Articles | Volume 8, issue 4
https://doi.org/10.5194/esurf-8-893-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-8-893-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Topographic controls on divide migration, stream capture, and diversification in riverine life
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA
Pedro Val
Department of Geology, Federal University of Ouro Preto, Ouro Preto, Brazil
James S. Albert
Department of Biology, University of Louisiana at Lafayette,
Lafayette, CA, USA
Jane K. Willenbring
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Nicole M. Gasparini
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA
Related authors
No articles found.
Laurent O. Roberge, Nicole M. Gasparini, Benjamin Campforts, and Gregory E. Tucker
EGUsphere, https://doi.org/10.5194/egusphere-2025-2445, https://doi.org/10.5194/egusphere-2025-2445, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Landscape evolution models compute the movement of sediment across landscapes. However, few account for the storage, fate, and transport of sediment properties, such as lithology or geochemistry. We present new Landlab model components that track such properties. Our unit-agnostic approach allows users to define the sediment properties for a wide range of applications (for example, mass of magnetite, volume of quartz, number of zircons, number of 10Be atoms, "equivalent dose" of luminescence).
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025, https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
Short summary
Rivers shape landscapes by moving sediments and changing their beds, but existing computer models oversimplify these processes by only considering erosion. We developed new software that simulates how rivers transport sediments and change over time through both erosion and deposition. This helps scientists and engineers better predict river behavior for water management, flood prevention, and ecosystem protection.
Nicole M. Gasparini, Adam M. Forte, and Katherine R. Barnhart
Earth Surf. Dynam., 12, 1227–1242, https://doi.org/10.5194/esurf-12-1227-2024, https://doi.org/10.5194/esurf-12-1227-2024, 2024
Short summary
Short summary
The time it takes for a landscape to adjust to new environmental conditions is critical for understanding the impacts of past and future environmental changes. We used different computational models and methods and found that predicted times for a landscape to reach a stable condition vary greatly. Our results illustrate that reporting how timescales are measured is important. Modelers should ensure that the measurement technique addresses the question.
Sam Anderson, Nicole Gasparini, and Joel Johnson
Earth Surf. Dynam., 11, 995–1011, https://doi.org/10.5194/esurf-11-995-2023, https://doi.org/10.5194/esurf-11-995-2023, 2023
Short summary
Short summary
We measured rock strength and amount of fracturing in the two different rock types, sandstones and carbonates, in Last Chance Canyon, New Mexico, USA. Where there is more carbonate bedrock, hills and channels steepen in Last Chance Canyon. This is because the carbonate-type bedrock tends to be more thickly bedded, is less fractured, and is stronger. The carbonate bedrock produces larger boulders than the sandstone bedrock, which can protect the more fractured sandstone bedrock from erosion.
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021, https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary
Short summary
The rise of a mountain affects the circulation of water, both in the atmosphere and over the land surface, thereby affecting the erosion of the land surface. We document how the rise of a mountain in central Guatemala has affected the erosion of an older range nearby. The new range intercepts precipitation formerly delivered to the older range. River response to the uplift of the new range has decreased incision across the older one. Both have reduced hillslope erosion over the old range.
Travis Clow, Jane K. Willenbring, Mirjam Schaller, Joel D. Blum, Marcus Christl, Peter W. Kubik, and Friedhelm von Blanckenburg
Geochronology, 2, 411–423, https://doi.org/10.5194/gchron-2-411-2020, https://doi.org/10.5194/gchron-2-411-2020, 2020
Short summary
Short summary
Meteoric beryllium-10 concentrations in soil profiles have great capacity to quantify Earth surface processes, such as erosion rates and landform ages. However, determining these requires an accurate estimate of the delivery rate of this isotope to local sites. Here, we present a new method to constrain the long-term delivery rate to an eroding western US site, compare it against existing delivery rate estimates (revealing considerable disagreement between methods), and suggest best practices.
