Articles | Volume 6, issue 1
https://doi.org/10.5194/esurf-6-141-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-6-141-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EQ
Nicholas J. Tosca
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK, OX1 3AN
Alexander M. Piotrowski
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EQ
Edward T. Tipper
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, UK, CB2 3EQ
Related authors
No articles found.
Robyn E. Tuerena, Raja S. Ganeshram, Matthew P. Humphreys, Thomas J. Browning, Heather Bouman, and Alexander P. Piotrowski
Biogeosciences, 16, 3621–3635, https://doi.org/10.5194/bg-16-3621-2019, https://doi.org/10.5194/bg-16-3621-2019, 2019
Short summary
Short summary
The carbon isotopes in algae can be used to predict food sources and environmental change. We explore how dissolved carbon is taken up by algae in the South Atlantic Ocean and how this affects their carbon isotope signature. We find that cell size controls isotope fractionation. We use our results to investigate how climate change may impact the carbon isotopes in algae. We suggest a shift to smaller algae in this region would decrease the carbon isotope ratio at the base of the food web.
Related subject area
Chemical: Isotopic tracing of Earth's surface processes
Landslides as geological hotspots of CO2 emission: clues from the instrumented Séchilienne landslide, western European Alps
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Cited articles
Arndt, N. T. and Goldstein, S. L.: Use and abuse of crust-formation ages,
Geology, 15, 893–895, 1987. a
Awwiller, D. N.: Geochronology and mass transfer in Gulf Coast mudrocks
(south-central Texas, U.S.A.): Rb-Sr, Sm-Nd and REE systematics, Chem.
Geol., 116, 61–84, 1994. a
Awwiller, D. N. and Mack, L. E.: Diagenetic modification of Sm-Nd model ages
in Tertiary sandstones and shales, Texas Gulf Coast, Geology, 19, 311–314,
1991. a
Babechuk, M. G., Widdowson, M., Murphy, M., and Kamber, B. S.: A combined
Y/Ho, high field strength element (HFSE) and Nd isotope perspective on
basalt weathering, Deccan Traps, India, Chem. Geol., 369, 25–41, 2015. a
Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron,
S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y.,
Jorry, S. J., Ménot, G., Monin, L., Ponzevera, E., Rouget, M.-L.,
Tachikawa, K., and Barrat, J. A.: Rare earth elements and neodymium isotopes
in world river sediments revisited, Geochim. Cosmochim. Ac., 170, 17–38,
https://doi.org/10.1016/j.gca.2015.08.001, 2015. a, b, c, d
Bernstein, S., Kelemen, P. B., Tegner, C., Kurz, M. D., Blusztajn, J., and
Brooks, C. K.: Post-breakup basaltic magmatism along the East Greenland
Tertiary rifted margin, Earth Planet. Sc. Lett., 160, 845–862, 1998. a
Bock, B., McLennan, S. M., and Hanson, G. N.: Rare earth element
redistribution and its effects on the neodymium isotope system in the Austin
Glen Member of the Normanskill Formation, New York, USA, Geochim. Cosmochim.
Ac., 58, 5245–5253, 1994. a
Bue, E. P. and Andresen, A.: Constraining depositional models in the Barents
Sea region using detrital zircon U-Pb data from Mesozoic sediments in
Svalbard, in: Sediment provenance studies in hydrocarbon exploration and
production, edited by: Scott, R. A., Smyth, H. R., Morton, A. C., and
Richardson, N., no. 386 in Special Publications, Geological
Society, Bath, UK, 261–279, 2014. a, b
Burton, K. W. and Vance, D.: Glacial-interglacial variations in the neodymium
isotope composition of seawater in the Bay of Bengal recorded by planktonic
foraminifera, Earth Planet. Sc. Lett., 176, 425–441, 2000. a
Byrne, R. H. and Kim, K.-H.: Rare earth element scavenging in seawater,
Geochim. Cosmochim. Ac., 54, 2645–2656, 1990. a
Byrne, R. H. and Sholkovitz, E. R.: Marine chemistry and geochemistry of the
lanthanides, in: Handbook on the Physics and Chemistry of Rare Earths, edited
by: Gschneidner Jr., K. A. and Eyring, L., vol. 23, chap. 158, 497–593, Elsevier Science B. V., Oxford, UK, 1996. a
Cameron, E. M. and Hattori, K.: Strontium and neodymium isotope ratios in the
Fraser River, British Columbia: a riverine transect across the Cordilleran
orogen, Chem. Geol., 137, 243–253, 1997. a
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J.
