Articles | Volume 13, issue 1
https://doi.org/10.5194/esurf-13-81-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-81-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying fracture-controlled resonance modes for structural health monitoring: insights from Hunter Canyon Arch (Utah, USA)
Guglielmo Grechi
CORRESPONDING AUTHOR
Department of Geology and Geophysics, University of Utah, Salt Lake City, 84112 Utah, USA
Department of Earth Sciences, Sapienza University of Rome, Rome, 00185, Italy
Jeffrey R. Moore
Department of Geology and Geophysics, University of Utah, Salt Lake City, 84112 Utah, USA
Molly E. McCreary
Department of Geology and Geophysics, University of Utah, Salt Lake City, 84112 Utah, USA
Erin K. Jensen
Department of Geology and Geophysics, University of Utah, Salt Lake City, 84112 Utah, USA
Salvatore Martino
Department of Earth Sciences, Sapienza University of Rome, Rome, 00185, Italy
Related authors
No articles found.
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, and Jeffrey Moore
Earth Surf. Dynam., 11, 1251–1274, https://doi.org/10.5194/esurf-11-1251-2023, https://doi.org/10.5194/esurf-11-1251-2023, 2023
Short summary
Short summary
In this paper, we investigate the 28 June 2022 collapse of the Chaos Canyon landslide in Rocky Mountain National Park, Colorado, USA. We find that the landslide was moving prior to its collapse and took place at peak spring snowmelt; temperature modeling indicates the potential presence of permafrost. We hypothesize that this landslide could be part of the broader landscape evolution changes to alpine terrain caused by a warming climate, leading to thawing alpine permafrost.
Riley Finnegan, Jeffrey R. Moore, and Paul R. Geimer
Earth Surf. Dynam., 9, 1459–1479, https://doi.org/10.5194/esurf-9-1459-2021, https://doi.org/10.5194/esurf-9-1459-2021, 2021
Short summary
Short summary
We performed controlled helicopter flights near seven rock arches and towers in Utah, USA, and recorded how their natural vibrations changed as the helicopter performed different maneuvers. We found that arches and towers vibrate up to 1000 times faster during these flights compared to time periods just before the helicopter's approach. Our study provides data that can be used to predict long-term damage to culturally significant rock features from sustained helicopter flights over time.
Mauro Häusler, Paul Richmond Geimer, Riley Finnegan, Donat Fäh, and Jeffrey Ralston Moore
Earth Surf. Dynam., 9, 1441–1457, https://doi.org/10.5194/esurf-9-1441-2021, https://doi.org/10.5194/esurf-9-1441-2021, 2021
Short summary
Short summary
Natural rock arches are valued landmarks worldwide. As ongoing erosion can lead to rockfall and collapse, it is important to monitor the structural integrity of these landforms. One suitable technique involves measurements of resonance, produced when mainly natural sources, such as wind, vibrate the spans. Here we explore the use of two advanced processing techniques to accurately measure the resonant frequencies, damping ratios, and deflection patterns of several rock arches in Utah, USA.
Joseph P. Verdian, Leonard S. Sklar, Clifford S. Riebe, and Jeffrey R. Moore
Earth Surf. Dynam., 9, 1073–1090, https://doi.org/10.5194/esurf-9-1073-2021, https://doi.org/10.5194/esurf-9-1073-2021, 2021
Short summary
Short summary
River behavior depends on the size of rocks they carry. Rocks are born on hillslopes where erosion removes fragments from solid bedrock. To understand what controls the size of rock fragments, we measured the spacing between cracks exposed in 15 bare-rock cliffs and the size of rocks on the ground below. We found that, for each site, the average rock size could be predicted from the average distance between cracks, which varied with rock type. This shows how rock type can influence rivers.
Cited articles
Aenlle, M., Juul, M., and Brincker, R.: Corrigendum to “Modal Mass and Length of Mode Shapes in Structural Dynamics”, Shock Vib., 2021, 9821852, https://doi.org/10.1155/2021/9821852, 2021.
Alaei, A., Hejazi, M., Vintzileou, E., Miltiadou-Fezans, A., and Skłodowski, M.: Effect of damage and repair on the dynamic properties of Persian brick masonry arches, The European Physical Journal Plus, 138, 231, https://doi.org/10.1140/epjp/s13360-023-03781-0, 2023.