Cited articles
Albert, J. S. and Carvalho, T. P.: Neogene assembly of modern faunas, in: Historical biogeography of Neotropical freshwater fishes, edited by: Reis, R. E. and Albert, J. S., University of California Press, UK, 119–136, https://doi.org/10.1525/california/9780520268685.003.0007, 2011.
Albert, J. S. and Crampton, W. G. R.: The geography and ecology of
diversification in Neotropical freshwaters, Nat. Educ. Knowledge, 1, 13–19, 2010.
Albert, J. S., Petry, P., and Reis, R. E.: Major biogeographic and phylogenetic patterns, in: Historical biogeography of Neotropical freshwater fishes, edited by: Reis, R. E. and Albert, J. S., University of California Press, UK, 21–58, https://doi.org/10.1525/california/9780520268685.003.0002, 2011.
Albert, J. S., Craig, J. M., Tagliacollo, V. A., and Petry, P.: Upland and
lowland fishes: a test of the river capture hypothesis, in: Mountains, Climate and Biodiversity, Wiley-Blackwell, New York, 273–294, 2018.
Anders, A. M., Roe, G. H., Montgomery, D. R., and Hallet, B.: Influence of
precipitation phase on the form of mountain ranges, Geology, 36, 479–482,
https://doi.org/10.1130/G24821A.1, 2008.
Badgley, C.: Tectonics, topography, and mammalian diversity, Ecography, 33,
220–231, https://doi.org/10.1111/j.1600-0587.2010.06282.x, 2010.
Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R., Fox, D. L., Hopkins, S. S., Jezkova, T., Matocq, M. D., Matzke, N., and McGuire, J. L.: Biodiversity and topographic complexity: modern and geohistorical perspectives, Trends Ecol. Evol., 32, 211–226, https://doi.org/10.1016/j.tree.2016.12.010, 2017.
Barnhart, K. R., Hutton, E., Gasparini, N. M., and Tucker, G. E.: Lithology:
A Landlab submodule for spatially variable rock properties, J. Open Sour. Softw., 3, 979, https://doi.org/10.21105/joss.00979, 2018.
Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020.
Beaulieu, J. M. and O'Meara, B. C.: Extinction can be estimated from moderately sized molecular phylogenies, Evolution, 69, 1036–1043,
https://doi.org/10.1111/evo.12614, 2015.
Beavan, J., Denys, P., Denham, M., Hager, B., Herring, T., and Molnar, P.:
Distribution of present-day vertical deformation across the Southern Alps,
New Zealand, from 10 years of GPS data, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL044165, 2010.
Berlin, M. M. and Anderson, R. S.: Modeling of knickpoint retreat on the
Roan Plateau, western Colorado, J. Geophys. Res.-Earth, 112, 1–16, https://doi.org/10.1029/2006JF000553, 2007.
Bishop, P.: Drainage rearrangement by river capture, beheading and diversion, Prog. Phys. Geogr., 19, 449–473, https://doi.org/10.1177/030913339501900402, 1995.
Bonnet, S.: Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide, Nat. Geosci., 2, 766–771, https://doi.org/10.1038/NGEO666, 2009.
Bossu, C. M., Beaulieu, J. M., Ceas, P. A., and Near, T. J.: Explicit tests
of palaeodrainage connections of southeastern North America and the historical biogeography of Orangethroat Darters (Percidae: Etheostoma: Ceasia), Mol. Ecol., 22, 5397–5417, https://doi.org/10.1111/mec.12485, 2013.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C.: Bedrock incision, rock uplift and threshold
hillslopes in the northwestern Himalayas, Nature, 379, 505–510,
https://doi.org/10.1038/379505a0, 1996.
Burridge, C. P., Craw, D., and Waters, J. M.: River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance, Evolution, 60, 1038–1049, https://doi.org/10.1554/05-439.1, 2006.
Burridge, C. P., Craw, D., Jack, D. C., King, T. M., and Waters, J. M.: Does
fish ecology predict dispersal across a river drainage divide?, Evolution,
62, 1484–1499, https://doi.org/10.1111/j.1558-5646.2008.00377.x, 2008.
