Articles | Volume 9, issue 5
https://doi.org/10.5194/esurf-9-1335-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-9-1335-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sediment shell-content diminishes current-driven sand ripple development and migration
Department of
Estuarine and Delta Systems (EDS), NIOZ Royal Netherlands Institute for Sea Research, 4400 AC Yerseke, the Netherlands
Wageningen Marine Research, Wageningen University & Research, 4400 AB Yerseke, the Netherlands
Jaco C. de Smit
Department of
Estuarine and Delta Systems (EDS), NIOZ Royal Netherlands Institute for Sea Research, 4400 AC Yerseke, the Netherlands
Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, the Netherlands
Greg S. Fivash
Department of
Estuarine and Delta Systems (EDS), NIOZ Royal Netherlands Institute for Sea Research, 4400 AC Yerseke, the Netherlands
Suzanne J. M. H. Hulscher
Water Engineering and Management, University of Twente, 7500 AE
Enschede, the Netherlands
Bas W. Borsje
Water Engineering and Management, University of Twente, 7500 AE
Enschede, the Netherlands
Karline Soetaert
Department of
Estuarine and Delta Systems (EDS), NIOZ Royal Netherlands Institute for Sea Research, 4400 AC Yerseke, the Netherlands
Related authors
No articles found.
Marilaure Grégoire, Luc Vandenbulcke, Séverine Chevalier, Mathurin Choblet, Ilya Drozd, Jean-François Grailet, Evgeny Ivanov, Loïc Macé, Polina Verezemskaya, Haolin Yu, Lauranne Alaerts, Ny Riana Randresihaja, Victor Mangeleer, Guillaume Maertens de Noordhout, Arthur Capet, Catherine Meulders, Anne Mouchet, Guy Munhoven, and Karline Soetaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4196, https://doi.org/10.5194/egusphere-2025-4196, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes the ocean BiogeochemicAl Model for Hypoxic and Benthic Influenced areas (BAMHBI). BAMHBI is a moderate complexity marine biogeochemical model that describes the cycling of carbon, nitrogen, phosphorus, silicon and oxygen through the marine foodweb. BAMHBI is a stand-alone biogeochemical model that can be coupled to any hydrodynamical model and is particularly appropriate for modelling low oxygen environments and the generation of sulfidic waters.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Marius Buydens, Emil De Borger, Lorenz Meire, Samuel Bodé, Antonio Schirone, Karline Soetaert, Ann Vanreusel, and Ulrike Braeckman
EGUsphere, https://doi.org/10.5194/egusphere-2025-102, https://doi.org/10.5194/egusphere-2025-102, 2025
Short summary
Short summary
As the Greenland Ice Sheet retreats, it is important to understand how this impacts the carbon burial in Greenland fjords. By comparing a fjord with marine-terminating glaciers versus one fed by a land-terminating glacier, we see that the productive waters associated to marine-terminating glaciers not necessary lead to enhanced carbon burial. Instead, we highlight the complex interplay of physical, biological, and sedimentary processes that mediate carbon dynamics in these fjords.
Anna-Selma van der Kaaden, Dick van Oevelen, Christian Mohn, Karline Soetaert, Max Rietkerk, Johan van de Koppel, and Theo Gerkema
Ocean Sci., 20, 569–587, https://doi.org/10.5194/os-20-569-2024, https://doi.org/10.5194/os-20-569-2024, 2024
Short summary
Short summary
Cold-water corals (CWCs) and tidal waves in the interior of the ocean have been connected in case studies. We demonstrate this connection globally using hydrodynamic simulations and a CWC database. Internal-tide generation shows a similar depth pattern with slope steepness and latitude as CWCs. Our results suggest that internal-tide generation can be a useful predictor of CWC habitat and that current CWC habitats might change following climate-change-related shoaling of internal-tide generation.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021, https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient vital infrastructure systems (VIS). Results from a systematic literature review indicate that (i) VIS are still being built without taking resilience explicitly into account and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. The main pressing topic to address is the integration of the combined social, ecological, and technical resilience of these systems.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Ringo Ossewaarde, Tatiana Filatova, Yola Georgiadou, Andreas Hartmann, Gül Özerol, Karin Pfeffer, Peter Stegmaier, Rene Torenvlied, Mascha van der Voort, Jord Warmink, and Bas Borsje
Nat. Hazards Earth Syst. Sci., 21, 1119–1133, https://doi.org/10.5194/nhess-21-1119-2021, https://doi.org/10.5194/nhess-21-1119-2021, 2021
Short summary
Short summary
The aim of this paper is to review and structure current developments in resilience research in the field of climate change studies, in terms of the approaches, definitions, models, and commitments that are typical for naturalist and constructivist research and propose a research agenda of topics distilled from current developments in resilience research.
