Articles | Volume 13, issue 5
https://doi.org/10.5194/esurf-13-827-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-13-827-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Morphological response to climate-induced flood-event variability in a subarctic river
Linnea Blåfield
CORRESPONDING AUTHOR
Department of Geography and Geology, University of Turku, Turku, Finland
Carlos Gonzales-Inca
Department of Geography and Geology, University of Turku, Turku, Finland
Petteri Alho
Department of Geography and Geology, University of Turku, Turku, Finland
Finnish Geospatial Research Institute FGI, National Land Survey of Finland, Espoo, Finland
Elina Kasvi
Department of Geography and Geology, University of Turku, Turku, Finland
Related authors
No articles found.
Tua Nylén, Mikel Calle, and Carlos Gonzales-Inca
EGUsphere, https://doi.org/10.5194/egusphere-2023-1399, https://doi.org/10.5194/egusphere-2023-1399, 2023
Preprint archived
Short summary
Short summary
Communities all around the Arctic urgently need information on how their coast is changing in response to climate change. We developed an automized method for mapping Arctic shoreline displacement from open satellite images. We show how coastal change hotspots, glacier retreat, spit migration and delta development can be identified from such data. Being highly efficient and accurate, our method has potential for calculating the first 40-year time series of shoreline displacement in the Arctic.
Cited articles
Arp, C. D., Whitman, M. S., Kemnitz, R., and Stuefer, S. L.: Evidence of hydrological intensification and regime change from northern Alaskan watershed runoff, Geophys. Res. Lett., 47, e2020GL089186, https://doi.org/10.1029/2020GL089186, 2020.
Beel, C. R., Heslop, J. K., Orwin, J. F., Pope, M. A., Schevers, A. J., Hung, J. K. Y., Lafneriére, M. J., and Lamoureux, S. F.: Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity, Nat. Commun., 12, 1448, https://doi.org/10.1038/s41467-021-21759-3, 2021.
Blåfield, L., Marttila, H., Kasvi, E., and Alho, P.: Temporal shift of hydroclimatic regime and its influence on migration of a high latitude meandering river, J. Hydrol., 633, 130935 https://doi.org/10.1016/j.jhydrol.2024.130935, 2024a.
Blåfield, L., Calle, M., Kasvi, E., and Alho, P.: Modelling seasonal variation of sediment connectivity and its interplay with river forms, Geomorphology, 463, 109346. https://doi.org/10.1016/j.geomorph.2024.109346, 2024b.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B., Arheimer, B., and Živković, N.: Changing climate shifts timing of European floods, Science, 357, 588–590, https://doi.org/10.1126/science.aan2506, 2017.
Blott, S. J., and Pye, K.: GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth surface processes and Landforms, 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Bracken, L. J., Turnbull, L., Wainwright, J., and Bogaart, P.: Sediment connectivity: a framework for understanding sediment transfer at multiple scales, Earth Surf. Process. Land., 40, 177–188, https://doi.org/10.1002/esp.3635, 2015.
Brown, D. R. N., Brinkman, T. J., Bolton, W. R., Brown, C. L., Cold, H. S., Hollingsworth, T. N., and Verbyla, D. L.: Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion, Climatic Change, 162, 1–20, https://doi.org/10.1007/s10584-020-02748-9, 2020.
Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V., and Yang, D.: The Changing Face of Arctic Snow Cover: A Synthesis of Observed and Projected Changes, Ambio, 40, 17–31, https://doi.org/10.1007/s13280-011-0212-y, 2011.
Cockburn, J. M. and Lamoureux, S. F.: Hydroclimate controls over seasonal sediment yield in two adjacent High Arctic watersheds, Hydrol. Process., 22, 2013–2027, https://doi.org/10.1002/hyp.6798, 2008.
Connolly, R., Connolly, M., Soon, W., Legates, D. R., Cionco, R. G., and Velasco Herrera, V. M.: Northern Hemisphere Snow-Cover Trends (1967–2018): A Comparison between Climate Models and Observations, Geosciences, 9, 135, https://doi.org/10.3390/geosciences9030135, 2019.