Castelltort, S., Goren, L., Willett, S. D., Champagnac, J. D., Herman, F., and Braun, J.: River drainage patterns in the New Zealand Alps primarily
controlled by plate tectonic strain, Nat. Geosci., 5, 744–748,
https://doi.org/10.1038/NGEO1582, 2012.
Cowie, P. A.: A healing–reloading feedback control on the growth rate of
seismogenic faults, J. Struct. Geol., 20, 1075–1087,
https://doi.org/10.1016/S0191-8141(98)00034-0, 1998.
Coyne, J. A.: Genetics and speciation, Nature, 355, 511–515, 1992.
Craw, D., Upton, P., Burridge, C. P. Wallis, G. P., and Waters, J. M.: Rapid
biological speciation driven by tectonic evolution in New Zealand, Nat. Geosci., 9, 140–145, https://doi.org/10.1038/ngeo2618, 2016.
Crispo, E., Bentzen, P., Reznick, D. N., Kinnison, M. T., and Hendry, A. P.:
The relative influence of natural selection and geography on gene flow in
guppies, Mol. Ecol., 15, 49–62, https://doi.org/10.1111/j.1365-294X.2005.02764.x, 2006.
Culling, W. E. H.: Soil creep and the development of hillside slopes, J. Geol., 71, 127–161, https://doi.org/10.1086/626891, 1963.
D'Agostino, N., Jackson, J. A., Dramis, F., and Funiciello, R.: Interactions
between mantle upwelling, drainage evolution and active normal faulting: an
example from the central Apennines (Italy), Geophys. J. Int., 147, 475–497,
https://doi.org/10.1046/j.1365-246X.2001.00539.x, 2001.
Dahlquist, M. P., West, A. J., and Li, G.: Landslide-driven drainage divide
migration, Geology, 46, 403–406, https://doi.org/10.1130/G39916.1, 2018.
Forte, A. M. and Whipple, K. X.: Criteria and tools for determining drainage divide stability, Earth Planet. Sc. Lett., 493, 102–117, https://doi.org/10.1016/j.epsl.2018.04.026, 2018.
Forte, A. M., Yanites, B. J., and Whipple, K. X.: Complexities of landscape
evolution during incision through layered stratigraphy with contrasts in
rock strength, Earth Surf. Proc. Land., 41, 1736–1757, https://doi.org/10.1002/esp.3947, 2016.
Gallen, S. F.: Lithologic controls on landscape dynamics and aquatic species
evolution in post-orogenic mountains, Earth Planet. Sc. Lett., 493, 150–160, https://doi.org/10.1016/j.epsl.2018.04.029, 2018.
Giachetta, E., Refice, A., Capolongo, D., Gasparini, N. M., and Pazzaglia, F. J.: Orogen-scale drainage network evolution and response to erodibility changes: insights from numerical experiments, Earth Surf. Proc. Land., 39,
1259–1268, https://doi.org/10.1002/esp.3579, 2014.
Gilbert, G. K.: Report on the Geology of the Henry Mountains (Utah), Survey
of the Rocky Mountains Region Rep., United States Geological Survey, Washington, D.C., https://doi.org/10.5962/bhl.title.51652, 1877.
Goren, L., Willett, S. D., Herman, F., and Braun, J.: Coupled numerical–analytical approach to landscape evolution modeling, Earth
Surf. Proc. Land., 39, 522–545, https://doi.org/10.1002/esp.3514, 2014.
Gotelli, N. J., Anderson, M. J., Arita, H. T., Chao, A., Colwell, R. K.,
Connolly, S. R., Currie, D. J., Dunn, R. R., Graves, G. R., Green, J. L., and Grytnes, J. A.: Patterns and causes of species richness: a general simulation model for macroecology, Ecol. Lett., 12, 873–886, https://doi.org/10.1111/j.1461-0248.2009.01353.x, 2009.
Grant, E. H. C., Lowe, W. H., and Fagan, W. F.: Living in the branches:
population dynamics and ecological processes in dendritic networks, Ecol. Lett., 10, 165–175, https://doi.org/10.1111/j.1461-0248.2006.01007.x, 2007.