Zhan Hu, Pim W. J. M. Willemsen, Bas W. Borsje, Chen Wang, Heng Wang, Daphne van der Wal, Zhenchang Zhu, Bas Oteman, Vincent Vuik, Ben Evans, Iris Möller, Jean-Philippe Belliard, Alexander Van Braeckel, Stijn Temmerman, and Tjeerd J. Bouma
Earth Syst. Sci. Data, 13, 405–416, https://doi.org/10.5194/essd-13-405-2021, https://doi.org/10.5194/essd-13-405-2021, 2021
Short summary
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
Cited articles
Ahmerkamp, S., Winter, C., Janssen, F., Kuypers, M. M. M., and Holtappels,
M.: The impact of bedform migration on benthic oxygen fluxes, J. Geophys.
Res.-Biogeo., 120, 2229–2242, https://doi.org/10.1002/2015JG003106, 2015.
Al-Dabbas, M. A. M. and McManus, J.: Shell fragments as indicators of bed
sediment transport in the Tay Estuary, P. Roy. Soc. Edinburgh Sect. B, 92, 335–344, https://doi.org/10.1017/S0269727000004759, 1987.
Ashley, G., Boothroyd, J. C., Bridge, J. S., Clifton, H. E., Dalrymple, R.,
Elliott, T., Flemming, B., Harms, J. C., Harris, P., Hunter, R. E., Kreisa,
R. D., Lancaster, N., Middleton, G. V., Paola, C., Rubin, D. M., Smith, J.
D., Southard, J. B., Terwindt, J. H. I., and Twitchell, D. C.: Classification
of large-scale subaqueous bedforms: a new look at an old problem, J. Sediment Petrol., 60, 160–172, 1990.
Baas, J. H. and De Koning, H.: Washed-out ripples; their equilibrium dimensions, migration rate, and relation to suspended-sediment concentration
in very fine sand, J. Sediment Res., 65, 431–435,
https://doi.org/10.1306/D42680E5-2B26-11D7-8648000102C1865D, 1995.
Baas, J. H., van Dam, R. L., and Storms, J. E. A.: Duration of deposition
from decelerating high-density turbidity currents, Sediment Geol., 136,
71–88, https://doi.org/10.1016/S0037-0738(00)00088-9, 2000.
Bartholdy, J., Ernstsen, V. B., Flemming, B. W., Winter, C., Bartholomä,
A., and Kroon, A.: On the formation of current ripples, Sci. Rep., 5, 11390, https://doi.org/10.1038/srep11390, 2015.
Blanchard, G. F., Guarini, J.-M., Gros, P., and Richard, P.: Seasonal effect
on the relationship between the photosynthetic capacity of intertidal
microphytobenthos and temperature, J. Phycol., 33, 723–728,
https://doi.org/10.1111/j.0022-3646.1997.00723.x, 1997.
Borchers, H. W.: pracma: Practical Numerical Math Functions, available at: https://cran.r-project.org/web/packages/pracma/index.html (last access: 8 April 2021), 2019.
Brakenhoff, L., Schrijvershof, R., van der Werf, J., Grasmeijer, B., Ruessink, G., and van der Vegt, M.: From Ripples to Large-Scale Sand
Transport: The Effects of Bedform-Related Roughness on Hydrodynamics and
Sediment Transport Patterns in Delft3D, J. Mar. Sci. Eng., 8, 1–25, https://doi.org/10.3390/jmse8110892, 2020.
