Articles | Volume 12, issue 4
https://doi.org/10.5194/esurf-12-929-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-12-929-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MPeat2D – a fully coupled mechanical–ecohydrological model of peatland development in two dimensions
Adilan W. Mahdiyasa
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung 40132, Indonesia
David J. Large
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Matteo Icardi
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
Bagus P. Muljadi
Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Related authors
No articles found.
Andrew V. Bradley, Roxane Andersen, Chris Marshall, Andrew Sowter, and David J. Large
Earth Surf. Dynam., 10, 261–277, https://doi.org/10.5194/esurf-10-261-2022, https://doi.org/10.5194/esurf-10-261-2022, 2022
Short summary
Short summary
The condition of peatland largely determines its capacity to store carbon, but peatland condition is not accurately known. Combining the knowledge of management, vegetation, and detecting differences in seasonal surface movement from satellite radar data, we map peat condition. In a blanket bog landscape we discovered the presence of wetter and dryer conditions, which could help guide restoration decisions, and we conclude that this approach could be transferred peat management worldwide.
Related subject area
Cross-cutting themes: Complex systems in Earth surface processes: nonlinear system dynamics and chaos, self-organisation, self-organised criticality
The direction of landscape erosion
Impacts of grazing on vegetation dynamics in a sediment transport complex model
Data-driven components in a model of inner-shelf sorted bedforms: a new hybrid model
Colin P. Stark and Gavin J. Stark
Earth Surf. Dynam., 10, 383–419, https://doi.org/10.5194/esurf-10-383-2022, https://doi.org/10.5194/esurf-10-383-2022, 2022
Short summary
Short summary
Landscape erosion is generally considered to take place vertically downward. Here, by writing gradient-driven erosion in Hamiltonian form, we show this is not true. Instead, we find it takes place in two directions simultaneously: (i) normal to the surface and (ii) along rays pointing upstream and either up or down depending on how erosion rate scales with slope. The rays follow the shortest time paths that determine how long it takes for a landscape to respond to changes in external conditions.
Phillipe Gauvin-Bourdon, James King, and Liliana Perez
Earth Surf. Dynam., 9, 29–45, https://doi.org/10.5194/esurf-9-29-2021, https://doi.org/10.5194/esurf-9-29-2021, 2021
Short summary
Short summary
Arid ecosystem health is a complex interaction between vegetation and climate. Coupled with impacts from grazing, it can result in quick changes in vegetation cover. We present a wind erosion and vegetation health model with active grazers over 100-year tests to find the limits of arid environments for different levels of vegetation, rainfall, wind speed, and grazing. The model shows the resilience of grass landscapes to grazing and its role as an improved tool for managing arid landscapes.
E. B. Goldstein, G. Coco, A. B. Murray, and M. O. Green
Earth Surf. Dynam., 2, 67–82, https://doi.org/10.5194/esurf-2-67-2014, https://doi.org/10.5194/esurf-2-67-2014, 2014
Cited articles
Aaby, B. and Tauber, H.: Rates of peat formation in relation to degree of humification and local environment, as shown by studies of a raised bog in Deninark, Boreas, 4, 1–17, https://doi.org/10.1111/j.1502-3885.1975.tb00675.x, 1975.
Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., and Roegiers, J.-C.: Mandel's problem revisited, Géotechnique, 46, 187–195, https://doi.org/10.1680/geot.1996.46.2.187, 1996.
Anderson, R. L., Foster, D. R., and Motzkin, G.: Integrating lateral expansion into models of peatland development in temperate New England, J. Ecol., 91, 68–76, https://doi.org/10.1046/j.1365-2745.2003.00740.x, 2003.
Armstrong, A. C.: Hydrological model of peat-mound form with vertically varying hydraulic conductivity, Earth Surf. Proc. Land., 20, 473–477, https://doi.org/10.1002/esp.3290200508, 1995.
Baird, A. J. and Waldron, S.: Shallow horizontal groundwater flow in peatlands is reduced by bacteriogenic gas production, Geophys. Res. Lett., 30, 1–4, https://doi.org/10.1029/2003GL018233, 2003.
Baird, A. J., Eades, P. A., and Surridge, B. W. J.: The hydraulic structure of a raised bog and its implications for ecohydrological modelling of bog development, Ecohydrology, 1, 289–298, https://doi.org/10.1002/eco.33, 2008.