E. A., Cui, Y., Kump, L., and Croudace, I. W.: Constraints on the numerical
age of the Paleocene-Eocene boundary, Geochem. Geophy. Geosy., 12,
Q0AA17, https://doi.org/10.1029/2010GC003426, 2011. a
Chester, R. and Hughes, M. J.: A chemical technique for the separation of
ferro-manganese minerals, carbonate minerals and adsorbed trace elements from
pelagic sediments, Chem. Geol., 2, 249–262, 1967. a
Clinger, A. E., Aciego, S. M., Stevenson, E. I., Arendt, C. A., and Robbins,
M. J.: Implications for post-comminution processes in subglacial suspended
sediment using coupled radiogenic strontium and neodymium isotopes,
Geomorphology, 259, 134–144, https://doi.org/10.1016/j.geomorph.2016.02.006, 2016. a, b, c, d
Cullers, R. L., Bock, B., and Guidotti, C.: Elemental distributions and
neodymium isotopic compositions of Silurian metasediments, western Maine,
USA: Redistribution of the rare earth elements, Geochim. Cosmochim. Ac.,
61, 1847–1861, 1997. a
Curtin, D. and Smillie, G. W.: Composition and origin of smectite in soils
derived from basalt in Northern Ireland, Clay Clay Miner., 29, 277–284,
1981. a
Eisenhauer, A., Meyer, H., Rachold, V., Tütken, T., Wiegand, B., Hansen,
B. T., Spielhagen, R. F., Lindemann, F., and Kassens, H.: Grain size
separation and sediment mixing in Arctic Ocean sediments: evidence from the
strontium isotope systematic, Chem. Geol., 158, 173–188, 1999. a
Elling, F. J., Spiegel, C., Estrada, S., Davis, D. W., Reinhardt, L.,
Henjes-Kunst, F., Allroggen, N., Dohrmann, R., Piepjohn, K., and Lisker,
F.: Origin of bentonites and detrital zircons of the Paleocene Basilika
Formation, Svalbard, Front. Earth Sci., 4, 73,
https://doi.org/10.3389/feart.2016.00073, 2016. a, b, c, d
Fagel, N., Not, C., Gueibe, J., Mattielli, N., and Bazhenova, E.: Late
Quaternary evolution of sediment provenances in the Central Arctic Ocean:
mineral assemblage, trace element composition and Nd and Pb isotope
fingerprints of detrital fraction from the Northern Mendeleev Ridge,
Quaternary Sci. Rev., 92, 140–154, 2014. a
Garçon, M. and Chauvel, C.: Where is basalt in river sediments, and why
does it matter?, Earth Planet. Sc. Lett., 407, 61–69, 2014. a
Gleason, J. D., Thomas, D. J., Moore Jr., T. C., Blum, J. D., Owen, R. M.,
and Haley, B. A.: Early to middle Eocene history of the Arctic Ocean from
Nd-Sr isotopes in fossil fish debris, Lomonosov Ridge, Paleoceanography,
24, PA2215, https://doi.org/10.1029/2008PA001685, 2009. a, b, c
Goldstein, S. L. and Jacobsen, S. B.: The Nd and Sr isotopic systematics of
river-water dissolved material: Implications for the sources of Nd and Sr in
seawater, Chem. Geol., 66, 245–272, 1987. a
Griffin, G. M.: Interpretation of X-ray diffraction data, in: Procedures in
sedimentary petrology, edited by: Carver, R. E.,
Wiley-Interscience, New York, USA, 541–569, 1971. a
Griffin, J. J., Windom, H., and Goldberg, E. D.: The distribution of clay
minerals in the World Ocean, Deep-Sea Res., 15, 433–459, 1968. a
Haley, B. A., Klinkhammer, G. P., and McManus, J.: Rare earth elements in
pore waters of marine sediments, Geochim. Cosmochim. Ac., 68, 1265–1279,
2004. a
Henriksen, N.: Conclusion of the 1 : 500 000 mapping project in the
Caledonian fold belt in North-East Greenland, in: Review of Greenland
activities 1998, edited by: Higgins, A. K. and Watt, W. S., vol. 183, Geology
of Greenland Survey Bulletin, 10–22, GEUS, Copenhagen, Denmark, 1999. a
Herron, M. M.: Geochemical classification of terrigenous sands and shales from
core or log data, J. Sediment. Petrol., 58, 820–829, 1988. a
Hindshaw, R. S.: Chemical weathering and calcium isotope fractionation in a
glaciated catchment, PhD thesis, ETH Zurich, Zurich, Switzerland, 2011. a
Humlum, O., Instanes, A., and Sollid, J. L.: Permafrost in Svalbard: a review
of research history, climatic background and engineering challenges, Polar
Res., 22, 191–215, https://doi.org/10.3402/polar.v22i2.6455, 2003. a
Jacobsen, S. B. and Wasserburg, G. J.: Sm-Nd isotopic evolution of
chondrites, Earth Planet. Sc. Lett., 50, 139–155, 1980. a
Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L.,
Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., and Moran,
K.: The early Miocene onset of a ventilated circulation regime in the Arctic
Ocean, Nature, 447, 986–990, 2007. a
Johannesson, K. H. and Zhou, X.: Origin of middle rare earth element
enrichments in acid waters of a Canadian High Arctic Lake, Geochim.
