Articles | Volume 13, issue 3
https://doi.org/10.5194/esurf-13-349-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-349-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of alluvial slope on avulsion in river deltas
Octria A. Prasojo
CORRESPONDING AUTHOR
School of Geographical and Earth Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
Geoscience Study Program, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
Trevor B. Hoey
Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
Amanda Owen
School of Geographical and Earth Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
Richard D. Williams
School of Geographical and Earth Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom
Related authors
No articles found.
Laura A. Quick, Trevor B. Hoey, Richard David Williams, Richard J. Boothroyd, Pamela M. L. Tolentino, and Carlo P. C. David
EGUsphere, https://doi.org/10.5194/egusphere-2025-2722, https://doi.org/10.5194/egusphere-2025-2722, 2025
Short summary
Short summary
The shape of a river influences flow and therefore how much sediment is transported. Directly measuring sediment transport is challenging at the catchment-scale but numerical modelling can enable the prediction of sediment erosion and transport. We use flow model to map patterns of bedload transport rates to reveal patterns associated with different river patterns (i.e. meandering, wandering, braided and deltaic). We show spatial variability in bedload transport is a function of channel pattern.
Trevor B. Hoey, Pamela Louise M. Tolentino, Esmael L. Guardian, John Edward G. Perez, Richard D. Williams, Richard J. Boothroyd, Carlos Primo C. David, and Enrico C. Paringit
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-188, https://doi.org/10.5194/hess-2024-188, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Estimating the sizes of flood events is critical for flood-risk management and other activities. We used data from several sources in a statistical analysis of flood size for rivers in the Philippines. Flood size is mainly controlled by the size of the river catchment, along with the volume of rainfall. Other factors, such as land-use, appear to play only minor roles in flood size. The results can be used to estimate flood size for any river in the country alongside other local information.
Georgios Maniatis, Trevor Hoey, Rebecca Hodge, Dieter Rickenmann, and Alexandre Badoux
Earth Surf. Dynam., 8, 1067–1099, https://doi.org/10.5194/esurf-8-1067-2020, https://doi.org/10.5194/esurf-8-1067-2020, 2020
Short summary
Short summary
One of the most interesting problems in geomorphology concerns the conditions that mobilise sediments grains in rivers. Newly developed
smartpebbles allow for the measurement of those conditions directly if a suitable framework for analysis is followed. This paper connects such a framework with the physics used to described sediment motion and presents a series of laboratory and field smart-pebble deployments. Those quantify how grain shape affects the motion of coarse sediments in rivers.
Cited articles
Aslan, A., Autin, W. J., and Blum, M. D.: Causes of river avulsion: Insights from the late Holocene avulsion history of the Mississippi River, U.S.A, J. Sediment. Res., 75, 650–664, https://doi.org/10.2110/jsr.2005.053, 2005.
Bagnold, R. A.: An Approach to the Sediment Transport Problem From General Physics, USGS Professional Paper 422-I, https://doi.org/10.3133/pp422i, 1966.
Bates, C. C.: Rational Theory of Delta Formation, AAPG Bulletin, 37, 2119–2162, https://doi.org/10.1306/5ceadd76-16bb-11d7-8645000102c1865d, 1953.
Best, J.: Anthropogenic stresses on the world's big rivers, Nat. Geosci., 12, 7–21, https://doi.org/10.1038/s41561-018-0262-x, 2019.
Brooke, S., Ganti, V., Chadwick, A. J., and Lamb, M. P.: Flood Variability Determines the Location of Lobe-Scale Avulsions on Deltas: Madagascar, Geophys. Res. Lett., 47, e2020GL088797, https://doi.org/10.1029/2020GL088797, 2020.
Brooke, S., Chadwick, A. J., Silvestre, J., Lamb, M. P., Edmonds, D. A., and Ganti, V.: Where rivers jump course, Science, 376, 987–990, https://doi.org10.1126/science.abm1215, 2022.
Caldwell, R. L. and Edmonds, D. A.: The effects of sediment properties on deltaic processes and morphologies: A numerical modeling study, J. Geophys. Res.-Earth Surf., 119, 961–982, https://doi.org/10.1002/2013JF002965, 2014.
