Research article
07 Oct 2021
Research article
| 07 Oct 2021
Sediment shell-content diminishes current-driven sand ripple development and migration
Chiu H. Cheng et al.
Related authors
No articles found.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Stanley Ifeanyi Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-84, https://doi.org/10.5194/gmd-2022-84, 2022
Preprint under review for GMD
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land-ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021, https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient vital infrastructure systems (VIS). Results from a systematic literature review indicate that (i) VIS are still being built without taking resilience explicitly into account and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. The main pressing topic to address is the integration of the combined social, ecological, and technical resilience of these systems.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Ringo Ossewaarde, Tatiana Filatova, Yola Georgiadou, Andreas Hartmann, Gül Özerol, Karin Pfeffer, Peter Stegmaier, Rene Torenvlied, Mascha van der Voort, Jord Warmink, and Bas Borsje
Nat. Hazards Earth Syst. Sci., 21, 1119–1133, https://doi.org/10.5194/nhess-21-1119-2021, https://doi.org/10.5194/nhess-21-1119-2021, 2021
Short summary
Short summary
The aim of this paper is to review and structure current developments in resilience research in the field of climate change studies, in terms of the approaches, definitions, models, and commitments that are typical for naturalist and constructivist research and propose a research agenda of topics distilled from current developments in resilience research.
Zhan Hu, Pim W. J. M. Willemsen, Bas W. Borsje, Chen Wang, Heng Wang, Daphne van der Wal, Zhenchang Zhu, Bas Oteman, Vincent Vuik, Ben Evans, Iris Möller, Jean-Philippe Belliard, Alexander Van Braeckel, Stijn Temmerman, and Tjeerd J. Bouma
Earth Syst. Sci. Data, 13, 405–416, https://doi.org/10.5194/essd-13-405-2021, https://doi.org/10.5194/essd-13-405-2021, 2021
Short summary
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Filipe Galiforni-Silva, Kathelijne M. Wijnberg, and Suzanne J. M. H. Hulscher
Earth Surf. Dynam., 8, 335–350, https://doi.org/10.5194/esurf-8-335-2020, https://doi.org/10.5194/esurf-8-335-2020, 2020
Short summary
Short summary
Storm surges are often related to coastal dune erosion. We found that, for specific coastal settings, storm surges may enhance dune growth rather than only undermine it. Using a computer model and elevation data, we noticed that storm surges could deposit sand onto the sand flat from sand previously deposited closer to the sea. As they move to areas farther from the sea, it becomes easier for the wind to move this sand to the dunes. These findings may help coastal managers and policymakers.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Long Jiang, Theo Gerkema, Déborah Idier, Aimée B. A. Slangen, and Karline Soetaert
Ocean Sci., 16, 307–321, https://doi.org/10.5194/os-16-307-2020, https://doi.org/10.5194/os-16-307-2020, 2020
Short summary
Short summary
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local tides. Results indicate that SLR induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. SLR can also change shallow-water tidal asymmetry and influence the direction and magnitude of bed-load sediment transport. The model downscaling approach is widely applicable for local SLR projections in estuaries and coastal bays.
Anouk Bomers, Ralph M. J. Schielen, and Suzanne J. M. H. Hulscher
Nat. Hazards Earth Syst. Sci., 19, 1895–1908, https://doi.org/10.5194/nhess-19-1895-2019, https://doi.org/10.5194/nhess-19-1895-2019, 2019
Short summary
Short summary
Flood frequency curves are usually highly uncertain since they are based on short data sets of measured discharges or weather conditions. To decrease the confidence intervals, an efficient bootstrap method is developed. With this method, the data set of measured discharges of the Rhine river is extended by approximately 600 years. The study shows that historic flood events decrease the confidence interval of the flood frequency curve significantly, specifically in the range of large floods.
Koen D. Berends, Menno W. Straatsma, Jord J. Warmink, and Suzanne J. M. H. Hulscher
Nat. Hazards Earth Syst. Sci., 19, 1737–1753, https://doi.org/10.5194/nhess-19-1737-2019, https://doi.org/10.5194/nhess-19-1737-2019, 2019
Short summary
Short summary
River flooding is a major safety concern. Sophisticated models are used to design ways to decrease flood risk, but until recently it was not feasible to calculate how uncertain these model predictions are. Using a new approach, we have now quantified the uncertainty of 12 interventions along the River Waal. Results show significant but not problematically high uncertainty. We demonstrate that the choice between interventions can be different when uncertainty is taken into account.
Filipe Galiforni Silva, Kathelijne M. Wijnberg, and Suzanne J. M. H. Hulscher
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-6, https://doi.org/10.5194/esurf-2019-6, 2019
Preprint withdrawn
Short summary
Short summary
Storms are often related to coastal dune erosion. We found that, for specific coastal settings, storms may enhance dune growth rather than only undermine it. Using a computer model and long-term monitoring data, we see that storms may bring sand from areas that are frequently inundated to areas that are often above the water. When above the water, this sand can be more easily transported by the wind and deposited on the dunes. These findings may help coastal managers and policymakers.
Tom J. S. Cox, Justus E. E. van Beusekom, and Karline Soetaert
Biogeosciences, 14, 5271–5280, https://doi.org/10.5194/bg-14-5271-2017, https://doi.org/10.5194/bg-14-5271-2017, 2017
Short summary
Short summary
Photosynthesis by phytoplankton is a key source of oxygen (O2) in aquatic systems. We have developed a mathematical technique to calculate the rate of photosynthesis from time series of O2. Additionally, the approach leads to a better understanding of the influence on O2 measurements of the tides in coasts and estuaries. The results are important for correctly interpreting the data that are gathered by a growing set of continuous O2 sensors that are deployed around the world.
L. Meire, D. H. Søgaard, J. Mortensen, F. J. R. Meysman, K. Soetaert, K. E. Arendt, T. Juul-Pedersen, M. E. Blicher, and S. Rysgaard
Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, https://doi.org/10.5194/bg-12-2347-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet releases large amounts of freshwater, which strongly influences the biogeochemistry of the adjacent fjord systems and continental shelves. Here we present seasonal observations of the carbonate system in the surface waters of a west Greenland tidewater outlet glacier fjord. Our data reveal a permanent undersaturation of CO2 in the surface layer of the entire fjord and adjacent shelf, creating a high annual uptake of 65gCm-2yr-1.