Curran, J. C., and Waters, K. A.: The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river, J. Geophys. Res., Earth Surface, 119, 1484–1497, https://doi.org/10.1002/2014JF003143, 2014.
Dahlke, H. E., Lyon, S. W., Stedinger, J. R., Rosqvist, G., and Jansson, P.: Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter?, Hydrol. Earth Syst. Sci., 16, 2123–2141, https://doi.org/10.5194/hess-16-2123-2012, 2012.
Daneshvar Vousoughi, F., Dinpashoh, Y., Aalami, M. T., and Jhajharia, D.: Trend analysis of groundwater using non-parametric methods (case study: Ardabil plain), Stoch. Environ. Res. Risk Assess., 27, 547–559, https://doi.org/10.1007/s00477-012-0599-4, 2013.
Dietrich, J. T.: Bathymetric structure‐from‐motion: Extracting shallow stream bathymetry from multi‐view stereo photogrammetry, Earth Surface Processes and Landforms, 42, 355–364, https://doi.org/10.1002/esp.4060, 2017.
Dudill, A., Frey, P., and Church, M.: Infiltration of fine sediment into a coarse mobile bed: a phenomenological study, Earth Surface Processes and Landforms, 42, 1171–1185, https://doi.org/10.1002/esp.4080, 2017.
Favaro, E. A., and Lamoureux, S. F.: Downstream patterns of suspended sediment transport in a High Arctic river influenced by permafrost disturbance and recent climate change, Geomorphology, 246, 359–369, https://doi.org/10.1016/j.geomorph.2015.06.038, 2015.
Ferdowsi, B., Ortiz, C. P., Houssais, M., and Jerolmack, D. J.: River-bed armouring as a granular segregation phenomenon, Nature communications, 8, 1363, https://doi.org/10.1038/s41467-017-01681-3, 2017.
Fischer, S. and Schumann, A.: Spatio-temporal consideration of the impact of flood-event types on flood statistic, Stoch. Environ. Res. Risk. Assess., 34, 1331–1351, https://doi.org/10.1007/s00477-019-01690-2, 2020.
FMI: Download observations, Utsjoki Nuorgam, Finnish Meteorological Institute [data set], https://en.ilmatieteenlaitos.fi/download-observations (last access: 24 August 2024), 2025.
Gisnås, K., Etzelmüller, B., Lussana, C., Hjort, J., Sannel, A. B. K., Isaksen, K., Åkerman, J.: Permafrost map for Norway, Sweden and Finland, Permafrost and periglacial processes, 28, 359–378, https://doi.org/10.1002/ppp.1922, 2017.
Gohari, A., Shahrood, A. J., Ghadimi, S., Alborz, M., Patro, E. R., Klöve, B., and Haghighi, A. T.: A century of variations in extreme flow across Finnish rivers, Environ. Res. Lett., 17, 124027, https://doi.org/10.1088/1748-9326/aca554, 2022.
Gunsolus, E. H. and Binns, A. D.: Effect of morphologic and hydraulic factors on hysteresis of sediment transport rates in alluvial streams, River Res. Appl., 34, 183–192, https://doi.org/10.1002/rra.3184, 2018.
Gupta, H., Reddy, K. K., Gandla, V., Paridula, L., Chiluka, M., and Vashisth, B.: Freshwater discharge from the large and coastal peninsular rivers of India: A reassessment for sustainable water management, Environ. Sci. Pollut. Res., 29, 14400–14417, https://doi.org/10.1007/s11356-021-16811-0, 2022.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 204, 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X, 1998.
Hirvas, H., Lagerbäck, R., Mäkinen, K., Nenonen, K., Olsen, L., Rodhe, L., and Thoresen, M.: The Nordkalott Project: studies of Quaternary geology in northern Fennoscandia, Boreas, 17, 431–437, https://doi.org/10.1111/j.1502-3885.1988.tb00560.x, 1988.
Hopwood, M. J., Carroll, D., Browning, T. J., Meire, L., Mortensen, J., Krisch, S., and Achterberg, E. P.: Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland, Nat. Commun, 9, 3256, https://doi.org/10.1038/s41467-018-05488-8, 2018.