Azzara, R. M., Girardi, M., Iafolla, V., Padovani, C., and Pellegrini, D.: Long-Term Dynamic Monitoring of Medieval Masonry Towers, Frontiers in Built Environment, 6, 9, https://doi.org/10.3389/fbuil.2020.00009, 2020.
Bandis, S. C., Lumsden, A. C., and Barton, N. R.: Fundamentals of rock joint deformation, Int. J. Rock Mech. Min., 20, 249–268, https://doi.org/10.1016/0148-9062(83)90595-8, 1983.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., and Yang, Y.: Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239–1260, https://doi.org/10.1111/j.1365-246X.2007.03374.x, 2007.
Bessette-Kirton, E. K., Moore, J. R., Geimer, P. R., Finnegan, R., Häusler, M., and Dzubay, A.: Structural Characterization of a Toppling Rock Slab From Array-Based Ambient Vibration Measurements and Numerical Modal Analysis, J. Geophys. Res.-Earth, 127, e2022JF006679, https://doi.org/10.1029/2022JF006679, 2022.
Blair Jr., R. W.: Development of natural sandstone arches in south-eastern Utah, International geomorphology 1986, Proc. 1st Conference, Manchester, UK, 15–21 September 1985, Vol. 2, 597–604, 1987.
Bottelin, P. and Baillet, L.: Original Insights Into Rock Slope Damage Processes Until Collapse From Passive Seismic Monitoring, Geophys. Res. Lett., 51, e2024GL109139, https://doi.org/10.1029/2024GL109139, 2024.
Bottelin, P., Lévy, C., Baillet, L., Jongmans, D., and Guéguen, P.: Modal and thermal analysis of les arches unstable rock column (vercors massif, french alps), Geophys. J. Int., 194, 849–858, https://doi.org/10.1093/gji/ggt046, 2013a.
Bottelin, P., Jongmans, D., Baillet, L., Lebourg, T., Hantz, D., Levy, C., Le Roux, O., Cadet, H., Lorier, L., Rouiller, J.-D., Turpin, J., and Darras, L.: Spectral Analysis of Prone-to-fall Rock Compartments using Ambient Vibrations, J. Environ. Eng. Geoph., 18, 205–217, https://doi.org/10.2113/JEEG18.4.205, 2013b.
Bottelin, P., Baillet, L., Larose, E., Jongmans, D., Hantz, D., Brenguier, O., Cadet, H., and Helmstetter, A.: Monitoring rock reinforcement works with ambient vibrations: La Bourne case study (Vercors, France), Eng. Geol., 226, 136–145, https://doi.org/10.1016/j.enggeo.2017.06.002, 2017.
Brincker, R. and Ventura, C.: Introduction to operational modal analysis, John Wiley and Sons, Inc, Chichester, West Sussex, 1, https://doi.org/10.1002/9781118535141, 2015.
Brincker, R., Zhang, L., and Andersen, P.: Modal identification of output-only systems using frequency domain decomposition, Smart Mater. Struct., 10, 441–445, https://doi.org/10.1088/0964-1726/10/3/303, 2001.
Bruthans, J., Soukup, J., Vaculikova, J., Filippi, M., Schweigstillova, J., Mayo, A. L., Masin, D., Kletetschka, G., and Rihosek, J.: Sandstone landforms shaped by negative feedback between stress and erosion, Nat. Geosci., 7, 597–601, https://doi.org/10.1038/ngeo2209, 2014.
Burjánek, J., Gischig, V., Moore, J. R., and Fäh, D.: Ambient vibration characterization and monitoring of a rock slope close to collapse, Geophys. J. Int., 212, 297–310, https://doi.org/10.1093/gji/ggx424, 2018.
Burjánek, J., Kleinbrod, U., and Fäh, D.: Modeling the Seismic Response of Unstable Rock Mass With Deep Compliant Fractures, J. Geophys. Res.-Sol. Ea., 124, 13039–13059, https://doi.org/10.1029/2019JB018607, 2019.
Çelebi, M.: S2HM of Buildings in USA, Seismic Structural Health Monitoring: From Theory to Successful Applications, Springer, Cham., 3–30, https://doi.org/10.1007/978-3-030-13976-6_1, 2019.