L. Pozzato, D. Van Oevelen, L. Moodley, K. Soetaert, and J. J. Middelburg
Biogeosciences, 10, 6879–6891, https://doi.org/10.5194/bg-10-6879-2013, https://doi.org/10.5194/bg-10-6879-2013, 2013
L. Meire, K. E. R. Soetaert, and F. J. R. Meysman
Biogeosciences, 10, 2633–2653, https://doi.org/10.5194/bg-10-2633-2013, https://doi.org/10.5194/bg-10-2633-2013, 2013
A. de Kluijver, K. Soetaert, J. Czerny, K. G. Schulz, T. Boxhammer, U. Riebesell, and J. J. Middelburg
Biogeosciences, 10, 1425–1440, https://doi.org/10.5194/bg-10-1425-2013, https://doi.org/10.5194/bg-10-1425-2013, 2013
K. Soetaert, D. van Oevelen, and S. Sommer
Biogeosciences, 9, 5341–5352, https://doi.org/10.5194/bg-9-5341-2012, https://doi.org/10.5194/bg-9-5341-2012, 2012
Related subject area
Physical: Geomorphology (including all aspects of fluvial, coastal, aeolian, hillslope and glacial geomorphology)
Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain
Estuarine morphodynamics and development modified by floodplain formation
Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset
A geomorphic-process-based cellular automata model of colluvial wedge morphology and stratigraphy
Signal response of the Swiss plate geophone monitoring system impacted by bedload particles with different transport modes
Morphodynamic styles: characterising the behaviour of gravel-bed rivers using a novel, quantitative index
Rapid Holocene bedrock canyon incision of Beida River, North Qilian Shan, China
The landslide velocity
An analytical model for beach erosion downdrift of groins: case study of Jeongdongjin Beach, Korea
Permafrost in monitored unstable rock slopes in Norway – new insights from temperature and surface velocity measurements, geophysical surveying, and ground temperature modelling
Continuous measurements of valley floor width in mountainous landscapes
The role of geological mouth islands on the morphodynamics of back-barrier tidal basins
From apex to shoreline: fluvio-deltaic architecture for the Holocene Rhine–Meuse delta, the Netherlands
Intensified paraglacial slope failures due to accelerating downwasting of a temperate glacier in Mt. Gongga, southeastern Tibetan Plateau
Breaking down chipping and fragmentation in sediment transport: the control of material strength
Multi-objective optimisation of a rock coast evolution model with cosmogenic 10Be analysis for the quantification of long-term cliff retreat rates
Spatio-temporal variability and controlling factors for postglacial erosion dynamics in the Dora Baltea catchment (western Italian Alps)
Triggering and propagation of exogenous sediment pulses in mountain channels: insights from flume experiments with seismic monitoring
Temporal changes in the debris flow threshold under the effects of ground freezing and sediment storage on Mt. Fuji
Sedimentary architecture and landforms of the late Saalian (MIS 6) ice sheet margin offshore of the Netherlands
Relationship between meteoric 10Be and NO3− concentrations in soils along Shackleton Glacier, Antarctica
Sand mining far outpaces natural supply in a large alluvial river
The formation and geometry characteristics of boulder bars due to outburst floods triggered by overtopped landslide dam failure
Landslide-lake outburst floods accelerate downstream hillslope slippage
The relative influence of dune aspect ratio and beach width on dune erosion as a function of storm duration and surge level
A temperature-dependent mechanical model to assess the stability of degrading permafrost rock slopes
The effects of storms and a transient sandy veneer on the interannual planform evolution of a low-relief coastal cliff and shore platform at Sargent Beach, Texas, USA
Identification of rock and fracture kinematics in high alpine rockwalls under the influence of elevation
Controls on the grain size distribution of landslides in Taiwan: the influence of drop height, scar depth and bedrock strength
Assessing the effect of topography on Cs-137 concentrations within forested soils due to the Fukushima Daiichi Nuclear Power Plant accident, Japan
Climatic controls on mountain glacier basal thermal regimes dictate spatial patterns of glacial erosion
Tectonically and climatically driven mountain-hopping erosion in central Guatemala from detrital 10Be and river profile analysis
Stochastic alluvial fan and terrace formation triggered by a high-magnitude Holocene landslide in the Klados Gorge, Crete
Controls on the rates and products of particle attrition by bed-load collisions
Bedrock river erosion through dipping layered rocks: quantifying erodibility through kinematic wave speed
Particle energy partitioning and transverse diffusion during rarefied travel on an experimental hillslope
Short communication: Runout of rock avalanches limited by basal friction but controlled by fragmentation
Rarefied particle motions on hillslopes – Part 1: Theory
Rarefied particle motions on hillslopes – Part 2: Analysis
Rarefied particle motions on hillslopes – Part 3: Entropy
Rarefied particle motions on hillslopes – Part 4: Philosophy
Implications of the ongoing rock uplift in NW Himalayan interiors
Interactions between deforestation, landscape rejuvenation, and shallow landslides in the North Tanganyika–Kivu rift region, Africa
Relevance of acoustic methods to quantify bedload transport and bedform dynamics in a large sandy-gravel-bed river
Earthquake-induced debris flows at Popocatépetl Volcano, Mexico
Controls on the hydraulic geometry of alluvial channels: bank stability to gravitational failure, the critical-flow hypothesis, and conservation of mass and energy
Effect of stress history on sediment transport and channel adjustment in graded gravel-bed rivers
Hack distributions of rill networks and nonlinear slope length–soil loss relationships
Development of smart boulders to monitor mass movements via the Internet of Things: a pilot study in Nepal
Laboratory observations on meltwater meandering rivulets on ice
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Maarten G. Kleinhans, Lonneke Roelofs, Steven A. H. Weisscher, Ivar R. Lokhorst, and Lisanne Braat
Earth Surf. Dynam., 10, 367–381, https://doi.org/10.5194/esurf-10-367-2022, https://doi.org/10.5194/esurf-10-367-2022, 2022
Short summary
Short summary
Floodplain formation in estuaries limit the ebb and flood flow, reducing channel migration and shortening the tidally influenced reach. Vegetation establishment on bars reduces local flow velocity and concentrates flow into channels, while mudflats fill accommodation space and reduce channel migration. These results are based on experimental estuaries in the Metronome facility supported by numerical flow modelling.
Xingyu Chen, Marwan A. Hassan, and Xudong Fu
Earth Surf. Dynam., 10, 349–366, https://doi.org/10.5194/esurf-10-349-2022, https://doi.org/10.5194/esurf-10-349-2022, 2022
Short summary
Short summary
We compiled a large image dataset containing more than 125 000 sediments and developed a model (GrainID) based on convolutional neural networks to measure individual grain size from images. The model was calibrated on flume and natural stream images covering a wide range of fluvial environments. The model showed high performance compared with other methods. Our model showed great potential for grain size measurements from a small patch of sediment in a flume to a watershed-scale drone survey.