Chadwick, A. J., Lamb, M. P., Moodie, A. J., Parker, G., and Nittrouer, J. A.: Origin of a Preferential Avulsion Node on Lowland River Deltas, Geophys. Res. Lett., 46, 4267–4277, https://doi.org/10.1029/2019GL082491, 2019.
Chadwick, A. J., Lamb, M. P., and Ganti, V.: Accelerated river avulsion frequency on lowland deltas due to sea-level rise, P. Natl. Acad. Sci. USA, 117, 17584–17590, https://doi.org/10.1073/pnas.1912351117, 2020.
Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B., and Wallinga, J.: Anatomy of Mississippi Delta growth and its implications for coastal restoration, Sci. Adv., 4, eaar4740, https://doi.org/10.1126/sciadv.aar4740, 2018.
Chatanantavet, P., Lamb, M. P., and Nittrouer, J. A.: Backwater controls of avulsion location on deltas, Geophys. Res. Lett., 39, 2–7, https://doi.org/10.1029/2011GL050197, 2012.
Colombera, L. and Mountney, N. P.: Downstream controls on coastal-plain river avulsions: A global study, J. Geophys. Res.-Earth Surf., 128, e2022JF006772, https://doi.org/10.1029/2022JF006772, 2023.
Darby, S. E., Dunn, F. E., Nicholls, R. J., Rahman, M., and Riddy, L.: A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges–Brahmaputra–Meghna delta, Environ. Sci. Process. Imp., 17, 1587–1600, https://doi.org/10.1039/C5EM00252D, 2015.
Dunn, F. E., Darby, S. E., Nicholls, R. J., Cohen, S., Zarfl, C., and Fekete, B. M.: Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress, Environ. Res. Lett., 14, 084034, https://doi.org/10.1088/1748-9326/AB304E, 2019.
Dunne, T. and Leopold, L. B.: Water in Environmental Planning, W.H. Freeman and Company, San Francisco, California, https://www.osti.gov/biblio/5645848 (last access: 9 May 2025), 1978.
Deltares: Delft3D – User Manual, 3.15., Deltares, 1–695 pp., https://content.oss.deltares.nl/delft3d4/Delft3D-FLOW_User_Manual.pdf (last access: 3 May 2025), 2021.
Edmonds, D. A. and Slingerland, R. L.: Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks, J. Geophys. Res.-Earth Surf., 112, F02034, https://doi.org/10.1029/2006JF000574, 2007.
Edmonds, D. A. and Slingerland, R. L.: Stability of delta distributary networks and their bifurcations, Water Resour. Res., 44, 9426, https://doi.org/10.1029/2008WR006992, 2008.
Edmonds, D. A. and Slingerland, R. L.: Significant effect of sediment cohesion on delta morphology, Nat. Geosci., 3, 105–109, https://doi.org/10.1038/ngeo730, 2010.
Edmonds, D. A., Hoyal, D. C. J. D., Sheets, B. A., and Slingerland, R. L.: Predicting delta avulsions: Implications for coastal wetland restoration, Geology, 37, 759–762, https://doi.org/10.1130/G25743A.1, 2009.
Edmonds, D. A., Paola, C., Hoyal, D. C. J. D., and Sheets, B. A.: Quantitative metrics that describe river deltas and their channel networks, J. Geophys. Res.-Earth Surf., 116, 1–15, https://doi.org/10.1029/2010JF001955, 2011.
Edmonds, D. A., Chadwick, A. J., Lamb, M. P., Lorenzo-Trueba, J., Murray, A. B., Nardin, W., Salter, G., and Shaw, J. B.: Morphodynamic Modeling of River-Dominated Deltas: A Review and Future Perspectives, Treatise on Geomorphology, 10, 110–140, https://doi.org/10.1016/B978-0-12-818234-5.00076-6, 2022.
Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., and Meybeck, M.: Effective sea-level rise and deltas: Causes of change and human dimension implications, Glob/ Planet Change, 50, 63–82, https://doi.org/10.1016/j.gloplacha.2005.07.004, 2006.
