal and Estuarine Morphodynamics, IHAR, 773–783, https://research.utwente.nl/en/publications/on-the-modelling-of-biological-effects-on-morphology-in (last access: 22 April 2024), 2003.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Organo Quintana, C., and Banta, G.: What is bioturbation? Need for a precise definition for fauna in aquatic science, Mar. Ecol. Prog. Ser., 446, 285–302, https://doi.org/10.3354/meps09506, 2012.
Lang, G.: Ein Beitrag zur Tidedynamik der Innenjade und des Jadebusens, Mitteilungsblatt der Bundesanstalt für Wasserbau, Nr. 86, Karlsruhe, https://izw.baw.de/publikationen/mitteilungsblaetter/0/lang_jade.pdf (last access: 19 April 2024), 2003.
Larsen, L., Eppinga, M., Passalacqua, P., Getz, W., Rose, K., and Liang, M.: Appropriate complexity landscape modeling, Earth-Sci. Rev., 160, 111–130, https://doi.org/10.1016/j.earscirev.2016.06.016, 2016.
Le Hir, P., Monbet, Y., and Orvain, F.: Sediment erodability in sediment transport modelling: can we account for biota effects?, Cont. Shelf Res., 27, 1116–1142, https://doi.org/10.1016/j.csr.2005.11.016, 2007.
Levin, L., Boesch, D., Covich, A., Dahm, C., Erséus, C., Ewel, K., Kneib, R., Moldenke, A., Palmer, M., Snelgrove, P., Strayer, D., and Weslawski J.: The function of marine critical transition zones and the importance of sediment biodiversity, Ecosystems, 4, 430–451, https://doi.org/10.1007/s10021-001-0021-4, 2001.
Lindqvist, S., Engelbrektsson, J., Eriksson, S. P., and Hulth, S.: Functional classification of bioturbating macrofauna in marine sediments using time-resolved imaging of particle displacement and multivariate analysis, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2016-411, 2016.
Linke, O.: Die Biota des Jadebusenwattes, Helgoland. Wiss. Meer., 1, 201–348, https://doi.org/10.1007/BF02242420, 1939.
Luan, J., Zhang, C., Xu, B., Xue, Y., and Ren, Y.: The predictive performances of random forest models with limited sample size and different species traits, Fish. Res., 227, 105534, https://doi.org/10.1016/j.fishres.2020.105534, 2020.
Lumborg, U., Andersen, T., and Pejrup, M.: The effect of Hydrobia ulvae and microphytobenthos on cohesive sediment dynamics on an intertidal mudflat described by means of numerical modelling, Estuar. Coast. Shelf S., 68, 208–220, https://doi.org/10.1016/j.ecss.2005.11.039, 2006.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A.: The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics, J. Geophys. Res.-Earth, 115, F04004, https://doi.org/10.1029/2009JF001600, 2010.
Meadows, P., Meadows, A., and Murray, J.: Biological modifiers of marine benthic seascapes: Their role as ecosystem engineers, Geomorphology, 157, 31–48, https://doi.org/10.1016/j.geomorph.2011.07.007, 2012.
Meyer, C. and Ragutski, G.: Forschungsbericht 21/1999 – KFKI Forschungsvorhaben Sedimentverteilung als Indikator für morphodynamische Prozesse MTK 0591, NLWKN Niedersachsen, https://izw.baw.de/publikationen/kfki-projekte-berichte/0/048_2_1_e33603.pdf (last access: 19 April 2024), 1999.
Meyer, J., Nehmer, P., and Kröncke, I.: Shifting south-eastern North Sea macrofauna bioturbation potential over the past three decades: A response to increasing SST and regionally decreasing food supply, Mar. Ecol. Prog. Ser., 609, 17–32, 2019.
Meysman, F., Middelburg, J., and Heip, C.: Bioturbation: a fresh look at Darwin's last idea, Trends Ecol. Evol., 21, 688–695, https://doi.org/10.1016/j.tree.2006.08.002, 2007.
Mitsch, W. J. and Gosselink, J. G.: Wetlands, John Wiley & Sons, New York, 582 pp., ISBN 978-1-118-67682-0, 2007.
Mohr, V.: Modeling the Impact of Seahrass on Coastal Morphodynamics in a Tidal Basin, Master thesis, University of Hamburg, 2022.
Montserrat, F., Van Colen, C., Degraer, S., Ysebaert, T., and Herman, P.: Benthic community-mediated sediment dynamics, Mar. Ecol. Prog. Ser., 372, 43–59, https://doi.org/10.3354/meps07769, 2008.
Murray, A. B., Knaapen, M., Tal, M., and Kirwan, M.: Biomorphodynamics: Physical-biological feedbacks that shape landscapes, Water Resour. Res., 44, W11301, https://doi.org/10.1029/2007WR006410, 2008.