Harrison J. Gray, Christopher B. DuRoss, Sylvia R. Nicovich, and Ryan D. Gold
Earth Surf. Dynam., 10, 329–348, https://doi.org/10.5194/esurf-10-329-2022, https://doi.org/10.5194/esurf-10-329-2022, 2022
Short summary
Short summary
Some types of big earthquakes create small cliffs or
fault scarps∼1–3 m in height, where sediments can pile up and create deposits we call
colluvial wedges. Geologists will look at colluvial wedges and use them to understand how often big earthquakes occur. Here we made a computer simulation to find out if the way we think colluvial wedges form works with physics. We found that it does in theory, but there are conditions in which it may be more complicated than we expected.
Zheng Chen, Siming He, Tobias Nicollier, Lorenz Ammann, Alexandre Badoux, and Dieter Rickenmann
Earth Surf. Dynam., 10, 279–300, https://doi.org/10.5194/esurf-10-279-2022, https://doi.org/10.5194/esurf-10-279-2022, 2022
Short summary
Short summary
Bedload flux quantification remains challenging in river dynamics due to variable transport modes. We used a passive monitoring device to record the acoustic signals generated by the impacts of bedload particles with different transport modes, and established the relationship between the triggered signals and bedload characteristics. The findings of this study could improve our understanding of the monitoring system and bedload transport process, and contribute to bedload size classification.
William H. Booker and Brett C. Eaton
Earth Surf. Dynam., 10, 247–260, https://doi.org/10.5194/esurf-10-247-2022, https://doi.org/10.5194/esurf-10-247-2022, 2022
Short summary
Short summary
Channel behaviour is a qualitative aspect of river research that needs development to produce a framework of analysis between and within types of channels. We seek to produce a quantitative metric that can capture how a channel changes using a pair of experiments and collecting easy to obtain data. We demonstrate that this new technique is capable of discerning between river types and may provide a new tool with which we may describe channel behaviour.
Yiran Wang, Michael E. Oskin, Youli Li, and Huiping Zhang
Earth Surf. Dynam., 10, 191–208, https://doi.org/10.5194/esurf-10-191-2022, https://doi.org/10.5194/esurf-10-191-2022, 2022
Short summary
Short summary
Beida River has an over-steepened reach presently located 10 km upstream of the North Qilian mountain front. It was formed because river incising into the bedrocks inside the mountain cannot keep up with river incising into the soft sediment in the basin. We suggest this over-steepened reach represents a fast incision period 3–4 kyr ago, deepening the canyon for ~35 m within ~700 years. The formation of this reach corresponds to a humid period related to strong Southeast Asian Monsoon influence.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Changbin Lim, Soonmi Hwang, and Jung Lyul Lee
Earth Surf. Dynam., 10, 151–163, https://doi.org/10.5194/esurf-10-151-2022, https://doi.org/10.5194/esurf-10-151-2022, 2022
Short summary
Short summary
Recently, along the east coast of South Korea, seasonal beach erosion has been induced by structures which severely block the supply of sand from the upstream side. This study proposes a coastal solution that can predict the maximum indentation point in downdrift erosion formed downstream of groins by applying a parabolic bay shape equation (PBSE).
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Fiona Jane Clubb, Eliot Francois Weir, and Simon Marius Mudd
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-2, https://doi.org/10.5194/esurf-2022-2, 2022
Revised manuscript accepted for ESurf
Short summary
Short summary
River valleys are important components of mountain systems: they are the most fertile part of landscapes, and store sediment which is transported from mountains to surrounding basins. Our knowledge of the location and shape of valleys is hindered by our ability to measure them over large areas. We present a new method for measuring the width of mountain valleys continuously along river channels from digital topography, and show that our method can be used to test common models of river widening.
Yizhang Wei, Yining Chen, Jufei Qiu, Zeng Zhou, Peng Yao, Qin Jiang, Zheng Gong, Giovanni Coco, Ian Townend, and Changkuan Zhang
Earth Surf. Dynam., 10, 65–80, https://doi.org/10.5194/esurf-10-65-2022, https://doi.org/10.5194/esurf-10-65-2022, 2022
Short summary
Short summary
The barrier tidal basin is increasingly altered by human activity and sea-level rise. These environmental changes probably lead to the emergence or disappearance of islands, yet the effect of rocky islands on the evolution of tidal basins remains poorly investigated. Using numerical experiments, we explore the evolution of tidal basins under varying numbers and locations of islands. This work provides insights for predicting the response of barrier tidal basins in a changing environment.
Marc J. P. Gouw and Marc P. Hijma
Earth Surf. Dynam., 10, 43–64, https://doi.org/10.5194/esurf-10-43-2022, https://doi.org/10.5194/esurf-10-43-2022, 2022
Short summary
Short summary
If you were to navigate an entire delta by boat, you would clearly see that the general characteristics of the channels change throughout the delta. The drivers behind these changes have been studied extensively. Field studies encompassing the entire delta are rare but give important insights into these drivers that can help other researchers. The most important drivers are channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited floodplain width.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Sophie Bodek and Douglas J. Jerolmack
Earth Surf. Dynam., 9, 1531–1543, https://doi.org/10.5194/esurf-9-1531-2021, https://doi.org/10.5194/esurf-9-1531-2021, 2021
Short summary
Short summary
As rocks are transported, they undergo two attrition mechanisms: chipping, shallow cracking at low collision energies; and fragmentation, significant fracture growth from high-energy impacts. We examine the mass and shape evolution of concrete particles in a rotating drum to experimentally delineate the boundary between chipping and fragmentation. By connecting the mechanics of these attrition processes to resulting shape evolution, we can use particle shape to infer past transport conditions.
Jennifer R. Shadrick, Martin D. Hurst, Matthew D. Piggott, Bethany G. Hebditch, Alexander J. Seal, Klaus M. Wilcken, and Dylan H. Rood
Earth Surf. Dynam., 9, 1505–1529, https://doi.org/10.5194/esurf-9-1505-2021, https://doi.org/10.5194/esurf-9-1505-2021, 2021
Short summary
Short summary
Here we use topographic and 10Be concentration data to optimise a coastal evolution model. Cliff retreat rates are calculated for two UK sites for the past 8000 years and, for the first time, highlight a strong link between the rate of sea level rise and long-term cliff retreat rates. This method enables us to study past cliff response to sea level rise and so to greatly improve forecasts of future responses to accelerations in sea level rise that will result from climate change.
Elena Serra, Pierre Gaston Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-90, https://doi.org/10.5194/esurf-2021-90, 2021
Revised manuscript accepted for ESurf
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint: hard lithologies support high reliefs affected by glacial/periglacial processes and recurring rock fall events.
