Articles | Volume 13, issue 4
https://doi.org/10.5194/esurf-13-723-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-723-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of grain-sorting waves on alternate bar dynamics: implications of the breakdown of the hydrograph boundary layer
Soichi Tanabe
CORRESPONDING AUTHOR
Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
Toshiki Iwasaki
Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
Cited articles
An, C., Fu, X., Wang, G., and Parker, G.: Effect of grain sorting on gravel bed river evolution subject to cycled hydrographs: Bed load sheets and breakdown of the hydrograph boundary layer, J. Geophys. Res.-Earth, 122, 1513–1533, https://doi.org/10.1002/2016JF003994, 2017.
An, C., Moodie, A. J., Ma, H., Fu, X., Zhang, Y., Naito, K., and Parker, G.: Morphodynamic model of the lower Yellow River: flux or entrainment form for sediment mass conservation?, Earth Surf. Dynam., 6, 989–1010, https://doi.org/10.5194/esurf-6-989-2018, 2018.
Andrews, E. D.: Downstream effects of Flaming Gorge Reservoir on the Green River, Colorado and Utah, Geol. Soc. Am. Bull., 97, 1012–1023, https://doi.org/10.1130/0016-7606(1986)97%3C1012:DEOFGR%3E2.0.CO;2, 1986.
Ashida, K., Egashira, S., Liu, B., and Umemoto, M.: Sorting and Bed Topography in Meander Channels, Annuals of Disaster Prevention Research Institute, Kyoto University, 33, 261–279, 1990 (in Japanese).
Bankert, A. R. and Nelson, P. A.: Alternate bar dynamics in response to increases and decreases of sediment supply, Sedimentology, 65, 702–720, https://doi.org/10.1111/sed.12399, 2018.
Benda, L., Miller, D., Bigelow, P., and Andras, K.: Effects of post-wildfire erosion on channel environments, Boise River, Idaho, Forest Ecol. Manag., 178, 105–119, https://doi.org/10.1016/S0378-1127(03)00056-2, 2003.
Blum, M. D. and Roberts, H. H.: Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise, Nat. Geosci., 2, 488–491, https://doi.org/10.1038/ngeo553, 2009.
Bombar, G., Elçi, Ş., Tayfur, G., Güney, M. Ş., and Bor, A.: Experimental and Numerical Investigation of Bed-Load Transport under Unsteady Flows, J. Hydraul. Eng., 137, 1276–1282, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000412, 2011.
Buraas, E. M., Renshaw, C. E., Magilligan, F. J., and Dade, W. B.: Impact of reach geometry on stream channel sensitivity to extreme floods, Earth Surf. Proc. Land., 39, 1778–1789, https://doi.org/10.1002/esp.3562, 2014.
Colombini, M., Seminara, G., and Tubino, M.: Finite-amplitude alternate bars, J. Fluid Mech., 181, 213, https://doi.org/10.1017/S0022112087002064, 1987.
Dai, H., Iwasaki, T., and Shimizu, Y.: Effect of Sediment Supply on Morphodynamics of Free Alternate Bars: Insights from Hydrograph Boundary Layer, Water-Sui., 13, 3437, https://doi.org/10.3390/w13233437, 2021.
Dietrich, W. E., Kirchner, J. W., Ikeda, H., and Iseya, F.: Sediment supply and the development of the coarse surface layer in gravel-bedded rivers, Nature, 340, 215–217, https://doi.org/10.1038/340215a0, 1989.
Erskine, W. D., Terrazzolo, N., and Warner, R. F.: River rehabilitation from the hydrogeomorphic impacts of a large hydro-electric power project: Snowy River, Australia, Regul. River., 15, 3–24, 1999.
Facchini, M., Vetsch, D. F., Boes, R. M., and Siviglia, A.: Modeling the morphological response of gravel-bed rivers subject to repeated sediment bypass tunnel operations, Front. Earth Sci., 12, 1357759, https://doi.org/10.3389/feart.2024.1357759, 2024.
Engelund, F.: Flow and Bed Topography in Channel Bends, J. Hydr. Eng. Div.-ASCE, 100, 1631–1648, https://doi.org/10.1061/JYCEAJ.0004109, 1974.
Exner, F M.: Über die Wechselwirkung zwischen Wasser und Geschiebe in Flüssen, Akad. Wiss. Wien Math. Naturwiss. Klasse, 134, 165–204, 1925.