Nasermoaddeli, M. H., Lemmen, C., Koesters, F., Stigge, G., Kerimoglu, O., Burchard, H., Klingbeil, K., Hofmeister, R., Kreus, M., and Wirtz, K.: A model study on the large-scale effect of macrofauna on the suspended sediment concentration in a shallow shelf sea, Estuar. Coast. Shelf S., 211, 62–76, https://doi.org/10.1016/j.ecss.2017.11.002, 2017.
Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, Validation, and Confirmation of Numerical Models in the Earth Science, Science, 263, 641–646, https://doi.org/10.1126/science.263.5147.641, 1994.
Orvain, F.: Modelisation de la bioturbation et de ses consequences sur les flux de remise en suspension des sediments cohesifs de la Baie de Marennes-Oleron, PhD thesis (unpublished), Universite de La Rochelle, France, 192 pp., https://theses.fr/2002LAROS092 (last access: 19 April 2024), 2002.
Paarlberg, A. J., Knaapen, M., de Vries, M., Hulscher, S., and Wang, Z. B.: Biological influences on morphology and bed composition of an intertidal flat, Estuar. Coast. Shelf S., 64, 577–590, https://doi.org/10.1016/j.ecss.2005.04.008, 2005.
Pianosi, F., Beven, K., Freer, J., Hall, J., Rougier, J., Stephenson, D., and Wagener, T.: Sensitivity analysis of environmental models: A systematic review with practical workflow, Environ. Modell. Softw., 79, 214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016.
Pinto, L., Fortunato, A., Zhang, Y., Oliveira, A., and Sancho, F.: Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments, Ocean Model., 57–58, 1–14, https://doi.org/10.1016/j.ocemod.2012.08.005, 2012.
Plater, A. J. and Kirby, J. R.: 3.03 – Sea-Level Change and Coastal Geomorphic Response, Treatise on Estuarine and Coastal Science, 3, 39–72, https://doi.org/10.1016/B978-0-12-374711-2.00304-1, 2011.
Pleskachevsky, A., Gayer, G., Horstmann, J., and Rosenthal, W.: Synergy of satellite remote sensing and numerical modelling for monitoring of suspended particulate matter, Ocean Dynam., 55, 2–9, 2005.
Potouroglou, M., Bull, J. C., Krauss, K. W., Kennedy, A. H., Fusi, M., Daffonchio, D., Mangora, M. M., Githaiga, M., Diele, K., and Huxham, M.: Measuring the role of seagrasses in regulating sediment surface elevation, Sci. Rep.-UK, 7, 11917, https://doi.org/10.1038/s41598-017-12354-y, 2017.
Queirós, A., Birchenough, S., Bremner, J., Godbold, J., Parker, R., Romero-Ramirez, A., Reiss, H., Solan, M., Somerfield, P., Van Colen, C., Van Hoey, G., and Widdicombe, S.: A bioturbation classification of European marine infaunal invertebrates, Ecol. Evol., 3, 3958–3985, 2013.
Reeves, I. R. B., Moore, L. J., Goldstein, E. B., Murray, A. B., Carr, J. A., and Kirwan, M. L.: Impacts of seagrass dynamics on the coupled long-term evolution of barrier-marsh-bay systems, J. Geophys. Res.-Biogeo., 125, e2019JG005416, https://doi.org/10.1029/2019JG005416, 2020.
Reineck, H. E. and Singh, I.: Primary sedimentary structures in the recent sediments of the Jade, North Sea, Mar. Geol., 5, 227–235, 1967.
Reinhardt, L., Jerolmack, D., Cardinale, B., Vanacker, V., and Wright, J.: Dynamic Interactions of Life and its Landscape: Feedbacks at the Interface of Geomorphology and Ecology, Earth Surf. Proc. Land., 35, 78–101, https://doi.org/10.1002/esp.1912, 2010.
Reise, K., Herre, E., and Sturm, M.: Biomass and abundance of macrofauna in intertidal sediments of königshafen in the northern wadden Sea, Helgolander Meeresun., 48, 201–215, https://doi.org/10.1007/BF02367036, 1994.
Renaud, P., Niemi, A., Michel, C., Morata, N., Gosselin, M., Juul-Pedersen, T., and Chiuchiolo, A.: Seasonal variation in benthic community oxygen demand: A response to an ice algal bloom in the Beaufort Sea, Canadian Arctic?, J. Marine Syst., 67, 1–12, https://doi.org/10.1016/j.jmarsys.2006.07.006, 2007.