Hooke, J.: River meander behaviour and instability: a framework for analysis, T. I. Brit. Geogr., 28, 238–253, https://doi.org/10.1111/1475-5661.00089, 2003.
Huo, R., Li, L., Engeland, K., Xu, C. Y., Chen, H., Paasche, Ø., and Guo, S.: Changing flood dynamics in Norway since the last millennium and to the end of the 21st century, J. Hydrol., 613, 128331, https://doi.org/10.1016/j.jhydrol.2022.128331, 2022.
Hu, Y., Che, T., Dai, L., Zhu, Y., Xiao, L., Deng, J., and Li, X.: A long-term daily gridded snow depth dataset for the Northern Hemisphere from 1980 to 2019 based on machine learning, Big Earth Data, 8, 274–301, https://doi.org/10.1080/20964471.2023.2177435, 2024.
Ielpi, A., Lapôtre, M. G., Finotello, A., and Roy-Léveillée, P.: Large sinuous rivers are slowing down in a warming Arctic, Nature Climate Change, 13, 375–381, https://doi.org/10.1038/s41558-023-01620-9, 2023.
Irannezhad, M., Ahmadian, S., Sadeqi, A., Minaei, M., Ahmadi, B., and Marttila, H.: Peak spring flood discharge magnitude and timing in natural rivers across northern Finland: Long-term variability, trends, and links to climate teleconnections, Water, 14, 1312, https://doi.org/10.3390/w14081312, 2022.
Jhajharia, D., Dinpashoh, Y., Kahya, E., Choudhary, R. R., and Singh, V. P.: Trends in temper-ature over Godavari River basin in Southern Peninsular India, Int. J. Climatol., 34, https://doi.org/10.1002/joc.3761, 2014.
Johansson, P.: Late Weichselian deglaciation in Finnish Lapland, Applied Quaternarre-search in the central part of glaciated terrain, 47, 2007.
Kärkkäinen, M., and Lotsari, E.: Impacts of rising, peak and receding phases of discharge events on erosion potential of a boreal meandering river. Hydrological Processes, 36, https://doi.org/10.1002/hyp.14674, 2022.
Kasvi, E.: Fluvio-morphological Processes of meander bends – combining conventional Field measurements, closerange Remote sensing and Computational modelling, Annales Universitas Turkuensis, Series IIA, 298, 2015.
Kasvi, E., Alho, P., Lotsari, E., Wang, Y., Kukko, A., Hyyppä, H., and Hyyppä, J.: Two-dimensional and three-dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality, Hydrol. Process., 29, 1604–1629, https://doi.org/10.1002/hyp.10277, 2015.
Karimaee Tabarestani, M. and Zarrati, A. R.: Sediment transport during flood-event: a review, Int. J. Environ. Sci. Technol., 12, 775–788, https://doi.org/10.1007/s13762-014-0689-6, 2015.
Kociuba, W.: The Role of Bedload Transport in the Development of a Proglacial River Alluvial Fan (Case Study: Scott River, Southwest Svalbard), Hydrology, 8, 173, https://doi.org/10.3390/hydrology8040173, 2021.
Korhonen, J. and Kuusisto, E.: Long-term changes in the discharge regime in Finland, Hydrol. Res., 41, 253–268, https://doi.org/10.2166/nh.2010.112, 2010.
Koenigk, T., and Brodeau, L.: Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model, Climate Dynamics, 49, 471–492, https://doi.org/10.1007/s00382-016-3354-6, 2017.
Kunkel, K. E., Robinson, D. A., Champion, S., Yin, X., Estilow, T., and Frankson, R. M.: Trends and Extremes in Northern Hemisphere Snow Characteristics, Curr. Clim. Change Rep., 2, 65–73, https://doi.org/10.1007/s40641-016-0036-8, 2016.
Labuhn, I., Hammarlund, D., Chapron, E., Czymzik, M., Dumoulin, J. P., Nilsson, A., and Von Grafenstein, U.: Holocene hydroclimate variability in central Scandinavia inferred from flood layers in contourite drift deposits in Lake Storsjön, Quaternary, 1, https://doi.org/10.3390/quat1010002, 2018.
Lakens, D.: Sample size justification, Collabra: Psychology, 8, 33267, https://doi.org/10.1525/collabra.33267, 2022.