Cheng, C. H.: NIOZ racetrack sand-shell experiment, data belonging to the paper: Sediment shell-content diminishes current-driven sand ripple development and migration, 4TU.ResearchData [data set], https://doi.org/10.4121/12852113, 2021.
Cheng, C. H., Soetaert, K., and Borsje, B. W.: Sediment Characteristics over
Asymmetrical Tidal Sand Waves in the Dutch North Sea, J. Mar. Sci. Eng., 8, 1–16, https://doi.org/10.3390/jmse8060409, 2020.
Curran, J. C.: An investigation of bed armoring process and the formation of
microclusters, in: 2nd Joint Federal Interagency Conference, Las Vegas, 1–12, 2010.
Damveld, J. H., Reijden, K. J., Cheng, C., Koop, L., Haaksma, L. R., Walsh,
C. A. J., Soetaert, K., Borsje, B. W., Govers, L. L., Roos, P. C., Olff, H.,
and Hulscher, S. J. M. H.: Video transects reveal that tidal sand waves affect the spatial distribution of benthic organisms and sand ripples,
Geophys. Res. Lett.,45, 11837–11846, https://doi.org/10.1029/2018GL079858, 2018.
Damveld, J. H., Roos, P. C., Borsje, B. W., and Hulscher, S. J. M. H.:
Modelling the two-way coupling of tidal sand waves and benthic organisms: A
linear stability approach, Environ. Fluid Mech., 19, 1073–1103, https://doi.org/10.1007/s10652-019-09673-1, 2019.
Dey, S.: Incipient Motion of Bivalve Shells on Sand Beds under Flowing Water, J. Eng. Mech., 129, 232–240, https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(232), 2003.
Dietrich, W., Kirchner, J., Ikeda, H., and Iseya, F.: Sediment Supply and
Development of Coarse Surface Layer in Gravel Bedded Rivers, Nature, 340,
215–217, https://doi.org/10.1038/340215a0, 1989.
Earle, S.: Sea-Floor Sediments, available at:
https://geo.libretexts.org/@go/page/7876 (last access: 8 April 2021), 2020.
Friedrichs, M., Graf, G., and Springer, B.: Skimming flow induced over a
simulated polychaete tube lawn at low population densities, Mar. Ecol. Prog.
Ser., 192, 219–228, https://doi.org/10.3354/meps192219, 2000.
Friedrichs, M., Leipe, T., Peine, F., and Graf, G.: Impact of macrozoobenthic
structures on near-bed sediment fluxes, J. Mar. Syst., 75, 336–347,
https://doi.org/10.1016/j.jmarsys.2006.12.006, 2009.
Friend, P. L., Lucas, C. H., Holligan, P. M., and Collins, M. B.: Microalgal
mediation of ripple mobility, Geobiology, 6, 70–82,
https://doi.org/10.1111/j.1472-4669.2007.00108.x, 2008.
Gornitz, V.: Encyclopedia of Paleoclimatology and Ancient Environments, Springer, https://doi.org/10.1007/978-1-4020-4411-3, 2008.
Gutiérrez, J., Jones, C., Strayer, D., and Iribarne, O.: Mollusks as
ecosystem engineers: The role of shell production in aquatic habitats, Oikos, 101, 79–90, https://doi.org/10.1034/j.1600-0706.2003.12322.x, 2003.
Herman, P., Middelburg, J., and Heip, C.: Benthic community structure and
sediment processes on an intertidal flat: Results from the ECOFLAT project,
Cont. Shelf Res., 21, 2055–2071, https://doi.org/10.1016/S0278-4343(01)00042-5, 2001.
Huettel, M. and Rusch, A.: Transport and degradation of phytoplankton in
permeable sediment, Limnol. Oceanogr., 45, 534–549, https://doi.org/10.4319/lo.2000.45.3.0534, 2000.