Fields, J., Renshaw, C., Magilligan, F., Dethier, E., and Rossi, R.: A mechanistic understanding of channel evolution following dam removal, Geomorphology, 395, 107971, https://doi.org/10.1016/j.geomorph.2021.107971, 2021.
Federici, B. and Seminara, G.: On the convective nature of bar instability, J. Fluid Mech., 487, 125–145, https://doi.org/10.1017/S0022112003004737, 2003.
Gaeuman, D.: High-flow Gravel Injection for Constructing Designed In-channel Features: High-flow Gravel Injection, River Res. Appl., 30, 685–706, https://doi.org/10.1002/rra.2662, 2014.
Gaeuman, D., Schmidt, J. C., and Wilcock, P. R.: Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah, Geomorphology, 64, 185–206, https://doi.org/10.1016/j.geomorph.2004.06.007, 2005.
Grossmann, A. and Morlet, J.: Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SIAM J. Math. Anal., 15, 723–736, https://doi.org/10.1137/0515056, 1984.
Gunsolus, E. H. and Binns, A. D.: Effect of morphologic and hydraulic factors on hysteresis of sediment transport rates in alluvial streams, River Res. Appl., 34, 183–192, https://doi.org/10.1002/rra.3184, 2018.
Harada, D. and Egashira, S.: Method to evaluate large-wood behavior in terms of the convection equation associated with sediment erosion and deposition, Earth Surf. Dynam., 11, 1183–1197, https://doi.org/10.5194/esurf-11-1183-2023, 2023.
Harada, D., Nagumo, N., Nakamura, Y., Egashira, S., and International Centre for Water Hazard and Risk Management (ICHARM) under the Auspices of UNESCO, Public Works Research Institute (PWRI): Characteristics of Flood Flow with Active Sediment Transport in the Sozu River Flood Hazards at the Severe Rainfall Event in July 2018, Journal of Disaster Research, 14, 886–893, https://doi.org/10.20965/jdr.2019.p0886, 2019.
Hassan, M. A. and Church, M.: Sensitivity of bed load transport in Harris Creek: Seasonal and spatial variation over a cobble-gravel bar, Water Resour. Res., 37, 813–825, https://doi.org/10.1029/2000WR900346, 2001.
Hassan, M. A., Egozi, R., and Parker, G.: Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers, Water Resour. Res., 42, 2005WR004707, https://doi.org/10.1029/2005WR004707, 2006.
Hassan, M. A., Parker, G., Hassan, Y., An, C., Fu, X., and Venditti, J. G.: The roles of geometry and viscosity in the mobilization of coarse sediment by finer sediment, P. Natl. Acad. Sci. USA, 121, e2409436121, https://doi.org/10.1073/pnas.2409436121, 2024.
Hirano, M.: River-bed degradation with armoring, Proceedings of the Japan Society of Civil Engineers, 1971, 55–65, https://doi.org/10.2208/jscej1969.1971.195_55, 1971 (in Japanese).
Huang, D., Iwasaki, T., Yamada, T., Hiramatsu, Y., Yamaguchi, S., and Shimizu, Y.: Morphodynamic equilibrium of alternate bar dynamics under repeated hydrographs, Adv. Water Resour., 175, 104427, https://doi.org/10.1016/j.advwatres.2023.104427, 2023.
Humphries, R., Venditti, J. G., Sklar, L. S., and Wooster, J. K.: Experimental evidence for the effect of hydrographs on sediment pulse dynamics in gravel-bedded rivers, Water Resour. Res., 48, 2011WR010419, https://doi.org/10.1029/2011WR010419, 2012.
Ikeda, H. and Iseya, F.: Longitudinal sorting process in heterogeneous sediment transportation, in: Proceedings of the Japanese Conference on Hydraulics, vol. 30, 217–222, https://doi.org/10.2208/prohe1975.30.217, 1986 (in Japanese).
Iwasaki, T., Shimizu, Y., and Kimura, I.: Computations of bed deformation and sediment sorting in meander channel using depth-averaged morphodyamic model, International Journal of River Basin Management, 9, 237–245, https://doi.org/10.1080/15715124.2011.597756, 2011.
Iwasaki, T., Shimizu, Y., and Kimura, I.: Sensitivity of free bar morphology in rivers to secondary flow modeling: Linear stability analysis and numerical simulation, Adv. Water Resour., 92, 57–72, https://doi.org/10.1016/j.advwatres.2016.03.011, 2016.