Baird, A. J., Morris, P. J., and Belyea, L. R.: The DigiBog peatland development model 1: rationale, conceptual model, and hydrological basis, Ecohydrology, 5, 242–255, https://doi.org/10.1002/eco.230, 2012.
Baird, A. J., Milner, A. M., Blundell, A., Swindles, G. T., and Morris, P. J.: Microform-scale variations in peatland permeability and their ecohydrological implications, J. Ecol., 104, 531–544, https://doi.org/10.1111/1365-2745.12530, 2016.
Baird, A. J., Low, R., Young, D., Swindles, G. T., Lopez, O. R., and Page, S.: High permeability explains the vulnerability of the carbon store in drained tropical peatlands, Geophys. Res. Lett., 44, 1333–1339, https://doi.org/10.1002/2016GL072245, 2017.
Ballard, C. E., McIntyre, N., Wheater, H. S., Holden, J., and Wallage, Z. E.: Hydrological modelling of drained blanket peatland, J. Hydrol., 407, 81–93, https://doi.org/10.1016/j.jhydrol.2011.07.005, 2011.
Bartlett, M. S. and Porporato, A.: A Class of Exact Solutions of the Boussinesq Equation for Horizontal and Sloping Aquifers, Water Resour. Res., 54, 767–778, https://doi.org/10.1002/2017WR022056, 2018.
Beckwith, C. W. and Baird, A. J.: Effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat, Water Resour. Res., 37, 551–558, https://doi.org/10.1029/2000WR900303, 2001.
Béguin, C., Brunetti, M., and Kasparian, J.: Quantitative analysis of self-organized patterns in ombrotrophic peatlands, Sci. Rep.-UK, 9, 1499, https://doi.org/10.1038/s41598-018-37736-8, 2019.
Belyea, L. R. and Clymo, R. S.: Feedback control of the rate of peat formation, P. Roy. Soc. Lond. B Bio., 268, 1315–1321, https://doi.org/10.1098/rspb.2001.1665, 2001.
Biot, M. A.: General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164, https://doi.org/10.1063/1.1712886, 1941.
Borren, W. and Bleuten, W.: Simulating Holocene carbon accumulation in a western Siberian watershed mire using a three-dimensional dynamic modeling approach, Water Resour. Res., 42, 1–13, https://doi.org/10.1029/2006WR004885, 2006.
Bourgault, M.-A., Larocque, M., and Garneau, M.: Quantification of peatland water storage capacity using the water table fluctuation method, Hydrol. Process., 31, 1184–1195, https://doi.org/10.1002/hyp.11116, 2017.
Boussinesq, J.: Théorie de l'intumescence liquide, applelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, Comptes Rendus de l'Académie des Sciences, 72, 755–759, 1871.
Boylan, N., Jennings, P., and Long, M.: Peat slope failure in Ireland, Q. J. Eng. Geol. Hydroge., 41, 93–108, https://doi.org/10.1144/1470-9236/06-028, 2008.
Briggs, J., Large, D. J., Snape, C., Drage, T., Whittles, D., Cooper, M., Macquaker, J. H. S., and Spiro, B. F.: Influence of climate and hydrology on carbon in an early Miocene peatland, Earth Planet. Sc. Lett., 253, 445–454, https://doi.org/10.1016/j.epsl.2006.11.010, 2007.
Charman, D.: Peatlands and Environmental Change, John Wiley and Sons Ltd., Chichester, 301 pp., ISBN 978-0-470-84410-6, 2002.
Cheng, A. H. D.: A linear constitutive model for unsaturated poroelasticity by micromechanical analysis, Int. J. Numer. Anal. Met., 44, 455–483, https://doi.org/10.1002/nag.3033, 2020.
Cheng, A. H. D. and Detournay, E.: A direct boundary element method for plane strain poroelasticity, Int. J. Numer. Anal. Met., 12, 551–572, https://doi.org/10.1002/nag.1610120508, 1988.
Clymo, R. S.: The limits to peat bog growth, Philos. T. Roy. Soc. B, 303, 605–654, https://doi.org/10.1098/rstb.1984.0002, 1984.