Fagherazzi, S., Edmonds, D. A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., Jerolmack, D. J., Mariotti, G., Rowland, J. C., and Slingerland, R. L.: Dynamics of river mouth deposits, Rev. Geophys., 53, 642–672, https://doi.org/10.1002/2014RG000451, 2015.
Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J., and Lamb, M. P.: Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta, J. Geophys. Res.-Earth Surf., 121, 1651–1675, https://doi.org/10.1002/2016JF003915, 2016a.
Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J., Fuller, B. M., and Lamb, M. P.: Experimental river delta size set by multiple floods and backwater hydrodynamics, Sci. Adv., 2, e1501768, https://doi.org/10.1126/sciadv.1501768, 2016b.
Ganti, V., Lamb, M. P., and Chadwick, A. J.: Autogenic Erosional Surfaces in Fluvio-deltaic Stratigraphy from Floods, Avulsions, and Backwater Hydrodynamics, J. Sediment. Res., 89, 815–832, https://doi.org/10.2110/jsr.2019.40, 2019.
Geleynse, N., Storms, J. E. A., Walstra, D. J. R., Jagers, H. R. A., Wang, Z. B., and Stive, M. J. F.: Controls on river delta formation; insights from numerical modelling, Earth Planet Sci. Lett., 302, 217–226, https://doi.org/10.1016/j.epsl.2010.12.013, 2011.
Giosan, L., Syvitski, J., Constantinescu, S., and Day, J.: Climate change: Protect the world's deltas, Nature, 516, 31–33, https://doi.org/10.1038/516031a, 2014.
Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., Nicholas, A. P., and Houseago, R. C.: River bank instability from unsustainable sand mining in the lower Mekong River, Nat. Sustain., 3, 217–225, https://doi.org/10.1038/s41893-019-0455-3, 2020.
Hartley, A. J., Weissmann, G. S., and Scuderi, L.: Controls on the apex location of large deltas, J. Geol. Soc. London, 174, 10–13, https://doi.org/10.1144/jgs2015-154, 2017.
Jerolmack, D. J.: Conceptual framework for assessing the response of delta channel networks to Holocene sea level rise, Quaternary Sci. Rev., 28, 1786–1800, https://doi.org/10.1016/j.quascirev.2009.02.015, 2009.
Jerolmack, D. J. and Mohrig, D.: Conditions for branching in depositional rives, Geology, 35, 463–466, https://doi.org/10.1130/G23308A.1, 2007.
Jones, L. S. and Schumm, S. A.: Causes of Avulsion: An Overview, Int. As. Sed., 169–178, https://doi.org/10.1002/9781444304213.CH13, 2009.
Jordan, C., Tiede, J., Lojek, O., Visscher, J., Apel, H., Nguyen, H. Q., Quang, C. N. X., and Schlurmann, T.: Sand mining in the Mekong Delta revisited – current scales of local sediment deficits, Sci. Rep., 9, 1–14, https://doi.org/10.1038/s41598-019-53804-z, 2019.
Kleinhans, M. G. and Hardy, R. J.: River bifurcations and avulsion, https://doi.org/10.1002/esp.3354, 15 March 2013.
Kleinhans, M. G., Ferguson, R. I., Lane, S. N., and Hardy, R. J.: Splitting rivers at their seams: bifurcations and avulsion, Earth Surf. Process. Landf., 38, 47–61, https://doi.org/10.1002/esp.3268, 2013.
Lane, T. I., Nanson, R. A., Vakarelov, B. K., Ainsworth, R. B., and Dashtgard, S. E.: Evolution and architectural styles of a forced-regressive Holocene delta and megafan, Mitchell River, Gulf of Carpentaria, Australia, Geol. Soc. Spec. Publ., 444, 305–334, https://doi.org/10.1144/SP444.9, 2017.
Leenman, A. and Eaton, B.: Mechanisms for avulsion on alluvial fans: Insights from high-frequency topographic data, Earth Surf. Process. Landf., 46, 1111–1127, https://doi.org/10.1002/esp.5059, 2021.
Leuven, J. R. F. W., Niesten, I., Huismans, Y., Cox, J. R., Hulsen, L., van der Kaaij, T., and Hoitink, A. J. F.: Peak Water Levels Rise Less Than Mean Sea Level in Tidal Channels Subject to Depth Convergence by Deepening, J. Geophys. Res.-Oceans, 128, e2022JC019578, https://doi.org/10.1029/2022JC019578, 2023.