Marco Piantini, Florent Gimbert, Hervé Bellot, and Alain Recking
Earth Surf. Dynam., 9, 1423–1439, https://doi.org/10.5194/esurf-9-1423-2021, https://doi.org/10.5194/esurf-9-1423-2021, 2021
Short summary
Short summary
We carry out laboratory experiments to investigate the formation and propagation dynamics of exogenous sediment pulses in mountain rivers. We show that the ability of a self-formed deposit to destabilize and generate sediment pulses depends on the sand content of the mixture, while each pulse turns out to be formed by a front, a body, and a tail. Seismic measurements reveal a complex and non-unique dependency between seismic power and sediment pulse transport characteristics.
Fumitoshi Imaizumi, Atsushi Ikeda, Kazuki Yamamoto, and Okihiro Ohsaka
Earth Surf. Dynam., 9, 1381–1398, https://doi.org/10.5194/esurf-9-1381-2021, https://doi.org/10.5194/esurf-9-1381-2021, 2021
Short summary
Short summary
The rainfall threshold for debris flow occurrence was evaluated on Mt. Fuji, Japan. Debris flows during frozen periods were triggered by a smaller magnitude of rainfall than during unfrozen periods. During unfrozen periods, the threshold of maximum hourly rainfall intensity triggering debris flow was higher when the volume of channel deposits was larger. The results suggest that the occurrence of frozen ground needs to be monitored for better debris flow disaster mitigation in cold regions.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Melisa A. Diaz, Lee B. Corbett, Paul R. Bierman, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Earth Surf. Dynam., 9, 1363–1380, https://doi.org/10.5194/esurf-9-1363-2021, https://doi.org/10.5194/esurf-9-1363-2021, 2021
Short summary
Short summary
We collected soil surface samples and depth profiles every 5 cm (up to 30 cm) from 11 ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS), and measured meteoric beryllium-10 and nitrate concentrations to understand the relationship between salts and beryllium-10. This relationship can help inform wetting history, landscape disturbance, and exposure duration.
Christopher R. Hackney, Grigorios Vasilopoulos, Sokchhay Heng, Vasudha Darbari, Samuel Walker, and Daniel R. Parsons
Earth Surf. Dynam., 9, 1323–1334, https://doi.org/10.5194/esurf-9-1323-2021, https://doi.org/10.5194/esurf-9-1323-2021, 2021
Short summary
Short summary
Unsustainable sand mining poses a threat to the stability of river channels. We use satellite imagery to estimate volumes of material removed from the Mekong River, Cambodia, over the period 2016–2020. We demonstrate that current rates of extraction now exceed previous estimates for the entire Mekong Basin and significantly exceed the volume of sand naturally transported by the river. Our work highlights the importance of satellite imagery in monitoring sand mining activity over large areas.
Xiangang Jiang, Haiguang Cheng, Lei Gao, and Weiming Liu
Earth Surf. Dynam., 9, 1263–1277, https://doi.org/10.5194/esurf-9-1263-2021, https://doi.org/10.5194/esurf-9-1263-2021, 2021
Short summary
Short summary
Boulder bars are a common form of riverbed morphology which can be affected by outburst flood. However, few studies have focused on boulder bars' formation process and development characteristics during landslide dam failure. In this paper, eight groups of dam failure experiments were carried out to study the development and geometry characteristics of boulder bars during and after dam failure. Moreover, the relationships between geometry parameters of boulder bars are investigated.
Wentao Yang, Jian Fang, and Jing Liu-Zeng
Earth Surf. Dynam., 9, 1251–1262, https://doi.org/10.5194/esurf-9-1251-2021, https://doi.org/10.5194/esurf-9-1251-2021, 2021
Short summary
Short summary
The eastern Tibetan Plateau is an ideal place to study interactions among different geomorphic drivers. We report the impacts of two 2018 landslide-lake outburst floods up to 100 km distance downstream of the Jinsha River. By using remote sensing images, we found that the 2018 floods caused many hillslopes to slump during the prolonged period afterwards. The finding could help us to obtain a holistic picture of LLF impacts and improve geomorphic models of landscape evolution.
Michael Itzkin, Laura J. Moore, Peter Ruggiero, Sally D. Hacker, and Reuben G. Biel
Earth Surf. Dynam., 9, 1223–1237, https://doi.org/10.5194/esurf-9-1223-2021, https://doi.org/10.5194/esurf-9-1223-2021, 2021
Short summary
Short summary
Studies of the impact of storms on dunes typically focus on the importance of dune elevation,
here we analyze the protective services offered by the dune height and width, the morphology
of the beach fronting the dune, and artificial dune construction via the use of sand fences.
We find that dune volume loss most strongly correlates to beach width rather than dune shape,
although when beach width is controlled for low and wide dunes offer greater protection than
tall and narrow dunes.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Rose V. Palermo, Anastasia Piliouras, Travis E. Swanson, Andrew D. Ashton, and David Mohrig
Earth Surf. Dynam., 9, 1111–1123, https://doi.org/10.5194/esurf-9-1111-2021, https://doi.org/10.5194/esurf-9-1111-2021, 2021
Short summary
Short summary
At Sargent Beach, Texas, USA, a rapidly eroding soft-sediment cliff system, we study the planform evolution of the cliff face in response to storms and sediment cover. Through this analysis, we characterize the feedbacks between morphology and retreat rate of a cliff face. We find that after a storm event, the roughness and sinuosity of the cliff face increase, which sustains higher retreat rates for years following.
Daniel Draebing
Earth Surf. Dynam., 9, 977–994, https://doi.org/10.5194/esurf-9-977-2021, https://doi.org/10.5194/esurf-9-977-2021, 2021
Short summary
Short summary
Alpine rockwalls are affected by weathering processes that result in rock and fracture deformation. This deformation decreases rockwall stability with time. I installed crackmeters along a topographic gradient to identify the spatial and temporal variation of weathering processes. My data show that elevation-dependent snow cover, topographic factors and fracture dipping control the frequency and magnitude of weathering processes and resulting rock kinematics.
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary
Short summary
The size of grains delivered to rivers is an essential parameter for understanding erosion and sediment transport and their related hazards. In mountains, landslides deliver these rock fragments, but few studies have analyzed the landslide properties that control the resulting sizes. We present measurements on 17 landslides from Taiwan and show that their grain sizes depend on rock strength, landslide depth and drop height, thereby validating and updating a previous theory on fragmentation.
Misa Yasumiishi, Taku Nishimura, Jared Aldstadt, Sean J. Bennett, and Thomas Bittner
Earth Surf. Dynam., 9, 861–893, https://doi.org/10.5194/esurf-9-861-2021, https://doi.org/10.5194/esurf-9-861-2021, 2021
Short summary
Short summary
Topographic effects on radioactive contamination in a forested area were quantitatively examined using soil core samples collected in a village in Fukushima, Japan. The results confirmed that local topography influences the contamination patterns in soils, and its effects vary depending on the combinations of the topographic parameters. This finding suggests that topographic characteristics should be considered carefully in future environmental radioactive risk assessments.