Clymo, R. S.: Hydraulic conductivity of peat at Ellergower Moss, Scotland, Hydrol. Process., 18, 261–274, https://doi.org/10.1002/hyp.1374, 2004.
Clymo, R. S., Turunen, J., and Tolonen, K.: Carbon Accumulation in Peatland, Oikos, 81, 368–388, https://doi.org/10.2307/3547057, 1998.
Cobb, A. R., Hoyt, A. M., Gandois, L., Eri, J., Dommain, R., Abu Salim, K., Kai, F. M., Haji Su'ut, N. S., and Harvey, C. F.: How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands, P. Natl. Acad. Sci. USA, 114, E5187–E5196, https://doi.org/10.1073/pnas.1701090114, 2017.
Cobb, A. R., Dommain, R., Yeap, K., Hannan, C., Dadap, N. C., Bookhagen, B., Glaser, P. H., and Harvey, C. F.: A unified explanation for the morphology of raised peatlands, Nature, 625, 79–84, https://doi.org/10.1038/s41586-023-06807-w, 2024.
Coussy, O.: Poromechanics, John Wiley & Sons Ltd, Chichester, UK, 320 pp., ISBN 978-0-470-84920-0, 2004.
de Boer, R.: Theory of Porous Media, Springer, Berlin, Heidelberg, Germany, https://doi.org/10.1007/978-3-642-59637-7, 2000.
Detournay, E. and Cheng, A. H. D.: Fundamentals of Poroelasticity, in: Analysis and Design Methods, edited by: Fairhurst, C., Pergamon, Oxford, 113–171, https://doi.org/10.1016/B978-0-08-040615-2.50011-3, 1993.
Dykes, A. P.: Tensile strength of peat: laboratory measurement and role in Irish blanket bog failures, Landslides, 5, 417–429, https://doi.org/10.1007/s10346-008-0136-1, 2008.
Dykes, A. P.: Recent peat slide in Co. Antrim extends the known range of weak basal peat across Ireland, Environmental Geotechnics, 9, 22–35, https://doi.org/10.1680/jenge.17.00088, 2022.
Dykes, A. P. and Selkirk-Bell, J. M.: Landslides in blanket peat on subantarctic islands: causes, characteristics and global significance, Geomorphology, 124, 215–228, https://doi.org/10.1016/j.geomorph.2010.09.002, 2010.
Dykes, A. P. and Warburton, J.: Failure of peat-covered hillslopes at Dooncarton Mountain, Co. Mayo, Ireland: analysis of topographic and geotechnical factors, CATENA, 72, 129–145, https://doi.org/10.1016/j.catena.2007.04.008, 2008.
Edelsbrunner, H.: Geometry and Topology for Mesh Generation, Cambridge University Press, Cambridge, United Kingdom, 177 pp., ISBN 9780511530067, 2001.
Eppinga, M. B., Rietkerk, M., Borren, W., Lapshina, E. D., Bleuten, W., and Wassen, M. J.: Regular Surface Patterning of Peatlands: Confronting Theory with Field Data, Ecosystems, 11, 520–536, https://doi.org/10.1007/s10021-008-9138-z, 2008.
Eppinga, M. B., Rietkerk, M., Wassen, M. J., and De Ruiter, P. C.: Linking Habitat Modification to Catastrophic Shifts and Vegetation Patterns in Bogs, Plant Ecol., 200, 53–68, https://doi.org/10.1007/s11258-007-9309-6, 2009.
Evans, M. and Warburton, J.: Geomorphology of Upland Peat: Erosion, Form and Landscape Change, Wiley-Blackwell, 288 pp., ISBN 978-1-405-11507-0, 2007.
Evans, C. D., Peacock, M., Baird, A. J., Artz, R. R. E., Burden, A., Callaghan, N., Chapman, P. J., Cooper, H. M., Coyle, M., Craig, E., Cumming, A., Dixon, S., Gauci, V., Grayson, R. P., Helfter, C., Heppell, C. M., Holden, J., Jones, D. L., Kaduk, J., Levy, P., Matthews, R., McNamara, N. P., Misselbrook, T., Oakley, S., Page, S. E., Rayment, M., Ridley, L. M., Stanley, K. M., Williamson, J. L., Worrall, F., and Morrison, R.: Overriding water table control on managed peatland greenhouse gas emissions, Nature, 593, 548–552, https://doi.org/10.1038/s41586-021-03523-1, 2021.