Cosmochim. Ac., 63, 153–165, 1999. a
Johansson, Å. and Gee, D. G.: The late Palaeoproterozoic Eskolabreen
granitoids of southern Ny Friesland, Svalbard Caledonides – geochemistry,
age, and origin, GFF, 121, 113–126, 1999. a
Johansson, Å., Gee, D. G., Björklund, L., and Witt-Nilsson, P.:
Isotope studies of granitoids from the Bangenhuk Formation, Ny Friesland
Caledonides, Svalbard, Geol. Mag., 132, 303–320, 1995. a
Jones, M. T., Eliassen, G. T., Shephard, G. E., Svensen, H. H., Jochmann, M.,
Friis, B., Augland, L. E., Jerram, D. A., and Planke, S.: Provenance of
bentonite layers in the Paleocene strata of the Central Basin, Svalbard:
implications for magmatism and rifting events around the onset of the North
Atlantic Igneous Province, J. Volcanol. Geoth. Res., 327, 571–584, 2016. a, b, c, d
Knies, J. and Gaina, C.: Middle Miocene ice sheet expansion in the Arctic:
Views from the Barents Sea, Geochem. Geophy. Geosy., 9, Q02015,
https://doi.org/10.1029/2007GC001824, 2008. a, b
Knies, J., Mattingsdal, R., Fabian, K., Grøsfjeld, K., Baranwal, S., Husum,
K., De Schepper, S., Vogt, C., Andersen, N., Matthiessen, J., Andreassen,
K., Jokat, W., Nam, S.-I., and Gaina, C.: Effect of early Pliocene uplift on
late Pliocene cooling in the Arctic-Atlantic gateway, Earth Planet. Sc.
Lett., 387, 132–144, 2014. a
Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., Naldrett, A. J., Gorbachev,
N. S., Fedorenko, V. A., and Doherty, W.: Remobilisation of the continental
lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and
Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk
District, Siberian Trap, Russia, Contrib. Mineral. Petr., 114, 171–188,
1993. a, b
Ma, J., Wei, G., Xu, Y., and Long, W.: Variations of Sr-Nd-Hf isotopic
systematics in basalt during intensive weathering, Chem. Geol., 269,
376–385, 2010. a
Maccali, J., Hillaire-Marcel, C., Carignan, J., and Reisberg, L. C.:
Geochemical signatures of sediments documenting Arctic sea-ice and water
mass export through Fram Strait since the Last Glacial Maximum,
Quaternary Sci. Rev., 64, 136–151, https://doi.org/10.1016/j.quascirev.2012.10.029,
2013. a
Millero, F. J.: Stability constants for the formation of rare earth inorganic
complexes as a function of ionic strength, Geochim. Cosmochim. Ac., 56,
3123–3132, 1992. a
Mokadem, F., Parkinson, I. J., Hathorne, E. C., Anand, P., Allen, J. T., and
Burton, K. W.: High-precision radiogenic strontium isotope measurements of
the modern and glacial ocean: Limits on glacial-interglacial variations in
continental weathering, Earth Planet. Sc. Lett., 415, 111–120,
https://doi.org/10.1016/j.epsl.2015.01.036, 2015. a
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K.: Long-term
temperature trends and variability on Spitsbergen: the extended Svalbard
Airport temperature series, 1898-2012, Polar Res., 33, 21349,
https://doi.org/10.3402/polar.v33.21349, 2012. a
Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H.,
Letzig, T., Reimnitz, E., and Thiede, J.: Sediments in Arctic sea ice:
Implications for entrainment, transport and release, Mar. Geol., 119,
185–214, 1994. a
Ohr, M., Halliday, A. N., and Peacor, D. R.: Sr and Nd isotopic evidence for
punctuated clay diagenesis, Texas Gulf Coast, Earth Planet. Sc. Lett., 105,
110–126, 1991. a
Ohr, M., Halliday, A. N., and Peacor, D. R.: Mobility and fractionation of rare
earth elements in argillaceous sediments: Implications for dating diagenesis
and low-grade metamorphism, Geochim. Cosmochim. Ac., 58, 289–312, 1994. a
Parra, M., Delmont, P., Ferragne, A., Latouche, C., Pons, J. C., and
Puechmaille, C.: Origin and evolution of smectites in recent marine sediments
of the NE Atlantic, Clay Miner., 20, 335–346, 1985. a
Pearce, C. R., Jones, M. T., Oelkers, E. H., Pradoux, C., and Jeandel, C.: The