Jingtao Lai and Alison M. Anders
Earth Surf. Dynam., 9, 845–859, https://doi.org/10.5194/esurf-9-845-2021, https://doi.org/10.5194/esurf-9-845-2021, 2021
Short summary
Short summary
Glaciers are strong erosive agents, and they have created many unique landforms in mountain belts. Climate has been viewed as a primary control on glacial erosion, yet our understanding of the mechanism by which climate impacts glacial erosion remains limited. Using computer simulations, we find that climate controls glacial erosion by modulating the temperature of the basal ice. Our results suggest that a warm and/or wet climate can create warm basal ice and, therefore, enhance erosion.
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021, https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary
Short summary
The rise of a mountain affects the circulation of water, both in the atmosphere and over the land surface, thereby affecting the erosion of the land surface. We document how the rise of a mountain in central Guatemala has affected the erosion of an older range nearby. The new range intercepts precipitation formerly delivered to the older range. River response to the uplift of the new range has decreased incision across the older one. Both have reduced hillslope erosion over the old range.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Kimberly Litwin Miller and Douglas Jerolmack
Earth Surf. Dynam., 9, 755–770, https://doi.org/10.5194/esurf-9-755-2021, https://doi.org/10.5194/esurf-9-755-2021, 2021
Short summary
Short summary
We conducted experiments to investigate the mechanics of sediment attrition due to collisions with the channel bed during downstream transport. During this process, the grains become rounder and smaller, changing the overall distribution of sediment in the river. In this work we examine how material properties play a role in the breakdown of sediment due to energetic collisions and the fine particles that are produced when chipped off of larger grains.
Nate A. Mitchell and Brian J. Yanites
Earth Surf. Dynam., 9, 723–753, https://doi.org/10.5194/esurf-9-723-2021, https://doi.org/10.5194/esurf-9-723-2021, 2021
Short summary
Short summary
A landscape's appearance reflects the properties of the underlying bedrock. For example, strong bedrock can lead to steep slopes. Recent work has shown, however, that in areas with mixed rock types the stronger bedrock can have lower slopes. In this study, we use numerical models of bedrock river erosion to show why this change in behavior occurs. We also present a new approach for estimating bedrock erodibility. This new approach can allow for new opportunities in the field of geomorphology.
Sarah G. W. Williams and David J. Furbish
Earth Surf. Dynam., 9, 701–721, https://doi.org/10.5194/esurf-9-701-2021, https://doi.org/10.5194/esurf-9-701-2021, 2021
Short summary
Short summary
Particle motions and travel distances prior to deposition on hillslope surfaces depend on a balance of gravitational and frictional forces. We elaborate how particle energy is partitioned and dissipated during travel using measurements of particle travel distances supplemented with high-speed imaging of drop–impact–rebound experiments. Results show that particle shape plays a dominant role in how energy is partitioned during impact with a surface and how far particles travel in two dimensions.
Øystein T. Haug, Matthias Rosenau, Michael Rudolf, Karen Leever, and Onno Oncken
Earth Surf. Dynam., 9, 665–672, https://doi.org/10.5194/esurf-9-665-2021, https://doi.org/10.5194/esurf-9-665-2021, 2021
Short summary
Short summary
The runout of rock avalanches scales with their volume but also shows a considerable variation for avalanches with similar volumes. Here we show that besides size-dependent weakening mechanisms, fragmentation can account for the observed variability in runout. We use laboratory-scale experimental avalanches to simulate and analyse the role of fragmentation. We find that fragmentation consumes energy but also increases avalanche mobility. It does so systematically and predictably.
David Jon Furbish, Joshua J. Roering, Tyler H. Doane, Danica L. Roth, Sarah G. W. Williams, and Angel M. Abbott
Earth Surf. Dynam., 9, 539–576, https://doi.org/10.5194/esurf-9-539-2021, https://doi.org/10.5194/esurf-9-539-2021, 2021
Short summary
Short summary
Sediment particles skitter down steep hillslopes on Earth and Mars. Particles gain speed in going downhill but are slowed down and sometimes stop due to collisions with the rough surface. The likelihood of stopping depends on the energetics of speeding up (heating) versus slowing down (cooling). Statistical physics predicts that particle travel distances are described by a generalized Pareto distribution whose form varies with the Kirkby number – the ratio of heating to cooling.
David Jon Furbish, Sarah G. W. Williams, Danica L. Roth, Tyler H. Doane, and Joshua J. Roering
Earth Surf. Dynam., 9, 577–613, https://doi.org/10.5194/esurf-9-577-2021, https://doi.org/10.5194/esurf-9-577-2021, 2021
Short summary
Short summary
The generalized Pareto distribution of particle travel distances on steep hillslopes, as described in a companion paper (Furbish et al., 2021a), is entirely consistent with measurements of travel distances obtained from laboratory and field-based experiments, supplemented with high-speed imaging and audio recordings that highlight the effects of bumpety-bump particle motions. Particle size and shape, in concert with surface roughness, strongly influence particle energetics and deposition.
David Jon Furbish, Sarah G. W. Williams, and Tyler H. Doane
Earth Surf. Dynam., 9, 615–628, https://doi.org/10.5194/esurf-9-615-2021, https://doi.org/10.5194/esurf-9-615-2021, 2021
Short summary
Short summary
The generalized Pareto distribution of particle travel distances on steep hillslopes, as described in two companion papers (Furbish et al., 2021a, 2021b), is a maximum entropy distribution. This simply represents the most probable way that a great number of particles become distributed into distance states, subject to a fixed total energetic cost due to frictional effects of particle–surface collisions. The maximum entropy criterion is equivalent to a formal application of Occam's razor.
David Jon Furbish and Tyler H. Doane
Earth Surf. Dynam., 9, 629–664, https://doi.org/10.5194/esurf-9-629-2021, https://doi.org/10.5194/esurf-9-629-2021, 2021
Short summary
Short summary
Using analyses of particle motions on steep hillslopes in three companion papers (Furbish et al., 2021a, 2021b, 2021c), we offer philosophical perspective on the merits of a statistical mechanics framework for describing sediment particle motions and transport, and the implications of rarefied versus continuum transport conditions. We highlight the mechanistic yet probabilistic nature of the approach, and the importance of tailoring the style of thinking to the process and scale of interest.