Frey, J. F. and George, P. L.: Mesh Generation: Application to Finite Elements, Hermes Science Publishing, Paris, 814 pp., ISBN 1903398002, 2000.
Fraser, C. J. D., Roulet, N. T., and Moore, T. R.: Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog, Hydrol. Process., 15, 3151–3166, https://doi.org/10.1002/hyp.322, 2001.
Gawlik, E. S. and Lew, A. J.: Unified Analysis of Finite Element Methods for Problems with Moving Boundaries, SIAM J. Numer. Anal., 53, 2822–2846, https://doi.org/10.1137/140990437, 2015.
Glaser, P. H., Hansen, B. C. S., Siegel, D. I., Reeve, A. S., and Morin, P. J.: Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada, J. Ecol., 92, 1036–1053, https://doi.org/10.1111/j.0022-0477.2004.00931.x, 2004.
Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Rowland, A. P., Ostle, N. J., and Flowers, T. H.: Abiotic drivers and their interactive effect on the flux and carbon isotope (14C and δ13C) composition of peat-respired CO2, Soil Biol. Biochem., 43, 2432–2440, https://doi.org/10.1016/j.soilbio.2011.08.010, 2011.
Hoag, R. S. and Price, J. S.: A field-scale, natural gradient solute transport experiment in peat at a Newfoundland blanket bog, J. Hydrol., 172, 171–184, https://doi.org/10.1016/0022-1694(95)02696-M, 1995.
Hoag, R. S. and Price, J. S.: The effects of matrix diffusion on solute transport and retardation in undisturbed peat in laboratory columns, J. Contam. Hydrol., 28, 193–205, https://doi.org/10.1016/S0169-7722(96)00085-X, 1997.
Hogan, J. M., van der Kamp, G., Barbour, S. L., and Schmidt, R.: Field methods for measuring hydraulic properties of peat deposits, Hydrol. Process., 20, 3635–3649, https://doi.org/10.1002/hyp.6379, 2006.
Huang, Y., Ciais, P., Luo, Y., Zhu, D., Wang, Y., Qiu, C., Goll, D. S., Guenet, B., Makowski, D., De Graaf, I., Leifeld, J., Kwon, M. J., Hu, J., and Qu, L.: Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown, Nat. Clim. Change, 11, 618–622, https://doi.org/10.1038/s41558-021-01059-w, 2021.
Ingram, H. A. P.: Size and shape in raised mire ecosystems: a geophysical model, Nature, 297, 300–303, https://doi.org/10.1038/297300a0, 1982.
Irgens, F.: Continuum Mechanics, Springer-Verlag Berlin, Heidelberg, 661 pp., https://doi.org/10.1007/978-3-540-74298-2, 2008.
Jha, B. and Juanes, R.: Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 50, 3776–3808, https://doi.org/10.1002/2013WR015175, 2014.
Jog, C. S.: Continuum Mechanics: Volume 1: Foundations and Applications of Mechanics 3rd edn, Cambridge University Press, Cambridge, 873 pp., ISBN 1107091357, 2015.
Kellner, E., Price, J. S., and Waddington, J. M.: Pressure variations in peat as a result of gas bubble dynamics, Hydrol. Process., 18, 2599–2605, https://doi.org/10.1002/hyp.5650, 2004.
Kettridge, N., Turetsky, M. R., Sherwood, J. H., Thompson, D. K., Miller, C. A., Benscoter, B. W., Flannigan, M. D., Wotton, B. M., and Waddington, J. M.: Moderate drop in water table increases peatland vulnerability to post-fire regime shift, Sci. Rep.-UK, 5, 8063, https://doi.org/10.1038/srep08063, 2015.
Kokkonen, N. A. K., Laine, A. M., Laine, J., Vasander, H., Kurki, K., Gong, J., and Tuittila, E.-S.: Responses of peatland vegetation to 15 year water level drawdown as mediated by fertility level, J. Veg. Sci., 30, 1206–1216, https://doi.org/10.1111/jvs.12794, 2019.
Korhola, A., Alm, J., Tolonen, K., Turunen, J., and Jungner, H.: Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millennia in a raised mire, J. Quaternary Sci., 11, 161–165, https://doi.org/10.1002/(SICI)1099-1417(199603/04)11:2<161::AID-JQS248>3.0.CO;2-J, 1996.