Grant, E. H. C., Nichols, J. D., Lowe, W. H., and Fagan, W. F.: Use of multiple dispersal pathways facilitates amphibian persistence in stream networks, P. Natl. Acad. Sci. USA, 107, 6936–6940, https://doi.org/10.1073/pnas.1000266107, 2010.
Grenyer, R., Orme, C. D. L., Jackson, S. F., Thomas, G. H., Davies, R. G.,
Davies, T. J., Jones, K. E., Olson, V. A., Ridgely, R. S., Rasmussen, P. C.,
and Ding, T. S.: Global distribution and conservation of rare and threatened
vertebrates, Nature, 444, 93–96, https://doi.org/10.1038/nature05237, 2006.
Grossman, G. D., Ratajczak, R. E., Farr, M. D., Wagner, C. M., and Petty, J.
T.: Why there are fewer fish upstream, Am. Fish. Soc. Symp., 73, 63–81, 2010.
Guerit, L., Dominguez, S., Malavieille, J., and Castelltort, S.: Deformation
of an experimental drainage network in oblique collision, Tectonophysics,
693, 210–222, https://doi.org/10.1016/j.tecto.2016.04.016, 2016.
Guerit, L., Goren, L., Dominguez, S., Malavieille, J., and Castelltort, S.:
Landscape `stress' and reorganization from χ-maps: Insights from
experimental drainage networks in oblique collision setting, Earth Surf. Proc. Land., 43, 3152–3163, https://doi.org/10.1002/esp.4477, 2018.
Han, J., Gasparini, N. M., and Johnson, J. P.: Measuring the imprint of
orographic rainfall gradients on the morphology of steady-state numerical
fluvial landscapes, Earth Surf. Proc. Land., 40, 1334–1350,
https://doi.org/10.1002/esp.3723, 2015.
Harel, E., Goren, L., Shelef, E., and Ginat, H.: Drainage reversal toward
cliffs induced by lateral lithologic differences, Geology, 47, 928–932,
https://doi.org/10.1130/G46353.1, 2019.
He, F. and Hubbell, S. P.: Species–area relationships always overestimate
extinction rates from habitat loss, Nature, 473, 368–371,
https://doi.org/10.1038/nature09985, 2011.
Herman, J. and Usher, W.: SALib: An open-source Python library for Sensitivity Analysis, J. Open Sour. Softw., 2, 97, https://doi.org/10.21105/joss.00097, 2017.
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing
with Landlab: an open-source toolkit for building, coupling, and exploring
two-dimensional numerical models of Earth-surface dynamics, Earth Surf.
Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.
Hoeinghaus, D. J., Winemiller, K. O., and Taphorn, D. C.: Compositional
change in fish assemblages along the Andean piedmont-Llanos floodplain gradient of the río Portuguesa, Venezuela, Neotrop. Ichthyol., 2, 85–92, https://doi.org/10.1590/S1679-62252004000200005, 2004.
Howard, A. D.: Simulation model of stream capture, Geol. Soc. Am. Bull., 82, 1355–1376, 1971.
Howard, A. D., Dietrich, W. E., and Seidl, M. A.: Modeling fluvial erosion
on regional to continental scales, J. Geophys. Res.-Solid, 99, 13971–13986, https://doi.org/10.1029/94JB00744, 1994.
Hubbell, S. P.: The unified neutral theory of biodiversity and biogeography,
Princeton University Press, Princeton, 2001.
Kozak, K. H., Blaine, R. A., and Larson, A.: Gene lineages and eastern North
American palaeodrainage basins: phylogeography and speciation in salamanders
of the Eurycea bislineata species complex, Mol. Ecol., 15, 191–207,
https://doi.org/10.1111/j.1365-294X.2005.02757.x, 2006.
Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38–61, https://doi.org/10.1002/esp.3462, 2014.
Lyons, N. J., Val, P., Albert, J. S., Willenbring, J. K., Gasparini, N. M.:
Drainage reorganisation and species evolution: model sensitivity analysis
data (Version 1.0.1), Zenodo, https://doi.org/10.5281/zenodo.3893629, 2019.