Saptarshi Dey, Rasmus C. Thiede, Arindam Biswas, Naveen Chauhan, Pritha Chakravarti, and Vikrant Jain
Earth Surf. Dynam., 9, 463–485, https://doi.org/10.5194/esurf-9-463-2021, https://doi.org/10.5194/esurf-9-463-2021, 2021
Short summary
Short summary
Ongoing deformation of the Himalaya is not constrained to its southern extremity. With morphometric analysis using a high-resolution digital elevation model, satellite image analysis, luminescence chronology of fluvial terraces and field observations, we identify a zone of rapid rock uplift in the interior of the Kashmir Himalaya. Our results suggest active tectonic and structural control on the growth of topography in the Himalayan interiors over multi-millennial timescales.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Jules Le Guern, Stéphane Rodrigues, Thomas Geay, Sébastien Zanker, Alexandre Hauet, Pablo Tassi, Nicolas Claude, Philippe Jugé, Antoine Duperray, and Louis Vervynck
Earth Surf. Dynam., 9, 423–444, https://doi.org/10.5194/esurf-9-423-2021, https://doi.org/10.5194/esurf-9-423-2021, 2021
Short summary
Short summary
Despite the inherent difficulties in quantifying its value, sediment transport is essential to understanding fluvial systems. This study tries to improve the measurement by comparing several methods. Acoustic methods are compared to direct measurements with samplers. The hydrophone is well adapted to quantify sediment transport in mountain streams, but this study shows the potential and the efficiency of this device in large lowland rivers.
Velio Coviello, Lucia Capra, Gianluca Norini, Norma Dávila, Dolors Ferrés, Víctor Hugo Márquez-Ramírez, and Eduard Pico
Earth Surf. Dynam., 9, 393–412, https://doi.org/10.5194/esurf-9-393-2021, https://doi.org/10.5194/esurf-9-393-2021, 2021
Short summary
Short summary
The Puebla–Morelos earthquake (19 September 2017) was the most damaging event in central Mexico since 1985. The seismic shaking produced hundreds of shallow landslides on the slopes of Popocatépetl Volcano. The larger landslides transformed into large debris flows that travelled for kilometers. We describe this exceptional mass wasting cascade and its predisposing factors, which have important implications for both the evolution of the volcanic edifice and hazard assessment.
Jon D. Pelletier
Earth Surf. Dynam., 9, 379–391, https://doi.org/10.5194/esurf-9-379-2021, https://doi.org/10.5194/esurf-9-379-2021, 2021
Short summary
Short summary
The sizes and shapes of alluvial channels vary in a systematic way with the water flow they convey during large floods. It is demonstrated that the depth of alluvial channels is controlled by the resistance of channel bank material to slumping, which in turn is controlled by clay content. Deeper channels have faster water flow in a manner controlled by the critical hydraulic state to which channels tend to evolve. Channel width and slope can be further quantified using conservation principles.
Chenge An, Marwan A. Hassan, Carles Ferrer-Boix, and Xudong Fu
Earth Surf. Dynam., 9, 333–350, https://doi.org/10.5194/esurf-9-333-2021, https://doi.org/10.5194/esurf-9-333-2021, 2021
Short summary
Short summary
Mountain rivers are characterized by fluctuations of water flow, including both flood and inter-flood low flow. Recently, increasing attention has been paid to how inter-flood low flow affects the sediment transport in subsequent floods. Here we present a series of flume experiments. Results show that the existence of inter-flood low flow can reduce the sediment transport at the beginning of the subsequent flood. However, such an effect is gradually erased with the increase of flow intensity.
Tyler H. Doane, Jon D. Pelletier, and Mary H. Nichols
Earth Surf. Dynam., 9, 317–331, https://doi.org/10.5194/esurf-9-317-2021, https://doi.org/10.5194/esurf-9-317-2021, 2021
Short summary
Short summary
This paper explores how the geometry of rill networks contributes to observed nonlinear relationships between soil loss and hillslope length. This work develops probability functions of geometrical quantities of the networks and then extends the theory to hydraulic variables by relying on well-known relationships. Theory is complemented by numerical modeling on numerical and natural surfaces. Results suggest that the particular arrangement of rill networks contributes to nonlinear relationships.
Benedetta Dini, Georgina L. Bennett, Aldina M. A. Franco, Michael R. Z. Whitworth, Kristen L. Cook, Andreas Senn, and John M. Reynolds
Earth Surf. Dynam., 9, 295–315, https://doi.org/10.5194/esurf-9-295-2021, https://doi.org/10.5194/esurf-9-295-2021, 2021
Short summary
Short summary
We use long-range smart sensors connected to a network based on the Internet of Things to explore the possibility of detecting hazardous boulder movements in real time. Prior to the 2019 monsoon season we inserted the devices in 23 boulders spread over debris flow channels and a landslide in northeastern Nepal. The data obtained in this pilot study show the potential of this technology to be used in remote hazard-prone areas in future early warning systems.
Roberto Fernández and Gary Parker
Earth Surf. Dynam., 9, 253–269, https://doi.org/10.5194/esurf-9-253-2021, https://doi.org/10.5194/esurf-9-253-2021, 2021
Short summary
Short summary
We present a set of observations from laboratory experiments on meltwater meandering rivulets on ice and compare them (qualitatively and quantitatively) to patterns commonly found in meandering channels flowing over different materials. Our channels display great similarities with real rivers in spite of being much smaller. Higher temperature differences between water and ice create deeper and less sinuous channels with bends that preferentially point downstream and are not as rounded.
Cited articles
Ahmerkamp, S., Winter, C., Janssen, F., Kuypers, M. M. M., and Holtappels,
M.: The impact of bedform migration on benthic oxygen fluxes, J. Geophys.
Res.-Biogeo., 120, 2229–2242, https://doi.org/10.1002/2015JG003106, 2015.
Al-Dabbas, M. A. M. and McManus, J.: Shell fragments as indicators of bed
sediment transport in the Tay Estuary, P. Roy. Soc. Edinburgh Sect. B, 92, 335–344, https://doi.org/10.1017/S0269727000004759, 1987.
Ashley, G., Boothroyd, J. C., Bridge, J. S., Clifton, H. E., Dalrymple, R.,
Elliott, T., Flemming, B., Harms, J. C., Harris, P., Hunter, R. E., Kreisa,
R. D., Lancaster, N., Middleton, G. V., Paola, C., Rubin, D. M., Smith, J.
D., Southard, J. B., Terwindt, J. H. I., and Twitchell, D. C.: Classification
of large-scale subaqueous bedforms: a new look at an old problem, J. Sediment Petrol., 60, 160–172, 1990.
Baas, J. H. and De Koning, H.: Washed-out ripples; their equilibrium dimensions, migration rate, and relation to suspended-sediment concentration
in very fine sand, J. Sediment Res., 65, 431–435,
https://doi.org/10.1306/D42680E5-2B26-11D7-8648000102C1865D, 1995.