Kurzeja, P. and Steeb, H.: Acoustic waves in saturated porous media with gas bubbles, Philos. T. Roy. Soc. A, 380, 20210370, https://doi.org/10.1098/rsta.2021.0370, 2022.
Kværner, J. and Snilsberg, P.: Groundwater hydrology of boreal peatlands above a bedrock tunnel – Drainage impacts and surface water groundwater interactions, J. Hydrol., 403, 278–291, https://doi.org/10.1016/j.jhydrol.2011.04.006, 2011.
Laine, A. M., Korrensalo, A., Kokkonen, N. A. K., and Tuittila, E.-S.: Impact of long-term water level drawdown on functional plant trait composition of northern peatlands, Funct. Ecol., 35, 2342–2357, https://doi.org/10.1111/1365-2435.13883, 2021.
Lapen, D. R., Price, J. S., and Gilbert, R.: Modelling two-dimensional steady-state groundwater flow and flow sensitivity to boundary conditions in blanket peat complexes, Hydrol. Process., 19, 371–386, https://doi.org/10.1002/hyp.1507, 2005.
Large, D. J., Marshall, C., Jochmann, M., Jensen, M., Spiro, B. F., and Olaussen, S.: Time, Hydrologic Landscape, and the Long-Term Storage of Peatland Carbon in Sedimentary Basins, J. Geophys. Res.-Earth, 126, e2020JF005762, https://doi.org/10.1029/2020JF005762, 2021.
Lewis, C., Albertson, J., Xu, X., and Kiely, G.: Spatial variability of hydraulic conductivity and bulk density along a blanket peatland hillslope, Hydrol. Process., 26, 1527–1537, https://doi.org/10.1002/hyp.8252, 2012.
Lieth, H.: Modeling the Primary Productivity of the World, in: Primary Productivity of the Biosphere, edited by: Lieth, H. and Whittaker, R. H., Springer Berlin Heidelberg, Berlin, Heidelberg, 237–263, https://doi.org/10.1007/978-3-642-80913-2_12, 1975.
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R., Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M., Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C., Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz, M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M., Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R., Nichols, J., O'Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard, P. J., Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai, C., Thom, T., Tuittila, E.-S., Turetsky, M., Väliranta, M., van der Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and Zhou, W.: A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation, Holocene, 24, 1028–1042, https://doi.org/10.1177/0959683614538073, 2014.
Long, M.: Review of peat strength, peat characterisation and constitutive modelling of peat with reference to landslides, Studia Geotechnica et Mechanica, 27, 67–90, 2005.
Lunt, P. H., Fyfe, R. M., and Tappin, A. D.: Role of recent climate change on carbon sequestration in peatland systems, Sci. Total Environ., 667, 348–358, https://doi.org/10.1016/j.scitotenv.2019.02.239, 2019.
Ma, L., Zhu, G., Chen, B., Zhang, K., Niu, S., Wang, J., Ciais, P., and Zuo, H.: A globally robust relationship between water table decline, subsidence rate, and carbon release from peatlands, Communications Earth & Environment, 3, 254, https://doi.org/10.1038/s43247-022-00590-8, 2022.
Mahdiyasa, A. W.: MPeat2D (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10050891, 2023.
Mahdiyasa, A. W., Large, D. J., Muljadi, B. P., Icardi, M., and Triantafyllou, S.: MPeat – A fully coupled mechanical-ecohydrological model of peatland development, Ecohydrology, 15, e2361, https://doi.org/10.1002/eco.2361, 2022.
Mahdiyasa, A. W., Large, D. J., Muljadi, B. P., and Icardi, M.: Modelling the influence of mechanical-ecohydrological feedback on the nonlinear dynamics of peatlands, Ecol. Model., 478, 110299, https://doi.org/10.1016/j.ecolmodel.2023.110299, 2023.
Malhotra, A., Roulet, N. T., Wilson, P., Giroux-Bougard, X., and Harris, L. I.: Ecohydrological feedbacks in peatlands: an empirical test of the relationship among vegetation, microtopography and water table, Ecohydrology, 9, 1346–1357, https://doi.org/10.1002/eco.1731, 2016.