Ceravolo, R., Pistone, G., Fragonara, L. Z., Massetto, S., and Abbiati, G.: Vibration-Based Monitoring and Diagnosis of Cultural Heritage: A Methodological Discussion in Three Examples, Int. J. Archit. Herit., 10, 375–395, https://doi.org/10.1080/15583058.2013.850554, 2016.
Chopra, A. K.: Dynamics of structures: international edition, Pearson Education Limited, ISBN 0-273-77426-3, 2013.
Cimellaro, G. P. (Ed.): Seismic isolation, energy dissipation and active vibration control of structures, Vol. 2, Corrected publication, Springer, Cham, 492 pp., ISBN 978-3031211867, 2023.
Clinton, J. F., Bradford, S. C., Heaton, T. H., and Favela, J.: The observed wander of the natural frequencies in a structure, B. Seismol. Soc. Am., 96, 237–257, https://doi.org/10.1785/0120050052, 2006.
Colombero, C., Baillet, L., Comina, C., Jongmans, D., and Vinciguerra, S.: Characterization of the 3-D fracture setting of an unstable rock mass: From surface and seismic investigations to numerical modeling, J. Geophys. Res.-Sol. Ea., 122, 6346–6366, https://doi.org/10.1002/2017JB014111, 2017.
Colombero, C., Baillet, L., Comina, C., Jongmans, D., Larose, E., Valentin, J., and Vinciguerra, S.: Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff, Geophys. J. Int., 213, 1876–1897, https://doi.org/10.1093/gji/ggy090, 2018.
Colombero, C., Godio, A., and Jongmans, D.: Ambient Seismic Noise and Microseismicity Monitoring of a Prone-To-Fall Quartzite Tower (Ormea, NW Italy), Remote Sens., 13, 1664, https://doi.org/10.3390/rs13091664, 2021a.
Colombero, C., Jongmans, D., Fiolleau, S., Valentin, J., Baillet, L., and Bièvre, G.: Seismic Noise Parameters as Indicators of Reversible Modifications in Slope Stability: A Review, Springer Netherlands, 339–375 pp., https://doi.org/10.1007/s10712-021-09632-w, 2021b.
Conati Barbaro, C., Fiorucci, M., Grechi, G., Forti, L., Marmoni, G. M., and Martino, S.: Safeguarding archaeological excavations and preserving cultural heritage in cave environments through engineering geological and geophysical approaches, J. Archaeol. Sci. Reports, 60, 104868, https://doi.org/10.1016/j.jasrep.2024.104868, 2024.
Cruikshank, K. M. and Aydin, A.: Role of fracture localization in arch formation, Arches National Park, Utah, Geol. Soc. Am. Bull., 106, 879–891, https://doi.org/10.1130/0016-7606(1994)106<0879:ROFLIA>2.3.CO;2, 1994.
Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, Los Alamos National Laboratories, https://doi.org/10.2172/249299, 1996.
Dzubay, A., Moore, J. R., Finnegan, R., Jensen, E. K., Geimer, P. R., and Koper, K. D.: Rotational Components of Normal Modes Measured at a Natural Sandstone Tower (Kane Springs Canyon, Utah, U.S.A.), The Seismic Record, 2, 260–268, https://doi.org/10.1785/0320220035, 2022.
Farrar, C. R. and James III, G. H.: System identification from ambient vibration measurements on a bridge, J. Sound Vib., 205, 1–18, https://doi.org/10.1006/jsvi.1997.0977, 1997.
Finnegan, R., Moore, J. R., and Geimer, P. R.: Vibration of natural rock arches and towers excited by helicopter-sourced infrasound, Earth Surf. Dynam., 9, 1459–1479, https://doi.org/10.5194/esurf-9-1459-2021, 2021.
Finnegan, R., Moore, J. R., Geimer, P. R., Dzubay, A., Bessette-Kirton, E. K., Bodtker, J., and Vollinger, K.: Ambient Vibration Modal Analysis of Natural Rock Towers and Fins, Seismol. Res. Lett., 93, 1777–1786, https://doi.org/10.1785/0220210325, 2022.
Geimer, P. R., Finnegan, R., and Moore, J. R.: Sparse Ambient Resonance Measurements Reveal Dynamic Properties of Freestanding Rock Arches, Geophys. Res. Lett., 47, e2020GL087239, https://doi.org/10.1029/2020GL087239, 2020.