Ritzmann, A. and Baumberg, V.: Forschungsbericht 02/2013 – Oberflächensedimente des Jadebusens 2009: Kartierung anhand von Luftbildern und Bodenproben, NLWKN Niedersachsen, https://www.nlwkn.niedersachsen.de/startseite/wasserwirtschaft/nordseekuste/forschungsstelle_kuste/morphologie/morphologie-38801.html (last access: 19 April 2024), 2013.
Schückel, U. and Kröncke, I.: Temporal changes in intertidal macrofauna communities over eight decades: A result of eutrophication and climate change, Estuar. Coast. Shelf S., 117, 210–218, https://doi.org/10.1016/j.ecss.2012.11.008, 2013.
Schückel, U., Beck, M., and Kröncke, I.: Spatial distribution and structuring factors of subtidal macrofauna communities in the Wadden Sea (Jade Bay), Mar. Biodivers., 45, 841–855, 2015a.
Schückel, U., Krönke, I., and Baird, D.: Linking long-term changes in trophic structure and function of an intertidal macrobenthic system to eutrophication and climate change using ecological network analysis, Mar. Ecol. Prog. Ser., 536, 25–38, https://doi.org/10.3354/meps11391, 2015b.
Schuurman, F., Marra, W. A., and Kleinhans, M. G.: Physics-based modeling of large braided sand-bed rivers: bar pattern formation, dynamics, and sensitivity. J. Geophys. Res.-Earth, 118, 2509–2527, 2013.
Serrano, O., Arias-Ortiz, A., Duarte, C. M., Kendrick, G. A., and Lavery, P. S.: Impact of Marine Heatwaves on Seagrass Ecosystems, in: Ecosystem Collapse and Climate Change, Ecological Studies, vol. 241, edited by: Canadell, J. G. and Jackson, R. B., Springer, Cham, https://doi.org/10.1007/978-3-030-71330-0_13, 2021.
Sievers, J., Rubel, M., and Milbradt, P.: EasyGSH-DB: Bathymetrie (1996–2016), Bundesanstalt für Wasserbau [data set], https://doi.org/10.48437/02.2020.K2.7000.0002, 2020.
Singer, A., Schückel, U., Beck, M., Bleich, O., Brumsack, H., Freund, H., Geimecke, C., Lettmann, K., Millat, G., Staneva, J., Vanselow, A., Westphal, H., Wolff, J., Wurpts, A., and Kröncke, I.: Small-scale benthos distribution modelling in a North Sea tidal basin in response to climatic and environmental changes (1970s–2009), Mar. Ecol. Prog. Ser., 551, 13–30, https://doi.org/10.3354/meps11756, 2016.
Skinner, C., Coulthard, T., Schwanghart, W., Van De Wiel, M., and Hancock, G.: Global sensitivity analysis of parameter uncertainty in landscape evolution models, Universität Potsdam, https://doi.org/10.25932/publishup-46801, 2018.
Smith, C. R., Pope, R. H., DeMaster, D. J., and Magaard, L.: Age-dependent mixing of deep-sea sediments, Geochim. Cosmochim. Ac., 57, 1473–1488, 1993.
Stal, L.: Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization, Ecol. Eng., 36, 236–245, https://doi.org/10.1016/j.ecoleng.2008.12.032, 2010.
Svenson, C., Ernstsen, V., Winter, C., Bartholomä, A., and Hebbeln, D.: Tide-driven Sediment Variations on a Large Compound Dune in the Jade Tidal Inlet Channel, Southeastern North Sea, J. Coastal Res., 56, 361–365, 2009.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical turbulence models, J. Mar. Res., 61, 235–265, 2003.
US Army Corps of Engineers: Development of a Suspension Feeding and Deposit Feeding Benthos Model For Chesapeake Bay, https://www.chesapeakebay.net/what/publications/development-of-a-suspension-feeding-and-deposit-feeding (last access: 19 April 2024) 2000.
Van Colen, C., Underwood, G., Serôdio, J., and Paterson, D.: Ecology of intertidal microbial biofilms: Mechanisms, patterns and future research needs, J. Sea Res., 92, 2–5, https://doi.org/10.1016/j.seares.2014.07.003, 2014.
Van der Wegen, M. and Roelvink, J. A.: Reproduction of estuarine bathymetry by means of a process-based model: Western Scheldt case study, the Netherlands, Geomorphology, 179, 152–167, 2012.
Volkenborn, N. and Reise, K.: Lugworm exclusion experiment: Responses by deposit feeding worms to biogenic habitat transformations, J. Exp. Mar. Biol. Ecol., 330, 169–179, 2006.
Volkenborn, N., Robertson, D. M., and Reise, K.: Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion, Helgoland Mar. Res., 63, 27–35, https://doi.org/10.1007/s10152-008-0140-9, 2009.