Li, C., Yang, Z., Shen, H. T., and Mou, X.: Freeze-Thaw Effect on Riverbank Stability, Water, 14, 2479, https://doi.org/10.3390/w14162479, 2022.
Li, D., Overeem, I., Kettner, A. J., Zhou, Y., and Lu, X.: Air temperature regulates erodible landscape, water, and sediment fluxes in the permafrost-dominated catchment on the TibetanPlateau, Water Resour. Res., 57, https://doi.org/10.1029/2020WR028193, 2021.
Liébault, F., Laronne, J. B., Klotz, S., and Bel, C.: Seasonal bedload pulses in a small alpine catchment, Geomorphology, 398, 108055, https://doi.org/10.1016/j.geomorph.2021.108055, 2022.
Lininger, K. B., and Wohl, E.: Floodplain dynamics in North American permafrost regions under a warming climate and implications for organic carbon stocks: A review and synthesis, Earth-Science Reviews, 193, 24–44, https://doi.org/10.1016/j.earscirev.2019.02.024, 2019.
Lintunen, K., Kasvi, E., Uvo, C. B., and Alho, P.: Changes in the discharge regime of Finnish rivers, J. Hydrol., 53, 101749, https://doi.org/10.1016/j.ejrh.2024.101749, 2024.
Lotsari, E., Vaaja, M., Flener, C., Kaartinen, H., Kukko, A., Kasvi, E., and Alho, P.: Annual bank and point bar morphodynamics of a meandering river determined by high-accuracy mul-titemporal laser scanning and flow data, Water Resour. Res., 50, 5532–5559, https://doi.org/10.1002/2013WR014106, 2014.
Lotsari, E., Hackney, C., Salmela, J., Kasvi, E., Kemp, J., Alho, P., and Darby, S. E.: Subarctic river bank dynamics and driving processes during the open-channel flow period, Earth Surf. Process. Land., 45, 1198–1216, https://doi.org/10.1002/esp.4796, 2020.
Lotsari, E., de Vet, M., Murphy, B., McLelland, S., and Parsons, D.: Defrosting river banks: morphodynamics and sediment flux, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10175, https://doi.org/10.5194/egusphere-egu24-10175, 2024.
Luoto, M., Heikkinen, R. K., and Carter, T. R.: Loss of palsa mires in europe and biological consequences, Environ. Conserv., 31, 30–37, https://doi.org/10.1017/s0376892904001018, 2004.
Malutta, S., Kobiyama, M., Borges Chaffe, P.-L., and Bernardi Bonumá, N.: Hysteresis analysis to quantify and qualify the sediment dynamics: state of the art, Water Sci. Technol., 81, 2471–2487, https://doi.org/10.2166/wst.2020.279, 2020.
Mansikkaniemi, H.: Geomorphological analysis of Pulmanki-Tana valley in Lapland, Instituti Geographici Universitatis Turkuensis, http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=GEODEBRGM7018012628, 1967.
Mao, L.: The effect of hydrographs on bed load transport and bed sediment spatial arrangement, J. Geophys. Res., 117, F03024, https://doi.org/10.1029/2012JF002428, 2012.
Mao, L.: The effects of flood history on sediment transport in gravel-bed rivers, Geomorphology, 322, 196–205, https://doi.org/10.1016/j.geomorph.2018.08.046, 2018.
Matti, B., Dahlke, H., Dieppois, B., Lawler, D., and Lyon, S.: Flood seasonality across Scandinavia – Evidence of a shifting hydrograph?, Hydrol. Process., 31, 4354–4370, https://doi.org/10.1002/hyp.11365, 2017.
Martin, R. L. and Jerolmack, D. J.: Origin of hysteresis in bed form response to unsteady flows, Water Resour. Res., 49, 1314–1333, https://doi.org/10.1002/wrcr.20093, 2013.
Meriö, L. J., Ala-aho, P., Linjama, J., Hjort, J., Kløve, B., and Marttila, H.: Snow to precipitation ratio controls catchment storage and summer flows in boreal headwater catchments, Water Resour. Res., 55, 4096–4109, https://doi.org/10.1029/2018WR023031, 2019.