Malmer, N., Svensson, B. M., and Wallén, B.: Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems, Folia Geobot. Phytotx., 29, 483–496, https://doi.org/10.1007/BF02883146, 1994.
Mandel, J.: Consolidation Des Sols (Étude Mathématique), Géotechnique, 3, 287–299, https://doi.org/10.1680/geot.1953.3.7.287, 1953.
McNeil, P. and Waddington, J. M.: Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog, J. Appl. Ecol., 40, 354–367, https://doi.org/10.1046/j.1365-2664.2003.00790.x, 2003.
Mesri, G. and Ajlouni, M.: Engineering properties of fibrous peats, J. Geotech. Geoenviron., 133, 850–866, https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850), 2007.
Moore, P. A., Lukenbach, M. C., Thompson, D. K., Kettridge, N., Granath, G., and Waddington, J. M.: Assessing the peatland hummock–hollow classification framework using high-resolution elevation models: implications for appropriate complexity ecosystem modeling, Biogeosciences, 16, 3491–3506, https://doi.org/10.5194/bg-16-3491-2019, 2019.
Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M., and Roulet, N. T.: Plant biomass and production and CO2 exchange in an ombrotrophic bog, J. Ecol., 90, 25–36, https://doi.org/10.1046/j.0022-0477.2001.00633.x, 2002.
Moore, T. R., Trofymow, J. A., Siltanen, M., Prescott, C., and CIDET Working Group: Patterns of decomposition and carbon, nitrogen, and phosphorus dynamics of litter in upland forest and peatland sites in central Canada, Can. J. Forest Res., 35, 133–142, https://doi.org/10.1139/x04-149, 2005.
Morris, P. J., Belyea, L. R., and Baird, A. J.: Ecohydrological feedbacks in peatland development: a theoretical modelling study, J. Ecol., 99, 1190–1201, https://doi.org/10.1111/j.1365-2745.2011.01842.x, 2011.
Morris, P. J., Baird, A. J., and Belyea, L. R.: The DigiBog peatland development model 2: ecohydrological simulations in 2D, Ecohydrology, 5, 256–268, https://doi.org/10.1002/eco.229, 2012.
Morris, P. J., Baird, A. J., and Belyea, L. R.: The role of hydrological transience in peatland pattern formation, Earth Surf. Dynam., 1, 29–43, https://doi.org/10.5194/esurf-1-29-2013, 2013.
Morris, P. J., Baird, A. J., Young, D. M., and Swindles, G. T.: Untangling climate signals from autogenic changes in long-term peatland development, Geophys. Res. Lett., 42, 10788–10797, https://doi.org/10.1002/2015GL066824, 2015.
Morris, P. J., Davies, M. L., Baird, A. J., Balliston, N., Bourgault, M.-A., Clymo, R. S., Fewster, R. E., Furukawa, A. K., Holden, J., Kessel, E., Ketcheson, S. J., Kløve, B., Larocque, M., Marttila, H., Menberu, M. W., Moore, P. A., Price, J. S., Ronkanen, A.-K., Rosa, E., Strack, M., Surridge, B. W. J., Waddington, J. M., Whittington, P., and Wilkinson, S. L.: Saturated Hydraulic Conductivity in Northern Peats Inferred From Other Measurements, Water Resour. Res., 58, e2022WR033181, https://doi.org/10.1029/2022WR033181, 2022.
Munir, T. M., Perkins, M., Kaing, E., and Strack, M.: Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change, Biogeosciences, 12, 1091–1111, https://doi.org/10.5194/bg-12-1091-2015, 2015.
O'Kelly, B. C.: Measurement, interpretation and recommended use of laboratory strength properties of fibrous peat, Geotechnical Research, 4, 136–171, https://doi.org/10.1680/jgere.17.00006, 2017.
Peltoniemi, K., Laiho, R., Juottonen, H., Bodrossy, L., Kell, D. K., Minkkinen, K., Mäkiranta, P., Mehtätalo, L., Penttilä, T., Siljanen, H. M. P., Tuittila, E.-S., Tuomivirta, T., and Fritze, H.: Responses of methanogenic and methanotrophic communities to warming in varying moisture regimes of two boreal fens, Soil Biol. Biochem., 97, 144–156, https://doi.org/10.1016/j.soilbio.2016.03.007, 2016.