effect of particulate dissolution on the neodymium (Nd) isotope and Rare
Earth Element (REE) composition of seawater, Earth Planet. Sc. Lett.,
369-370, 138–147, 2013. a
Petersen, T. G., Thomsen, T. B., Olaussen, S., and Stemmerik, L.: Provenance
shifts in an evolving Eurekan foreland basin: the Tertiary Central Basin,
Spitsbergen, J. Geol. Soc., 173, 634–648, https://doi.org/10.1144/jgs2015-076, 2016. a, b, c
Peucker-Ehrenbrink, B., Miller, M. W., Arsouze, T., and Jeandel, C.:
Continental bedrock and riverine fluxes of strontium and neodymium isotopes
to the oceans, Geochem. Geophy. Geosy., 11, Q03016,
https://doi.org/10.1029/2009GC002869, 2010. a
Piotrowski, A. M., Banakar, V. K., Scrivner, A. E., Elderfield, H., Galy, A.,
and Dennis, A.: Indian Ocean circulation and productivity during the last
glacial cycle, Earth Planet. Sc. Lett., 285, 179–189, 2009. a
Rickli, J., Hindshaw, R. S., Leuthold, J., Wadham, J. L., Burton, K. W., and
Vance, D.: Impact of glacial activity on the weathering of Hf isotopes -
observations from Southwest Greenland, Geochim. Cosmochim. Ac., 215,
295–316, 2017. a
Setti, M., Marinoni, L., and López-Galindo, A.: Mineralogical and
geochemical characteristics (major, minor, trace elements and REE) of
detrital and authigenic clay minerals in a Cenozoic sequence from Ross
Sea, Antarctica, Clay Miner., 39, 405–421, https://doi.org/10.1180/000985503540143,
2004. a
Singer, A.: The paleoclimatic interpretation of clay minerals in sediments –
a review, Earth Sci. Rev., 21, 251–293, 1984. a
Sionneau, T., Bout-Roumazeilles, V., Biscaye, P. E., Van Vliet-Lanoe, B.,
and Bory, A.: Clay mineral distributions in and around the Mississippi River
watershed and Northern Gulf of Mexico: sources and transport patterns,
Quaternary Sci. Rev., 27, 1740–1751, 2008. a
Su, N., Yang, S., Guo, Y., Yue, W., Wang, X., Yin, P., and Huang, X.: Revisit
of rare earth element fractionation during chemical weathering and river
sediment transport, Geochem. Geophy. Geosy., 18, 935–955,
https://doi.org/10.1002/2016GC006659, 2017. a
Svendsen, J. I. and Mangerud, J.: Holocene glacial and climatic variations on
Spitsbergen, Svalbard, Holocene, 7, 45–57,
https://doi.org/10.1177/095968369700700105, 1997. a
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell,
J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C.,
Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, O., Jakobsson, M.,
Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lsyå, A.,
Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F.,
Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M. J.,
Spielhagen, R. F., and Stein, R.: Late Quaternary ice sheet history of
northern Eurasia, Quaternary Sci. Rev., 23, 1229–1271, 2004. a
Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T.,
Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi,
K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu,
M., and Dragusanu, C.: JNd-1: a neodymium isotopic reference in consistency
with LaJolla neodymium, Chem. Geol., 168, 279–281, 2000. a
Taylor, S. R. and McLennan, S. M.: The continental crust: Its composition and
evolution, Blackwell Scientific, Boston, Mass., USA, 1985. a
Teller, J. T.: Volume and routing of late-glacial runoff from the southern
Laurentide ice sheet, Quaternary Res., 34, 12–23, 1990. a
Tepe, N. and Bau, M.: Importance of nanoparticles and colloids from volcanic
ash for riverine transport of trace elements to the ocean: Evidence from
glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano,
Iceland, Sci. Tot. Environ., 488–489, 243–251, 2014. a
Tessier, A., Campbell, P. G. C., and Bisson, M.: Sequential extraction
procedure for the speciation of particulate trace metals, Anal. Chem., 51,
844–851, 1979. a