Geimer, P. R., Finnegan, R., and Moore, J. R.: Meteorological Controls on Reversible Resonance Changes in Natural Rock Arches, J. Geophys. Res.-Earth, 127, e2022JF006734, https://doi.org/10.1029/2022jf006734, 2022.
Goodman, R. E.: Introduction to rock mechanics, Wiley, New York, 478 pp., ISBN 0471041297, 1980.
Grechi, G., Moore, J. R., Jensen, E. K., McCreary, M. E., Czech, T. L., and Festin, M. M.: Modal Analysis of a Lava Tube Roof Complex: Tabernacle Hill, Utah, USA, Rock Mech. Rock Eng., 57, 1–10, https://doi.org/10.1007/s00603-024-03868-9, 2024.
Habaraduwa Peellage, W., Fatahi, B., and Rasekh, H.: Stiffness and damping characteristics of jointed rocks under cyclic triaxial loading subjected to prolonged cyclic loading, Int. J. Fatigue, 181, 108121, https://doi.org/10.1016/j.ijfatigue.2023.108121, 2024.
Häusler, M., Geimer, P. R., Finnegan, R., Fäh, D., and Moore, J. R.: An update on techniques to assess normal-mode behavior of rock arches by ambient vibrations, Earth Surf. Dynam., 9, 1441–1457, https://doi.org/10.5194/esurf-9-1441-2021, 2021a.
Häusler, M., Michel, C., Burjánek, J., and Fäh, D.: Monitoring the Preonzo Rock Slope Instability Using Resonance Mode Analysis, J. Geophys. Res.-Earth, 126, e2020JF005709, https://doi.org/10.1029/2020JF005709, 2021b.
Iannucci, R., Martino, S., Paciello, A., D'Amico, S., and Galea, P.: Investigation of cliff instability at Ghajn Hadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques, J. Seismol., 24, 897–916, https://doi.org/10.1007/s10950-019-09898-z, 2020.
Ibrahim, S. R.: Random Decrement Technique for Modal Identification of Structures, J. Spacecraft Rockets, 14, 696–700, https://doi.org/10.2514/3.57251, 1977.
Jensen, E. K. and Moore, J. R.: Coevolution of Rock Slope Instability Damage and Resonance Frequencies From Distinct‐Element Modeling, J. Geophys. Res.-Earth, 128, e2023JF007305, https://doi.org/10.1029/2023JF007305, 2023
Kleinbrod, U., Burjánek, J., and Fäh, D.: Ambient vibration classification of unstable rock slopes: A systematic approach, Eng. Geol., 249, 198–217, https://doi.org/10.1016/j.enggeo.2018.12.012, 2019.
Koper, K. D. and Hawley, V. L.: Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States, Earthquake Science, 23, 439–447, https://doi.org/10.1007/s11589-010-0743-5, 2010.
Kulatilake, P. H. S. W., Shreedharan, S., Sherizadeh, T., Shu, B., Xing, Y., and He, P.: Laboratory Estimation of Rock Joint Stiffness and Frictional Parameters, Geotechnical and Geological Engineering, 34, 1723–1735, https://doi.org/10.1007/s10706-016-9984-y, 2016.
Lazan, B. J.: Damping of materials and members in structural mechanics, Elsevier Science and Technology, Vol. XIII, 317 pp., ISBN 0080029345, 1968.
Lévy, C., Baillet, L., Jongmans, D., Mourot, P., and Hantz, D.: Dynamic response of the Chamousset rock column (Western Alps, France), J. Geophys. Res.-Earth, 115, F04043, https://doi.org/10.1029/2009JF001606, 2010.
Lin, F. C., Li, D., Clayton, R. W., and Hollis, D.: High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array, Geophysics, 78, Q45–Q56, https://doi.org/10.1190/geo2012-0453.1, 2013.
McNamara, D. E. and Buland, R. P.: Ambiente noise levels in the continental United States, B. Seismol. Soc. Am., 94, 1517–1527, https://doi.org/10.1785/012003001, 2004.
Mercerat, E. D., Payeur, J. B., Bertrand, E., Malascrabes, M., Pernoud, M., and Chamberland, Y.: Deciphering the dynamics of a heterogeneous sea cliff using ambient vibrations: Case study of the Sutta-Rocca overhang (southern Corsica, France), Geophys. J. Int., 224, 813–824, https://doi.org/10.1093/gji/ggaa465, 2021.