Iwasaki, T., Nelson, J., Shimizu, Y., and Parker, G.: Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars, J. Geophys. Res.-Earth, 122, 847–874, 2017.
Kuhnle, R. A. and Southard, J. B.: Bed load transport fluctuations in a gravel bed laboratory channel, Water Resour. Res., 24, 247–260, https://doi.org/10.1029/WR024i002p00247, 1988.
Kyuka, T., Okabe, K., Shimizu, Y., Yamaguchi, S., Hasegawa, K., and Shinjo, K.: Dominating factors influencing rapid meander shift and levee breaches caused by a record-breaking flood in the Otofuke River, Japan, J. Hydro-Environ. Res., 31, 76–89, https://doi.org/10.1016/j.jher.2020.05.003, 2020.
Lanzoni, S. and Tubino, M.: Grain sorting and bar instability, J. Fluid Mech., 393, 149–174, https://doi.org/10.1017/S0022112099005583, 1999.
Lee, K. T., Liu, Y., and Cheng, K.: Experimental investigation of bedload transport processes under unsteady flow conditions, Hydrol. Process., 18, 2439–2454, https://doi.org/10.1002/hyp.1473, 2004.
Lisle, T. E. and Hilton, S.: Fine bed material in pools of natural gravel bed channels, Water Resour. Res., 35, 1291–1304, https://doi.org/10.1029/1998WR900088, 1999.
Lisle, T. E., Iseya, F., and Ikeda, H.: Response of a Channel with alternate bars to a decrease in supply of mixed-size bed load: A Flume Experiment, Water Resour. Res., 29, 3623–3629, https://doi.org/10.1029/93WR01673, 1993.
Lisle, T. E., Pizzuto, J. E., Ikeda, H., Iseya, F., and Kodama, Y.: Evolution of a sediment wave in an experimental channel, Water Resour. Res., 33, 1971–1981, https://doi.org/10.1029/97WR01180, 1997.
Mao, L.: The effect of hydrographs on bed load transport and bed sediment spatial arrangement, J. Geophys. Res., 117, 2012JF002428, https://doi.org/10.1029/2012JF002428, 2012.
Morgan, J. A. and Nelson, P. A.: Experimental investigation of the morphodynamic response of riffles and pools to unsteady flow and increased sediment supply, Earth Surf. Proc. Land., 46, 869–886, https://doi.org/10.1002/esp.5072, 2021.
Mörtl, C. and De Cesare, G.: Sediment Augmentation for River Rehabilitation and Management – A Review, Land, 10, 1309, https://doi.org/10.3390/land10121309, 2021.
Nelson, J. M., Shimizu, Y., Abe, T., Asahi, K., Gamou, M., Inoue, T., Iwasaki, T., Kakinuma, T., Kawamura, S., Kimura, I., Kyuka, T., McDonald, R. R., Nabi, M., Nakatsugawa, M., Simões, F. R., Takebayashi, H., and Watanabe, Y.: The international river interface cooperative: Public domain flow and morphodynamics software for education and applications, Adv. Water Resour., 93, 62–74, https://doi.org/10.1016/j.advwatres.2015.09.017, 2016.
Nelson, P. A. and Morgan, J. A.: Flume experiments on flow and sediment supply controls on gravel bedform dynamics, Geomorphology, 323, 98–105, https://doi.org/10.1016/j.geomorph.2018.09.011, 2018.
Nelson, P. A., Venditti, J. G., Dietrich, W. E., Kirchner, J. W., Ikeda, H., Iseya, F., and Sklar, L. S.: Response of bed surface patchiness to reductions in sediment supply, J. Geophys. Res., 114, 2008JF001144, https://doi.org/10.1029/2008JF001144, 2009.
Nelson, P. A., Dietrich, W. E., and Venditti, J. G.: Bed topography and the development of forced bed surface patches, J. Geophys. Res., 115, F04024, https://doi.org/10.1029/2010JF001747, 2010.
Nelson, P. A., Brew, A. K., and Morgan, J. A.: Morphodynamic response of a variable-width channel to changes in sediment supply, Water Resour. Res., 51, 5717–5734, https://doi.org/10.1002/2014WR016806, 2015.
Nittrouer, J. A. and Viparelli, E.: Sand as a stable and sustainable resource for nourishing the Mississippi River delta, Nat. Geosci., 7, 350–354, https://doi.org/10.1038/ngeo2142, 2014.