Baas, J. H., van Dam, R. L., and Storms, J. E. A.: Duration of deposition
from decelerating high-density turbidity currents, Sediment Geol., 136,
71–88, https://doi.org/10.1016/S0037-0738(00)00088-9, 2000.
Bartholdy, J., Ernstsen, V. B., Flemming, B. W., Winter, C., Bartholomä,
A., and Kroon, A.: On the formation of current ripples, Sci. Rep., 5, 11390, https://doi.org/10.1038/srep11390, 2015.
Blanchard, G. F., Guarini, J.-M., Gros, P., and Richard, P.: Seasonal effect
on the relationship between the photosynthetic capacity of intertidal
microphytobenthos and temperature, J. Phycol., 33, 723–728,
https://doi.org/10.1111/j.0022-3646.1997.00723.x, 1997.
Borchers, H. W.: pracma: Practical Numerical Math Functions, available at: https://cran.r-project.org/web/packages/pracma/index.html (last access: 8 April 2021), 2019.
Brakenhoff, L., Schrijvershof, R., van der Werf, J., Grasmeijer, B., Ruessink, G., and van der Vegt, M.: From Ripples to Large-Scale Sand
Transport: The Effects of Bedform-Related Roughness on Hydrodynamics and
Sediment Transport Patterns in Delft3D, J. Mar. Sci. Eng., 8, 1–25, https://doi.org/10.3390/jmse8110892, 2020.
Cheng, C. H.: NIOZ racetrack sand-shell experiment, data belonging to the paper: Sediment shell-content diminishes current-driven sand ripple development and migration, 4TU.ResearchData [data set], https://doi.org/10.4121/12852113, 2021.
Cheng, C. H., Soetaert, K., and Borsje, B. W.: Sediment Characteristics over
Asymmetrical Tidal Sand Waves in the Dutch North Sea, J. Mar. Sci. Eng., 8, 1–16, https://doi.org/10.3390/jmse8060409, 2020.
Curran, J. C.: An investigation of bed armoring process and the formation of
microclusters, in: 2nd Joint Federal Interagency Conference, Las Vegas, 1–12, 2010.
Damveld, J. H., Reijden, K. J., Cheng, C., Koop, L., Haaksma, L. R., Walsh,
C. A. J., Soetaert, K., Borsje, B. W., Govers, L. L., Roos, P. C., Olff, H.,
and Hulscher, S. J. M. H.: Video transects reveal that tidal sand waves affect the spatial distribution of benthic organisms and sand ripples,
Geophys. Res. Lett.,45, 11837–11846, https://doi.org/10.1029/2018GL079858, 2018.
Damveld, J. H., Roos, P. C., Borsje, B. W., and Hulscher, S. J. M. H.:
Modelling the two-way coupling of tidal sand waves and benthic organisms: A
linear stability approach, Environ. Fluid Mech., 19, 1073–1103, https://doi.org/10.1007/s10652-019-09673-1, 2019.
Dey, S.: Incipient Motion of Bivalve Shells on Sand Beds under Flowing Water, J. Eng. Mech., 129, 232–240, https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(232), 2003.
Dietrich, W., Kirchner, J., Ikeda, H., and Iseya, F.: Sediment Supply and
Development of Coarse Surface Layer in Gravel Bedded Rivers, Nature, 340,
215–217, https://doi.org/10.1038/340215a0, 1989.
Earle, S.: Sea-Floor Sediments, available at:
https://geo.libretexts.org/@go/page/7876 (last access: 8 April 2021), 2020.
Friedrichs, M., Graf, G., and Springer, B.: Skimming flow induced over a
simulated polychaete tube lawn at low population densities, Mar. Ecol. Prog.
Ser., 192, 219–228, https://doi.org/10.3354/meps192219, 2000.
Friedrichs, M., Leipe, T., Peine, F., and Graf, G.: Impact of macrozoobenthic
structures on near-bed sediment fluxes, J. Mar. Syst., 75, 336–347,
https://doi.org/10.1016/j.jmarsys.2006.12.006, 2009.
Friend, P. L., Lucas, C. H., Holligan, P. M., and Collins, M. B.: Microalgal
mediation of ripple mobility, Geobiology, 6, 70–82,
https://doi.org/10.1111/j.1472-4669.2007.00108.x, 2008.
Gornitz, V.: Encyclopedia of Paleoclimatology and Ancient Environments, Springer, https://doi.org/10.1007/978-1-4020-4411-3, 2008.
Gutiérrez, J., Jones, C., Strayer, D., and Iribarne, O.: Mollusks as
ecosystem engineers: The role of shell production in aquatic habitats, Oikos, 101, 79–90, https://doi.org/10.1034/j.1600-0706.2003.12322.x, 2003.
Herman, P., Middelburg, J., and Heip, C.: Benthic community structure and
sediment processes on an intertidal flat: Results from the ECOFLAT project,
Cont. Shelf Res., 21, 2055–2071, https://doi.org/10.1016/S0278-4343(01)00042-5, 2001.
Huettel, M. and Rusch, A.: Transport and degradation of phytoplankton in
permeable sediment, Limnol. Oceanogr., 45, 534–549, https://doi.org/10.4319/lo.2000.45.3.0534, 2000.
Idier, D., Astruc, D., and Hulscher, S. J. M. H.: Influence of bed roughness
on dune and megaripple generation, Geophys. Res. Lett., 31, L13214, https://doi.org/10.1029/2004GL019969, 2004.
Kidwell, S. M.: Palaeobiological and sedimentological implications of fossil
concentrations, Nature, 318, 457–460, https://doi.org/10.1038/318457a0, 1985.
Kösters, F. and Winter, C.: Exploring German Bight coastal morphodynamics based on modelled bed shear stress, Geo-Mar. Lett., 34, 21–36, https://doi.org/10.1007/s00367-013-0346-y, 2014.
Langlois, V. and Valance, A.: Initiation and evolution of current ripples on
a flat sand bed under turbulent water flow, Eur. Phys. J. E, 22, 201–208, https://doi.org/10.1140/epje/e2007-00023-0, 2007.
Lapôtre, M., Lamb, M., and McElroy, B.: What sets the size of current
ripples?, Geology, 45, G38598.1, https://doi.org/10.1130/G38598.1, 2017.
Lichtman, I. D., Baas, J. H., Amoudry, L. O., Thorne, P. D., Malarkey, J.,
Hope, J. A., Peakall, J., Paterson, D. M., Bass, S. J., Cooke, R. D., Manning, A. J., Davies, A. G., Parsons, D. R., and Ye, L.: Bedform migration in a mixed sand and cohesive clay intertidal environment and implications for bed material transport predictions, Geomorphology, 315, 17–32,
https://doi.org/10.1016/j.geomorph.2018.04.016, 2018.