Idier, D., Astruc, D., and Hulscher, S. J. M. H.: Influence of bed roughness
on dune and megaripple generation, Geophys. Res. Lett., 31, L13214, https://doi.org/10.1029/2004GL019969, 2004.
Kidwell, S. M.: Palaeobiological and sedimentological implications of fossil
concentrations, Nature, 318, 457–460, https://doi.org/10.1038/318457a0, 1985.
Kösters, F. and Winter, C.: Exploring German Bight coastal morphodynamics based on modelled bed shear stress, Geo-Mar. Lett., 34, 21–36, https://doi.org/10.1007/s00367-013-0346-y, 2014.
Langlois, V. and Valance, A.: Initiation and evolution of current ripples on
a flat sand bed under turbulent water flow, Eur. Phys. J. E, 22, 201–208, https://doi.org/10.1140/epje/e2007-00023-0, 2007.
Lapôtre, M., Lamb, M., and McElroy, B.: What sets the size of current
ripples?, Geology, 45, G38598.1, https://doi.org/10.1130/G38598.1, 2017.
Lichtman, I. D., Baas, J. H., Amoudry, L. O., Thorne, P. D., Malarkey, J.,
Hope, J. A., Peakall, J., Paterson, D. M., Bass, S. J., Cooke, R. D., Manning, A. J., Davies, A. G., Parsons, D. R., and Ye, L.: Bedform migration in a mixed sand and cohesive clay intertidal environment and implications for bed material transport predictions, Geomorphology, 315, 17–32,
https://doi.org/10.1016/j.geomorph.2018.04.016, 2018.
Ligges, U., Short, T., Kienzle, P., Schnackenberg, S., Billinghurst, D.,
Borchers, H.-W., Carezia, A., Dupuis, P., Eaton, J. W., Farhi, E., Habel, K., Hornik, K., Krey, S., Lash, B., Leisch, F., Mersmann, O., Neis, P., Ruohio, J., Smith, J. O., Stewart, D., and Weingessel, A.: signal: Signal Processing, available at: https://cran.r-project.org/web/packages/signal/index.html (last access: 8 April 2021), 2015.
Malarkey, J., Baas, J. H., Hope, J. A., Aspden, R. J., Parsons, D. R., Peakall, J., Paterson, D. M., Schindler, R. J., Ye, L., Lichtman, I. D., Bass, S. J., Davies, A. G., Manning, A. J., and Thorne, P. D.: The pervasive
role of biological cohesion in bedform development, Nat. Commun., 6, 6257,
https://doi.org/10.1038/ncomms7257, 2015.
Miedema, S. and Ramsdell, R.: Hydraulic transport of sand/shell mixtures in
relation with the critical velocity, Terra Aqua, 122, 18–27, 2011.
Mietta, F., Chassagne, C., Manning, A. J., and Winterwerp, J. C.: Influence
of shear rate, organic matter content, pH and salinity on mud flocculation,
Ocean Dynam., 59, 751–763, https://doi.org/10.1007/s10236-009-0231-4, 2009.
Nelson, T. R., Voulgaris, G., and Traykovski, P.: Predicting wave-induced
ripple equilibrium geometry, J. Geophys. Res.-Oceans, 118, 3202–3220,
https://doi.org/10.1002/jgrc.20241, 2013.
Nowell, A. R. M. and Jumars, P. A.: Flow Environments of Aquatic Benthos, Annu. Rev. Ecol. Syst., 15, 303–328, https://doi.org/10.1146/annurev.es.15.110184.001511, 1984.
Paterson, A., Hume, T., and Healy, T.: River Mouth Morphodynamics on a Mixed
Sand-Gravel Coast, J. Coast. Res., 34, 288–294, 2001.
Pilditch, C. A., Emerson, C. W., and Grant, J.: Effect of scallop shells and
sediment grain size on phytoplankton flux to the bed, Cont. Shelf Res., 17, 1869–1885, https://doi.org/10.1016/S0278-4343(97)00050-2, 1997.