Parker, G.: Selective Sorting and Abrasion of River Gravel. I: Theory, J. Hydraul. Eng., 117, 131–147, https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(131), 1991.
Parker, G., An, C., Lamb, M. P., Garcia, M. H., Dingle, E. H., and Venditti, J. G.: Dimensionless argument: a narrow grain size range near 2 mm plays a special role in river sediment transport and morphodynamics, Earth Surf. Dynam., 12, 367–380, https://doi.org/10.5194/esurf-12-367-2024, 2024.
Peirce, S., Ashmore, P., and Leduc, P.: Evolution of grain size distributions and bed mobility during hydrographs in gravel-bed braided rivers, Earth Surf. Proc. Land., 44, 304–316, https://doi.org/10.1002/esp.4511, 2019.
Podolak, C. J. P. and Wilcock, P. R.: Experimental study of the response of a gravel streambed to increased sediment supply, Earth Surf. Proc. Land., 38, 1748–1764, https://doi.org/10.1002/esp.3468, 2013.
Recking, A., Frey, P., Paquier, A., and Belleudy, P.: An experimental investigation of mechanisms involved in bed load sheet production and migration, J. Geophys. Res., 114, F03010, https://doi.org/10.1029/2008JF000990, 2009.
Recking, A., Piton, G., Vazquez-Tarrio, D., and Parker, G.: Quantifying the Morphological Print of Bedload Transport: Morphological Print, Earth Surf. Proc. Land., 41, 809–822, https://doi.org/10.1002/esp.3869, 2016.
Schuerch, P., Densmore, A. L., McArdell, B. W., and Molnar, P.: The influence of landsliding on sediment supply and channel change in a steep mountain catchment, Geomorphology, 78, 222–235, https://doi.org/10.1016/j.geomorph.2006.01.025, 2006.
Seminara, G., Colombini, M., and Parker, G.: Nearly pure sorting waves and formation of bedload sheets, J. Fluid Mech., 312, 253–278, https://doi.org/10.1017/S0022112096001991, 1996.
Shimizu, Y., Takebayashi, H., Inoue, T., Hamaki, M., and Iwasaki, T.: iRIC-Software: Nays2DH solver manual, https://i-ric.org/en/ (last access: 15 November 2024), 2014.
Shimizu, Y., Nelson, J., Arnez Ferrel, K., Asahi, K., Giri, S., Inoue, T., Iwasaki, T., Jang, C., Kang, T., Kimura, I., Kyuka, T., Mishra, J., Nabi, M., Patsinghasanee, S., and Yamaguchi, S.: Advances in computational morphodynamics using the International River Interface Cooperative (iRIC) software, Earth Surf. Proc. Land., 45, 11–37, https://doi.org/10.1002/esp.4653, 2020.
Tanabe, S.: Movie S1 - The detrended riverbed elevation and the geometric mean grain size in Case 2-n-, TIB [video], https://doi.org/10.5446/70174, 2025a.
Tanabe, S.: Movie S2 - The detrended riverbed elevation and the geometric mean grain size in Case 1-n-, TIB [video], https://doi.org/10.5446/70172, 2025b.
Tanabe, S.: Movie S3 – The two-dimensional riverbed variation from the initial riverbed elevation in Case 2-b-, TIB [video], https://doi.org/10.5446/70173, 2025c.
Tanabe, S.: Movie S4 - The two-dimensional riverbed variation from the initial riverbed elevation in Case 1-b-, TIB [video], https://doi.org/10.5446/70175, 2025d.
Tanabe, S.: Movie S5 - Longitudinal riverbed variation from the initial riverbed elevation and geometric mean grain size in Case 2-b-, TIB [video], https://doi.org/10.5446/70176, 2025e.
Tanabe, S.: Movie S6 - Longitudinal riverbed variation from the initial riverbed elevation and geometric mean grain size in Case 1-b-, TIB [video], https://doi.org/10.5446/70177, 2025f.
Tanabe, S.: Movie S7 - Longitudinal distribution of the magnitude of cross-sectional average sediment transport flux in Case 1-b-, TIB [video], https://doi.org/10.5446/70178, 2025g.
Tanabe, S.: Movie S8 - Longitudinal distribution of the magnitude of cross-sectional average sediment transport flux in Case 2-b-, TIB [video], https://doi.org/10.5446/70179, 2025h.