Li, J., Ganti, V., Li, C., and Wei, H.: Upstream migration of avulsion sites on lowland deltas with river-mouth retreat, Earth Planet. Sci. Lett., 577, 117270, https://doi.org/10.1016/J.EPSL.2021.117270, 2022.
Loucks, D. P.: Developed river deltas: are they sustainable?, Environ. Res. Lett., 14, 113004, https://doi.org/10.1088/1748-9326/AB4165, 2019.
Mohrig, D., Heller, P. L., Paola, C., and Lyons, W. J.: Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (Northern Spain) and Wasatch formation (Western Colorado), B. Geol. Soc. Ame., 112, 1787–1803, https://doi.org/10.1130/0016-7606(2000)112<1787:IAPFAA>2.0.CO;2, 2000.
Moodie, A. J., Nittrouer, J. A., Ma, H., Carlson, B. N., Chadwick, A. J., Lamb, M. P., and Parker, G.: Modeling Deltaic Lobe-Building Cycles and Channel Avulsions for the Yellow River Delta, China, J. Geophys. Res.-Earth Surf., 124, 2438–2462, https://doi.org/10.1029/2019JF005220, 2019.
Moran, K. E., Nittrouer, J. A., Perillo, M. M., Lorenzo-Trueba, J., and Anderson, J. B.: Morphodynamic modeling of fluvial channel fill and avulsion time scales during early Holocene transgression, as substantiated by the incised valley stratigraphy of the Trinity River, Texas, J. Geophys. Res.-Earth Surf., 122, 215–234, https://doi.org/10.1002/2015JF003778, 2017.
Morgan, J. A., Kumar, N., Horner-Devine, A. R., Ahrendt, S., Istanbullouglu, E., and Bandaragoda, C.: The use of a morphological acceleration factor in the simulation of large-scale fluvial morphodynamics, Geomorphology, 356, 107088, https://doi.org/10.1016/J.GEOMORPH.2020.107088, 2020.
Muto, T.: Shoreline Autoretreat Substantiated in Flume Experiments, J. Sediment. Res., 71, 246–254, https://doi.org/10.1306/091400710246, 2001.
Muto, T. and Steel, R. J.: Principles of regression and transgression; the nature of the interplay between accommodation and sediment supply, J. Sediment. Res., 67, 994–1000, https://doi.org/10.1306/D42686A8-2B26-11D7-8648000102C1865D, 1997.
Nienhuis, J. H., Törnqvist, T. E., and Esposito, C. R.: Crevasse Splays Versus Avulsions: A Recipe for Land Building With Levee Breaches, Geophys. Res. Lett., 45, 4058–4067, https://doi.org/10.1029/2018GL077933, 2018a.
Nienhuis, J. H., Hoitink, A. J. F., and Törnqvist, T. E.: Future Change to Tide-Influenced Deltas, Geophys. Res. Lett., 45, 3499–3507, https://doi.org/doi.org/10.1029/2018GL077638, 2018b.
Nienhuis, J. H., Ashton, A. D., Edmonds, D. A., Hoitink, A. J. F., Kettner, A. J., Rowland, J. C., and Törnqvist, T. E.: Global-scale human impact on delta morphology has led to net land area gain, Nature, 577, 514–518, https://doi.org/10.1038/s41586-019-1905-9, 2020.
Nijhuis, A. G., Edmonds, D. A., Caldwell, R. L., Cederberg, J. A., Slingerland, R. L., Best, J. L., Parsons, D. R., and Robinson, R. A. J.: Fluvio-deltaic avulsions during relative sea-level fall, Geology, 43, 719–722, https://doi.org/10.1130/G36788.1, 2015.
Paola, C., Twilley, R. R., Edmonds, D. A., Kim, W., Mohrig, D., Parker, G., Viparelli, E., and Voller, V. R.: Natural Processes in Delta Restoration: Application to the Mississippi Delta, Annu. Rev. Mar. Sci., 3, 67–91, https://doi.org/10.1146/annurev-marine-120709-142856, 2011.