Lyons, N. J., Albert, J. S., and Gasparini, N. M.: SpeciesEvolver: A Landlab
component to evolve life in simulated landscapes, J. Open Sour. Softw., 5, 2066, https://doi.org/10.21105/joss.02066, 2020.
Martin, Y.: Modelling hillslope evolution: linear and nonlinear transport
relations, Geomorphology, 34, 1–21, https://doi.org/10.1016/S0169-555X(99)00127-0, 2000.
Moodie, A. J., Pazzaglia, F. J., and Berti, C.: Exogenic forcing and autogenic processes on continental divide location and mobility, Basin Res., 30, 344–369, 2018.
Muneepeerakul, R., Bertuzzo, E., Lynch, H. J., Fagan, W. F., Rinaldo, A., and Rodriguez-Iturbe, I.: Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin, Nature, 453, 220–222,
https://doi.org/10.1038/nature06813, 2008.
Pelletier, J. D.: Persistent drainage migration in a numerical landscape
evolution model, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2004GL020802, 2004.
Perron, J. T.: Climate and the pace of erosional landscape evolution, Annu.
Rev. Earth Planet. Sci., 45, 561–591, https://doi.org/10.1146/annurev-earth-060614-105405, 2017.
Prince, P. S., Spotila, J. A., and Henika, W. S.: Stream capture as driver
of transient landscape evolution in a tectonically quiescent setting, Geology, 39, 823–826, https://doi.org/10.1130/G32008.1, 2011.
Rabosky, D. L.: Ecological limits and diversification rate: alternative
paradigms to explain the variation in species richness among clades and
regions, Ecol. Lett., 12, 735–743, https://doi.org/10.1111/j.1461-0248.2009.01333.x, 2009.
Rahbek, C.: The relationship among area, elevation, and regional species
richness in neotropical birds, Am. Nat., 149, 875–902, https://doi.org/10.1086/286028, 1997.
Rangel, T. F., Edwards, N. R., Holden, P. B., Diniz-Filho, J. A. F., Gosling, W. D., Coelho, M. T. P., Cassemiro, F. A., Rahbek, C., and Colwell, R. K.: Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves, Science, 361, eaar5452, https://doi.org/10.1126/science.aar5452, 2018.
Roberts, G. P. and Michetti, A. M.: Spatial and temporal variations in growth rates along active normal fault systems: an example from The Lazio–Abruzzo Apennines, central Italy, J. Struct. Geol., 26, 339–376, https://doi.org/10.1016/S0191-8141(03)00103-2, 2004.
Roxo, F. F., Albert, J. S., Silva, G. S., Zawadzki, C. H., Foresti, F., and
Oliveira, C.: Molecular phylogeny and biogeographic history of the armored
Neotropical catfish subfamilies Hypoptopomatinae, Neoplecostominae and
Otothyrinae (Siluriformes: Loricariidae), PLoS One, 9, 1–17, https://doi.org/10.1371/journal.pone.0105564, 2014.
Salles, T., Rey, P., and Bertuzzo, E.: Mapping landscape connectivity as a
driver of species richness under tectonic and climatic forcing, Earth Surf.
Dynam., 7, 895–910, https://doi.org/10.5194/esurf-7-895-2019, 2019.
Seagren, E. G. and Schoenbohm, L. M.: Base Level and Lithologic Control of
Drainage Reorganization in the Sierra de las Planchadas, NW Argentina, J.
Geophys. Res.-Earth, 124, 1516–1539, https://doi.org/10.1029/2018JF004885, 2019.
Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: a
Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution, Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, 2017.
Simpson, G. G.: Species density of North American recent mammals, Syst. Zool., 13, 57–73, https://doi.org/10.2307/2411825, 1964.
Sobol, I. M.: On the distribution of points in a cube and approximate
evaluation of integrals, Zh. Vychisl. Mat. Mat. Fiz., 7, 784–802, 1967 (in
Russian); Comp. Math. Math. Phys., 7, 86–112, https://doi.org/10.1016/0041-5553(67)90144-9, 1967 (in English).
Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates, Math. Comput. Simul., 55, 271–280,
https://doi.org/10.1016/S0378-4754(00)00270-6, 2001.
Stanley, S. M.: Macroevolution: Pattern and Process, The Johns Hopkins
University Press, Baltimore, Maryland, USA, 1979.
Stock, J. D. and Montgomery, D. R.: Geologic constraints on bedrock river
incision using the stream power law, J. Geophys. Res.-Solid., 104, 4983–4993, https://doi.org/10.1029/98JB02139, 1999.
Stokes, M. F., Goldberg, S. L., and Perron, J. T.: Ongoing river capture in
the Amazon, Geophys. Res. Lett., 45, 5545–5552, https://doi.org/10.1029/2018GL078129, 2018.
Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C., Gasparini, N. M., and Tucker, G. E.: A hydroclimatological approach to
predicting regional landslide probability using Landlab, Earth Surf. Dynam., 6, 49–75 https://doi.org/10.5194/esurf-6-49-2018, 2018.
Tagliacollo, V. A., Roxo, F. F., Duke-Sylvester, S. M., Oliveira, C., and
Albert, J. S.: Biogeographical signature of river capture events in Amazonian lowlands, J. Biogeogr., 42, 2349–2362, https://doi.org/10.1111/jbi.12594, 2015.
Tedesco, P. A., Leprieur, F., Hugueny, B., Brosse, S., Dürr, H. H., Beauchard, O., Busson, F., and Oberdorff, T.: Patterns and processes of
global riverine fish endemism, Global Ecol. Biogeogr., 21, 977–987,
https://doi.org/10.1111/j.1466-8238.2011.00749.x, 2012.
Venditti, C., Meade, A., and Pagel, M.: Phylogenies reveal new interpretation
of speciation and the Red Queen, Nature, 463, 349–352, https://doi.org/10.1038/nature08630, 2010.
Waters, J. M. and Wallis, G. P.: Across the southern Alps by river capture?
Freshwater fish phylogeography in South Island, New Zealand, Mol. Ecol., 9,
1577–1582, https://doi.org/10.1046/j.1365-294x.2000.01035.x, 2000.
Waters, J. M., Wallis, G. P., Burridge, C. P., and Craw, D.: Geology shapes
biogeography: Quaternary river-capture explains New Zealand's biologically
“composite” Taieri River, Quaternary Sci. Rev., 120, 47–56,
https://doi.org/10.1016/j.quascirev.2015.04.023, 2015.
Whipple, K. X.: Bedrock rivers and the geomorphology of active orogens, Annu. Rev. Earth Plant. Sci., 32, 151–185, https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.-Solid, 104, 17661–17674, https://doi.org/10.1029/1999JB900120, 1999.
Whipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and Ouimet,
W. B.: Timescales of landscape response to divide migration and drainage
capture: Implications for the role of divide mobility in landscape evolution, J. Geophys. Res.-Earth, 122, 248–273, https://doi.org/10.1002/2016JF003973, 2017.
Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L., and Chen, C. Y.:
Dynamic reorganization of river basins, Science, 343, 1248765, https://doi.org/10.1126/science.1248765, 2014.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise, and pitfalls, in: Tectonics, Climate, and Landscape Evolution, editing by: Willett, S. D, Hovius, N., Brandon, M. T., and Fisher D. M., Geol. S. Am. S., 398, 55–74, https://doi.org/10.1130/2006.2398(04), 2006.
Short summary
Organisms evolve in ever-changing environments under complex process interactions. We applied a new software modelling tool to assess how changes in river course impact the evolution of riverine species. Models illustrate the climatically and tectonically forced landscape changes that can drive riverine biodiversity, especially where topographic relief is low. This research demonstrates that river course changes can contribute to the high riverine biodiversity found in real-world lowland basins.
Organisms evolve in ever-changing environments under complex process interactions. We applied a...