Tricca, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., and Eikenberg,
J.: Rare earth elements and Sr and Nd isotopic compositions of dissolved and
suspended loads from small river systems in the Vosges mountains (France),
the river Rhine and groundwater, Chem. Geol., 160, 139–158, 1999. a, b
Veizer, J.: Chemical diagenesis of carbonates: theory and application of trace
element technique, in: Stable isotopes in sedimentary geology, edited by:
Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S.,
vol. 10, 3-1–3-100, Society of Economic Paleontologists and
Mineralogists Short Course Notes, Dallas, USA, 1983. a
Viers, J. and Wasserburg, G. J.: Behavior of Sm and Nd in a lateritic soil
profile, Geochim. Cosmochim. Ac., 68, 2043–2054,
https://doi.org/10.1016/j.gca.2003.10.034, 2004. a
Viers, J., Roddaz, M., Filizola, N., Guyot, J.-L., Sondag, F., Brunet, P.,
Zouiten, C., Boucayrand, C., Martin, F., and Boaventura, G. R.: Seasonal and
provenance controls on Nd-Sr isotopic compositions of Amazon rivers
suspended sediments and implications for Nd and Sr fluxes exported to the
Atlantic Ocean, Earth Planet. Sc. Lett., 274, 511–523, 2008. a, b, c
Vogt, C., Knies, J., Spielhagen, R. F., and Stein, R.: Detailed mineralogical
evidence for two nearly identical glacial/interglacial cycles and Atlantic
water advection to the Arctic Ocean during the last 90 000 years, Global
Planet. Change, 31, 23–44, 2001. a
Vonk, J. E., Giosan, L., Blusztajn, J., Montlucon, D., Pannatier, E. G.,
McIntyre, C., Wacker, L., Macdonald, R. W., Yunker, M. B., and Eglinton,
T. I.: Spatial variations in geochemical characteristics of the modern
Mackenzie Delta sedimentary system, Geochim. Cosmochim. Ac., 171,
100–120, 2015. a
Wahsner, M., Müller, C., Stein, R., Ivanov, G., Levitan, M., Shelekhova,
E., and Tarasov, G.: Clay-mineral distribution in surface sediments of the
Eurasian Arctic Ocean and continental margin as indicator for source areas
and transport pathways – a synthesis, Boreas, 28, 215–232, 1999. a
Wickert, A. D.: Reconstruction of North American drainage basins and river
discharge since the Last Glacial Maximum, Earth Surf. Dynam., 4, 831–869,
https://doi.org/10.5194/esurf-4-831-2016, 2016. a
Wilson, D. J., Piotrowski, A. M., Galy, A., and Clegg, J. A.: Reactivity of
neodymium carriers in deep sea sediments: Implications for boundary exchange
and paleoceanography, Geochim. Cosmochim. Ac., 109, 197–221, 2013. a
Winkler, A., Wolf-Welling, T. C. W., Stattegger, K., and Thiede, J.: Clay
mineral sedimentation in high northern latitude deep-sea basins since the
Middle Miocene (ODP Leg 151, NAAG), Int. J. Earth Sci., 91, 133–148, 2002. a
Wooden, J. L., Czamanske, G. K., Fedorenko, V. A., Arndt, N. T., Chauvel, C.,
Bouse, R. M., King, B.-S. W., Knight, R. J., and Siems, D. F.: Isotopic and
trace-element constraints on mantle and crustal contributions to Siberian
continental flood basalts, Noril'sk area, Siberia, Geochim. Cosmochim. Ac.,
57, 3677–3704, 1993. a, b
Ziaja, W. and Pipała: Glacial recession 2001–2006 and its landscape
effects in the Lindströmfjellet-Håbergnuten mountain ridge,
Nordenskiöld Land, Spitsbergen, Pol. Polar Res., 28, 237–247, 2007. a
Short summary
For many applications in Earth sciences it is important to know where river and ocean sediments have originated. In this study we used geochemical and mineralogical tracers to characterise sediments from Svalbard. We find that the sediments are formed from two sources: old rocks in Greenland and younger rocks in Siberia. Glaciation influences how much of each end-member is present in the river sediments today, implying that the sediment composition can change through time as the climate changes.
For many applications in Earth sciences it is important to know where river and ocean sediments...