Phillips, P. J. and Wheeler, M. F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Computat. Geosci., 11, 131–144, https://doi.org/10.1007/s10596-007-9045-y, 2007.
Potvin, L. R., Kane, E. S., Chimner, R. A., Kolka, R. K., and Lilleskov, E. A.: Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm), Plant Soil, 387, 277–294, https://doi.org/10.1007/s11104-014-2301-8, 2015.
Price, J. S.: Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands, Water Resour. Res., 39, 1–10, https://doi.org/10.1029/2002WR001302, 2003.
Price, J. S. and Schlotzhauer, S. M.: Importance of shrinkage and compression in determining water storage changes in peat: the case of a mined peatland, Hydrol. Process., 13, 2591–2601, https://doi.org/10.1002/(SICI)1099-1085(199911)13:16<2591::AID-HYP933>3.0.CO;2-E, 1999.
Price, J. S., Cagampan, J., and Kellner, E.: Assessment of peat compressibility: is there an easy way?, Hydrol. Process., 19, 3469–3475, https://doi.org/10.1002/hyp.6068, 2005.
Quinton, W. L., Gray, D. M., and Marsh, P.: Subsurface drainage from hummock-covered hillslopes in the Arctic tundra, J. Hydrol., 237, 113–125, https://doi.org/10.1016/S0022-1694(00)00304-8, 2000.
Quinton, W. L., Hayashi, M., and Carey, S. K.: Peat hydraulic conductivity in cold regions and its relation to pore size and geometry, Hydrol. Process., 22, 2829–2837, https://doi.org/10.1002/hyp.7027, 2008.
Reeve, A. S., Evensen, R., Glaser, P. H., Siegel, D. I., and Rosenberry, D.: Flow path oscillations in transient ground-water simulations of large peatland systems, J. Hydrol., 316, 313–324, https://doi.org/10.1016/j.jhydrol.2005.05.005, 2006.
Reeve, A. S., Glaser, P. H., and Rosenberry, D. O.: Seasonal changes in peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA, J. Geophys. Res.-Biogeo., 118, 1616–1626, https://doi.org/10.1002/2013JG002404, 2013.
Regan, S., Flynn, R., Gill, L., Naughton, O., and Johnston, P.: Impacts of Groundwater Drainage on Peatland Subsidence and Its Ecological Implications on an Atlantic Raised Bog, Water Resour. Res., 55, 6153–6168, https://doi.org/10.1029/2019WR024937, 2019.
Reynolds, W. D., Brown, D. A., Mathur, S. P., and Overend, R. P.: Effect of in-situ gas accumulation on the hydraulic conductivity of peat, Soil Sci., 153, 397–408, 1992.
Rydin, H. and Jeglum, J.: The Biology of Peatlands, Oxford University Press, Oxford, ISBN 9780191728211, 2006.
Shewchuk, J. R.: Delaunay refinement algorithms for triangular mesh generation, Computational Geometry, 22, 21–74, https://doi.org/10.1016/S0925-7721(01)00047-5, 2002.
Swinnen, W., Broothaerts, N., and Verstraeten, G.: Modelling long-term blanket peatland development in eastern Scotland, Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, 2019.
Tarvainen, O., Hökkä, H., Kumpula, J., and Tolvanen, A.: Bringing back reindeer pastures in cutaway peatlands, Restor. Ecol., 30, e13661, https://doi.org/10.1111/rec.13661, 2022.
Terzaghi, K.: Theoretical soil mechanics, John Wiley & Sons, Inc, New York, ISBN 9780470172766, 1943.
Tezduyar, T. E.: Finite element methods for flow problems with moving boundaries and interfaces, Arch. Comput. Method. E., 8, 83–130, https://doi.org/10.1007/BF02897870, 2001.
Tuukkanen, T., Marttila, H., and Kløve, B.: Predicting organic matter, nitrogen, and phosphorus concentrations in runoff from peat extraction sites using partial least squares regression, Water Resour. Res., 53, 5860–5876, https://doi.org/10.1002/2017WR020557, 2017.
van Duijn, C. J. and Mikelic, A.: Mathematical Proof of the Mandel–Cryer Effect in Poroelasticity, Multiscale Model. Sim., 19, 550–567, https://doi.org/10.1137/20m1346043, 2021.