Pope, N., Widdows, J., and Brinsley, M.: Estimation of bed shear stress using
the turbulent kinetic energy approach – A comparison of annular flume and
field data, Cont. Shelf Res., 26, 959–970, https://doi.org/10.1016/j.csr.2006.02.010,
2006.
Precht, E. and Huettel, M.: Advective pore-water exchange driven by surface
gravity waves and its ecological implications, Limnol. Oceanogr., 48, 1674–1684, https://doi.org/10.4319/lo.2003.48.4.1674, 2003.
Ramsdell, R. and Miedema, S.: Hydraulic transport of sand/shell mixtures, in:
WODCON XIX, WODA – World Organization of Dredging Associations, Beijing, 1–21, 2010.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org (last access: 8 April 2021), 2020.
Russell-Hunter, W. D. (Ed.): Chapter 1 Overview: Planetary Distribution of and Ecological Constraints upon the Mollusca, in: The Mollusca: Ecology, vol. 6, Academic Press, Orlando, USA, 1–27, 1983.
Seibold, E. and Berger, W. (Eds.): Sources and Composition of Marine Sediments BT – The Sea Floor: An Introduction to Marine Geology, Springer International Publishing, Cham, 45–61, 2017.
Shen, H. W. and Lu, J.: Development and Prediction of Bed Armoring, J. Hydraul. Eng., 109, 611–629, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:4(611), 1983.
Soulsby, R.: Chapter 5 The Bottom Boundary Layer of Shelf Seas, in: Physical
Oceanography of Coastal and Shelf Seas, vol. 35, edited by: Johns, B., Elsevier, New York, USA, 189–266, 1983.
Soulsby, R.: Dynamics of Marine Sands: A manual for Practical Applications,
Thomas Telford Publishing, London, UK, 1997.
Sugiyama, J. and Kobayashi, K.: wvtool: Image Tools for Automated Wood
Identification, available at:
https://cran.r-project.org/web/packages/wvtool/index.html (last access: 8 April 2021), 2016.
Tuijnder, A. P., Ribberink, J. A. N. S., and Hulscher, S. J. M. H.: An
experimental study into the geometry of supply-limited dunes, Sedimentology,
56, 1713–1727, https://doi.org/10.1111/j.1365-3091.2009.01054.x, 2009.
van Ledden, M., van Kesteren, W. G. M., and Winterwerp, J. C.: A conceptual
framework for the erosion behaviour of sand–mud mixtures, Cont. Shelf Res.,
24, 1–11, https://doi.org/10.1016/j.csr.2003.09.002, 2004.
Van Oyen, T., de Swart, H. E., and Blondeaux, P.: Bottom topography and
roughness variations as triggering mechanisms to the formation of sorted
bedforms, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043793, 2010.
van Rijn, L. C.: Principles of sediment transport in rivers, estuaries and coastal seas, Aqua Publications Amsterdam, Amsterdam, the Netherlands, 1993.
van Rijn, L. C., Nieuwjaar, M. W. C., van der Kaay, T., Nap, E., and van Kampen, A.: Transport of Fine Sands by Currents and Waves, J. Waterw. Port Coast. Ocean Eng., 119, 123–143, https://doi.org/10.1061/(ASCE)0733-950X(1993)119:2(123), 1993.
Vericat, D., Batalla, R. J., and Garcia, C.: Breakup and reestablishment of
the armour layer in a large gravel-bed river below dams: The lower Ebro,
Geomorphology, 76, 122–136, https://doi.org/10.1016/j.geomorph.2005.10.005, 2006.
Wilcock, P. and Detemple, B.: Persistence of Armor Layers in Gravel-Bed Streams, Geophys. Res. Lett, 32, L08402, https://doi.org/10.1029/2004GL021772, 2005.
Witbaard, R., Bergman, M. J. N., van Weerlee, E., and Duineveld, G. C. A.: An
estimation of the effects of Ensis directus on the transport and burial of
silt in the near-shore Dutch coastal zone of the North Sea, J. Sea Res., 127, 95–104, https://doi.org/10.1016/j.seares.2016.12.001, 2016.
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Shells are biogenic particles that are widespread throughout natural sandy environments and can...