Moore, J.: Structural health monitoring of rock arches and towers, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/5P_2013, 2013.
Moore, J. R. and Grechi, G.: Hunter Arch, Sketchfab [code], https://skfb.ly/oILIM, last access: 16 January 2025.
Moore, J. R., Geimer, P. R., Finnegan, R., and Thorne, M. S.: Use of Seismic Resonance Measurements to Determine the Elastic Modulus of Freestanding Rock Masses, Rock Mech. Rock Eng., 51, 3937–3944, https://doi.org/10.1007/s00603-018-1554-6, 2018.
Moore, J. R., Geimer, P. R., Finnegan, R., and Michel, C.: Dynamic Analysis of a Large Freestanding Rock Tower (Castleton Tower, Utah), B. Seismol. Soc. Am., 109, 2125–2131, https://doi.org/10.1785/0120190118, 2019.
Moore, J. R., Geimer, P. R., Finnegan, R., and Bodtker, J.: Between a beam and catenary: Influence of geometry on gravitational stresses and stability of natural rock arches, Geomorphology, 364, 107244, https://doi.org/10.1016/j.geomorph.2020.107244, 2020.
Müller, J. and Burjánek, J.: In situ estimation of effective rock elastic moduli by seismic ambient vibrations, Int. J. Rock Mech. Min., 170, 105459, https://doi.org/10.1016/j.ijrmms.2023.105459, 2023.
Ostanin, I., Safonov, A., and Oseledets, I.: Natural Erosion of Sandstone as Shape Optimisation, Sci. Rep., 7, 17301, https://doi.org/10.1038/s41598-017-17777-1, 2017.
Pau, A. and Vestroni, F.: Vibration assessment and structural monitoring of the Basilica of Maxentius in Rome, Mech. Syst. Signal Pr., 41, 454–466, https://doi.org/10.1016/j.ymssp.2013.05.009, 2013.
Řihošek, J., Slavík, M., Bruthans, J., and Filippi, M.: Evolution of natural rock arches: A realistic small-scale experiment, Geology, 47, 71–74, https://doi.org/10.1130/G45421.1, 2018.
Riquelme, A.: Discontinuity Set Extractor, GitHub [code], https://github.com/adririquelme/DSE (last access: 16 January 2025), 2015.
Riquelme, A. J., Abellán, A., Tomás, R., and Jaboyedoff, M.: A new approach for semi-automatic rock mass joints recognition from 3D point clouds, Comput. Geosci., 68, 38–52, https://doi.org/10.1016/j.cageo.2014.03.014, 2014.
Starr, A. M., Moore, J. R., and Thorne, M. S.: Ambient resonance of Mesa Arch, Canyonlands National Park, Utah, Geophys. Res. Lett., 42, 6696–6702, https://doi.org/10.1002/2015GL064917, 2015.
Taruselli, M., Arosio, D., Longoni, L., Papini, M., and Zanzi, L.: Seismic noise monitoring of a small rock block collapse test, Geophys. J. Int., 224, 207–215, https://doi.org/10.1093/gji/ggaa447, 2021.
Van Overschee, P. and De Moor, B.: Subspace Identification for Linear Systems, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4613-0465-4, 1996.
Welch, P.: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE T. Acoust. Speech, 15, 70–73, https://doi.org/10.1109/TAU.1967.1161901, 1967.
Zhang, W., Wang, J., Xu, P., Lou, J., Shan, B., Wang, F., Cao, C., Chen, X., and Que, J.: Stability evaluation and potential failure process of rock slopes characterized by non-persistent fractures, Nat. Hazards Earth Syst. Sci., 20, 2921–2935, https://doi.org/10.5194/nhess-20-2921-2020, 2020.
Short summary
We investigated the dynamic behavior of a rock arch to understand how fractures influence its stability. Using geophones, we measured its modes of vibration and used numerical modeling to replicate them. We found that higher-order resonance modes are the most sensitive to fractures, indicating their potential as early indicators of structural damage. Therefore, monitoring these higher-order modes could provide a more accurate tool to assess the structural integrity of natural rock landforms.
We investigated the dynamic behavior of a rock arch to understand how fractures influence its...