Parker, G., Wilcock, P. R., Paola, C., Dietrich, W. E., and Pitlick, J.: Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers, J. Geophys. Res.-Earth Surf., 112, F04005, https://doi.org/10.1029/2006JF000549, 2007.
Pierik, H. J., Stouthamer, E., Schuring, T., and Cohen, K. M.: Human-caused avulsion in the Rhine-Meuse delta before historic embankment (The Netherlands), Geology, 46, 935–938, https://doi.org/10.1130/G45188.1, 2018.
Pierik, H. J., Moree, J. I. M., van der Werf, K. M., Roelofs, L., Albernaz, M. B., Wilbers, A., van der Valk, B., van Dinter, M., Hoek, W. Z., de Haas, T., and Kleinhans, M. G.: Vegetation and peat accumulation steer Holocene tidal–fluvial basin filling and overbank sedimentation along the Old Rhine River, The Netherlands, Sedimentology, 70, 179–213, https://doi.org/10.1111/SED.13038, 2023.
Prasojo, O. A., Hoey, T. B., Owen, A., and Williams, R. D.: Slope break and avulsion locations scale consistently in global deltas, Geophys. Res. Lett., 49, e2021GL093656, https://doi.org/10.1029/2021GL093656, 2022.
Prasojo, O. A., Hoey, T. B., Owen, A., and Williams, R. D.: Supporting Information Table S2: First order controls of avulsion in river deltas, Figshare [data set], https://doi.org/10.6084/m9.figshare.20654037.v3, 2023a.
Prasojo, O. A., Hoey, T. B., Owen, A., and Williams, R. D.: Model runs: Influence of alluvial slope on avulsion in river deltas, Figshare [data set], https://doi.org/10.6084/m9.figshare.23912625.v2, 2023b.
Prasojo, O. A., Hoey, T. B., Owen, A., and Williams, R. D.: Alluvial slope influence on avulsion in river deltas – Run a simulation videos, Figshare [video], https://doi.org/10.6084/m9.figshare.25470505.v1, 2024.
Ratliff, K. M., Hutton, E. H. W., and Murray, A. B.: Exploring Wave and Sea-Level Rise Effects on Delta Morphodynamics With a Coupled River-Ocean Model, J. Geophys. Res.-Earth Surf., 123, 2887–2900, https://doi.org/10.1029/2018JF004757, 2018.
Ratliff, K. M., Hutton, E. W. H., and Murray, A. B.: Modeling long-term delta dynamics reveals persistent geometric river avulsion locations, Earth Planet. Sci. Lett., 559, 116786, https://doi.org/10.1016/j.epsl.2021.116786, 2021.
Reitz, M. D., Jerolmack, D. J., and Swenson, J. B.: Flooding and flow path selection on alluvial fans and deltas, Geophys. Res. Lett., 37, L06401, https://doi.org/10.1029/2009GL041985, 2010.
Rossi, V. M., Kim, W., López, J. L., Edmonds, D., Geleynse, N., Olariu, C., Steel, R. J., Hiatt, M., and Passalacqua, P.: Impact of tidal currents on delta-channel deepening, stratigraphic architecture, and sediment bypass beyond the shoreline, Geology, 44, 927–930, https://doi.org/10.1130/G38334.1, 2016.
Sanks, K. M., Zapp, S. M., Silvestre, J. R., Shaw, J. B., Dutt, R., and Straub, K. M.: Marsh Sedimentation Controls Delta Top Morphology, Slope, and Mass Balance, Geophys. Res. Lett., 49, e2022GL098513, https://doi.org/10.1029/2022GL098513, 2022.
Schumm, S., Mosley, M. P., and Weaver, W.: Experimental fluvial geomorphology, New York: John Wiley and Sons Inc., 431 pp., ISBN 0471830771, 1987.
Shields, M. R., Bianchi, T. S., Mohrig, D., Hutchings, J. A., Kenney, W. F., Kolker, A. S., and Curtis, J. H.: Carbon storage in the Mississippi River delta enhanced by environmental engineering, Nat. Geosci., 10, 846–851, https://doi.org/10.1038/ngeo3044, 2017.