Trenberth, K.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Tubino, M.: Growth of alternate bars in unsteady flow, Water Resour. Res., 27, 37–52, https://doi.org/10.1029/90WR01699, 1991.
Venditti, J. G., Nelson, P. A., and Dietrich, W. E.: The domain of bedload sheets, Marine Sandwave and River Dune Dynamics, 3, 315–321, 2008.
Venditti, J. G., Dietrich, W. E., Nelson, P. A., Wydzga, M. A., Fadde, J., and Sklar, L.: Effect of sediment pulse grain size on sediment transport rates and bed mobility in gravel bed rivers, J. Geophys. Res., 115, 2009JF001418, https://doi.org/10.1029/2009JF001418, 2010a.
Venditti, J. G., Dietrich, W. E., Nelson, P. A., Wydzga, M. A., Fadde, J., and Sklar, L.: Mobilization of coarse surface layers in gravel-bedded rivers by finer gravel bed load, Water Resour. Res., 46, 2009WR008329, https://doi.org/10.1029/2009WR008329, 2010b.
Venditti, J. G., Nelson, P. A., Minear, J. T., Wooster, J., and Dietrich, W. E.: Alternate bar response to sediment supply termination, J. Geophys. Res., 117, 2011JF002254, https://doi.org/10.1029/2011JF002254, 2012.
Venditti, J. G., Nittrouer, J. A., Allison, M. A., Humphries, R. P., and Church, M.: Supply‐limited bedform patterns and scaling downstream of a gravel–sand transition, Sedimentology, 66, 2538–2556, https://doi.org/10.1111/sed.12604, 2019.
Wang, L., Cuthbertson, A., Pender, G., and Zhong, D.: Bed Load Sediment Transport and Morphological Evolution in a Degrading Uniform Sediment Channel Under Unsteady Flow Hydrographs, Water Resour. Res., 55, 5431–5452, https://doi.org/10.1029/2018WR024413, 2019.
Waters, K. A. and Curran, J. C.: Linking bed morphology changes of two sediment mixtures to sediment transport predictions in unsteady flows, Water Resour. Res., 51, 2724–2741, https://doi.org/10.1002/2014WR016083, 2015.
White, D. C., Morrison, R. R., and Nelson, P. A.: Experimental Observations of Floodplain Vegetation, Bedforms, and Sediment Transport Interactions in a Meandering Channel, J. Geophys. Res.-Earth, 128, e2023JF007136, https://doi.org/10.1029/2023JF007136, 2023.
Whiting, P. J., Dietrich, W. E., Leopold, L. B., Drake, T. G., and Shreve, R. L.: Bedload sheets in heterogeneous sediment, Geology, 16, 105, https://doi.org/10.1130/0091-7613(1988)016<0105:BSIHS>2.3.CO;2, 1988.
Wilcock, P. R.: Two-Fraction Model of Initial Sediment Motion in Gravel-Bed Rivers, Science, 280, 410–412, https://doi.org/10.1126/science.280.5362.410, 1998.
Wilcock, P. R. and Crowe, J. C.: Surface-based Transport Model for Mixed-Size Sediment, J. Hydraul. Eng., 129, 120–128, https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120), 2003.
Wilcock, P. R., Kenworthy, S. T., and Crowe, J. C.: Experimental study of the transport of mixed sand and gravel, Water Resour. Res., 37, 3349–3358, https://doi.org/10.1029/2001WR000683, 2001.
Wong, M. and Parker, G.: One-dimensional modeling of bed evolution in a gravel bed river subject to a cycled flood hydrograph: bed evolution with flood hydrograph, J. Geophys. Res., 111, F03018, https://doi.org/10.1029/2006JF000478, 2006.
Zinger, J. A., Rhoads, B. L., and Best, J. L.: Extreme sediment pulses generated by bend cutoffs along a large meandering river, Nat. Geosci., 4, 675–678, https://doi.org/10.1038/ngeo1260, 2011.
Short summary
We try to understand how the sediment supply from the upstream river reach affects the downstream river morphology using a numerical model. If the supplied sediment is composed of a variety of size classes of particles, a small bed wave that is composed of mainly fine particles (sorting wave) can propagate to downstream for a very long distance. However, the presence of bars suppresses the effect of the sorting wave greatly, and thus the sediment supply has a limited role in the downstream river morphology.
We try to understand how the sediment supply from the upstream river reach affects the...