Ligges, U., Short, T., Kienzle, P., Schnackenberg, S., Billinghurst, D.,
Borchers, H.-W., Carezia, A., Dupuis, P., Eaton, J. W., Farhi, E., Habel, K., Hornik, K., Krey, S., Lash, B., Leisch, F., Mersmann, O., Neis, P., Ruohio, J., Smith, J. O., Stewart, D., and Weingessel, A.: signal: Signal Processing, available at: https://cran.r-project.org/web/packages/signal/index.html (last access: 8 April 2021), 2015.
Malarkey, J., Baas, J. H., Hope, J. A., Aspden, R. J., Parsons, D. R., Peakall, J., Paterson, D. M., Schindler, R. J., Ye, L., Lichtman, I. D., Bass, S. J., Davies, A. G., Manning, A. J., and Thorne, P. D.: The pervasive
role of biological cohesion in bedform development, Nat. Commun., 6, 6257,
https://doi.org/10.1038/ncomms7257, 2015.
Miedema, S. and Ramsdell, R.: Hydraulic transport of sand/shell mixtures in
relation with the critical velocity, Terra Aqua, 122, 18–27, 2011.
Mietta, F., Chassagne, C., Manning, A. J., and Winterwerp, J. C.: Influence
of shear rate, organic matter content, pH and salinity on mud flocculation,
Ocean Dynam., 59, 751–763, https://doi.org/10.1007/s10236-009-0231-4, 2009.
Nelson, T. R., Voulgaris, G., and Traykovski, P.: Predicting wave-induced
ripple equilibrium geometry, J. Geophys. Res.-Oceans, 118, 3202–3220,
https://doi.org/10.1002/jgrc.20241, 2013.
Nowell, A. R. M. and Jumars, P. A.: Flow Environments of Aquatic Benthos, Annu. Rev. Ecol. Syst., 15, 303–328, https://doi.org/10.1146/annurev.es.15.110184.001511, 1984.
Paterson, A., Hume, T., and Healy, T.: River Mouth Morphodynamics on a Mixed
Sand-Gravel Coast, J. Coast. Res., 34, 288–294, 2001.
Pilditch, C. A., Emerson, C. W., and Grant, J.: Effect of scallop shells and
sediment grain size on phytoplankton flux to the bed, Cont. Shelf Res., 17, 1869–1885, https://doi.org/10.1016/S0278-4343(97)00050-2, 1997.
Pope, N., Widdows, J., and Brinsley, M.: Estimation of bed shear stress using
the turbulent kinetic energy approach – A comparison of annular flume and
field data, Cont. Shelf Res., 26, 959–970, https://doi.org/10.1016/j.csr.2006.02.010,
2006.
Precht, E. and Huettel, M.: Advective pore-water exchange driven by surface
gravity waves and its ecological implications, Limnol. Oceanogr., 48, 1674–1684, https://doi.org/10.4319/lo.2003.48.4.1674, 2003.
Ramsdell, R. and Miedema, S.: Hydraulic transport of sand/shell mixtures, in:
WODCON XIX, WODA – World Organization of Dredging Associations, Beijing, 1–21, 2010.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org (last access: 8 April 2021), 2020.
Russell-Hunter, W. D. (Ed.): Chapter 1 Overview: Planetary Distribution of and Ecological Constraints upon the Mollusca, in: The Mollusca: Ecology, vol. 6, Academic Press, Orlando, USA, 1–27, 1983.
Seibold, E. and Berger, W. (Eds.): Sources and Composition of Marine Sediments BT – The Sea Floor: An Introduction to Marine Geology, Springer International Publishing, Cham, 45–61, 2017.
Shen, H. W. and Lu, J.: Development and Prediction of Bed Armoring, J. Hydraul. Eng., 109, 611–629, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:4(611), 1983.
Soulsby, R.: Chapter 5 The Bottom Boundary Layer of Shelf Seas, in: Physical
Oceanography of Coastal and Shelf Seas, vol. 35, edited by: Johns, B., Elsevier, New York, USA, 189–266, 1983.
Soulsby, R.: Dynamics of Marine Sands: A manual for Practical Applications,
Thomas Telford Publishing, London, UK, 1997.
Sugiyama, J. and Kobayashi, K.: wvtool: Image Tools for Automated Wood
Identification, available at:
https://cran.r-project.org/web/packages/wvtool/index.html (last access: 8 April 2021), 2016.
Tuijnder, A. P., Ribberink, J. A. N. S., and Hulscher, S. J. M. H.: An
experimental study into the geometry of supply-limited dunes, Sedimentology,
56, 1713–1727, https://doi.org/10.1111/j.1365-3091.2009.01054.x, 2009.
van Ledden, M., van Kesteren, W. G. M., and Winterwerp, J. C.: A conceptual
framework for the erosion behaviour of sand–mud mixtures, Cont. Shelf Res.,
24, 1–11, https://doi.org/10.1016/j.csr.2003.09.002, 2004.
Van Oyen, T., de Swart, H. E., and Blondeaux, P.: Bottom topography and
roughness variations as triggering mechanisms to the formation of sorted
bedforms, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043793, 2010.
van Rijn, L. C.: Principles of sediment transport in rivers, estuaries and coastal seas, Aqua Publications Amsterdam, Amsterdam, the Netherlands, 1993.
van Rijn, L. C., Nieuwjaar, M. W. C., van der Kaay, T., Nap, E., and van Kampen, A.: Transport of Fine Sands by Currents and Waves, J. Waterw. Port Coast. Ocean Eng., 119, 123–143, https://doi.org/10.1061/(ASCE)0733-950X(1993)119:2(123), 1993.
Vericat, D., Batalla, R. J., and Garcia, C.: Breakup and reestablishment of
the armour layer in a large gravel-bed river below dams: The lower Ebro,
Geomorphology, 76, 122–136, https://doi.org/10.1016/j.geomorph.2005.10.005, 2006.
Wilcock, P. and Detemple, B.: Persistence of Armor Layers in Gravel-Bed Streams, Geophys. Res. Lett, 32, L08402, https://doi.org/10.1029/2004GL021772, 2005.
Witbaard, R., Bergman, M. J. N., van Weerlee, E., and Duineveld, G. C. A.: An
estimation of the effects of Ensis directus on the transport and burial of
silt in the near-shore Dutch coastal zone of the North Sea, J. Sea Res., 127, 95–104, https://doi.org/10.1016/j.seares.2016.12.001, 2016.
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Shells are biogenic particles that are widespread throughout natural sandy environments and can...