Slingerland, R. and Smith, N. D.: River Avulsions and Their Deposits, Annu. Rev. Earth Planet Sci., 32, 257–285, https://doi.org/10.1146/annurev.earth.32.101802.120201, 2004.
Stanley, D. J. and Warne, A. G.: Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise, Science, 265, 228–231, https://doi.org/10.1126/science.265.5169.228, 1994.
Stouthamer, E. and Berendsen, H. J. A.: Avulsion Frequency, Avulsion Duration, and Interavulsion Period of Holocene Channel Belts in the Rhine-Meuse Delta, The Netherlands, J. Sediment. Res., 71, 589–598, https://doi.org/10.1306/112100710589, 2001.
Syvitski, J. P. M. and Saito, Y.: Morphodynamics of deltas under the influence of humans, Glob. Planet Change, 57, 261–282, https://doi.org/10.1016/j.gloplacha.2006.12.001, 2007.
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., and Nicholls, R. J.: Sinking deltas due to human activities, Nat. Geosci., 2, 681–686, https://doi.org/10.1038/ngeo629, 2009.
Tessler, Z. D., Vorosmarty, C. J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J. P. M., and Foufoula-Georgiou, E.: Profiling risk and sustainability in coastal deltas of the world, Science, 349, 638–643, https://doi.org/10.1126/science.aab3574, 2015.
Törnqvist, T. E.: Middle and late Holocene avulsion history of the River Rhine (Rhine-Meuse delta, Netherlands), Geology, 22, 711–714, 1994.
Van Dijk, M., Kleinhans, M., Postma, G., and Kraal, E.: Contrasting morphodynamics in alluvial fans and fan deltas: effect of the downstream boundary, Sedimentology, 59, 2125–2145, https://doi.org/10.1111/j.1365-3091.2012.01337.x, 2012.
Wallace, D. J., Storms, J. E. A., Wallinga, J., Dam, R. L. V. A. N., Blaauw, M., Derksen, M. S., Klerks, C. J. W., Meijneken, C., Snijders, E. L. S. M. A., Fung, G., Mathematics, A., Talbot, N. L. C., Mcsherry, F., Nissim, K., Smith, A., Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J. W., Vörösmarty, C., Saito, Y., Giosan, L., Nicholls, R. J., Stanley, D., Imminent, A. N., To, T., Popul, C., Syvitski, J. P. M., Fabris, M., Achilli, V., Menin, A., Erban, L. E., Gorelick, S. M., Zebker, H. A., Sea, E., Rise, L., Cavalié, O., Sladen, A., Kelner, M., Nice, U. De, Antipolis, S., De, O., Einstein, A., Reed, D. J., and Day, J. W.: Shrinking and Sinking Deltas: Major role of Dams in delta subsidence and Effective Sea Level Rise, Nat. Geosci., 123, 1973–1984, https://doi.org/10.1038/ngeo129, 2014.
Whipple, K. X., Parker, G., Paola, C., and Mohrig, D.: Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study, J. Geol., 106, 677–693, https://doi.org/10.1086/516053, 1998.
Williams, R. D., Measures, R., Hicks, D. M., and Brasington, J.: Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river, Water Resour. Res., 52, 6621–6642, https://doi.org/10.1002/2015WR018491, 2016.
Wolinsky, M. A., Edmonds, D. A., Martin, J., and Paola, C.: Delta allometry: Growth laws for river deltas, Geophys. Res. Lett., 37, L21403, https://doi.org/10.1029/2010GL044592, 2010.
Wright, L. D.: Sediment transport and deposition at river mouths: A synthesis, B. Geol. Soc. Am., 88, 857–868, https://doi.org/10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2, 1977.
Short summary
Decades of delta avulsion (i.e. channel abrupt jump) studies have not resolved what the main controls of delta avulsion are. Using a computer model, integrated with field observation, analytical, and laboratory-made deltas, we found that the sediment load, which itself is controlled by the steepness of the river upstream of a delta, controls the timing of avulsion. We can now better understand the main cause of abrupt channel changes in deltas, a finding that aids flood risk management in river deltas.
Decades of delta avulsion (i.e. channel abrupt jump) studies have not resolved what the main...