Von Seggern, F.: Bestandsaufnahme in der Jade, Hydrologische Untersuchungen, Wasserwirschaftsamt, Wilhelmshaven, p. 42, 1980.
Waeles, B., Hir, P., and Silva Jacinto, R.: Modélisation morphodynamique cross-shore d'un estran vaseux, C. R. Geosci., 336, 1025–1033, https://doi.org/10.1016/j.crte.2004.03.011, 2004.
Waldock, C., Stuart-Smith, R., Albouy, C., Cheung, W., Edgar, G., Mouillot, D., Tjiputra, J., and Pellissier, L.: A quantitative review of abundance-based species distribution models, CSH, https://doi.org/10.1101/2021.05.25.445591, 2021.
Walter, R. K., O'Leary, J. K., Vitousek, S., Taherkhani, M., Geraghty, C., and Kitajima, A.: Large-scale erosion driven by intertidal eelgrass loss in an estuarine environment, Estuar. Coast. Shelf S., 243, 106910, https://doi.org/10.1016/j.ecss.2020.106910, 2020.
Wang, C., Li, Q., Ge, F., Hu, Z., He, P., Chen, D., Xu, D., Wang, P., Zhang, Y., Zhang, L., Wu, Z., and Zhou, Q.: Responses of aquatic organisms downstream from WWTPs to disinfectants and their by-products during the COVID-19 pandemic, Wuhan, Sci. Total Environ., 818, 151711, https://doi.org/10.1016/j.scitotenv.2021.151711, 2022.
Weinert, M., Kröncke, I., Meyer, J., Mathis, M., Pohlmann, T., and Reiss, H.: Benthic ecosystem functioning under climate change: Modelling the bioturbation potential for benthic key species in the North Sea, PeerJ, 10, e14105, https://doi.org/10.7717/peerj.14105, 2022.
Widdows, J. and Brinsley, M.: Impact of biotic and abiotic processes on sediment dynamics and the consequence to the structure and functioning of the intertidal zone, J. Sea Res., 48, 143–156, https://doi.org/10.1016/S1385-1101(02)00148-X, 2002.
Wood, R. and Widdows, J.: A model of sediment transport over an intertidal transect, comparing the influences of biological and physical factors, Limnol. Oceanogr., 47, 848–855, https://doi.org/10.4319/lo.2002.47.3.0848, 2002.
Wrede, A., Dannheim, J., Gutow, L., and Brey, T.: Who really matters: influence of German Bight key bioturbators on biogeochemical cycling and sediment turnover, J. Exp. Mar. Biol. Ecol., 488, 92–101, https://doi.org/10.1016/j.jembe.2017.01.001, 2017.
WSV – Waterways and Shipping Authority Wilhelmshaven: Tide Gauge; WilhelmshavenTG, https://emodnet.ec.europa.eu/geoviewer/ (last access: 1 April 2023), 2023.
Zarnetske, P., Baiser, B., Strecker, A., Record, S., Belmaker, J., and Tuanmu, M. N.: The Interplay Between Landscape Structure and Biotic Interactions, Current Landscape Ecology Reports, 2, 12–29, https://doi.org/10.1007/s40823-017-0021-5, 2017.
Zhang, W., Schneider, R., and Harff, J.: A multi-scale hybrid long-term morphodynamic model for wave-dominated coasts, Geomorphology, 149/150, 49–61, https://doi.org/10.1016/j.geomorph.2012.01.019, 2012.
Zhang, W., Schneider, R., Kolb, J., Teichmann, T., Dudzinska-Nowak, J., Harff, J., and Hanebuth, T.: Land-sea interaction and morphogenesis of coastal foredunes – a modelling case study from the southern Baltic Sea coast, Coast. Eng., 99, 148–166, https://doi.org/10.1016/j.coastaleng.2015.03.005, 2015.
Zhang, Y. and Baptista, A.: SELFE: a Semi-implicit Eulerian-Lagrangian Finite-Element model for cross-scale ocean circulation, Ocean Model., 21, 71–96, https://doi.org/10.1016/j.ocemod.2007.11.005, 2008.
Zhang, Y., Ye, F., Stanev, E., and Grashorn, S.: Seamless cross-scale modelling with SCHISM, Ocean Model., 102, 64–81, https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Short summary
Benthos is recognized to strongly influence sediment stability, deposition, and erosion. This is well studied on small scales, but large-scale impact on morphological change is largely unknown. We quantify the large-scale impact of benthos by modeling the evolution of a tidal basin. Results indicate a profound impact of benthos by redistributing sediments on large scales. As confirmed by measurements, including benthos significantly improves model results compared to an abiotic scenario.
Benthos is recognized to strongly influence sediment stability, deposition, and erosion. This is...