Micheletti, N., Chandler, J., and Lane, S.: Near instantaneous production of digital terrain models in the field using smartphone and Structure-from-Motion photogrammetry, EGU General Assembly Conference Abstracts, EGU2013-10501, 2013.
Najafi, S., Dragovich, D., Heckmann, T., and Sadeghi, S. H.: Sediment connectivity concepts and approaches, Catena, 196, 104880, https://doi.org/10.1016/j.catena.2020.104880, 2021.
Nicholas, A. P.: Modelling the continuum of river channel patterns, Earth Surface Processes and Landforms, 38, 1187–1196, https://doi.org/10.1002/esp.3431, 2013.
Nikulin, G., Kjellström, E., Hansson, U. L. F., Strandberg, G., and Ullerstig, A.: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A: Dynamic Meteorology and Oceanography, 63, 41–55, https://doi.org/10.1111/j.1600-0870.2010.00466.x, 2011.
NVE: Polmak nye, Sildre [data set], https://sildre.nve.no/station/234.18.0?lang=en (last access: 24 August 2024), 2025.
Pinto, L., Fortunato, A. B., and Freire, P.: Sensitivity analysis of non-cohesive sediment transport formulae, Continental Shelf Research, 26, 1826–1839, https://doi.org/10.1016/j.csr.2006.06.001, 2006.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., and Norberg, J.: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018, Nature, 581, 294–298, https://doi.org/10.1038/s41586-020-2258-0, 2020.
Reesink, A. J. and Bridge, J. S.: Evidence of bedform superimposition and flow unsteadiness in unit-bar deposits, South Saskatchewan River, Canada, J. Sediment. Res., 81, 814–840, https://doi.org/10.2110/jsr.2011.69, 2011.
Rimali, A.: Analysing of frozen ground in Finland: affecting environmental factors, trends in northern Finland and applicability of satellite data, https://urn.fi/URN:NBN:fi:oulu-201903191342, 2019.
Salmela, J., Saarni, S., Blåfield, L., Katainen, M., Kasvi, E., and Alho, P.: Comparison of cold season sedimentation dynamics in the non-tidal estuary of the Northern Baltic Sea, Marine Geology, 443, 106701, https://doi.org/10.1016/j.margeo.2021.106701, 2022.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Seppälä, M.: Distribution of permagrost in Finland, Bull. Geol. Soc., Finland, 69, 87–96, 1997.
Sha, A., Li, D., Walling, D., Zhao, Y., Tian, S., Chen, D., ... and Best, J.: Accelerated river meander migration on the Tibetan Plateau caused by permafrost thaw, Geophysical Research Letters, 52, https://doi.org/10.1029/2024GL111536, 2025.
Schuurman, F., Marra, W. A., and Kleinhans, M. G.: Physics‐based modeling of large braided sand‐bed rivers: Bar pattern formation, dynamics, and sensitivity, J. Geophys. Res., Earth Surface, 118, 2509–2527, https://doi.org/10.1002/2013JF002896, 2013.
Syvitski, J. P.: Sediment discharge variability in Arctic rivers: implications for a warmer future, Polar Res., 21, 323–330, https://doi.org/10.3402/polar.v21i2.6494, 2002.
Tananaev, N. I.: Hysteresis effects of suspended sediment transport in relation to geomorphic conditions and dominant sediment sources in medium and large rivers of the Russian Arctic, Hydrol. Res., 46, 232–243, https://doi.org/10.2166/nh.2013.199, 2015.
van Rijn, L. C.: Principles of sediment transport in rivers, estuaries and coastal seas, 1993.
van Rooijen, E. and Lotsari, E.: The spatiotemporal distribution of river bank erosion events and their drivers in seasonally frozen regions, Geomorphology, 454, https://doi.org/10.1016/j.geomorph.2024.109140, 2024.
Vatne, G., Takøy Naas, Ø., Skårholen, T., Beylich, A. A., and Berthling, I.: Bed load transport in a steep snowmelt-dominated mountain stream as inferred from impact sensors, Norsk Geogr. Tidsskr., 62, 66–74, https://doi.org/10.1080/00291950802094817, 2008.