Waddington, J. M. and Roulet, N. T.: Groundwater flow and dissolved carbon movement in a boreal peatland, J. Hydrol., 191, 122–138, https://doi.org/10.1016/S0022-1694(96)03075-2, 1997.
Waddington, J. M., Kellner, E., Strack, M., and Price, J. S.: Differential peat deformation, compressibility, and water storage between peatland microforms: Implications for ecosystem function and development, Water Resour. Res., 46, 1–12, https://doi.org/10.1029/2009WR008802, 2010.
Wang, H. F.: Theory of linear poroelasticity with applications to geomechanics and hydrogeology, Princeton University Press, Princeton, NJ, USA, ISBN 9780691037462, 2000.
Warburton, J., Higgitt, D., and Mills, A.: Anatomy of a Pennine peat slide, Northern England, Earth Surf. Proc. Land., 28, 457–473, https://doi.org/10.1002/esp.452, 2003.
Whittington, P., Strack, M., van Haarlem, R., Kaufman, S., Stoesser, P., Maltez, J., Price, J. S., and Stone, M.: The influence of peat volume change and vegetation on the hydrology of a kettle-hole wetland in Southern Ontario, Canada, Mires Peat, 2, 1–14, 2007.
Whittington, P. N. and Price, J. S.: The effects of water table draw-down (as a surrogate for climate change) on the hydrology of a fen peatland, Canada, Hydrol. Process., 20, 3589–3600, https://doi.org/10.1002/hyp.6376, 2006.
Winston, R. B.: Models of the geomorphology, hydrology, and development of domed peat bodies, GSA Bulletin, 106, 1594–1604, https://doi.org/10.1130/0016-7606(1994)106<1594:Motgha>2.3.Co;2, 1994.
Winter, T. C.: The concept of hydrologic landscapes, J. Am. Water Resour. As., 37, 335–349, https://doi.org/10.1111/j.1752-1688.2001.tb00973.x, 2001.
Xiang, W. and Freeman, C.: Annual variation of temperature sensitivity of soil organic carbon decomposition in North peatlands: implications for thermal responses of carbon cycling to global warming, Environ. Geol., 58, 499–508, https://doi.org/10.1007/s00254-008-1523-6, 2009.
Young, D. M., Baird, A. J., Morris, P. J., and Holden, J.: Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands, Water Resour. Res., 53, 6510–6522, https://doi.org/10.1002/2016WR019898, 2017.
Young, D. M., Baird, A. J., Charman, D. J., Evans, C. D., Gallego-Sala, A. V., Gill, P. J., Hughes, P. D. M., Morris, P. J., and Swindles, G. T.: Misinterpreting carbon accumulation rates in records from near-surface peat, Sci. Rep.-UK, 9, 17939, https://doi.org/10.1038/s41598-019-53879-8, 2019.
Young, D. M., Baird, A. J., Gallego-Sala, A. V., and Loisel, J.: A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores, Sci. Rep.-UK, 11, 9547, https://doi.org/10.1038/s41598-021-88766-8, 2021.
Yu, Z., Beilman, D. W., and Jones, M. C.: Sensitivity of Northern Peatland Carbon Dynamics to Holocene Climate Change, in: Carbon Cycling in Northern Peatlands, American Geophysical Union, 55–69, https://doi.org/10.1029/2008GM000822, 2009.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043584, 2010.
Zhu, J., Wang, Y., Wang, Y., Mao, Z., and Langendoen, E. J.: How does root biodegradation after plant felling change root reinforcement to soil?, Plant Soil, 446, 211–227, https://doi.org/10.1007/s11104-019-04345-x, 2020.
Zhu, X., Wang, Y., Zan, J., and Li, C.: Application of fractal theory in generation and refinement of finite element mesh, Appl. Math. Comput., 175, 1039–1045, https://doi.org/10.1016/j.amc.2005.08.017, 2006.
Short summary
Mathematical models provide insight to analyse peatland behaviour. However, the omission of mechanical processes by the existing models leads to uncertainties in their outputs. We proposed a peatland growth model in 2D that incorporates mechanical, ecological, and hydrological factors, together with the effect of spatial heterogeneity on the peatland system. Our model might assist in understanding the complex interactions and the impact of climate change on the peatland carbon balance.
Mathematical models provide insight to analyse peatland behaviour. However, the omission of...