Veijalainen, N., Lotsari, E., Alho, P., Vehviläinen, B., and Käyhkö, J.: National scale assessment of climate change impacts on flooding in Finland, J. Hydrol., 391, 333–350, https://doi.org/10.1016/j.jhydrol.2010.07.035, 2010.
Verdonen, M., Störmer, A., Lotsari, E., Korpelainen, P., Burkhard, B., Colpaert, A., and Kumpula, T.: Permafrost degradation at two monitored palsa mires in north-west Finland, The Cryosphere, 17, 1803–1819, https://doi.org/10.5194/tc-17-1803-2023, 2023.
Viglione, A., Chirico, G. B., Komma, J., Woods, R., Borga, M., and Blöschl, G.: Quantifying space-time dynamics of flood-event types, J. Hydrol., 394, 213–229, https://doi.org/10.1016/j.jhydrol.2010.05.041, 2010.
Villarini, G., Goska, R., Smith, J. A., and Vecchi, G. A.: North Atlantic tropical cyclones and US flooding, Bulletin of the American Meteorological Society, 95, 1381–1388, https://doi.org/10.1175/BAMS-D-13-00060.1, 2014.
Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., and Wong, W. K.: Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway, J. Hydrol., 538, 33–48, https://doi.org/10.1016/j.jhydrol.2016.03.066, 2016.
Wenng, H., Barneveld, R., Bechmann, M., Marttila, H., Krogstad, T., and Skarbøvik, E.: Sediment transport dynamics in small agricultural catchments in a cold climate: a case study from Norway, Agr. Ecosy. Environ., 317, 107484, https://doi.org/10.1016/j.agee.2021.107484, 2021.
Wilbers, A. W. E., and Ten Brinke, W. B. M.: The response of subaqueous dunes to floods in sand and gravel bed reaches of the Dutch Rhine, Sedimentology, 50, 1013–1034, https://doi.org/10.1046/j.1365-3091.2003.00585.x, 2003.
Williams, G. P.: Sediment concentration versus water discharge during single hydrologic events in rivers, J. Hydrol., 111, 89–106, https://doi.org/10.1016/0022-1694(89)90254-0, 1989.
Williams, R. D., Brasington, J., and Hicks, D. M.: Numerical modelling of braided river morphodynamics: Review and future challenges, Geography Compass, 10, 102–127, https://doi.org/10.1111/gec3.12260, 2016.
Wohl, E.: Connectivity in rivers, Prog. Phys. Geogr., 41, 345–362, https://doi.org/10.1177/0309133317714972, 2017.
Yang, J., Jia, D., Zhai, B., Chen, X., and Wang, J.: Bank erosion under the impacts of fluvial erosion, frost heaving/freeze-thaw process of rivers in seasonal frozen regions, Heliyon, 10, https://doi.org/10.1016/j.heliyon.2024.e37448, 2024.
Zhang, T., Li, D., Kettner, A. J., Zhou, Y., and Lu, X.: Constraining dynamic sediment-discharge relationships in cold environments: The sediment-availability-transport (SAT) model, Water Resour. Res., 57, e2021WR030690, https://doi.org/10.1029/2021WR030690, 2021.
Zhang, T., Li, D., East, A. E., Walling, D. E., Lane, S., Overeem, I., and Lu, X.: Warming-driven erosion and sediment transport in cold regions, Nat. Rev. Earth Environ., 3, 832–851, https://doi.org/10.1038/s43017-022-00362-0, 2022.
Zhang, T., Li, D., East, A. E., Kettner, A. J., Best, J., Ni, J., and Lu, X: Shifted sediment transport regimes by climate change and amplified hydrological variability in cryosphere-fed rivers, Sci. Adv., 9, 45, https://doi.org/10.1126/sciadv.adi5019, 2023.
Short summary
This study shows that climate-driven changes in spring flood patterns, especially hydrograph shape and peak sequencing, strongly affect sediment transport and river morphology in a subarctic river. Rising temperatures and more rain-on-snow events are increasing flood variability, leading to more event-driven and unpredictable sediment dynamics. Adaptive management is needed to respond to these emerging changes.
This study shows that climate-driven changes in spring flood patterns, especially hydrograph...